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Abstract

The problem of resolution of singularities in positive characteristic can be reformulated
as follows: fix a hypersurface X, embedded in a smooth scheme, with points of
multiplicity at most n. Let an n-sequence of transformations ofX be a finite composition
of monoidal transformations with centers included in the n-fold points of X, and of its
successive strict transforms. The open problem (in positive characteristic) is to prove
that there is an n-sequence such that the final strict transform of X has no points of
multiplicity n (no n-fold points). In characteristic zero, such an n-sequence is defined
in two steps. The first consists of the transformation of X to a hypersurface with n-fold
points in the so-called monomial case. The second step consists of the elimination of
these n-fold points (in the monomial case), which is achieved by a simple combinatorial
procedure for choices of centers. The invariants treated in this work allow us to present
a notion of strong monomial case which parallels that of monomial case in characteristic
zero: if a hypersurface is within the strong monomial case we prove that a resolution
can be achieved in a combinatorial manner.
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1. Introduction

1.1 Overview
The objective of this paper is to study invariants of singularities in positive characteristic.
A particular motivation is to give invariants that would yield a sequence of monoidal
transformations so as to eliminate the points of highest multiplicity of a hypersurface X. To
be precise, let V be a smooth scheme of dimension d over a perfect field k of characteristic p > 0,
and let X be a hypersurface in V with highest multiplicity n. The problem is to construct a
sequence

X X1 Xr XN

V V1

πC0oo . . .
πC1oo Vr

πCr−1oo . . .
πCroo VN

πCN−1oo (1.1.1)

where each Vi−1
πi←− Vi is a monoidal transformation with center Ci−1 included in the n-fold

points of Xi−1, so that XN has no point of multiplicity n. Here each Xi ⊂ Vi denotes the strict
transform of Xi−1 by πCi−1 . We require, in addition, that the exceptional locus of V ←− VN be
a union of N hypersurfaces with normal crossings at VN . A sequence with this property is said
to be a simplification of the n-fold points of X.

In characteristic zero, simplifications of n-fold points of X are known to exist. This is usually
done in two steps. The first step consists of a sequence of, say r, monoidal transformations,
so that the set of points of highest multiplicity n of Xr is within the so-called monomial case.
The second step consists of the elimination of the n-fold points of the hypersurface Xr, which is
assumed to be in the monomial case. The latter step is rather simple, and it can be achieved by
a combinatorial choice of centers.

Both steps rely on Hironaka’s main inductive invariant, say ord(d−1)(x) ∈Q, defined for x in
the highest multiplicity locus of the hypersurface. In fact, these invariants lead to the construction
of a sequence in such a way that Xr is in the monomial case. The role of Hironaka’s main inductive
function in both steps mentioned above, always in characteristic zero, will be recalled in § 1.3.

In this work we conduct a study of Hironaka’s inductive function over perfect fields of
arbitrary characteristic. We will introduce the notion of strong monomial case for a hypersurface
in positive characteristic. This notion will be characterized in terms of Hironaka’s inductive
functions. It parallels that of monomial case in characteristic zero, i.e., if Xr is in the strong
monomial case, then elimination of n-fold points is achieved in a combinatorial manner.

In the case of hypersurfaces in positive characteristic, a canonical sequence of transformations
of X was defined in [BVS10]. This sequence transforms X to an embedded hypersurface, say
Xr, which is closely related to the monomial case, but still weaker than the strong monomial
case treated here. The simplification of the n-fold problem would be solved if one could fill the
gap between the weak monomial case in [BVS10] and our strong monomial case. To be precise,
the open problem of simplification (and of resolution of singularities) would be solved if one
could construct a sequence of monoidal transformations that transforms a hypersurface in the
monomial case into one in the strong monomial case.

This can be easily achieved in low dimension, and we prove resolution of singularities of
2-dimensional schemes by means of the invariants introduced here. A detailed proof of this fact
can be found in [BV12].

1.2 Reformulation in terms of algebras
Assume, for simplicity, that V is affine and X = V (f) is a hypersurface with highest
multiplicity n. We will first attach to the previous data the algebra OV [fWn](⊂OV [W ]) with n
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Monoidal transforms and invariants of singularities

as above, namely the OV -subalgebra of OV [W ] generated by the element fWn. The notion of
transformation of hypersurfaces (with the center included in the subset of n-fold points) has a
natural reformulation in the language of algebras. Moreover, the task of constructing a sequence
(1.1.1) that eliminates the n-fold points of X, by means of monoidal transformations, can also
be expressed in terms of algebras and transformations of algebras (see § 2.2).

This reformulation of the simplification problem in terms of algebras is well justified. In fact,
the original algebra OV [fWn] can be extended canonically to a so-called differential algebra,
so that both are strongly linked; for the purpose of constructing a simplification of OV [fWn],
there is no harm in replacing it by its differential extension. Over fields of characteristic zero,
this procedure is well known. In fact, differential algebras (see § 2.5) are closely related to the
theory of maximal contact in characteristic zero. In such context, hypersurfaces of maximal
contact allow us to reformulate the problem of simplification with the simplification of a new
algebra, defined over a smooth hypersurface V , and hence in one less dimension. Here V is
called a hypersurface of maximal contact. This form of induction is formulated in the language
of algebras, the correspondent algebra defined over V is known as the coefficient algebra.

1.3 Monomial algebras and monomial case
In problems of resolution of singularities, it is natural to consider sequences of transformations
of the form

V V1

πC0oo . . .
πC1oo Vr

πCr−1oo (1.3.1)
with the additional condition that the exceptional locus of the sequence, say Er = {H1, . . . , Hr},
is given by hypersurfaces having only normal crossings at Vr. A monomial algebra in Vr is an
algebra of the form OVr [I(H1)α1 . . . I(Hr)αrW s] for some s, αi ∈ Z>0.

In the case of characteristic zero, the simplification of n-fold points can be achieved in two
steps, both of them expressed in terms of algebras, once a hypersurface of maximal contact, say
V , is fixed.

Step 1. In which a sequence of monoidal transformations is constructed over the hypersurface of
maximal contact, say

V V 1
π0oo . . .π1oo V r,

πr−1oo (1.3.2)

so that the coefficient algebra is transformed into a monomial algebra supported on the
exceptional locus, say OV r [I(H1)α1 . . . I(Hr)αrW s]. The point is that this sequence induces a
sequence (1.3.1), and in this case, the n-fold points of Xr (the strict transform of X) are said to
be in the monomial case.

Step 2. In which a simplification of the n-fold points of Xr (monomial case) is constructed, say

Vr Vr+1
πroo . . .oo VN .

πN−1oo (1.3.3)

This step is achieved in an easy combinatorial manner. This procedure of choice of centers is
defined only in terms of the exponents αi of the monomial algebra obtained in Step 1.

All these arguments (always in characteristic zero) rely strongly on Hironaka’s inductive
function ord(d−1) (see (2.3.1)), defined in terms of the coefficient algebra. In fact,
Hironaka’s function allows us to attach to an arbitrary sequence (1.3.1) a monomial algebra
OVr [I(H1)α1 . . . I(Hr)αrW s]. To be precise, this is done by setting αi/s+ 1 = ord(d−1)

i−1 (yi−1)
(i= 1, . . . , r); here the right-hand side is the evaluation of the inductive function at yi−1, the
generic point of the center Ci−1.
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1.4 Main objectives of this work
In this work we consider schemes over perfect fields of positive characteristic. The two main
objectives are as follows.

(1) To define an analogue to Hironaka’s inductive function, called here H-ord(d−1)
i (see

Theorem 7.2 (Main Theorem 1)), with values in Q. These functions enable us to attach
a monomial algebra OVr [I(H1)h1 . . . I(Hr)hrW s] to a sequence of transformations (1.3.1),
setting as before hi/s+ 1 = H-ord(d−1)

i−1 (yi−1) (see Theorem 7.6 (Main Theorem 2)).

(2) To characterize, by numerical invariants, a case called here the strong monomial case
(Definition 8.4), in which a combinatorial resolution of the monomial algebra defines, as in
Step 2, a simplification of n-fold points (Theorem 8.14). This property will rely strongly on
Main Theorem 2.

1.5 Differences with characteristic zero
In characteristic zero, Hironaka’s inductive function ord(d−1) is upper-semi-continuous. This
property follows from a form of coherence, and the proof of this property requires some form
of patching of local data, and it is altogether quite involved. In positive characteristic the
function H-ord(d−1) is not upper-semi-continuous and therefore we do not go through this kind
of discussion. In other words there is no coherence or patching to be proved in the positive
characteristic case. Despite this fact, this function is essential in the study of singularities and
we show that it leads to (1) and (2) in § 1.4.

In characteristic zero the value of the function ord(d−1), at a given point, is computed by fixing
a hypersurface of maximal contact. As there is no maximal contact in positive characteristic, we
replace reduction to hypersurfaces of maximal contact by transversal projections: V (d) −→ V (d−1)

defined in étale topology (Definition 2.10). In this setting, algebras over the smooth scheme
V (d−1) are defined; they are called elimination algebras (§ 2.11). In characteristic zero elimination
algebras parallel the role of the coefficient algebras.

We use here transversal projections and elimination algebras to compute the value of the
function H-ord(d−1) at a given point, which is a rational number. To fix ideas let x be an
n-fold point of X = V (f)⊂ V (d). The Weierstrass preparation theorem ensures that one can
choose a regular system of parameters {z, x1, . . . , xr−1} so that at the completion ÔV (d),x =
k′[[z, x1, . . . , xr−1]] (r = d if x is closed) we can take

f(z) = zn + a1z
n−1 + · · ·+ an with ai ∈ k′[[x1, . . . , xr−1]]. (1.5.1)

A rational number >1 is defined as

max
z

{
min

16i6n

{
νx(ai)
i

}}
∈Q, (νx(ai) is the order at k′[[x1, . . . , xr−1]]). (1.5.2)

This is a rational number attached to the singularity x and to the particular projection. It is called
the maximum slope as we choose the biggest value for the different choices of z, but always fix the
inclusion of rings k′[[x1, . . . , xr−1]]⊂ k′[[z, x1, . . . , xr−1]] = ÔV (d),x. Fixing an inclusion of rings
is formulated here by fixing a morphism of smooth schemes V (d) −→ V (d−1) (the projection).
In order to parallel the presentation in (1.5.1) (Weierstrass preparation theorem) we need to
consider étale topology. To be precise, transversal projections to X are those for which the
hypersurface can be expressed by an equation as in (1.5.1) (where n is the multiplicity of X at
the point).
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Our setting will be slightly more general. Once a transversal projection V (d) β−→ V (d−1) is
fixed, we will consider an expression

f(z) = zn + a1z
n−1 + · · ·+ an ∈ OV (d−1) [z] (1.5.3)

where the coefficients ai are global functions on V (d−1) and where z is a global function on
V (d) so that {dz} is a basis of Ω1

β, the sheaf of β-relative differentials. In this case, the smooth

hypersurface {z = 0} is a section of V (d) β−→ V (d−1). We will abuse the notation and say that the
function z is a transversal section of β.

We will study conditions on z which ensure when the rational number in (1.5.2) is the
maximum slope, and then we show that such value is independent of the chosen transversal
projection, and hence intrinsic of the singularity (Main Theorem 1).

This defines an invariant attached to singular point x, denoted here by

H-ord(d−1)(x).

If we fix two n-fold points x and y, so that x ∈ y, then it will be shown that H-ord(d−1)(x) >
H-ord(d−1)(y) (despite this property, the function is not upper-semi-continuous). This inequality
will be used in the proof of the two main objectives (1) and (2) in § 1.4.

This invariant attached to the singularity has been studied by Cossart and Piltant in [CP08,
Part II, ch. 1]. It has also been largely studied in positive characteristic for the particular
case of equations of the form fpe(z) = zp

e

+ ape ∈ OV (d−1) [z] (the purely inseparable case), e.g.
[Cos87, Hau09, HW, Moh87, Moh96]. In our approach we also focus on how this invariant can
be read from a particular projection, and on how it relates to other invariants attached to the
projection as the so-called elimination algebra.

Equations of the form fpe(z) = zp
e

+ ape ∈ OV (d−1) [z] involve a particular transversal
projection, say V (d) β−→ V (d−1). Note that pure inseparability fails to hold if the projection is
changed (pure inseparability is not a property of the singularities of a hypersurface). In this work
we draw attention to the fact that the invariant is independent of the projection, which shows
that the rational number in (1.5.2), usually called the slope of the singularity, is independent of
the projection and hence intrinsic of the singularity.

1.6 Organization and further comments

Part I: p-presentations, adaptations and the tight monomial algebra

The objective of this first part is the definition of the inductive function and the study of its
main properties mentioned in § 1.4. This leads to the two main theorems stated in § 7; we suggest
a first look at this section for an overall view of the preliminary results that are needed.

This first part is developed so as to introduce gradually the inductive function H-ord(d−1) in
positive characteristic, and to pave the way to the study of the strong monomial case in Part II.
This part has been organized so as to present only those technical aspects which are crucial in
the first two parts, whereas other technical arguments are gathered in Part III.

Section 2 encompasses several notions used throughout the paper, such as Rees algebras and
Rees algebras endowed with a suitable compatibility with differential operators. This will lead
us to the notion of simple differential algebras, which will be essential for the definition of our
invariants.

In our approach the study of n-fold points of the hypersurface X = V (f) is reformulated here
in terms of the Rees algebra OV (d) [fWn]. This is our first example of simple algebra. Attached
to this Rees algebra is a well-defined differential algebra.
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Simple algebras which are differential will lead us naturally to the study of monic polynomials
(1.5.3), where n= pe is now a power of the characteristic.

We also discuss here the notion of elimination algebras. These are defined in terms of
differential algebras and transversal projections. Elimination algebras will play a central role
in the definition of invariants. A first step in this direction will be given by our notion of
p-presentation in Definition 2.14.

We shall make use of a fundamental property of stability of transversality with monoidal
transformations, a property that parallels the stability of the maximal contact in characteristic
zero: to fix ideas, set X = {f = 0} ⊂ V (d) and a transversal projection V (d) β−→ V (d−1) as in
(1.5.3). Now consider an arbitrary sequence of monoidal transformations

X X1 Xr

V (d) V
(d)

1

πC0oo . . .
πC1oo V

(d)
r ,

πCr−1oo (1.6.1)

where each Xi+1 denotes the strict transform of Xi, and each πCi is a monoidal transformation
with center Ci−1 included in the n-fold points of Xi. The stability property of the transversality
is that (1.6.1) induces a sequence

V (d−1) V
(d−1)

1
oo . . .oo V

(d−1)
r

oo (1.6.2)

together with projections V (d)
i

βi−→ V
(d−1)
i which are transversal to Xi along the n-fold points

(the βi are defined in an open neighborhood of the n-fold points of Xi in V
(d)
i ).

This will lead us to some form of transformations of the monic polynomial in (1.5.3):

f (i)(zi) = zni + a
(i)
1 zn−1

i + · · ·+ a(i)
n ∈ OV (d−1)

i
[zi]. (1.6.3)

Here, the polynomials in (1.6.3) are not the strict transform of the first expression in (1.5.3).
Changes of the transversal parameter zi will be required in the definition of each expression.

In § 3 sequences in the form of (1.6.1) are expressed as transformations of Rees algebras. In
this context each transversal projection βi will define an elimination algebra on V

(d−1)
i . In this

section, we also discuss a form of compatibility of elimination with monoidal transformations.
This, in turn, will lead to Theorem 3.8 in which monomial algebras appear in a natural manner
[BVS10]. The proof of the theorem relies on a form of induction that will be clarified.

One of the objectives of this first part is to assign a monomial algebra, say
OV (d)

r
[I(H1)h1 . . . I(Hr)hrW s] (see § 1.4(1)), to a sequence of transformations of X in the form

of (1.6.1). This monomial algebra, to be assigned to (1.6.1) in a canonical manner, will relate to
the coefficients of f (r)(zr) = znr + a

(r)
1 zn−1

r + · · ·+ a
(r)
n ∈ OV (d−1)

r
[zr]. In fact, we show that such

an expression can be chosen so each coefficient a(r)
i is divisible, in some weighted manner, by

this monomial algebra (see Definition 3.10).
A first step in the definition of our inductive function H-ord(d−1) is addressed in § 4, where

a rational number is assigned to a p-presentation (slope at a point). A notion of well-adapted
p-presentation at a point is introduced in § 5. It will be ultimately shown, in a further section,
that the slope of p-presentations, which are well-adapted at a point x, is optimal, and that such
a slope is the value of Hironaka’s inductive function at x, namely H-ord(d−1)(x) (the value of
the inductive function at x). All this highlights the importance of the notion of well-adapted
presentations in the following.

Both §§ 4 and 5 are focused in giving, in an explicit manner, the value of the Hironaka’s
inductive function at a singular point.
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In § 6, monoidal transforms of p-presentations are defined. This leads to the statement of
the two main results of this first part: Main Theorems 1 and 2, stated in § 7. Main Theorem 1
(Theorem 7.2) asserts that the previously defined inductive function is independent of the chosen
transversal projection β. Main Theorem 2 (Theorem 7.6) characterizes the monomial algebra,
called here MrW

s, defined by the inductive functions. Proofs will be addressed in Part III.

Part II: Strong monomial case

In Part I we define the inductive functions, H-ord(d−1)
i , and a monomial algebra, sayMrW

s, will
be assigned to a sequence of transformations (1.6.1). It can be shown that for any n-fold point

H-ord(d−1)(x) > ord(MrW
s)(x),

where the order function in the right-hand side is the usual order defined for an arbitrary algebra
(see (2.3.1)). The function ord(MrW

s) is a nicely behaved upper-semi-continuous function as
opposed to the function on the left-hand side. The previous inequality between the previous
functions will lead us to the numerical characterization of the strong monomial case, expressed
by the condition

H-ord(d−1)(x) = ord(MrW
s)(x),

for any n-fold point x.
It is proved in Theorem 8.14 that if such equality holds, then a combinatorial resolution of

MrW
s can be lifted to a simplification of the n-fold points. This settles § 1.4(2).

1.7 Final comments
The invariants studied in this paper make use of transversal projections V (d) −→ V (d−1) and of
elimination algebras defined in V (d−1). There are other approaches in the definition of invariants
along n-fold points of a hypersurface. The bibliography indicates some, but certainly not all
the effort done in this way. An account of the problem, due to Hauser, appears in [Hau10].
There is an alternative approach of W lodarczyk; his presentation in [Wl08] includes an important
study of pathologies in positive characteristic. There are also recent contributions by Kawanoue–
Matsuki [Kaw07, KM10, KM12], Hironaka [Hir08], Cutkosky [Cut09, Cut11], Piltant [Pil03],
and a fundamental contribution of Cossart–Jannsen–Saito in [CJS09] which proves embedded
resolution for 2-dimensional arithmetical schemes. Some important and remarkable results on
the resolution of singularities appear in [Abh56, Abh59, EV00, Hir64a, Hir64b, Lip78, Vil89,
Vil08b, Wl05]. We have profited from discussions with S. Encinas, V. Cossart, H. Hauser, H.
Kawanoue, J. Lipman, K. Matsuki, O. Piltant and from ideas of A. Bravo which will be discussed
elsewhere.

Part I. Inductive functions and the tight monomial algebra

2. Differential algebras, elimination and local presentations

2.1 Motivation
The initial motivation is the study of the highest multiplicity locus of an embedded hypersurface
X. Here we begin in § 2.2 by showing how to reformulate this study in terms of algebras. This
reformulation will enable us to consider algebras with more structure and, in fact, algebras with
a form of compatibility with differential operators are studied in §§ 2.3–2.5, where the notions of
absolute and relative differential algebras are discussed (following the classical ideas introduced
by Giraud, [Gir75, Gir83a, Gir83b]).
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It is in the context of differential algebras in which the fundamental notions of transversal
projections and elimination algebras will be introduced (see § 2.7 and § 2.11, respectively).

The main objective of this section is to show that given a differential algebra, together with
a transversal projection, the algebra can be entirely reconstructed in terms of two ingredients:

(i) the elimination algebra; and

(ii) a monic polynomial.

This is the main result in this section, which is collected in Proposition 2.12. This form of
presentation of the algebra will be essential throughout this work. In the case of characteristic
zero the monic polynomial can be chosen of degree one. In the case of positive characteristic one
can choose the monic polynomial so as to have as degree a power of the characteristic. This will
lead to the definition of p-presentations in Definition 2.14.

The particular role of positive characteristic is played by the coefficients of this monic
polynomial as will be shown in this development. The definition of the main invariant will
rely entirely on these two ingredients.

2.2 Rees algebras and the resolution problem
Here we introduce the notion of Rees algebras, which will play a prominent role in our
development. Let V (d) be a smooth scheme over a perfect field k of dimension d. The problem of
resolution of singularities of a singular scheme embedded in V (d) can be stated in terms of Rees
algebras over V (d). These are algebras of the form G =

⊕
n∈N InW

n, where I0 =OV (d) and each
In is a coherent sheaf of ideals. Here W stands for a dummy variable introduced simply to keep
track of the degree. It will be assumed that, locally at any point of V , G is a finitely generated
OV (d)-algebra.

A non-zero sheaf of ideals J ⊂OV (d) defines an upper-semi-continuous function ν(J) : V (d) −→
Z, where νx(J) denotes the order of the stalk Jx at the local regular ring (OV (d),x, mx). Recall
that the order of Jx in OV (d),x is the highest integer n so that Jx ⊂mn

x. The singular locus of G
is the closed set

Sing(G) = {x ∈ V (d) | νx(In) > n for each n ∈ N}. (2.2.1)

In the setting of § 1.2 in which X = V (f), we will first attach to X the algebra G =OV (d) [fWn].
The set Sing(G) consists of the points of multiplicity n of the hypersurface X = V (f).

Fix a monoidal transformation V (d) πC←− V (d)
1 along the closed smooth center C ⊂ Sing(G).

If H ⊂ V (d)
1 denotes the exceptional hypersurface, then for each integer n> 0, there is a

factorization:

InOV (d)
1

= I(H)nI(1)
n .

This defines a new Rees algebra, G1 =
⊕

n∈N I
(1)
n Wn, called the transform of G. The

transformation is denoted by

G G1

V (d) V
(d)

1 .
πCoo

A sequence of transformations will be denoted by

G G1 Gr
V (d) V

(d)
1

πC1oo . . .
πC2oo V

(d)
r ,

πCroo (2.2.2)
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and herein we always assume that the exceptional locus of the composite morphism V (d)←− V (d)
r

is a union of hypersurfaces with only normal crossings.
The sequence (2.2.2) is said to be a resolution of G if Sing(Gr) = ∅. For G =OV (d) [fWn], a

resolution (2.2.2) defines a simplification of n-fold points as in (1.1.1).
A Rees algebra G is said to be simple at x ∈ Sing(G) if there is an index n ∈ N so that

νx(In) = n. It is said to be simple if this condition holds for any x ∈ Sing(G). Such is the case
for G =OV (d) [fnWn], when fn defines a hypersurface, say X, of maximum multiplicity n.

2.3 Sections of projections
Here β : V (d) −→ V (d−1) will denote a smooth morphism of relative dimension one, between
smooth schemes of dimensions d and d− 1. Locally at a point x ∈ V (d), V (d) is étale over
V (d−1) × A1 (where A1 denotes the affine line), and such a map is compatible with the projection
on V (d−1) [AK70, p. 128]. Consequently, the local ring OV (d),x is étale over a localization of a
polynomial ring in one variable, say OV (d−1),β(x)[Z]. After restriction to a neighborhood of x, Z
gives rise to a global function at V (d), say z. So there is an inclusion OV (d−1) [z]⊂OV (d) , where
z ∈ Γ(OV (d) , V (d)), and the closed set {z = 0} is a section of β : V (d) −→ V (d−1).

Given a ring S[Z], a morphism of S-algebras, say Tay : S[Z]−→ S[Z, T ], is defined by setting
Tay(Z) = Z + T (Taylor expansion). Here

Tay(f(Z)) = f(Z + T ) =
∑

∆(r)(f(Z))T r,

for some operator ∆(r): S[Z]−→ S[Z] defined from this morphism. It is well known that
{∆(0),∆(1), . . . ,∆(r)} is a basis of the free module of S-differential operators of order 6 r. The
same applies here for OV (d−1) [z] if we assume that {dz} is a basis of Ω1

β(= Ω1(OV (d) | OV (d−1))).
Namely, {∆(0),∆(1), . . . ,∆(r)} spans the sheaf of differential operators of order r relative to the
smooth morphism β : V (d) −→ V (d−1).

Throughout this paper we will slightly abuse the notation; here β : V (d) −→ V (d−1) is called
a local projection , and the function z is said to be a section of β, or a β-section.

Let G =
⊕

n>0 InW
n be a Rees algebra on a d-dimensional smooth scheme V (d). We always

assume that I0 =OV (d) and that G is a locally finite generated OV (d)-algebra, namely that

G =OV (d) [fn1W
n1 , . . . , fnsW

ns ](⊂OV (d) [W ]),

locally at any point of V (d).
Given two such algebras G1 and G2, G1 � G2 will denote the smallest algebra containing G1 and

G2. In terms of local generators, if {f1W
n1 , . . . , frW

nr} generates G1 and {g1W
m1 , . . . , gsW

ms}
generates G2, then G1 � G2 is generated by {f1W

n1 , . . . , frW
nr , g1W

m1 , . . . , gsW
ms}.

A function ord(G)(−) : V (d) // Q is defined

ord(G)(x) = min
n>0

{
νx(In)
n

}
(2.3.1)

where νx denotes the order at the local regular ring OV (d),x. It takes only finitely many values.
Note that the singular locus is Sing(G) = {x ∈ V (d) | ord(G)(x) > 1}.

Remark 2.4. It is a general fact that objects treated by resolution techniques are gathered in
equivalence classes. Such is the case, for instance, with log-resolutions of ideals on smooth
schemes. If two ideals have the same integral closure they undergo the same log-resolution, so
ideals are considered up to integral closure. A similar situation applies here, where the objects are
algebras; two algebras with the same integral closure will not be distinguishable. For instance, if G
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and G′ are two algebras on V (d) with the same integral closure, then they define the same functions
ord(G) = ord(G′) (in particular, Sing(G) = Sing(G′), [Vil08a, Proposition 4.4]). The reader should
keep aware of this fact, as it also affects the notation. The expression fW t ∈ G =

⊕
n>0 InW

n

means that f r ∈ It·r for some positive integer r.
A Rees algebra can be defined by fixing an ideal I and a positive integer s, say OV [IW s]

(⊂OV [W ]), which we denote simply as IW s. Moreover, up to integral closure, any Rees algebra
is of this kind [EV07, Remark 1.3]. In this case, fW t ∈ OV [IW s] means that fs ∈ It.

2.5 Differential Rees algebras
An algebra G =

⊕
n>0 InW

n over V (d) is said to be a differential algebra if Dr(In)⊂ In−r for
any r < n and for any differential operator Dr of order r, whenever we restrict to an affine open
subset of V (d).
G is said to be an absolute differential algebra, if this property holds for all k-linear differential

operators. Fix a smooth morphism V (d) β−→ V (d−1). Then, if the previous property holds for
differential operators which are OV (d−1)-linear, or say, β-relative operators, then G is said to be
a β-relative differential algebra, or simply β-differential.

If G is an absolute differential algebra, then it is also a β-relative differential algebra for any
smooth morphism V (d) β−→ V (d−1) defined over k. The β-relative structure has an advantage:
the transform of an absolute differential algebra is not absolute differential, but the notion of
β-differential algebra will turn out to be well suited with transformations.

If G is not a differential algebra, then it has a natural extension to a differential algebra
[Vil08a, Theorem 3.4]. The same holds if G is not a β-differential algebra. These natural
extensions are compatible with integral closure: if G1 and G2 have the same integral closure,
the same holds for their extensions to differential algebras or to β-differential algebras [Vil08a,
Theorem 6.14].

Remark 2.6. If G is a β-differential Rees algebra, then, locally, there is a finite set of elements
of G, say {f1W

n1 , . . . , fsW
ns}, so that

G =OV (d) [fiWni ,∆(αi)(fi)Wni−αi ]16αi6ni−1,16i6s,

with ∆(αi) as in § 2.3. Conversely, these local presentations characterize β-differential algebras
[Vil08a, Theorem 2.9].

2.7 Hironaka’s τ -invariant
The graded algebra of the maximal ideal mx of a point x ∈ V (d), say Grx(OV (d),x), is isomorphic
to a polynomial ring. When x is a closed point, it is a polynomial ring in d-variables, which is the
coordinate ring associated to the tangent space of V (d) at x, namely Spec(Grx(OV (d),x)) = TV (d),x.
The initial ideal or tangent ideal of G at x ∈ Sing G, say Inx(G), is the ideal of Grx(OV (d),x)
generated by the elements Inx(In) for all n> 1, where Inx(In) is the class of In at mn

x/m
n+1
x .

Observe that Inx(G) is zero unless ord(G)(x) = 1. The zero set of the tangent ideal Inx(G) in
Spec(Grx(OV (d),x)) is the tangent cone of G at x, denoted by CG,x.

Given a vector space V, a vector v ∈ V defines a translation, say trv(w) = w + v for w ∈ V.
There is a largest linear subspace, denoted by LG,x, so that CG,x is invariant under translations
of LG,x, that is, trv(CG,x) = CG,x for any v ∈ LG,x. This subspace LG,x is called the linear space of
vertices.

Definition 2.8 (Hironaka’s τ -invariant). We will denote by τG,x the minimum number of
variables required to express generators of the tangent ideal Inx(G). This algebraic definition
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can be reformulated geometrically as follows: τG,x is the codimension of the linear subspace LG,x
in TV (d),x.

Throughout this paper the invariant τG,x is only to be used when x ∈ Sing(G) is a closed
point.

2.9 Transversal projections

Now fix a closed point x ∈ V (d). Let V (d) β−→ V (d−1) be smooth and set β(x) = y ∈ V (d−1). A
regular system of parameters {y1, . . . , ys} in OV (d−1),y, extends to {y1, . . . , ys, z}, a regular
system of parameters in OV (d),x. Here x is a point of β−1(y), and the tangent space
of this subscheme at x, say Tβ−1(y),x, is identified with the subscheme in TV (d),x defined
by the linear forms 〈Inx(y1), . . . , Inx(ys)〉 ⊂Grx(OV (d),x) (i.e., a one-dimensional subspace
in TV (d),x).

Definition 2.10. A local projection β : V (d) −→ V (d−1) is said to be transversal to G at a simple
point x ∈ Sing(G) (see § 2.2), if CG,x ∩ Tβ−1(y),x =O, the origin of TV (d),x. The local projection is
said to be transversal to G if it is so at any point of Sing G. Transversality is an open condition
so we are led to consider this condition only at closed points (see [BVS10, Remark 8.5]).

2.11 Elimination algebras

Set a local projection β : V (d) −→ V (d−1). Let x ∈ Sing(G) be a closed point in V (d), so y = β(x)
is closed in V (d−1). A regular system of parameters {y1, . . . , yd−1} ⊂ OV (d−1),y extends to a
regular system of parameters {y1, . . . , yd−1, z} in OV (d),x. In this case, z defines a section of
β : V (d) −→ V (d−1) after suitable restrictions. We view this projection locally. Let us stress here
that Sing(G) is not included in the section of β defined by z = 0 . When the characteristic is zero
one can choose z with such condition, but this does not hold in positive characteristic.

Take G to be a simple algebra, and let β : V (d) −→ V (d−1) be transversal to G. Fix a closed
point x ∈ Sing(G). The Weierstrass preparation theorem ensures that, taking restrictions in étale
topology, G has the same integral closure as an algebra OV (d) [f1(z)Wn1 , . . . , fs(z)Wns ], where
each

fi(z) = zni + a
(i)
1 zni−1 + · · ·+ a(i)

ni ∈ OV (d−1) [z] (2.11.1)

is a monic polynomial of degree ni ∈ Z>0 (see [Vil07, 4.7]).
The following properties are known to hold within this setting.
(P0) The restriction of β to Sing(G), say β : Sing(G)−→ β(Sing(G)), is a set theoretical

bijection and two corresponding points have the same residue fields. Namely, k(x)∼= k(β(x)). To
this end note first that once we fix a monic polynomial as in (2.11.1), it defines a hypersurface,
and the restriction of β defines a finite map on V (d−1). In addition, Sing(G) is included in the
closed set of ni-fold points of this hypersurface. The statements in (P0) follow from the fact
that they hold for the ni-fold points of this hypersurface, and their image in V (d−1) (see [BVS10,
7.1], or [Vil07, 1.15 and Theorem 4.11]).

If G is a β-relative differential algebra, then a Rees algebra on V (d−1), say RG,β ⊂OV (d−1) [W ],
is defined. It is called the elimination algebra of G, and has the following properties.

(P1) The projection β(Sing(G))⊂ Sing(RG,β); moreover if C is a closed and smooth scheme
included in Sing(G), then β(C)(⊂ V (d−1)) is smooth, isomorphic to C, and β(C)⊂ Sing(RG,β)
[BVS10, Theorem 9.1].
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(P2) [Vil07, Theorem 5.5]. Fix two projections:

G
V (d)

β

��������� β′

��>>>>>>>

V (d−1) V ′(d−1)

RG,β RG,β′

where both β and β′ are transversal to G. This defines an algebra RG,β over V (d−1) and an
algebra RG,β′ over V ′(d−1). At any point x ∈ Sing(G),

ord(RG,β)(β(x)) = ord(RG,β′)(β′(x)).

(P3) [Vil07, Theorem 1.16]. If ord(RG,β)(y)> 0 at a point y ∈ V (d−1), the restriction of
(2.11.1) to β−1(y), say

fi(Z) = Zni + a
(i)
1 Zni−1 + · · ·+ a(i)

ni ∈ k(y)[Z],

is a power of a purely inseparable polynomial. Namely, fi(Z) = (Zp
ri + bi)mi at k(y)[Z].

Moreover, there is at most one point x ∈ V (d) so that β(x) = y and ord(G)(x)> 0.
A particular feature of characteristic zero is that z can be chosen to be of maximal contact,

in particular this ensures the inclusion Sing(G)⊂ {z = 0} mentioned before. However this is not
always the case in positive characteristic, and the relative differential structure will partially fill
in this gap.

Proposition 2.12 (Local presentation). Set x ∈ Sing(G) a closed point and V (d) β−→ V (d−1)

transversal to G at x. Assume that G is a β-relative differential algebra, that there is an element
fnW

n ∈ G, fn of order n at OV (d),x, and that fn = fn(z) is a monic polynomial of degree n in
OV (d−1),β(x)[z], where z is a β-section and an element at OV (d),x. Then, at a neighborhood of x,
G has the same integral closure as

OV (d) [fn(z)Wn,∆(α)(fn(z))Wn−α]16α6n−1 �RG,β, (2.12.1)

where RG,β is identified with β∗(RG,β), and the ∆(α) are as in § 2.3. Moreover, RG,β is non-zero
whenever Sing(G) is not of codimension one locally at x.

Proof. The last assertion follows from [Vil07, Theorem 4.11(i)]. Take fn(z)Wn ∈ {f1W
n1 , . . . ,

fsW
ns} as in (2.11.1). For ease of notation we consider the case s= 2, i.e., G =

OV (d) [fn(z)Wn, gm(z)Wm].
We follow here the arguments and notation as in [Vil07, ch. 1], particularly Proposition 1.29.

Rees algebras are endowed with a natural graded structure. Elimination algebras are also Rees
algebras. They are defined as a specialization of the so-called universal elimination algebras,
which are graded subalgebras in a polynomial ring.

Take variables Z, Y1, . . . , Yn and V1, . . . , Vm over a field k, and set

Fn(Z) = (Z − Y1) · (Z − Y2) . . . (Z − Yn).

This is the so-called universal polynomial of degree n, and fn = fn(z) can be obtain as a
specialization of Fn(Z). Similarly, let

Gm(Z) = (Z − V1) · (Z − V2) . . . (Z − Vm)

be the universal polynomial of degree m which will specialize to gm(z).
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The natural action of the permutation groups Sn on k[Y1, . . . , Yn], and of Sm on
k[V1, . . . , Vm], induces an action of the product Sn × Sm on k[Z, Y1, . . . , Yn, V1, . . . , Vm] by
fixing Z. This group also acts on the subring

S = k[Z − Y1, Z − Y2, . . . , Z − Yn, Z − V1, Z − V2, . . . , Z − Vm].

The subring of invariants of S, say SSn×Sm , is

k[∆(α)(Fn(Z)),∆(α′)(Gm(Z))]06α6n−1,06α′6m−1,

where ∆(α)(Fn(Z)) is an homogeneous polynomial of degree n− α, obtained as in § 2.3. Similarly
∆(α′)(Gm(Z)) is homogeneous of degree m− α′.

As these actions are linear, SSn×Sm inherits the grading of the polynomial ring k[Z, Yi, Vj ].
We add a dummy variable W that will simply express the degree of each homogeneous element.
Hence, the subring of invariants SSn×Sm is now

k[∆(α)(Fn(Z))Wn−α,∆(α′)(Gm(Z))Wm−α′ ]06α6n−1,06α′6m−1.

Consider the subring

S′ = k[(Z − Y2)− (Z − Y1), . . . , (Z − Yn)− (Z − Y1), (Z − V1)− (Z − Y1), . . . ,
(Z − Vm)− (Z − Y1)],

of S. Note that Sn × Sm acts on S′. The universal elimination algebra is, in this case of s= 2,
defined as the invariant ring S′ Sn×Sm .

The key observation to prove the assertion is that S is spanned by two subrings:
k[Z − Y1, . . . , Z − Yn] and S′, and Sn × Sm acts on both.

Recall that the subring of invariants in the first is

T = k[(Fn(Z))Wn,∆(α)(Fn(Z))Wn−α]16α6n−1,

and that of the second is the universal elimination algebra, say R(⊂ S′).
Thus both invariant algebras, T and R, are included in SSn×Sm . Let T �R denote the

smallest algebra containing both rings. We now claim that T �R⊂ SSn×Sm is a finite extension
of graded subalgebras of S. In order to prove this last assertion note that S is a finite extension of
both subalgebras.

The statement follows now from the previous observation. In fact, G and (2.12.1) are obtained
by specialization of the previous subrings. This specialization preserves the grading. On the other
hand, integral extension of rings is preserved by specialization (change of base rings). 2

Remark 2.13. Fix a Rees algebra G =
⊕

n>0 InW
n. If the setting of Proposition 2.12 holds at

a closed point x ∈ Sing(G), then it holds globally after taking suitable restrictions of V (d−1) to a
neighborhood of β(x), and of V (d) to a neighborhood of x. Moreover, z defines a β-section.

If the characteristic is zero, I1 has order one at OV (d),x, and z ∈ I1 can be chosen as an
element of order one at this local ring. This is not always the case in positive characteristic.
However, as G is a simple β-relative differential algebra, one can check that there is a power of
the characteristic, say pe, so that Ipe has order pe at OV (d),x. This follows from Proposition 2.12
that required the existence of an element fnWn ∈ G so that fn = fn(z) is a monic polynomial of
degree n in OV (d−1),β(x)[z]. Note that one can always lower the degree n by replacing fn(z) by
∆(α)(fn(z))Wn−α, for suitable α, except when n is a power of the characteristic. Therefore the
integer n in the last proposition can be chosen as a power of the characteristic. This integer pe

is defined in terms of G and the closed point x ∈ Sing(G). This leads to the following definition.
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Definition 2.14 (p-Presentations). Fix, after suitable restriction in étale topology, a projection

V (d) β−→ V (d−1) transversal to a simple β-relative differential Rees algebra G. Assume that
Sing(G) has no components of codimension one.

Assume also that:
(i) there is a β-section z, a global function on V (d), and {dz} is a basis of Ω1

β;

(ii) there is an element fpe(z)W pe ∈ G, where fpe(z) is a monic polynomial of order pe, say

fpe(z) = zp
e

+ a1z
pe−1 + · · ·+ ape ∈ OV (d−1) [z],

where each ai is a global function on V (d−1);
(iii) locally at any closed point in Sing(G), the conditions in (2.12.1) hold for G and

OV (d) [fpe(z)W pe ,∆(α)(fpe(z))W pe−α]16α6pe−1 � β∗(RG,β). (2.14.1)

That is, that G and (2.14.1) have the same integral closure.
In this case, we say that β : V (d) −→ V (d−1), the β-section z, and fpe(z) = zp

e

+ a1z
pe−1 +

· · ·+ ape define a p-presentation of G. These data will be denoted by:

pP(β : V (d) −→ V (d−1), z, fpe(z) = zp
e

+ a1z
pe−1 + · · ·+ ape), (2.14.2)

or simply by pP(β, z, fpe(z)).

2.15 Higher codimension
Note that a Rees algebra G is simple when τG,x > 1 for any closed point x ∈ Sing(G) (see § 2.2
and Definition 2.8). Simple algebras are further classified in accordance to the τ -invariant as
follows. Given a positive integer e, e> 1, a simple algebra is said to be of codimensional type >e
if τG,x > e for any closed point x ∈ Sing(G) [BVS10, Definition 6.4].

It is natural to face the problem of resolution of a Rees algebra defined over a smooth scheme
of dimension d by increasing induction on d. In our strategy we will fix d and we will try to prove
resolution of Rees algebras of codimensional type e, by decreasing induction on e. In fact e6 d,
and in the case in which e= d the singular locus is a union of isolated points, and resolution is
achieved simply by blowing up these isolated singularities. In this paper we are going to discuss
only the case e= 1. In fact, as we will clarify below, this case turns out to be the most relevant
one.

Resolution of singularities can be formulated in terms of resolution of simple Rees algebras
in any dimension d. Recall that G is simple when τG,x > 1 for any closed point x ∈ Sing(G). In
the case in which τG,x > 2, and using the notion of elimination algebras, one can attach to G a
simple Rees algebra with τ -invariant >1, now in dimension d− 1 (see [Ben10, Theorem 6.4]).

More generally, in the case τG,x > e we can attach to G a simple algebra with τ -invariant
>e− 1, now in dimension d− 1. This form of reduction is very strong in characteristic zero, and
it leads to resolution of singularities by induction on d.

This reduction also holds in positive characteristic, although the link with the (d− 1)-
dimensional algebra is not as strong as it is in characteristic zero. However, in positive
characteristic, it leads to a form of simplification of Rees algebras by increasing induction on
d− e. This simplification is called reduction to the monomial case of an algebra G with τ -invariant
>e. We aim to present numerical conditions under which this reduction extends to a resolution
of the Rees algebra. This is what we call the strong monomial case.

As we have said, once d is fixed, the relevant case is the one with τ -invariant >1, namely
the case e= 1. This is the case to be treated here in Theorem 8.14. The general case, or say
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the case in which e> 2, is discussed in [BV11, Theorem 7.6]. The extension to the general
case relies on a generalization of the Weierstrass preparation theorem, which was introduced in
[BV11, Theorem 6.8]. This generalization of the Weierstrass theorem will lead us to a notion of
p-presentations for higher values of e. This will enable us to extend the results and invariants
discussed in this paper.

In [BV12], and using the techniques introduced in this paper, we prove the resolution of
Rees algebras with τ -invariant >1, defined in an ambient space of dimension d= 3 of positive
characteristic p. This will prove resolution of singularities of a surface embedded in dimension
d= 3. Moreover, this last result combined with the one in [BV11, Theorem 6.8] leads to
the resolution of singularities of any reduced 2-dimensional scheme over a perfect field, with
independence of the embedding. This shows that the invariants introduced in this paper lead to
resolution of singularities of schemes of small dimension (62) over a perfect field.

This induction, involving the value e, also appears in works of Kawanoue and Matsuki
[Kaw07, KM10]. This approach is also used in the resolution of 2-dimensional schemes presented
in [CJS09, KM12].

3. Monomial algebras and the behavior of elimination under monoidal
transformations

3.1 Overview
The definition of elimination algebras makes use of the notion of the relative differential structure.
We now discuss some results that grow from a form of compatibility of the relative differential
structure with monoidal transformations.

Recall that a sequence of transformations of G is defined in (2.2.2) as

G G1 Gr
V (d) V

(d)
1

π0oo . . .π1oo V
(d)
r

πr−1oo (3.1.1)

where we always assume that the exceptional locus of V (d) π←− V (d)
r is a union of hypersurfaces

with normal crossings. This last condition will hold because such a sequence is constructed by
choosing, at each step, the center of the monoidal transformation having normal crossings with
the exceptional hypersurfaces introduced in the previous steps.

In the first part of this section we study the compatibility of transversality and elimination
algebras with monoidal transformations. Sequences such as (3.1.1) will also give rise to the
definition of the so-called monomial algebras (Definition 3.5), and to a notion of monomial contact
introduced in Definition 3.10. This notion appears in the formulation of Main Theorem 2.

3.2 Transversality and monoidal transformations
Transversal projections are defined only for simple algebras (Definition 2.10). When G is a simple
algebra, we claim that all the Gi defined in (3.1.1) are also simple. It suffices to check this property
locally. Fix a closed point x ∈ C ⊂ Sing(G), where C is a smooth center. There is an integer n
and an element fn ∈ In so that νx(fn) = n. Note that νC(fn) = n and fn is equimultiple at C
locally at x, so the strict transform of fn has multiplicity at most n on points on the exceptional
locus, and hence G1 is simple.

Take G to be a simple algebra on V (d), together with a transversal projection β : V (d) −→
V (d−1). Assume that G is a β-relative differential algebra. A notion of compatibility of these
properties with monoidal transformations can be formulated as follows [BVS10].
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In [BVS10, Theorem 9.1], it is shown that after suitable restrictions to an étale cover of V (d),
the sequence (3.1.1) induces a diagram

G G1 Gr
V (d)

β
��

V
(d)

1

π0oo

β1��

. . .π1oo V
(d)
r

πr−1oo

βr��

V (d−1) V
(d−1)

1

π′0oo . . .
π′1oo V

(d−1)
r

π′r−1oo

RG,β (RG,β)1 (RG,β)r

(3.2.1)

where:

(i) each vertical morphism βi : V (d)
i −→ V

(d−1)
i is transversal to Gi, and each Gi is a βi-

differential algebra, with the βi defined only in an neighborhood of Sing(Gi);
(ii) the lower sequence induces transformations of the elimination algebra RG,β, and

furthermore, each (RG,β)i is the elimination algebra of Gi relative to βi : V (d)
i −→ V

(d−1)
i ,

that is, (RG,β)i =RGi,βi .

Definition 3.3. A local projection V (d)
r

βr−→ V
(d−1)
r is said to be r-transversal to Gr if there is a

transversal morphism V (d) β−→ V (d−1), as in Definition 2.10, and a simple β-differential algebra
G over OV (d) , so that Gr and βr arise from a diagram such as that in (3.2.1).

Remark 3.4. In characteristic zero, given a simple differential algebra G, there are hypersurfaces
of maximal contact at V (d). We fix one such hypersurface, and given a sequence of transformations
of G as in (3.1.1), we consider the strict transforms of that fixed hypersurface. Here
hypersurfaces of maximal contact will be replaced by transversal projections. We shall fix a
transversal projection at V (d) and for any sequence (3.1.1) we will make use of the lifting of this
fixed projection in (3.2.1).

Local p-presentations of Gr will be defined in terms of βr, where βr arises from the fixed
smooth transversal morphism β. In § 6, a notion of transformation of p-presentations will be
defined. This together with the theorems in § 5 will show that given a simple algebra G, if V (d)

can be covered by p-presentations of the form pP(β, z, fpe(z) = zp
e

+ a1z
pe−1 + · · ·+ ape), with

the same exponent pe, then the same holds for Gr at V (d)
r . Namely, that there is a covering

of V (d)
r by presentations of the form pP̃(βr, z̃, f̃pe(z̃) = z̃ p

e

+ ã1z̃
pe−1 + · · ·+ ãpe), where βr is

r-transversal, with the same exponent pe on any such p-presentation.

Definition 3.5. Let E = {H1, . . . , Hr} be a set of smooth hypersurfaces with normal crossings.
A monomial ideal supported on E is an invertible sheaf of ideals of the form M=
I(H1)α1 . . . I(H2)α2 . . . I(Hr)αr , for some integers αi > 0.

A monomial algebra will be a Rees algebra of the form OV [MW s] for some monomial ideal
M and some positive integer s. This algebra will be denoted by MW s.

Remark 3.6. (1) Fix a monomial algebra MW s =OV [MW s]. Locally at a point x ∈ V , Mx is
the ideal spanned by a monomial on a regular system of parameters of OV (d),x. Recall that Rees
algebras are to be considered up to integral closures. Given fn ∈ OV (d),x, fnWn ∈MW s if and
only if fsn is divisible by Mn

x at OV (d),x for any x at V (d).

(2) Assume that MW s is the Rees algebra generated by the monomial ideal M=
I(H1)h1 . . . I(Hr)hr at degree s. Rees algebras are considered up to integral closure, so we shall
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now describe the integral closure ofMW s, say M̃W s =
⊕

JtW
t. Given a positive integer t, the

ideal corresponding to the degree t, say Jt, is generated by a monomial, say

M[t] = Jt = I(H1)bh1t/sc . . . I(Hr)bhrt/sc. (3.6.1)

Moreover, ord(MW s)(x) 6 ord(M[t]W t)(x), and equality holds if and only ifMW s andM[t]W t

have the same integral closure.

3.7 The monomial case

Let π : V ′ −→ V be a smooth morphism. Note that the pull-backs of the hypersurfaces of E have
normal crossings at V ′ and a monomial ideal supported on E has a natural lifting to V ′.

In our setting, we fix a transversal projection β : V (d) −→ V (d−1) as in Definition 2.10, a
sequence (3.1.1) induces a diagram (3.2.1) with smooth morphisms βi defined in a neighborhood
of Sing(Gi). Note that at each such neighborhood, the exceptional hypersurfaces in V (d)

i are pull-
backs of the exceptional hypersurfaces at V (d−1)

i . In particular, a monomial algebra supported
on the exceptional locus of the composite map V (d−1)←− V (d−1)

r , say

MrW
s = I(H1)h1 . . . I(Hr)hrW s, (3.7.1)

can be naturally lifted to a monomial algebra supported on the exceptional locus of V (d)←− V (d)
r .

In the following theorem we state the reduction to the monomial case as presented in [BVS10,
Part 5], but only for the case e= 1 (see § 2.15).

Theorem 3.8 [BVS10, 10.4 and Part 5]. Let G be a differential algebra such that τG,x > 1 at
any closed point x ∈ Sing(G) (in particular, G is simple). Assume that Sing(G) has no component
of codimension one, and assume also, by inductive hypothesis on the codimensional type, that
it is known how to resolve simple algebras in which the τ -invariant is >2 at any closed point
(algebras of codimensional type >2). Then there is a sequence of transformations as in (3.1.1),
so that for any local transversal projection β : V (d) −→ V (d−1) (defined by restriction to an étale
covering of V (d)) the induced sequence (3.2.1) is such that the sequence in the lower row is a
resolution or (RG,β)r is a monomial algebra supported on the exceptional locus. Furthermore, in
the latter case the monomial algebra β∗r ((RG,β)r) is independent of β.

In what follows, we consider, étale locally, a sequence (3.2.1) which fulfills the conditions as
in the formulation of Theorem 3.8 [BVS10, Main Theorem]. So here, (RG,β)r ⊂OV (d−1)

r
[W ] is

monomial and supported on the exceptional locus, and so is its pull-back to V
(d)
r . The same

holds if we enlarge the sequence of transformations as this condition is stable.

We identify (RG,β)r with its pull-back, say

(RG,β)r = I(H1)α1 . . . I(Hr)αrW s =NrW s.

The previous theorem, together with the notion of transformation of p-presentations in
(2.14.1), to be discussed later, will lead us to the existence, locally at any closed point of Sing(Gr),
of a βr-section z′, and a monic polynomial, say f (r)

pe , so that Gr has the same integral closure as

OV (d)
r

[f (r)
pe (z)W pe ,∆α(f (r)

pe (z))W pe−α]16α6pe−1 �NrW s.
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3.9 Monomial contact
The outcome of Theorem 3.8, in the case of fields of characteristic zero, is known as the
reduction to the monomial case (here in the specific case of e= 1). In that context it is simple
to extend (3.1.1) to a resolution. Unfortunately, the reduction to the monomial case in positive
characteristic does not lead easily to resolution of singularities. This task has been accomplished
in [BV12] for the case d= 3 and e= 1.

In the following definition we fix a sequence of transformations and discuss the role of the
exceptional divisors that has been introduced.

Definition 3.10. (1) Fix a sequence of transformations as in (3.1.1). We say that a monomial
algebra MrW

s (3.7.1) has monomial contact with Gr at a point x ∈ Sing(Gr) if there is a βr-
section z which vanishes at x (of order one at OV (d)

r ,x), so that

Gr ⊂ 〈z〉W �MrW
s.

(2) A local p-presentation of Gr, say pP(βr, z, f
(r)
pe (z)) (withf (r)

pe = zp
e

+ a1z
pe−1 + · · ·+ ape)

is said to be compatible with the monomial algebra OV (d−1)
r

[MrW
s] locally at x ∈ Sing(Gr) if

the previous condition holds for the βr-section z. It follows from Proposition 2.14 that this is
equivalent to the conditions:

(i) z vanishes at x (i.e., x ∈ {z = 0});
(ii) (RG,β)r ⊂OV (d−1)

r
[MrW

s];
(iii) aiW

i ∈ OV (d−1)
r

[MrW
s], for 1 6 i6 pe (Remark 2.4).

3.11 Tight monomial algebra
We will show that given a simple algebra G and a sequence of transformations as in (3.1.1), there
is a monomial algebra MrW

s supported on the exceptional locus which has monomial contact
with Gr. That is, locally at any point x ∈ Sing(Gr) there is a βr-section z which vanishes at x, so
that Gr ⊂ 〈z〉W �MrW

s. Main Theorem 2 will show that this monomial algebra will be defined
in terms of the sequence (3.1.1), with independence of the choice of β (of (3.2.1)).

3.12 Higher codimension
As indicated before, Theorem 3.8 is the restriction of a more general result, stated in [BVS10,
Part 5]. We focus on e= 1, which is the case required in the definition of the inductive function
H-ord(d−1) introduced in Part I of § 1.6.

Let us indicate that the notion of p-presentation in Definition 2.14 will play a decisive role
in the definition of the function H-ord(d−1). The main result in [BV11] is Theorem 6.8 which
provides an extension of the notion of p-presentation for algebras of codimensional type e. This
will lead to the definition of a function H-ord(d−e) which follows easily from the case e= 1 treated
here (see [BV11, 2.23]). Moreover, the properties of the strong monomial case, studied for e= 1
in Theorem 8.14, are extended to the general case in [BV11, Theorem 2.21].

4. Invariants defined in terms of p-presentations

4.1 p-presentations and the slope
Fix a transvers al projection β : V (d) −→ V (d−1) (Definition 2.10) and a simple β-differential
algebra G. In Definition 2.14 we introduced the notion of p-presentation, say pP =
pP(β, z, fpe(z)). The aim of this section is to define two functions:
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(i) a function Sl(pP)(−) : V (d−1) −→Q (Definition 4.2); and
(ii) a function β-ord(d−1)(G)(−) : V (d−1) −→Q (Definition 4.9).

There are many p-presentations pP which make use of the fixed projection β. Each
p-presentation will define a function Sl(pP). The value of the new function β-ord(d−1)(G) at
a given point y ∈ V (d−1) will be given by the biggest value of the form Sl(pP)(y) among all
p-presentations making use of the fixed transversal projection β.

Over fields of characteristic zero, the function β-ord(d−1)(G) coincides with the upper-semi-
continuous function ord(RG,β) (see 2.3.1). The situation in positive characteristic is quite
different, for example β-ord(d−1)(G) is not upper-semi-continuous. Theorem 4.4 features a
peculiar behavior of the function Sl(pP), which also leads to a simplification which will be
crucial in our further development.

The function in (2) is a first step in the definition of our inductive function H-ord(d−1) in § 7.
In this section we fix a transversal projection β and study different rational numbers, attached
to a point, defined by choosing different transversal sections z = 0. We focus here, essentially, on
how the function in (1) varies for different choices of z.

Definition 4.2. Fix G, β : V (d) −→ V (d−1), a β-section z, and fpe(z) as in 2.14. Namely, fix a
p-presentation pP(β, z, fpe(z)) with fpe(z) = zp

e

+ a1z
pe−1 + · · ·+ ape as in (2.14.2), so that G

has the same integral closure as

OV (d) [fpe(z)W pe ,∆(α)(fpe(z))W pe−α]16α6pe−1 �RG,β.

Define a function Sl(pP)(−): V (d−1) −→Q, by setting

Sl(pP)(y) := min
16j6pe

{
νy(aj)
j

, ord(RG,β)(y)
}
.

This value is called the slope of G relative to pP = pP(β, z, fpe(z)) at y ∈ V (d−1).

Remark 4.3. The function ord(RG,β)(−) : V (d−1) −→Q takes values with denominators in
(1/n)Z, for some integer n > 0. Thus the same holds for the slope function: it takes values
in (1/n(pe!))Z. Moreover, both functions take only finitely many values.

Theorem 4.4. Fix G and pP = pP(β, z, fpe(z)) as in Definition 2.14. If Sl(pP)(y) = νy(aj)/j
for some index j ∈ {1, . . . , pe − 1}, then Sl(pP)(y) = ord(RG,β)(y). In particular,

Sl(pP)(y) = min
{
νy(ape)
pe

, ord(RG,β)(y)
}
.

Proof. Let n ∈ {1, . . . , pe − 1} be the smallest index for which Sl(pP)(y) = νy(an)/n. That is,

νy(an)
n

<
νy(ai)
i

for i6 n− 1 and
νy(an)
n

6
νy(a`)
`

for `> n+ 1. (4.4.1)

Recall the definition of the β-differential operators ∆(r) in § 2.3. As G is assumed to be a
β-differential algebra, it follows that ∆(pe−n)(fpe(z))Wn ∈ G.

Note that

∆(pe−n)(fpe(z))Wn = (c1a1z
n−1 + · · ·+ cn−1an−1z + an)Wn ∈ G

for some elements ci ∈ k, and i= 1, . . . , n− 1.
Let ∆pe−n(fpe(z))Wn denote the class of ∆(pe−n)(fpe(z))Wn in OV (d)/〈fpe(z)〉[W ]. The

scheme OV (d)/〈fpe(z)〉[W ] is a finite and free extension of OV (d−1) [W ]. The norm of the element

∆pe−n(fpe(z))Wn = (c1a1z
n−1 + · · ·+ cn−1anz + an)Wn
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over OV (d−1) [W ] is an element of the elimination algebra of fpe(z), and hence of RG,β
(see [Vil07]). Denote this element by G(a1, . . . , ape)W t ∈RG,β. In addition, in this case t= npe,
and G(V1, . . . , Vpe) ∈ k[V1, . . . , Vpe ] is a weighted homogeneous of degree t= pe provided each
Vi is given weight i.

Note that:

(i) G(a1, . . . , ape) = ap
e

n + G̃(a1, . . . , ape);

(ii) G̃(a1, . . . , ape) ∈ 〈a1, . . . , an−1〉.
To check the last assertion set formally a1 = 0, . . . , an−1 = 0, in which case ∆pe−n(fpe(z))Wn =
anW

n, which has norm ap
e

n Wnpe .
Here G̃ is a weighted homogeneous polynomial of degree npe, and each monomial in G̃ is

of the form aα1
1 . . . a

αpe
pe with

∑pe

j=1 jαj = npe, and αj 6= 0 for some j < n (as G̃(a1, . . . , ape) ∈
〈a1, . . . , an−1〉).

We claim that νy(aα1
1 . . . a

αpe
pe )> νy(a

pe
n ) = peνy(an) for any monomial in G̃. In fact,

νy(aα1
1 . . . a

αpe
pe ) =

pe∑
j=1

αjνy(aj)>
pe∑
j=1

αjj
νy(an)
n

= npe
νy(an)
n

= νy(ap
e

n ),

where the inequality follows from the hypotheses in (4.4.1). In particular, νy(G̃)> νy(a
pe
n ).

This proves that the order of GWnpe(∈RG,β) is νy(G)/npe = νy(a
pe
n )/npe = νy(an)/n.

Hence ord(RG,β)(y) 6 νy(G)/npe = νy(an)/n= Sl(pP)(y). Finally, this inequality together with
Sl(pP)(y) 6 ord(RG,β)(y) implies that Sl(pP)(y) = ord(RG,β)(y). 2

Remark 4.5. Let pP be a p-presentation defined in a neighborhood of a closed point x ∈ V (d−1)

and assume x ∈ y for some y ∈ V (d−1). Then,

Sl(pP)(y) 6 Sl(pP)(x).

Recall that Sl(pP)(y) = min{νy(ape)/pe, ord(RG,β)(y)}. Since pP is defined in a neighborhood
of x, it follows that νy(ape) 6 νx(ape). The upper-semi-continuity of ord(RG,β) implies that
ord(RG,β)(y) 6 ord(RG,β)(x). Thus Sl(pP)(y) 6 Sl(pP)(x).

Proposition 4.6. Fix G and β : V (d) −→ V (d−1) together with a p-presentation pP = pP(β, z,
fpe(z)) as in 2.14 and a point y ∈ V (d−1).

(i) Suppose that Sl(pP)(y)> 0. Then there is a unique point x in V (〈fpe〉) mapping to y.
Moreover,

x ∈ Sing(G) if and only if Sl(pP)(y) > 1.

(ii) If y ∈ β(Sing(G)), then β−1(y) ∩ Sing(G) is a unique point, say q, and:

(iia) if Sl(pP)(y)> 0, then q is the unique point in V (〈fpe〉) that maps to y;
(iib) if Sl(pP)(y) = 0, then the class of ape is a peth power in k(y), say ape = αp

e

, and the
class of ai is zero for i= 1, . . . , pe − 1. Namely,

fpe(z) = Zp
e

+ αp
e ∈ k(y)[Z].

Proof. (i) As Sl(pP)(y)> 0, it follows that the restriction of the equation to the fiber is, say,
fpe(z) = Zp

e ∈ k(y)[Z]. So there is a unique point x on the fiber, and z vanishes at x.
Fix a regular system of parameters {y1, . . . , ys} in OV (d−1),y. In this case, {y1, . . . , ys, z} is a

regular system of parameters in OV (d),x, so fpe(z) = zp
e

+ a1z
pe−1 + · · ·+ ape ∈m

pe
x if and only

if ai ∈mi
y. That the equivalence now follows is straightforward.
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(ii) Note that Sing(G)⊂ V (〈fpe〉). Moreover, Sing(G)⊂Fpe , the closed set of points of
multiplicity pe of the hypersurface V (〈fpe〉). A theorem of Zariski states that β induces a set
theoretical bijection: β : Fpe −→ β(Fpe), and matching points have the same residue field (see
(P0) in § 2.11, or [BVS10, 8.4]). In particular β−1(y) ∩ Sing(G) is a unique point.

(iia) Here q ∈ Sing(G), so q ∈ V (〈fpe〉). The assertion follows from the first part of (i).
(iib) In this case, y = β(q) ∈ Sing(RG,β) (see (P3) in § 2.11), so ord(RG,β)(y) > 1. On the other

hand, as q ∈ Sing(G), q ∈ Fpe , and it follows that k(q) = k(y). This, together with Theorem 4.4,
implies that

fpe(z) = Zp
e

+ ape ∈ k(y)[Z].

Finally, the result of Zariski says that this purely inseparable polynomial is a peth power of
a monic polynomial of degree 1, say Zp

e

+ ape = (Z + α)p
e

in k(y)[Z], as it defines a unique
k(y)-rational point on the fiber. 2

Corollary 4.7. Fix two p-presentations for G on V (d). Say, pP, defined in terms of β : V (d) −→
V (d−1), a β-section z, and a monic polynomial fpe(z); and another p-presentation pP ′ defined by
β′ : V (d) −→ V ′(d−1), a β′-section z′, and a polynomial f ′pe(z

′).

Fix points y ∈ V (d−1), y′ ∈ V ′(d−1), and assume that:

(1) Sl(pP)(y)> 0 and Sl(pP ′)(y′)> 0;

(2) there is a point q ∈ V (d) which is the unique point mapping to both. Namely, β(q) = y and
β′(q) = y′.

Then, Sl(pP)(y) > 1 if and only if Sl(pP ′)(y) > 1. In fact, this condition holds when both y
and y′ are images of a point q ∈ Sing(G).

4.8 β-order
In what follows we fix the simple algebra G on a smooth scheme V (d), together with a transversal
projection β : V (d) −→ V (d−1), and define different p-presentations of the form pP(β, z, fpe(z)),
(for different choices of sections z).

Let us denote by F(G, β) the set of all such p-presentations. Namely,

F(G, β) = {pP(β, z, fpe(z)) for which (2.14.1) holds}.

There is a natural notion of restriction on local presentations. Let U (d−1) be an open subset
in V (d−1), and set U (d) as the inverse image of U (d−1). There is a natural restriction of G, say
G|U(d) , of β, say β|U(d) : U (d) −→U (d−1), and of the p-presentation pP, so that (2.14.1) holds at
the restriction. For each open U (d−1) ⊂ V (d−1), we take all p-presentations F(G|U(d) , β|U(d)).

Finally, fix a point y ∈ V (d−1), and set

F(G, β, y) =
⋃
F(G|U(d) , β|U(d)),

where the union is over all restrictions U (d−1) ⊂ V (d−1) containing y.

Definition 4.9. Fix β : V (d) −→ V (d−1) and G as in § 2.3. Define the β-order at y ∈ V (d−1) as

β-ord(d−1)(G)(y) = max
pP∈F(G,β,y)

{Sl(pP)(y)}. (4.9.1)
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5. Well-adapted p-presentations

5.1 Sketch of the cleaning process
Let pP be a p-presentation involving β. Here we sketch a criteria which will allow us to
decide when, for a given point y ∈ V (d−1), the p-presentation pP is such that β-ord(d−1)(G)(y) =
Sl(pP)(y). These p-presentations, called well-adapted at y, will ultimately give us the value of
the inductive function at such a point (see Corollary 7.3).

The following cases can occur:

(A) Sl(pP)(y) = ord(RG,β)(y);

(B) Sl(pP)(y) = νy(ape)/pe < ord(RG,β)(y) (see Theorem 4.4); and:

(B1) νy(ape)/pe /∈ Z>0;
(B2) νy(ape)/pe ∈ Z>0 and Iny(ape) is not a peth power at Gry(OV (d−1),y);
(B3) νy(ape)/pe ∈ Z>0 and Iny(ape) is a peth power at Gry(OV (d−1),y).

We shall prove that a new p-presentation pP ′ can be defined with the condition Sl(pP ′)(y)>
Sl(pP)(y), only in case (B3). This leads to the cleaning process developed in Proposition 5.3.

This cleaning process relies on suitable changes of the transversal section z. The finiteness of
this process will be addressed in Remark 5.6. In Proposition 5.7 we show that these changes
of z, in this cleaning process, can be done so as to be compatible with the notion of monomial
contact; a property that will be used in the proof of Main Theorem 2.

Proposition 5.8 will be useful in the study of p-presentations and their compatibility with
monomial transformations.

5.2 The cleaning process and well adaptation
Let pP = pP(β, z, fpe(z)) be a p-presentation and fix y ∈ V (d−1). We study changes of the
p-presentation pP obtained by changing the β-section z by another of the form uz + α. Here u
and α are in OV (d−1),y and u is a unit, so the change is a composition of z1 = uz and z2 = z + α.
The function u is a unit (invertible) at any point in an open neighborhood of y, say U (d−1). This
is to be interpreted as a new p-presentation, defined at the restriction of both G and V (d) over
U (d) = β−1(U (d−1)) as in § 4.8.

For a change of the form z1 = uz, set pP1 with

f ′pe(z1) = up
e

fpe(z) = zp
e

1 + ua1z
pe−1
1 + · · ·+ up

e

ape ∈ OV (d−1),y[z1].

Clearly, Sl(pP)(y) = Sl(pP1)(y) and also cases (A), (B1), (B2), and (B3) in § 5.1 are preserved.
Henceforth we study only changes of the form z′ = z + α.

At OV (d−1),y[z] =OV (d−1),y[z′],

fpe(z) = f ′pe(z
′) = z′

pe + a′1z
′pe−1 + · · ·+ a′pe ∈ OV (d−1),y[z

′] and (5.2.1)

a′pe = αp
e

+ a1α
pe−1 + · · ·+ ape . (5.2.2)

Define, as before, a new presentation, say pP ′, with these data at a suitable restriction to a
neighborhood of y.

Proposition 5.3 (Cleaning process). Fix the setting and notation as above. Assume that
Sl(pP)(y) = νy(ape)/pe < ord(RG,β)(y). There will be a change of the form z′ = z + α, defining a
new presentation pP ′ as in § 5.2, so that

Sl(pP)(y)< Sl(pP ′)(y) if and only if case (B3) holds in § 5.1 for pP.
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Proof. Theorem 4.4 ensures that if Sl(pP)(y) = νy(ape)/pe < ord(RG,β)(y), then

νy(ape)
pe

<
νy(ai)
i

for i= 1, . . . , pe − 1. (5.3.1)

Set z′ = z + α as above. If νy(α)< νy(ape)/pe then the previous inequalities applied to (5.2.2)
show that νy(a′pe) = νy(αp

e

), so Sl(pP ′)(y)< Sl(pP)(y).
Assume that νy(α) > νy(ape)/pe. For each summand in (5.2.2) of the form aiα

pe−i, i=
1, . . . , pe − 1,

νy(aiαp
e−i) = (pe − i)νy(α) + νy(ai)

> (pe − i)νy(α) + i
νy(ape)
pe

> (pe − i)νy(ap
e)

pe
+ i

νy(ape)
pe

= νy(ape). (5.3.2)

Therefore (5.2.2) can be expressed as

a′pe = αp
e

+A+ ape , (5.3.3)

where νy(αp
e

) > νy(ape) and νy(A)> νy(ape).
On the other hand,

a′n = ∆(pe−n)(fpe)(α) = c1α
n−1a1 + · · ·+ cn−1αan−1 + an,

where cj ∈ k for j = 1, . . . , n− 1.
For each summand of the form ajα

n−j , j = 1, . . . , n,

νy(ajαn−j) = (n− j)νy(α) + νy(aj)

> (n− j)νy(α) + j
νy(ape)
pe

> (n− j)νy(ap
e)

pe
+ j

νy(ape)
pe

=
nνy(ape)

pe
. (5.3.4)

In particular, νy(a′n)/n > νy(ape)/pe.
One can easily check now that if (B1) holds, then f ′pe(z

′) = z′p
e

+ a′1z
′pe−1 + · · ·+ a′pe in

(5.2.1) is also in case (B1), and Sl(pP)(y) = Sl(pP ′)(y).
The same arguments apply if (B2) holds, namely f ′pe(z

′) is also in case (B2), and Sl(pP)(y) =
Sl(pP ′)(y).

Conversely, in case (B3) it suffices to choose α so that νy(αp
e

+ ape)> νy(ape) to get
Sl(pP)(y)< Sl(pP ′)(y). 2

Definition 5.4. Let pP be a p-presentation. We say that pP is well-adapted to G at y ∈ V (d−1)

if either case (A), (B1), or (B2) in § 5.1 hold.

Remark 5.5. Fix q ∈ Sing(G) and a p-presentation pP = pP(β, z, fpe(z)) which is well-adapted
to β(q). Then z vanishes at q and Sl(pP)(β(q)) > 1 (Proposition 4.6); moreover, if q ∈ Sing(G) is
a closed point, then τG,q = 1 if and only if Sl(pP)(β(q))> 1.

Remark 5.6 (Finiteness of the cleaning process). When case (B3) occurs, νy(ape) = `pe for some
integer `> 1, and

Iny(ape) = F p
e

for some homogenous polynomial F of degree ` at Gry(OV (d−1)). In this case, set z′ = z + α for
some α ∈ OV (d−1),y such that Iny(α) = F . Thus Sl(pP)(y)< Sl(pP ′)(y).
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If this new presentation pP ′ = pP ′(β, z′, f ′pe(z′)) is within case (A), (B1) or (B2) then stop.
If, on the contrary, f ′pe(z

′) is in case (B3), then:

(i) νy(a′pe) = `′pe (with `′ > `); and

(ii) Iny(a′pe) = (F ′)p
e

for some homogeneous element F ′ of degree `′ at Gry(OV (d−1),y).

So again we can set z′′ = z′ + α′ for some α′ ∈ OV (d−1),y with Iny(α′) = F ′; and Sl(pP ′)(y)<
Sl(pP ′′)(y). This shows that with this procedure of modification of the transversal section, locally
over y, the slope will increase every time we come to case (B3). Finally, Remark 4.3 guarantees
that case (B3) can arise only finitely many times throughout this procedure. So ultimately the
procedure leads to a well-adapted p-presentation.

Proposition 5.7. Assume that pP = pP(β, z, fpe(z)) is a p-presentation of G, locally at x ∈
Sing(G), which is compatible with a monomial algebra OV (d) [MW s] as in Definition 3.10. Then
the cleaning process to obtain a well-adapted p-presentation at the point β(x) can be done so as
to preserve the compatibility with OV (d) [MW s].

Proposition 5.8 (Simultaneous adaptation). Let pP = pP(β, z, fpe(z)) be a p-presentation of
G, defined locally at x ∈ Sing(G), which is compatible with a monomial algebra MW s. Let y be
a point in Sing(G) so that x ∈ C = y, and assume that OC,x is regular. Then:

(A) the p-presentation pP can be modified so as to be well-adapted to G at β(y), and still
defined in a neighborhood of x.

Moreover:

(B) there is a p-presentation which is well-adapted to G both at y and x, and also compatible
with MW s.

Proofs of Propositions 5.7 and 5.8. Once we fix a p-presentation, say pP = pP(β, z, fpe) and
β(y) ∈ V (d−1), cleaning applies as indicated in Remark 5.6, when Iny(ape) is a peth power. In
such a case cleaning consists of finding α ∈ OV (d),β(y) so that (Inβ(y)(α))p

e

= Inβ(y)(ape).
We proceed with the proof of Proposition 5.8. Fix a p-presentation pP locally defined at

OV (d−1),β(x). Set p⊂OV (d−1),β(x) to be the regular prime ideal corresponding to β(y) (so that
localization at p is OV (d−1),β(y)). Cleaning is necessary at OV (d−1),β(y) if and only if Inβ(y)(ape) is
a peth power in grβ(y)(OV (d−1),β(y)). Since x is a smooth point at y, grp(OV (d−1)) is a regular ring
and Inp(ape) ∈ grp(OV (d−1),x). The ring grβ(y)(OV (d−1)) can be obtained from grp(OV (d−1),β(x)) by
localization, namely by passing from [grp(OV (d−1),β(x))]0 to the total quotient field. Notice that
Inp(ape) maps to Inβ(y)(ape), and that Inp(ape) is a peth power at grp(OV (d−1),β(x)) if and only
if Inβ(y)(ape) is a peth power at grβ(y)(OV (d−1)). This ensures that the element α, used in the
cleaning process at β(y), can be chosen to be an element in OV (d−1),β(x), and hence the cleaning
process at β(y) can be done so as to obtain a new p-presentation with coefficients in OV (d−1),β(x).

This settles (A) as we can assume that pP is well-adapted at β(y). We want now to study
the ‘adaptability’ of pP at β(x). Note here that the only case to be considered occurs when
Sl(pP)(β(x)) = νβ(x)(ape)/pe < ord(RG,β)(β(x)) and Inβ(x)(ape) is a peth power. Here, we prove,
under this last assumption, that the cleaning process at β(x) can be done without affecting the
fact that the presentation is already well-adapted at β(y).

Consider a regular system of parameters {y1, . . . , y`, y`+1, . . . , yd−1} at OV (d−1),β(x) so that
p = 〈y1, . . . , y`〉. There are two cases to consider, case Sl(pP)(β(y)) = ord(RG,β)(β(y)) and
case Sl(pP)(β(y)) = νβ(y)(ape)/pe < ord(RG,β)(β(y)). Assume that the latter case holds and set
νβ(y)(ape)/pe = n/pe. Theorem 4.4 says that νβ(y)(ape)/pe < νβ(y)(aj)/j for j = 1, . . . , pe − 1.
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At the completion, ape is a sum of monomials of the form yα1
1 . . . yα`` y

α`+1

`+1 . . . y
αd−1

d−1 with
α1 + · · ·+ α` > n. We can identify Inβ(x)(ape) with a sum of some of these terms. If there
is an element α ∈ OV (d−1),x so that (Inx(α))p

e

=−Inx(ape), then it can be chosen so that
α ∈ 〈y1, . . . , y`〉dn/p

ee and, in particular, νy(α) > n/pe.
A change of variables of the form z 7→ z + α produces a new independent coefficient of the

form

a′pe = αp
e

+ a1α
pe−1 + · · ·+ ape ,

where νy(ajαp
e−j)> j · (n/pe) + (pe − j)(n/pe) = n, for j = 1, . . . , pe − 1; so νy(a′pe) >

min{νy(αp
e

), νy(ape)}> n and the new presentation is still well-adapted at y.
If Sl(pP)(y) = ord(RG,β)(y) = n/s, then νy(ai)/i> n/s for 1 6 i6 pe, and the same

arguments will lead to the existence of α ∈ OV (d−1) so that νy(α) > n/s, which again ensures
that the change of variables z 7→ z + α (needed for the cleaning process at x) does not affect the
slope at y.

To prove Proposition 5.7 just notice that such change can be achieved with αW ∈
OV (d−1) [MW s]. Applying similar arguments as those used before, one checks that the new
coefficients a′nW

n ∈ OV (d−1) [MW s] (n= 1, . . . , pe). 2

6. Transformations of p-presentations

6.1 Overview
In the previous sections some invariants were defined in terms of p-presentations. In this section
we discuss a form of compatibility of these invariants when applying a monoidal transformation
along a smooth center C.

The starting point will be the notion of transformation of p-presentations in § 6.2. A monoidal
transformation defined by blowing up a smooth center C introduces an exceptional hypersurface,
say H. The aim of the section is to relate the value of the slope Sl at the generic point of H with
the value of Sl at the generic point of C (see Proposition 6.6). This result will be an essential
ingredient for the proofs of the main theorems in this work.

6.2 p-presentations and monoidal transformations
Take a p-presentation pP = pP(β, z, fpe) of a simple β-differential algebra G on V (d), namely

a projection V (d) β−→ V (d−1), a β-section z and a monic polynomial fpe(z) = zp
e

+ a1z
pe−1 +

· · ·+ ape . Assume that C ⊂ Sing(G) is a closed and smooth center, and that z ∈ I(C). Locally
at a closed point x ∈ C, there is a regular system of parameters {z, x1, . . . , xd−1} and, after
restriction to a suitable neighborhood of x, I(C) = 〈z, x1, . . . , x`〉. Consider the commutative
diagram

G G1

V (d)

β
��

V
(d)

1

πCoo

β1��

V (d−1) V
(d−1)

1

πβ(C)oo

RG,β (RG,β)1 =RG1,β1

(6.2.1)

and recall that Sing(G1)⊂ V (d)
1 can be covered by affine charts Uxi ,

Uxi = Spec
(
OV (d)

[
z

xi
,
x1

xi
, . . . ,

xi−1

xi
, xi,

xi+1

xi
, . . . ,

x`
xi
, x`+1, . . . , xd−1

])
,
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for i= 1, . . . , `; and also V (d−1)
1 is covered by charts U ′xi ,

U ′xi = Spec
(
OV (d−1)

[
x1

xi
, . . . ,

xi−1

xi
, xi,

xi+1

xi
, . . . ,

x`
xi
, x`+1, . . . , xd−1

])
.

Note that the strict transform of z, say z1 = z/xi, is a transversal parameter for Uxi −→ U ′xi .
The hypersurface defined by fpe at V (d) has multiplicity pe along points of C. Let

f
(1)
pe (z1) = zp

e

1 + a
(1)
1 zp

e−1 + · · ·+ a
(1)
pe

denote the strict transform of fpe(z). These data define, locally, a p-presentation of G1, say
pP1 = pP1(β1, z1, f

(1)
pe ), which we call the transform of pP = pP(β, z, fpe).

Remark 6.3. (i) In the previous discussion we have assumed that z ∈ I(C). If C is irreducible,
this condition will hold for any p-presentation pP(β, z, fpe) well-adapted at ξβ(C), (the generic
point of β(C) in V (d−1)). In fact, after a suitable restriction to a neighborhood of the closed point
x ∈ C, the simultaneous cleaning procedure at β(x) and ξβ(C), and the fact that C ⊂ Sing(G)
will allow us to modify z so that z ∈ I(C). This latter fact follows from property (P1) in § 2.11
and from Proposition 5.3.

(ii) Note that the exponent pe (the degree of the monic polynomial), is also preserved by
transformations of p-presentations.

Remark 6.4. A point y ∈ V (d−1)
1 has an image in V (d−1), say πβ(C)(y). If y is not in the exceptional

locus of πβ(C), there is an open neighborhood, say U , of πβ(C)(y) over which both πC and πβ(C)

are the identity map. Thus the restriction of both p-presentations pP and pP1 to U coincide.
In particular,

Sl(pP1)(y) = Sl(pP)(πβ(C)(y))

whenever y ∈ V (d−1)
1 is not on the exceptional locus. Moreover, if pP is well-adapted to G at

πβ(C)(y), then the same holds for pP1 at y.

Remark 6.5. Fix x ∈ Sing(G) a closed point so that τG,x = 1 and assume that C is a permissible
center containing x. Let pP(β, z, fpe) be a p-presentation. Denote by y the generic point of β(C).
Assume that pP is well-adapted simultaneously at β(x) and y and, in particular, that z ∈ I(C)
(Remark 6.3(1)).

The intersection of the strict transform of fpe with the exceptional locus π−1
C (C) is the

projective hypersurface defined by InC(fpe) ∈ grI(C)(OV (d)). As C is an equimultiple center for
fpe , the intersection of the strict transform with points of π−1

C (x) is determined by Inx(fpe).
Finally as τG,x = 1 and pP is well-adapted at x, it follows that Inx(fpe) = Zp

e

, and hence
x′ ∈ {z1 = 0} for any x′ ∈ Sing(G1) mapping to x. Here z1 denotes the strict transform of z.

In the following proposition we study the transform of a p-presentation, say pP, well-adapted
at a closed point x ∈ Sing(G), when applying a monoidal transformation. It shows that if pP is
compatible with a monomial algebra, then the transform of the presentation is compatible with
a new monomial algebra at any closed x′ ∈ Sing(G1) mapping to x. Recall that the definition in
Definition 3.10 of compatibility of a p-presentation, say pP(β, z, fpe), with a monomial algebra
at a given point x requires that x ∈ {z = 0}.

Proposition 6.6. Let C be a permissible center passing through a closed point x ∈ Sing(G)
and assume that τG,x = 1. Fix a p-presentation pP(β, z, fpe). Let y denote the generic point
of β(C) and assume that pP is well-adapted to G both at β(x) and at y. Define a monoidal
transformation with center C. Then we have the following.
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(i) The transform pP1 is well-adapted to G1 at ξH , (the generic point of the exceptional
hypersurface H ⊂ V (d−1)). Moreover,

Sl(pP1)(ξH) = Sl(pP)(y)− 1. (6.6.1)

(ii) If, in addition, pP is compatible with a monomial algebra, say OV (d−1) [I(H1)h1 . . .
I(Hr)hrW s], then pP1 is compatible with the monomial algebra

OV (d−1) [I(H1)h1 . . . I(Hr)hrI(H)γW s],

where γ/s= Sl(pP1)(ξH) = Sl(pP)(y)− 1, at any closed point x′ ∈ Sing(G1) mapping to x.

Proof. Fix the setting as in § 6.2. Note that (2) follows from (1) as z1, the strict transform of z,
vanishes at x′. Now set

pP pP1

V (d)

β
��

V
(d)

1

πCoo

β1
��

V (d−1) V
(d−1)

1

πβ(C)oo

y = ξβ(C) ξH

(6.6.2)

where H is the exceptional hypersurface, and

f
(1)
pe (z1) = zp

e

1 + a
(1)
1 zp

e−1 + · · ·+ a
(1)
pe

is the strict transform of fpe(z). At points of Uxi , we have that z1 = z/xi, and that the coefficients
a

(1)
n factor as

a(1)
n = x

νy(an)−n
i a′n = xrni a

′
n, (6.6.3)

where a′n denotes the strict transform of an and rn = νy(an)− n, for n= 1, . . . , pe.
Different cases can arise under these assumptions, we classify them as in § 5.1.
(A) Suppose that Sl(pP)(y) = ord(RG,β)(y) and, in particular, that νy(aj)/j > ord(RG,β)(y).

At the points of Sing(G1) ∩ Uxi ,

νξH (a(1)
pe )

pe
=
νy(ape)
pe

− 1 > ord(RG,β)(y)− 1 = ord((RG,β)1)(ξH).

Thus pP1 is well-adapted to G1 at ξH (case (A) in § 5.1 and Definition 5.4). So equality in (6.6.1)
holds.

(B) Suppose that

Sl(pP)(y) =
νy(ape)
pe

< ord(RG,β)(y).

(B.1) Assume now that νy(ape)/pe 6∈ Z>0. In this case, νy(ape)> pe and, in addition, νy(aj)> j
for j = 1, . . . , pe − 1. In particular, νβ(x)(aj)> j for j = 1, . . . , pe and hence Inx(fpe) =
Zp

e

.
Therefore Remark 6.5 applies, so Sing(G1) ∩H ⊂ {z1 = 0}. Under these assumptions,

rpe

pe
=
νy(ape)
pe

− 1<
νy(aj)
j
− 1 =

rj
j

for j = 1, . . . , pe − 1, and rpe/p
e 6∈ Z>0. So, locally at any closed point x′ ∈ Sing(G1)

mapping to x, pP1 = pP1(β1, z1, f
(1)
pe ) is of the form (B1) in § 5.1 and therefore well-

adapted to G1 at ξH . So (6.6.1) holds.
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(B.2) Suppose that νy(ape)/pe = r ∈ Z>0 and τG,x = 1. Any singular point, at the exceptional
locus, mapping to x, is contained in the strict transform of z as indicated in Remark 6.5.
Consider Inβ(C)(ape) ∈GrI(β(C))(OV (d−1)) =Oβ(C)[X1, . . . , X`], and set

Inβ(C)(ape) =
∑
|α|=rpe

bαM
α,

which, by assumption, is not a peth power. Here bα ∈ Oβ(C) and Mα is a monomial in
X1, . . . , X` of order rpe.

(B.2.a) First assume that Inβ(C)(ape) 6∈ Oβ(C)[X
pe

1 , . . . , Xpe

` ]. In this case, as the degree of
Inβ(C)(ape) is a multiple of pe, there is a multi-index α= (α1, . . . , α`) with at least
two integers αi which are not multiples of pe, and bα 6= 0.
We claim now that a′pe restricted to the exceptional hypersurface xi = 0, say a′pe , is
not a peth power. This can be checked using the existence of the previous multi-index
α= (α1, . . . , α`).
This ensures that pP1 is in the case (B2) in § 5.1, so pP1 is well-adapted to G1 at ξH ,
and (6.6.1) holds.

(B.2.b) Suppose now that any Mα is a peth power whenever |α|= rpe. Recall that Inβ(C)(ape) is
not a peth power, so some bα is not a peth power. Setting as before a′pe as the restriction
of a′pe to the exceptional hypersurface, one checks that a′pe is not a peth power since bα
is not a peth power. So again pP1 is well-adapted at ξH , and (6.6.1) holds. 2

7. On the two main theorems

7.1 Main Theorem 1
Fix a smooth scheme V (d) and a simple algebra G which we assume to be an absolute differential
algebra. This ensures that G is a β-differential algebra for any transversal morphism β : V (d) −→
V (d−1) (§ 2.5). It is under this last condition that a function β-ord(d−1)(G) : V (d−1) −→Q was
defined in Definition 4.9. The same holds for any other β′ : V (d) −→ V ′(d−1) transversal to G.

A sequence (3.1.1) of permissible transformations of G induces the following two diagrams.

G G1 Gr G G1 Gr
V (d)

β
��

V
(d)

1

πC1oo

β1��

. . .oo V
(d)
r

πCroo

βr��

V (d)

β′
��

V
(d)

1

πC1oo

β′1��

. . .oo V
(d)
r

πCroo

β′r��

V (d−1) V
(d−1)

1

πβ(C1)oo . . .oo V
(d−1)
r

πβ(Cr)oo
V ′(d−1) V ′

(d−1)
1

πβ′(C1)oo . . .oo V ′(d−1)
r

πβ′(Cr)oo

RG,β (RG,β)1 (RG,β)r RG,β′ (RG,β′)1 (RG,β′)r
(7.1.1)

Theorem 7.2 (Main Theorem 1). Assume that the previous setting holds. Then, at any q ∈
Sing(Gr),

βr-ord(Gr)(β(q)) = β′r-ord(Gr)(β′(q)).
Moreover, if pP = pP(βr, z, fpe) is well-adapted to Gr at β(q), then

βr-ord(Gr)(βr(q)) = Sl(pP)(βr(q)).

Corollary 7.3. The previous result enables us to define a function along Sing(Gr):

H-ord(d−1)(Gr)(−) : Sing(Gr)−→Q.
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Moreover, if pP = pP(βr, z, fpe = zp
e

+ a1z
pe−1 + · · ·+ ape) is well-adapted to Gr at βr(x)

(x ∈ Sing(Gr)), then

H-ord(d−1)(Gr)(x) = min
{
νβr(x)(ape)

pe
, ord(RG,β)(βr(x))

}
.

7.4
Recall that the exceptional locus of the composite map V (d) π←− V (d)

r in (3.1.1), say
{H1, . . . , Hr}, is a set of hypersurfaces at V (d)

r and it is assumed that the union has only normal
crossings.

Definition 7.5. We now attach to a sequence of transformations as in (3.1.1) a monomial
algebra supported on the exceptional locus,

MrW
s =OV (d)

r
[I(H1)h1 . . . I(Hr)hrW s], (7.5.1)

with exponents hi ∈ Z>0 defined so that

qHi :=
hi
s

= H-ord(d−1)(Gi−1)(ξCi)− 1

where ξCi denotes the generic point of each center Ci (i= 1, . . . , r).

Here s is a positive integer so that {qH1 , . . . , qHr} ⊂ (1/s)Z. As Rees algebras are considered
up to integral closure, MrW

s is independent of the choice of s, and will be called the tight
monomial algebra of Gr or the tight monomial algebra defined by a sequence (3.1.1).

Theorem 7.6 (Main Theorem 2). Fix a sequence of permissible transformations as in (3.1.1),
and letMrW

s denote the tight monomial algebra defined in Definition 7.5. Then, at any closed
point x ∈ Sing(Gr), MrW

s has monomial contact with Gr, i.e., there is a βr-transversal section
z vanishing at x (i.e., of order one at OV (d)

r ,x) for which

Gr ⊂ 〈z〉W �MrW
s.

The two main theorems, to be proved in Part III, will lead us to the notion of the
strong monomial case, to be discussed now in Part II. The main result concerning the strong
monomial case will be given by Theorem 8.14 which ensures resolution of singularities in positive
characteristic if one can achieve some numerical conditions. These conditions are achievable for
two dimensional schemes [BV12].

Part II. Strong monomial case

8. The strong monomial case and resolution of singularities

8.1 Overview and general strategy
In this second part we address the proof of § 1.4(2). Given a simple differential algebra G in V (d)

and a sequence of transformations, say

G G1 Gr
V (d) V

(d)
1

π1oo . . .oo V
(d)
r ,

πroo (8.1.1)

we have defined:

• a function H-ord(d−1)(Gr)(−) : Sing(Gr)−→Q (see Corollary 7.3);
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• a monomial algebra MrW
s in V

(d)
r , called the tight monomial algebra, supported on the

exceptional locus of the sequence (see § 7.4).

We begin this part by showing that the inequality

H-ord(d−1)(Gr)(x) > ord(MrW
s)(x) (8.1.2)

holds at any closed point x ∈ Sing(Gr). The main objective is to study the case in which
equality holds at any closed point of Sing(Gr). This will be called the strong monomial case
in Definition 8.4. We will assume in our definition that Gr is in the monomial case, meaning
that the elimination algebra is monomial, or that the conditions of Theorem 3.8 hold for this
sequence of transformations. The objective of this section is to prove that:

(i) the strong monomial case is stable under transformations (Proposition 8.13);

(ii) it parallels the so-called monomial case in characteristic zero, namely that if Gr is in the
strong monomial case, then a combinatorial resolution of MrW

s leads to a resolution of G
(Theorem 8.14).

Remark 8.2. Let pP(βr, z, fpe) be a p-presentation compatible with MrW
s (Definition 3.10)

and well-adapted to Gr at x = βr(x) for x ∈ Sing(Gr) (Definition 5.4). We denote x = βr(x) along
this section. In this case, z must vanish at x, defining an element of order one at the local
ring OV (d),x (see Remark 5.5), and fpe(z) = zp

e

+ a1z
pe−1 + · · ·+ ape , where ajW j ∈MrW

s for
j = 1, . . . , pe. In addition, (RG,β)r ⊂MrW

s (Definition 3.10(2)).
It follows from the previous lines that ord((RG,β)r)(x) > ord(MrW

s)(x) and that νx(aj)/j >
ord(MrW

s)(x) for j = 1, . . . , pe. In particular,

H-ord(d−1)(Gr)(x) = min
{
νx(ape)
pe

, ord((RG,β)r)(x)
}

> ord(MrW
s)(x).

This proves (8.1.2) for any pP(βr, z, fpe) as above.

8.3 Definition of the strong monomial case
We shall say that, after a sequence of transformations as in (8.1.1), the transform of a Rees
algebra is within the monomial case when its elimination algebra is monomial, as stated in
Theorem 3.8. We shall assume here, in this section, that Gr is in the monomial case. Namely,
that a sequence of transformations of G has been defined so that (RG,β)r =NrW s is a monomial
algebra supported on the exceptional hypersurfaces. Without loss of generality fix s ∈ Z as in
Definition 7.5 so that

NrW s = I(H1)α1 . . . I(Hr)αrW s and MrW
s = I(H1)h1 . . . I(Hr)hrW s (see Definition 7.5),

(8.3.1)
where {H1, . . . , Hr} are the components of the exceptional locus of the composite map V (d) π←−
V

(d)
r in (8.1.1). Note that the monomial Mr divides Nr (i.e., αi > hi for any i= 1, . . . , r).

Definition 8.4. The Rees algebra Gr is said to be within the strong monomial case at a closed
point x ∈ Sing(Gr) if

H-ord(d−1)(Gr)(x) = ord(MrW
s)(x).

We say that Gr is within the strong monomial case if this condition holds at any closed point
x ∈ Sing(Gr).

The following provides a characterization of this case.
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Theorem 8.5 (Characterization of the strong monomial case). Fix a closed point x ∈ Sing(Gr).
Let pP(βr, z, fpe) be well-adapted to Gr at x = βr(x) and compatible with the tight monomial
algebra MrW

s. The algebra Gr is in the strong monomial case at x if and only if one of the
following conditions holds in an open neighborhood; either:

(i) (RG,β)r =MrW
s; or

(ii) the OV (d−1)-algebra spanned by apeW
pe , namely OV (d−1) [apeW pe ], has the same integral

closure as OV (d−1) [MrW
s].

The first condition holds if and only if H-ord(d−1)(Gr)(x) = ord((RG,β)r)(x).

Proof. (i) Fix x ∈ Sing(Gr) and denote by Ex = {Hi1 , . . . , Hi`} the set of exceptional
hypersurfaces containing x. Let Λx = {i1, . . . , i`} be the set indexing Ex.

If H-ord(d−1)(Gr)(x) = ord((RG,β)r)(x) and Gr is within the strong monomial case at x ∈
Sing(Gr), then ∑

i∈Λx

αi = ord((RG,β)r)(x) = ord(MrW
s)(x) =

∑
i∈Λx

hi.

Since αi > hi for any 1 6 i6 s, then hi = αi for any i ∈ Λx. So MrW
s = (RG,β)r at x.

Conversely, if MrW
s = (RG,β)r locally at x, then the inequality H-ord(d−1)(Gr)(x) >

ord(MrW
s)(x) in (8.1.2) must be an equality since H-ord(d−1)(Gr)(x) = min{νx(ape)/pe,

ord((RG,β)r)(x)}, and νx(aj)/j > ord(MrW
s)(x) = ord(RG,β)(x) (see Remark 8.2).

(ii) Suppose now that H-ord(d−1)(Gr)(x) = νx(ape)/pe < ord((RG,β)r)(x). Recall that
apeW

pe ∈MrW
s, so apeW

pe ∈M[pe]
r W pe , where M[pe]

r is the monomial ideal defined in
Remark 3.6.

Set ape =M[pe]
r a′, for some a′ ∈ OV (d−1),x. We claim that a′ is a unit, and that the algebras

MrW
s and M[pe]

r W pe have the same integral closure.
Assume first that Gr is in the strong monomial case at x ∈ Sing(Gr), so ord(MrW

s)(x) =
νx(ape)/pe. Then ord(MrW

s)(x) = νx(ape)/pe > ord(M[pe]
r W pe)(x). Remark 3.6 implies that

equality must hold and both monomial algebras, M[pe]
r W pe and MrW

s, have the same integral
closure. In particular, we have that a′ is a unit, and the algebra spanned by apeW pe has the same
integral closure as that of MrW

s.
Conversely, if the algebras generated by apeW pe andMrW

s have the same integral closure, we
claim that H-ord(d−1)(Gr)(x) = νx(ape)/pe. To show this, use (8.1.2) to check that νx(ape)/pe >
H-ord(d−1)(G)(x) > ord(MrW

s)(x) = νx(ape)/pe. So, finally, Gr is in the strong monomial case
at x ∈ Sing(Gr). 2

Remark 8.6. Let Gr be in the strong monomial case at the closed point x ∈ Sing(Gr). Then we
claim that the following conditions hold for a p-presentation pP in the conditions of Theorem 8.5.

(1) In case (i), the transversal parameter z defines a hypersurface of maximal contact. In
particular, there exists an open neighborhood of x where (RG,β)r =NrW s =MrW

s.

(2) In case (ii), the monomial algebra can be described as MrW
pe (i.e., s= pe) where Mr

is not a peth power.

For (1), note that each ajW
j ∈ (RG,β)r and that zW fulfills the integral condition

λp
e

+ (a1W
1)λp

e−1 + · · ·+ (ape − fpe(z))W pe = 0.

This says that zW is integral over Gr locally at the closed point x ∈ Sing(Gr), and hence, that
z = 0 defines a hypersurface of maximal contact.
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(2) Follows from the proof of case (ii) in the previous theorem. Note that pP is well-
adapted to Gr at x and compatible withMrW

s (see § 5). In terms of local coordinates, case (ii)
says that there is a regular system of parameters, say {x1, . . . , xd−1}, at OV (d−1),x, so that
apeW

pe = u · xh1
1 · · · x

hl
l W

pe where u is a unit at the local ring, and, in addition one can take
MrW

s of the form xh1
1 · · · x

hl
l W

pe .
As pP is well-adapted at the point, Inx(ape) is not a peth power and therefore some exponent

hi is not a multiple of pe.

Lemma 8.7. Let Gr be in the strong monomial case, and set (RG,β)r =NrW s as in § 8.3. Fix
y ∈ Sing(Gr).

(A) If H-ord(d−1)(Gr)(y) = ord((RG,β)r)(βr(y)), then:

(A1) there is a dense open set U ⊂ y so that H-ord(d−1)(Gr)(x′) = ord((RG,β)r)(βr(x′))
and NrW s =MrW

s at any x′ ∈ U ;
(A2) ord((RG,β)r)(βr(y)) = ord(MrW

s)(βr(y)).

(B) If H-ord(d−1)(Gr)(y)< ord((RG,β)r)(βr(y)), then at each smooth closed point x ∈ y
(⊂ Sing(Gr)), and given a simultaneously adapted p-presentation pP(βr, z, fpe),

H-ord(d−1)(Gr)(x) =
νx(ape)
pe

< ord((RG,β)r)(x).

Proof. (A) Note that (A2) follows from (A1) (since NrW s =MrW
s at any x′ ∈ U).

Let Ey = {Hj1 , . . . , Hj`} denote the set of exceptional hypersurfaces containing y with
set of indexes Λy = {j1, . . . , j`}. Set Λ−y = {1, . . . , r}\Λy. Consider a closed point x′ so that
x′ ∈ y\

⋃
i∈Λ−y

Hi. Assume that x′ is a smooth point of y. Fix a p-presentation pP(βr, z, fpe)
well-adapted to Gr both at βr(x′) and βr(y). Note that, for such x′, and since (RG,β)r is a
monomial algebra supported on the exceptional components

ord((RG,β)r)(βr(x′)) = ord((RG,β)r)(βr(y)) 6
νβr(y)(ape)

pe
6
νβr(x′)(ape)

pe
.

Here the first equality follows from the choice of x′, the first inequality follows from the
hypothesis, and the second is straightforward. So in this case, H-ord(d−1)(Gr)(x′) = ord((RG,β)r)
(βr(x′)), and since Gr is in the strong monomial case, ord(MrW

s)(βr(x′)) = H-ord(d−1)(Gr)(x′) =
ord((RG,β)r)(βr(x′)). Finally, argue as in the proof of Theorem 8.5 to conclude that αi = hi for
all i ∈ Λy. Hence (RG,β)r =NrW s =MrW

s. In particular,

ord((RG,β)r)(βr(y)) = ord(MrW
s)(βr(y)).

(B) Fix a smooth closed point x ∈ y and a p-presentation pP(β, z, fpe) well-adapted at
x = βr(x) and βr(y), which we assume, in addition, to be compatible with MrW

s. Assume,
on the contrary, that H-ord(d−1)(Gr)(x) = ord((RG,β)r)(x)(= ord(MrW

s)(x)). Remark 8.6(i)
ensures that (RG,β)r =MrW

s in a neighborhood of x. In particular, ord((RG,β)r)(βr(y)) =
ord(MrW

s)(βr(y)), so

H-ord(d−1)(Gr)(y) =
νβr(y)(ape)

pe
< ord((RG,β)r)(βr(y)) = ord(MrW

s)(βr(y)),

which is in contradiction with the fact that apeW pe ∈MrW
s locally at y (see Remark 8.2). 2

Corollary 8.8. Let Gr be within the strong monomial case at a closed point x ∈ Sing(Gr). Let
y ∈ Sing(Gr) be such that x ∈ y is a smooth point. Then,

H-ord(d−1)(Gr)(y) = ord(MrW
s)(y).
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Proof. (A) When H-ord(d−1)(Gr)(y) = ord((RG,β)r)(βr(y)) the assertion is (A2) in Lemma 8.7.

(B) Assume that H-ord(d−1)(Gr)(y) = νβr(y)(ape)/pe < ord((RG,β)r)(βr(y)). At the closed
point x ∈ y, Lemma 8.7(B) ensures that ord(MrW

s)(x) = H-ord(d−1)(Gr)(x) = νx(ape)/pe <
ord((RG,β)r)(x). Theorem 8.5 asserts that, locally at x, and given a p-presentation in the
conditions of the theorem, the algebras generated by apeW pe andMrW

s have the same integral
closure, so νβr(y)(ape)/pe = ord(MrW

s)(βr(y)). 2

8.9 The strong monomial case and proof of Theorem 8.14
We now extend Definition 8.4 to the full spectrum.

Assume that Gr is in the strong monomial case. Corollary 8.8 says that both functions
H-ord(d−1)(Gr)(−) and ord(MrW

s)(−) take the same value at any point of Sing(Gr). In fact,
given y ∈ Sing(Gr), one can always choose a smooth closed point x ∈ y.

In particular, whenever Gr is in the strong monomial case, the function H-ord(d−1)(Gr) is
upper-semi-continuous.

We now prove that the strong monomial case is stable under transformations.

Remark 8.10. When Gr is within the strong monomial case, and C ⊂ Sing(Gr) is a permissible
center, Corollary 8.8 shows that βr(C) is also a permissible center for the algebra generated by
MrW

s (i.e., βr(C)⊂ Sing(MrW
s)). In particular, the transform of the tight monomial algebra

can be defined.

We claim now that the transform of the tight monomial is the tight monomial of the transform.

Lemma 8.11. Assume that Gr is in the strong monomial case. Let C ⊂ Sing(Gr) be an irreducible

permissible center. Let V
(d)
r

πC←− V (d)
r+1 be the monoidal transformation with center C. Denote by

M′r+1W
s the transform of MrW

s and by Mr+1W
s the tight monomial algebra of Gr+1. Then,

M′r+1W
s =Mr+1W

s.

Proof. By definition the tight monomial algebra of the transform, say Gr+1, is of the form

Mr+1W
s = I(H1)h1 . . . I(Hr)hrI(Hr+1)hr+1W s,

where the Hj are the strict transforms of the previous exceptional hypersurfaces (j = 1, . . . , r)
and Hr+1 is the new exceptional hypersurface introduced by πC . Recall that hr+1 = qHr+1 · s
where qHr+1 = H-ord(d−1)(Gr)(ξC)− 1, and ξC denotes the generic point of C. On the other
hand,

M′r+1W
s = I(H1)h1 · · · I(Hr)hrI(Hr+1)γW s,

where γ/s= ord(MrW
s)(y)− 1 and y denotes the generic point of βr(C). Corollary 8.8 asserts

that in the strong monomial case H-ord(d−1)(Gr)(ξC) = ord(MrW
s)(y). Thus, γ = qHr+1 , and

hence M′r+1W
s =Mr+1W

s. 2

Fix a closed point x ∈ Sing(Gr). Theorem 8.5 characterizes when the algebra Gr is in the strong
monomial case at x under the assumption that there is a p-presentation, say pP(βr, z, fpe), which
is well-adapted to Gr at x = βr(x) and compatible with the tight monomial algebra MrW

s.
The following lemma provides conditions on a p-presentation pP(βr, z, fpe), which a priori is

not necessarily well-adapted at x, and yet ensures that Gr is in the strong monomial case at x.
This result will be useful in the forthcoming Proposition 8.13.

Recall that pP = pP(β, z, fpe) is defined by a transversal projection V (d) β−→ V (d−1), a
β-section z and a monic polynomial fpe(z) = zp

e

+ a1z
pe−1 + · · ·+ ape .
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Lemma 8.12. Assume that Gr is in the monomial case (i.e., that the elimination algebra is
monomial), and that a p-presentation pP(βr, z, fpe) is defined in a neighborhood of closed point
x ∈ Sing(Gr). Assume that pP fulfills the following properties.

(i) The point x ∈ {z = 0} (x is in the βr-section), and moreover that pP is compatible with
the tight monomial algebra MrW

s.

(ii) The OV (d−1)
r

-algebra spanned by apeW
pe , namely OV (d−1)

r
[apeW pe ], has the same integral

closure as OV (d−1)
r

[MrW
s].

Then:

(a) x = βr(x) ∈ V (Mr);
(b) furthermore, if locally at x we set s= pe andMrW

pe = xh1
1 · · · x

hr′
r′ W

pe where {x1, . . . , xr′}
extend to a regular system of parameters, and if some hi is not a multiple of pe, then pP is
well-adapted at x, and Gr is in the strong monomial case at x.

Proof. Here (a) follows easily from (i) and (ii).
Note that (ii) ensures that we can takeMrW

pe = apeW
pe , and ape = uxh1

1 · · · x
hr′
r′ atOV (d−1)

r ,x,
where u is a unit at such a ring. If we assume that some hi is not a multiple of pe then Inx(ape)
is not a power of pe at the graded ring of OV (d−1),x. Hence pP is well-adapted at x, and one can
easily check that Gr is in the strong monomial at x. 2

Proposition 8.13 (τ = 1-stability of the strong monomial case). Suppose that Gr is within
the strong monomial case. Let C be a permissible center. Assume that τGr,x = 1 at a closed

point x ∈ C. Consider the monoidal transformation of center C, say V
(d)
r

πC←− V (d)
r+1. Then, over a

neighborhood of x ∈ Sing(Gr), the transform of Gr, say Gr+1, is within the strong monomial case.

Proof. Fix a p-presentation pP(βr, z, fpe) well-adapted to Gr both at x = βr(x) and at ξβ(C),
and compatible with MrW

s. Here ξβr(C) denotes the generic point of βr(C). Set fpe(z) =
zp

e

+ a1z
pe−1 + · · ·+ ape .

Proposition 6.6 asserts that pP1 is well-adapted to Gr+1 at ξHr+1 , the generic point of Hr+1

(i.e., the new exceptional hypersurface), and that pP1 is compatible with the tight monomial
algebra of Gr+1, namely with Mr+1W

s.
We claim that pP1 is well-adapted to Gr+1 at x′ = βr+1(x′) for any closed point

x′ ∈ Sing(Gr+1) mapping to x. In particular, that H-ord(d−1)(Gr+1)(x′) = min{νx′(a(1)
pe )/pe,

ord((RG,β)r+1)(x′)}, where a(1)
pe denotes the independent term of f (1)

pe (z1), the strict transform
of fpe(z).

As Gr is in the strong monomial case at x, either MrW
s = (RG,β)r =NW s, or the algebras

spanned by apeW
pe and MrW

s have the same integral closure. Lemma 8.11 asserts that the
transformMrW

s (the tight monomial algebra of Gr) isMr+1W
s, the tight monomial algebra of

Gr+1. Hence, at V (d)
r+1, conditions (i) or (ii) in Theorem 8.5 are preserved (this also holds for pP1).

Thus, if the claim is true, then the cited theorem ensures that Gr+1 is also in the strong monomial
case at x′. So, in what follows, we focus on the claim.

We may assume that, locally at x ∈ Sing(Gr), the tight monomial algebra MrW
s is of the

form

I(H1)h1 . . . I(Hr′)hr′W s with 0< hi < s. (8.13.1)

In order to achieve this (namely, that all hi < s), it suffices to consider a finite sequence of
permissible transformations with centers of codimension 2 at V (d)

r .
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Of course one must check that the strong monomial case is preserved by blowing up at such
centers of codimension 2. To check this fact, fix, as in Theorem 8.5, locally at a closed point
x ∈ Sing(Gr), a presentation pP(βr, z, fpe) well-adapted to Gr at x = βr(x) and compatible with
the tight monomial algebraMrW

s. The statement is clear in case (i) of Theorem 8.5, namely if
(RG,β)r =MrW

s, as this is the case of maximal contact. It remains to consider case (ii) of this
theorem, namely when one can takeMrW

s with s= pe, and in addition ape = u · Mr. Note here
that locally at x,MrW

pe has an expression as in (8.13.1), with the additional condition that some
hi 6= 0 (see Remark 8.6). In this case Lemma 8.12 ensures that the transform of the presentation
(by blowing up at such centers of codimension 2) is well-adapted, and that the transform of the
algebra is in the strong monomial case at x after such a sequence of permissible transformations.

We now address the proof of the previous claim: fix a closed point x′ ∈ Sing(Gr+1) ∩Hr+1

mapping to x (i.e., πC(x′) = x). Recall that, under the hypothesis τGr,x = 1, Remark 6.5 asserts
that x′ ∈ {z1 = 0}, where z1 denotes the strict transform of z. We now prove our claim,
namely that pP1 is well-adapted to Gr+1 at x′.

We divide the proof of the claim into the following cases.
(1) Assume that H-ord(d−1)(Gr)(x) = ord((RG,β)r)(x) ( = ord(MrW

s)(x)). Theorem 8.5
ensures that (RG,β)r =NrW s =MrW

s in a neighborhood of x and, in particular, that
ord((RG,β)r)(ξC) = ord(MrW

s)(ξC). Note that Mr+1W
s = (RG,β)r+1, and again Theorem 8.5

says that Gr+1 is in the strong monomial case (in particular, pP1 is well-adapted to Gr+1 at x′).
(2) Now suppose that H-ord(d−1)(Gr)(x) = νx(ape)/pe < ord((RG,β)r)(x). In this case,

Theorem 8.5 says that the algebras spanned by apeW
pe and MrW

s have the same integral
closure. In particular, we can take s= pe and assume that apeW pe = uMrW

pe , where u is a unit
(see Remark 8.6).

The equality apeW pe = uMrW
pe implies that

νξβr(C)(ape)
pe

= ord(MrW
s)(ξβr(C))(6 ord((RG,β)r)(ξβr(C))), (8.13.2)

and, as pP is well-adapted at ξβr(C), H-ord(d−1)(Gr)(ξC) = νξβr(C)(ape)/p
e, and hence hr+1 =

νξβr(C)(ape)− pe is the exponent of I(Hr+1) in Mr+1W
s (s= pe).

(2.A) If νξC (ape)/pe 6∈ Z>0, then hr+1 = νξHr+1
(a(1)
pe ) = νξβr(C)(ape)− pe(6≡ 0 mod pe) and

hr+1/s6 ord((RG,β)r+1)(ξHr+1).

Notice here that Inx′(a
(1)
pe ) cannot be a peth power since hr+1 6≡ 0 mod pe. Hence,

Lemma 8.12 applies here to ensure that pP1 is well-adapted to Gr+1 at x′ (see Definition 5.4).
Let us introduce some useful notation for the proof of the claim in the remaining cases. Fix a

regular system of parameters in the regular local ring OV (d)
r ,x, say {z, x1, . . . , xd−1}, such that:

(i) {x1, . . . , xd−1} are parameters at OV (d−1)
r ,x, and the tight monomial algebra is locally

generated by a monomial in x1, . . . , xr′ (r′ 6 d− 1), say xh1
1 . . . xhr′r′ ; and

(ii) the permissible center is I(C) = 〈z, x1, . . . , x`, y1, . . . , ym〉, where `6 r′ and yj = xr′+j for
j = 1, . . . , m.

As apeW pe = u · MrW
s where u is invertible,

ape = uxh1
1 · · · x

h`
` x

h`+1

`+1 · · · x
hr′
r′ with 0< hi < pe.

In all the remaining cases we will show that the conditions of Lemma 8.12(b), hold for the
transform of the p-presentation pP(β, z, fpe).
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(2.B) Assume that νξβr(C)(ape)/p
e ∈ Z>0 and that ` < r′. In this case, one can check that

Inx′(a
(1)
pe ), which is also monomial, is not a peth power. In fact, at each chart

a
(1)
pe = uxh1+···+h`−pe

1

(
x2

x1

)h2

. . .

(
x`
x1

)h`
x
h`+1

`+1 · · · x
hr′
r′ in the Ux1-chart, or

a
(1)
pe = uyh1+···+h`−pe

1

(
x1

y1

)h1

. . .

(
x`
y1

)h`
x
h`+1

`+1 · · · x
hr′
r′ in the Uy1-chart

and 0< h`+1 < pe (i.e., h`+1 6≡ 0 mod pe). This ensures that Inx′(a
(1)
pe ) is not a peth power, and

hence pP1 is well-adapted at x′.
(2.C) Assume that νξβr(C)(ape)/p

e ∈ Z>0 and `= r′.
Note here that `= r′ > 2, since MrW

pe is not a peth power and h1 + · · ·+ hr′ ≡ 0 mod pe.
We now prove that pP1 is well-adapted at x′ by considering two cases.
(2.C.1) Firstly suppose that νξβr(C)(ape)/p

e < ord((RG,β)r)(ξβr(C)). After a finite number of

monoidal transformations over V (d)
r+1 at centers of codimension 2, we can assume that hr+1 = 0.

Thus, the independent term, say a(1)
pe , is

a
(1)
pe = u

(
x2

x1

)h2

. . .

(
xr′

x1

)hr′
in the Ux1-chart, or

a
(1)
pe = u

(
x1

y1

)h1

. . .

(
xr′

y1

)hr′
in the Uy1-chart.

Both cases are analogous, so it suffices to consider the problem at the Ux1-chart. The difference
with the discussion in (2.B) appears when considering a closed exceptional point where a(1)

pe is a
unit. We now address this case. Let

f
(1)
pe = zp

e

1 + a
(1)
1 zp

e−1
1 + · · ·+ a

(1)
pe

be the strict transform of fpe . The assumption νξβr(C)(ape)/p
e < ord((RG,β)r)(ξβr(C)) ensures that

ord((RG,β)r+1)(ξHr+1)> 0, and hence that x1 divides a(1)
j for j = 1, . . . , pe − 1 (see Theorem 4.4).

We claim that if x′ ∈ Sing(Gr+1), then x′ ∈ {x1 = 0} ∩ {xj/x1 = 0} for some j ∈ {2, . . . , r′}.
Let f (1)

pe = zp
e

1 + a
(1)
pe be the restriction of f (1)

pe to x1 = 0, where a(1)
pe = u(x2/x1)h1 . . . (xr′/x1)hr′ .

We identify a(1)
pe with an element of Oβr(C)[(x2/x1), . . . , (xr′/x1), (y1/x1), . . . , (ym/x1)]. This is

a polynomial ring in r′ − 1 +m variables. Consider the Taylor expansion of a(1)
pe at this ring, say

Tay(a(1)
pe ) =

∑
α∈Nr′−1+m

∆α(a(1)
pe )Tα.

The operators ∆α in this expansion are differential operators in Oβr(C)[(x2/x1), . . . ,
(xr′/x1), (y1/x1), . . . , (ym/x1)], relative to the ring Oβr(C), defined in terms of the r′ − 1 +m
variables.

Note here that u ∈ Oβr(C), so in particular, ∆α(a(1)
pe ) = u∆α((x2/x1)h2 . . . (xr′/x1)hr′ ).

Since it is assumed that hj < pe, it follows that

∆αj (a(1)
pe ) = u

(
x2

x1

)h2

. . .

(
xj−1

x1

)hj−1
(
xj+1

x1

)hj+1

. . .

(
xr′

x1

)hr′
,

for αj = (0, . . . , hj , . . . , 0) ∈ Nr′−1+m. Moreover, if ∆αj (a(1)
pe )(x′) = 0 for all j = 2, . . . , r′, then

x′ ∈ {xj/x1 = 0} for some j. So, if x′ ∈ Sing(G1) ∩Hr+1 ∩ Ux1 , then x′ ∈
⋃

26j6r{xj/x1 = 0}.
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In this case we can argue as in (2.B) to show that Inx′(a
(1)
pe ) is not a peth power, and hence

that pP1 is well-adapted at x′.

(2.C.2) According to (8.13.2), the only case left is νξβr(C)(ape)/p
e = ord((RG,β)r)(ξβr(C))

within the case `= r′.

The equality ord(MrW
s)(ξβr(C)) = ord((RG,β)r)(ξβr(C)), implies that hi = αi for i= 1, . . . , r′

(see (8.3.1)).

By the assumption in case (2), ord(MrW
s)(x)< ord(NrW s)(x). Thus, there must be an

exceptional hypersurface, say H, so that x ∈H, H is not a component of the support of
Mr (of V (Mr)), and H is a component of V (NrW s). That is, H 6=Hj for j = 1, . . . , r′ and
ord(NrW s)(ξH)> 0.

Consider the monoidal transformation along C. We may assume, after a finite number of
monoidal transformations at centers of codimension 2, that the new exceptional hypersurface,
say Hr+1, is not a component of V (a(1)

pe ). Here a(1)
pe is essentially monomial and admits expressions

as in (2.C.1), both in Uxi-charts or in Uyj -charts. In addition, Hr+1 is not a component of
V (Nr+1W

s), where Nr+1W
s is the transform of NrW s. On the contrary, the strict transform

of H is a component of V (Nr+1W
s) and is not a component of V (a(1)

pe ).

Note here that x ∈ (C ∩H) and that C is not included in H. Therefore, the full fiber over x
of the monoidal transformation, say π−1

C (x), is included in the strict transform of H. We argue
as in (2.C.1), now considering the restriction of Gr+1 to the strict transform of H, instead of
restrictions to Hr+1. Note now that in fact the same argumentation as used in (2.C.1) applies
here to show that pP1 is well-adapted at x′. 2

We may assume that resolution of simple Rees algebras can be achieved by decreasing
induction on τ . The following theorem shows how to increase the invariant τ , under the
assumption that Gr is in the strong monomial case.

Theorem 8.14. Let Gr be within the strong monomial case. Then, any combinatorial resolution
of MrW

s can be lifted to a sequence of transformations of Gr, say

Gr Gr+1 GN

V
(d)
r V

(d)
r+1

πr+1oo . . .πr+2oo V
(d)
N

πNoo (8.14.1)

and if x ∈ Sing(Gr) is a closed point so that τGr,x = 1, then π−1(x) ∩ Sing(GN ) = ∅, or consists of
points with τGN ,x′ > 2. Hence, τGN ,x′ > 2 for any x′ ∈ Sing(GN ) if not empty.

Proof. Recall thatMrW
s(⊂OV (d)

r
[W ]) is the pull-back of a monomial algebra, sayMrW

s again
(⊂OV (d−1)

r
[W ]). What we mean here is that a combinatorial resolution of MrW

s in dimension
d− 1 can be lifted to a permissible sequence in dimension d.

Fix a closed point x ∈ Sing(Gr) so that τGr,x = 1. Proposition 8.13 ensures that after a
permissible sequence of transformations as in (8.14.1), the transform GN is in the strong monomial
case. In particular, H-ord(d−1)(GN )(x′) = ord(MNW

s)(x′) for any closed point x′ ∈ Sing(GN )
mapping to x, for which τGN ,x′ = 1. Moreover, by assumption ord(MNW

s)(x′)< 1. That is,
π−1(x) ∩ Sing(GN ) = ∅, or consists of points with τGN ,x′ > 2. 2
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Part III. Proofs of theorems

Appendix A. Proof of Main Theorem 1

A.1 Hironaka’s weak equivalence
There are two natural operations on Rees algebras, and both are crucial in understanding
Hironaka’s fundamental notion (or meaning) of invariance. Fix a smooth scheme V (d) and a
set, say E = {H1, . . . , Hr}, of smooth hypersurfaces so that ∪Hi has only normal crossings. Let
G =

⊕
InW

n be a Rees algebra in V (d). Now, let

V (d) π←− U (A.1.1)

be defined either by:

(A) an open set U of V (d) in Zariski or étale topology;

(B) the projection of U = V (d) × An
k on the first coordinate. Here, An

k denotes the n-dimensional
affine scheme (with n ∈ Z>1).

In both cases, there is a naturally defined pull-back of the Rees algebra G and of the set E. This
defines a Rees algebra GU and a set EU . Here EU consists of the pull-backs of the hypersurfaces
in E. The Rees algebra GU is defined as:

(A) the restriction to U in case (A), i.e., GU =
⊕

(In)UWn;

(B) the total transforms of each ideal In, say I∗n, in case (B), i.e., GU =
⊕

I∗n.

The pull-back defined by V (d) π←− U is denoted by the following diagram.

G GU
(V (d), E) (U, EU )πoo

Observe here that Sing(GU ) = π−1(Sing(G)).

Definition A.2. A local sequence of a Rees algebra G and a set E is a sequence

G G1 Gr
(V (d), E) (Ṽ (d)

1 , E1)
π1oo . . .π2oo (Ṽ (d)

r , Er)
πroo (A.2.1)

where each Ṽ
(d)
i Ṽ

(d)
i+1

πi+1oo is a pull-back, in which case Ei+1 is the pull-back of hypersurfaces

in Ei, or a monoidal transformation at a center Ci ⊂ Sing(Gi) with normal crossing with the
exceptional hypersurfaces in Ei for i= 0, . . . , r − 1.

Definition A.3. Fix two Rees algebras G and G′ and a set of hypersurfaces with normal
crossings E in the smooth scheme V (d). We say that G and G′ are weakly equivalent if:

(i) Sing(G) = Sing(G′);
(ii) any local sequence of G, say (A.2.1), defines a local sequence of G′ (and vice versa), and

Sing(Gi) = Sing(G′i) for i= 0, . . . , r.

Remark A.4. Note that if G and G′ are weakly equivalent, then their transforms Gi and G′i are also
weakly equivalent, so the weak equivalence is preserved after any local sequence. Two algebras
with the same integral closure are weakly equivalent.
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A.5 On Main Theorem 1
Proposition A.6. Fix a Rees algebra G and a presentation pP = P(β, z, fn(z)). Let H be a
smooth irreducible hypersurface in V (d−1). Denote by y the generic point of H and assume that
pP is well-adapted at y. Then, H is a component of β(Sing(G)) if and only if Sly(pP) > 1.

Proof. It follows from Proposition 4.6, and from the assumption that pP is well-adapted at y. 2

Theorem A.7 (Main Theorem 1). Fix a Rees algebra G. Consider a point x ∈ Sing(G) and a
p-presentation, say pP, well-adapted at β(x). The value Sl(pP)(β(x)) is completely determined
by the weak equivalence class of G.

Proof. Here x stands for an arbitrary singular point, not necessarily closed. Fix pP =
pP(β, z, fpe(z)), as above, well-adapted to G at x = β(x). Fix fpe(z) = zp

e

+ a1z
pe−1 + · · ·+ ape

and set rj = νx(aj) for j = 1, . . . , pe and ord(RG,β)(x) = α/s. Set q = Sl(pP)(x), and recall from
Theorem 4.4 that Sl(pP)(x) = min{νx(ape)/pe)(x), ord(d−1)(RG,β)(x)}. Note that q > 1 and that
z is an element of order 1 in OV (d),x (see Remark 5.5).

Consider V (d) × A1, the product of V (d) with the affine line. Locally, in a neighborhood
of (x, 0) ∈ V (d) × A1, we identify fpe(z) with its pull-back. Consider, in addition, the natural
projection β̃0 = β × id : V (d) × A1 −→ V (d−1) × A1, mapping (x, 0) to (x, 0). Finally, identify
RG,β with its pull-back in V (d−1) × A1. This defines a p-presentation of the pull-back of G at
V (d) × A1, say pP again. Note that

Sl(pP)((x, 0)) = Sl(pP)(x)

and that In(x,0)(ape) can be naturally identified with Inx(ape).
Fix coordinates {z, x1, . . . , xa, t} locally at (x, 0), where {z, x1, . . . , xa} is a regular system

of parameters at OV (d),x, and {x1, . . . , xa} is a regular system of parameters at OV (d−1),x.
Consider the monoidal transformation with center q0 = (x, 0) and let q1 be the intersection
of the new exceptional hypersurface, say H1, and the strict transform of x× A1. This monoidal
transformation at q0 induces a monoidal transformation, say V (d−1) × A1←− V (d)

1 , at (β(x), 0) =
β̃0(q0). Moreover, one can define a smooth morphism β̃1 : V (d+1)

1 −→ V
(d)

1 . The exceptional
hypersurface H1 ⊂ V (d+1)

1 is the pull-back of the exceptional hypersurface in V
(d)

1 . To simplify
notation, we denote both by H1. As x might not be closed, q0 and q1 are not necessarily closed.
But as restrictions to open sets are permitted in Hironaka’s notion of weak equivalence, we argue
as if these points would be closed, in the sense that q0 is the generic point of a smooth scheme
when restricting to a suitable open set.

The point q1 is the origin of the Ut-chart, (Ut = Spec(OV (d),x[z/t, . . . , xa/t, t])). The transform
of pP, say pP1 = pP1(β̃1, z1, f

(1)
pe ), is defined by

f
(1)
pe (z1) = zp

e

1 + tr1−1a′1z
pe−1
1 + · · ·+ trpe−p

e

a′pe and (RG,β)1

where the a′j are not divisible by t, and ord((RG,β)1)(ξH1) = (α− s)/s, where ξH1 denotes the

generic point of H1 ⊂ V (d)
1 .

This process can be iterated N -times, defining a sequence of monoidal transformations
at q0, q1, . . . , qN−1, where each qj is the intersection of the new exceptional component, say
Hj (⊂ V (d+1)

j ), with the strict transform of x× A1. Let qN be the intersection of the latest
exceptional hypersurface, say HN , and the strict transform of x× A1. The transform of pP at
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the final Ut-chart, say pPN = pPN (β̃N , zN , f
(N)
pe ), is given by

f
(N)
pe (zN ) = zp

e

N + tN(r1−1)a′1z
pe−1
N + · · ·+ tN(rpe−pe)a′pe and (RG,β)N , (A.7.1)

with ord((RG,β)N )(ξHN ) =N(α− s)/s, where ξHN denotes the generic point of HN ⊂ V (d)
N .

Fix N � 0, it may occur that Sing(GN ) ∩HN has codimension 2 in the d+ 1-dimensional
ambient space (i.e., that HN ⊂ V (d)

N is a component of β̃N (Sing(GN ))). This does occur, clearly,
if (rj − j)> 0 (j = 1, . . . , pe) and (α− s)> 0, and we claim that this is the only case in which it
occurs. In other words, we claim that Sing(GN ) ∩HN has codimension 2 in the d+ 1-dimensional
ambient space if and only if (rj − j)> 0 (j = 1, . . . , pe) and (α− s)> 0.

In fact, these strict inequalities do not hold if either rpe = pe, or if α= s. If α= s, then
HN ⊂ V (d)

N is not a component of β̃N (Sing(GN )), as it is not a component of Sing((RG,β)N ) (see
(A.7.1)). So Sing(GN ) ∩HN is not of codimension 2 in this case. Finally, assume that (α− s)> 0
and that rpe = pe. In this case we consider the restriction of GN to HN . More precisely, consider
the restriction of the data in (A.7.1) to HN . Note here that the restriction of (RG,β)N is zero,
and the restriction of f (N)

pe (zN ) is of the form

f
(N)
pe (zN ) = zp

e

N + a′pe ,

where a′pe denotes the restriction of a′pe to HN . If Sing(GN ) ∩HN would be a component of
codimension 2, then this restricted equation would have order at least pe at any point where it
vanishes. In this case, the restricted equation should be a peth power of an equation, say

f
(N)
pe (zN ) = zp

e

N + a′pe = (zN + b
′
pe)

pe . (A.7.2)

We now show that this last condition cannot hold by analyzing the presentation pP at x. In
fact in this case Sl(pP)(x) = 1, and, by assumption

1 =
νx(ape)
pe

< ord(d−1)(RG,β)(x).

Finally, note that a′pe can be identified with Inx(ape), and this is a homogeneous element of
degree pe, which is not a peth power as pP is well-adapted at x. So, a factorization as in (A.7.2)
cannot hold, and hence, in this case also, Sing(GN ) ∩HN is not of codimension 2.

The previous discussion shows that Sing(GN ) ∩HN has codimension 2 if and only if it is
defined by 〈zN , t〉, and in particular it is a smooth center. If this is the case, we look for further
transformations constructed by blowing up at such centers, as we explain below.

Firstly consider the monoidal transformation of V (d+1)
N with center 〈zN , t〉. Set zN+1 = zN/t.

At the Ut-chart, the transform of pPN , say pPN+1, is defined by

f
(N+1)
pe (zN+1) = zp

e

N+1 + tN(r1−1)−1a′1z
pe−1 + · · ·+ tN(rep−pe)−pea′pe and (RG,β)N+1,

with ord((RG,β)N+1)(ξHN+1) = (N(α− s)− s)/s.
Now Sing(GN+1) ∩HN+1 has codimension 2 in V (d+1)

N+1 if and only if it is described by 〈zN+1, t〉,
which is a smooth center.

Now consider, if possible, a sequence of ` monoidal transformations at centers of codimension
2 of the form 〈zN+i, t〉. It gives rise to a sequence

GN GN+1 GN+`

V
(d+1)
N V

(d+1)
N+1

πNoo . . .πN+1oo V
(d+1)
N+` .

πN+`−1oo (A.7.3)
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Geometrically, this sequence is constructed as follows: let HN+i−1 denote the exceptional
hypersurface introduced by πN+i−1. The center of the (N + i)th monoidal transformation,
say πN+i, is constructed by blowing up at HN+i ∩ Sing(GN+i), which is assumed to be of
codimension 2. The sequence (A.7.3) induces a sequence

V
(d)
N V

(d)
N+1

oo . . .oo V
(d)
N+`

oo

(RG,β)N (RG,β)N+1 (RG,β)N+`

where each transformation is the blow-up at the exceptional hypersurface HN+i ⊂ V (d)
N+i. Hence

each transformation is the identity map.
After the N + ` monoidal transformations, the exponent of t in the jth coefficient of

fN+`
pe is N(rj − j)− `j, and ord((RG,β)N+`)(ξHN+`) =N(α− s)/s− `. Therefore, 〈zN+`, t〉 is a

permissible center if N(rj − j)− `j > j (j = 1, . . . , pe) and N(α− s)− `s> s. In particular, this
requires that

`6 min
16j6n

{
N

(
rj
j
− 1
)
− 1, N

(
α

s
− 1
)
− 1
}

=N(Sl(pP)(x)− 1)− 1.

Set
`N = bN(q − 1)− 1c,

where the lower-bracket stands for the biggest integer 6N(q − 1)− 1.
We claim that this is the highest length of a sequence as in (A.7.3), namely, that HN+`N is

not a component of β̃N+`N (Sing(GN+`N )) in V
(d)
N+`N

.
One can check that Sl(pPN+`N )(ξHN+`N

)< 1, where ξHN+`N
is the generic point of HN+`N .

We now show that pPN+`N is well-adapted at ξHN+`N
. This will be proved now in three steps,

and this, together with Proposition A.6, will ensure that the previous claim holds.
Firstly, suppose that q = Sl(pP)(x) = ord(RG,β)(x) = α/s. In this case, N(α− s)− `N · s6

N(rpe − pe)− `N · pe. So, Sl(pPN+`N )(ξHN+`N
) = ord((RG,β)N+`N )(ξHN+`N

) and hence pPN+`N is
well-adapted to ξHN+`N

Now assume that q = Sl(pP)(x) = νx(ape)/pe = rpe/p
e < ord(RG,β)(x) and that Nrpe/pe 6∈ Z.

Then, N(rpe − pe)− `N · pe 6N(α− s)− `N · s, so Sl(pPN+`N )(ξHN+`N
) = νξHN+`N

(ape)/pe and
0< Sl(pPN+`N )(ξHN+`N

)< 1, so pPN+`N is well-adapted to ξHN+`N
.

Finally, assume that q = Sl(pP)(x) = νx(ape)/pe = rpe/p
e < ord(RG,β)(x) and that Nrpe/pe ∈

Z. Note that Sl(pPN+`)(ξHN+`) = νξHN+`N
(a′pe)/p

e = 0< ord(d−1)((RG,β)N+`N )(ξH`+N ), and that
InξHN+`N

(a′pe) can be naturally identified with Inx(ape), which is not a peth power (as pP is
well-adapted at x). So in this last case also, pPN+`N is well-adapted to ξHN+`N

. This proves the
previous claim.

The previous discussion already proves the theorem, as it shows that the rational number
q = Sl(pP)(x) is completely characterized by the weak equivalence class of G. To this end, note
that

lim
N→∞

`N
N

= q − 1. 2

Further consequences of the previous discussion are the following.

Corollary A.8. Let G be a Rees algebra. Fix a p-presentation pP = pP(β, z, fpe(z)) which is
well-adapted to G at x ∈ Sing(G). Then,

H-ord(d−1)(G)(x) = Sl(pP)(β(x)).
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Corollary A.9. Let G be a Rees algebra. Fix two transversal projections V (d) β−→ V (d−1) and

V (d) β′−→ V ′(d−1). For any x ∈ Sing(G)

β − ord(G)(β(x)) = β′ − ord(G)(β′(x)) (= H-ord(d−1)(G)(x)).

Appendix B. The tight monomial algebra and the proof of Main Theorem 2

B.1 Proof of Main Theorem 2
Here, we address the proof of Main Theorem 2 (Theorem 7.6).

Theorem B.2 (Main Theorem 2). Fix a sequence of permissible transformations as in (3.1.1).
Let MrW

s denote the tight monomial algebra defined in Definition 7.5. Then, at any closed
point x ∈ Sing(Gr), MrW

s has monomial contact with Gr, i.e., there is a βr-transversal section
z vanishing at x for which

Gr ⊂ 〈z〉W �MrW
s.

Proof. We argue by induction on the length of the sequence of transformations. Assume by
induction in r that, locally at any closed point x ∈ Sing(Gr) the algebra MrW

s has monomial
contact with Gr, i.e., for some βr-transversal section z′ vanishing at x,

Gr ⊂ 〈z′〉W �MrW
s.

The condition is vacuous for r = 0.
Let C be a permissible center, and consider the monoidal transformation at C, say V (d)

r
πC←−

V
(d)
r+1. The task is to prove that Gr+1 has monomial contact with the new tight monomial algebra,

say

Mr+1W
s =OV (d−1) [I(H1)h1 . . . I(Hr)hrI(Hr+1)hr+1W s]. (B.2.1)

Fix a p-presentation pP ′r = pP ′r(βr, z′, f ′pe) involving z′ at V (d)
r . Note that the hypothesis

ensures that pP ′r is compatible with MrW
s. Proposition 5.8(B) applies here to show that pP ′r

can be modified into a new p-presentation, say pPr, (doing a change of variables of the form
z = z′ + α with α ∈ OV (d−1)

r
), so that pPr is compatible withMrW

s and also well-adapted to Gr
both at x and ξβ(C), the generic point of β(C).

We claim that, locally at any closed point x′ ∈ Sing(Gr+1) mapping to x, there is a p-
presentation with the properties:

– it is compatible with the strict transform of the monomial algebra MrW
s;

– it is well-adapted to Gr+1 at ξH(d)
r+1

.

That is, locally at any closed point x′ ∈ Sing(Gr+1), there is a p-presentation which is well-adapted
simultaneously to every ξH(d−1)

i
(i= 1, . . . , r + 1). This, in particular, ensures our task.

If x′ 6∈H(d)
r+1, then Remark 6.4 shows that there is an identification between the p-presentations

pPr of Gr and pPr+1 of Gr+1 (in an open subset). Thus the claim follows in a straightforward
manner in this case.

Suppose that x′ ∈ Sing(Gr+1) ∩H(d)
r+1.

Firstly, we address the claim under the assumption that Inx(fpe) = Zp
e

. In this case,
π−1(x) ∩ Sing(Gr+1)⊂ {z1 = 0}, where z1 denotes the strict transform of z (see Remark 6.5).
Moreover, pPr+1 is well-adapted to Gr+1 at ξH(d)

r+1
(see Proposition 6.6). Let

f
(1)
pe (z1) = zp

e

1 + a
(1)
1 zp

e−1
1 + · · ·+ a

(1)
pe
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be the strict transform of fpe(z) = zp
e

+ a1z
pe−1 + · · ·+ ape . Since aiW

i ∈MrW
s, it follows

that a
(1)
i W i ∈M′W s for i= 1, . . . , pe. Here M′W s denotes the strict transform of MrW

s.
On the other hand, a(1)

i W i ∈ I(H(d)
r+1)hr+1W s, since pPr+1 is well-adapted at ξH(d)

r+1
(recall that

qH(d)
r+1

= hr+1/s). Thus a(1)
i W i ∈Mr+1W

s (the new tight monomial algebra).
The same arguments apply here to show that Mr+1W

s ⊂ (RG,β)r+1. Then, pPr+1 is
compatible with M′W s and well-adapted to Gr+1 at ξH(d−1)

r+1
. Therefore, pPr+1 is compatible

with Mr+1W
s. Hence,

Gr+1 ⊂ 〈z1〉W �Mr+1W
s

in case Inx(fpe) = Zp
e

.
Now, assuming that Inx(fpe) 6= Zp

e

, two different cases can occur.
• Suppose firstly that Inx(fpe) = Zp

e

+Ape where Ape is not a peth power and free of the
variable Z. In this case, Sl(pPr)(βr(x)) = 1 and then, also, Sl(pPr)(ξβr(C)) = 1 (see Remark 4.5).
This would ensure that hr+1 = 0 in (B.2.1).

Let x′ ∈ Sing(Gr+1) ∩H(d)
r+1 be a closed point such that πC(x′) = x. Assume that βr+1(x′) ∈

V (M′r)(⊂ V
(d−1)
r+1 ), where M′rW s denotes the strict transform of MrW

s in V
(d−1)
r+1 . One can

check that x′ ∈ {z1 = 0} (the strict transform of z) as all coefficients a(1)
i vanish at βr+1(x′) for

i= 1, . . . , pe. The same argument as used before shows that pPr+1 is compatible withMr+1W
s.

Now assume that βr+1(x′) 6∈ V (M′r). Locally at βr+1(x′) the monomial algebraMr+1W
s has

integral closures OV (d−1)
r+1

[W ] (or say, Mr+1 = 1) , and there is nothing to prove in this case.

• Finally, suppose that Inx(fpe(z)) = Zp
e

+AjZ
pe−j + · · · with Aj 6= 0 and j < pe. In this

case, ord(RG,β)(ξβ(C)) = 1 and hence hr+1 = 0 in (B.2.1) (see Theorem 4.4).
Similar arguments as those used before apply here to show the compatibility of the strict

transform with the monomial algebra: whenever the point x′ ∈ V (M′r), x′ ∈ {z1 = 0}. If not, the
monomial algebra is locally of the form OV (d−1)

r+1
[W ]. This concludes the proof. 2
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