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Abstract

Few surges on the Central Tibetan Plateau have been reported. Here, we report observations of a
recent surging event of the Gangjiaquba Glacier in the Geladandong Peak region using surface
velocity and morphology changes that were extracted from Landsat MSS/TM/ETM+/OLI images
obtained from 1973 to 2019. The results reveal that the active surge of this glacier initiated at the
end of summer in 2014 and terminated in 2016. The surge resulted in a total advance of 500 ±
11.2 m and many fresh crevasses in the surging zone. The maximum velocity was 1100m a−1

during the active surge phase, which is much smaller than those observed in Karakoram but simi-
lar to observations in West Kunlun.

1. Introduction

Surge-type glaciers account for only ∼1% of all global glaciers, but they tend to cluster in a few
regions (Sevestre and Benn, 2015). Usually, dozens of such glaciers develop in the same arctic
or alpine region (Benn and Evans, 2010). This brings the challenge to reconstruct or forecast
glaciers response to climate change (Yde and Paasche, 2010).

Two well-known theories about the trigger mechanism of surging have been formed based
on field observations: hydrological control and thermal control (Kamb and others, 1985;
Clarke and others, 1986; Murray and others, 2003). Hydrologically controlled surges are typ-
ical for glaciers in Alaska (Kamb, 1987), while a thermally controlled meltwater mechanism
might explain some surges in Svalbard (Fowler and others, 2001; Murray and others, 2003).
However, a recent theory for surging behaviour includes both temperate and polythermal gla-
cier surges and is based on coupled mass and enthalpy budgets (Sevestre and Benn, 2015; Benn
and others, 2019). However, the mechanism of surges in most regions are still ambiguous,
especially that of glacier surges in areas of the Tibetan Plateau, like the Karakoram
Mountains, Muztag Peak in Pamir and West Kunlun Mountains (Paul, 2020).

There is especially limited knowledge about how glaciers surge on the central Tibetan
Plateau. Only tens of surge-type glaciers in West Kunlun and Central Kunlun have informa-
tion available about the surface velocity changes of the surging phase (Yasuda and Furuya,
2015; Chudley and Willis, 2018; Fu and others, 2019; Gao and others, 2021; King and others,
2021). There may even be more surge-type glaciers that have not been reported. Wei and
others (2014) concluded that ∼890 (1.5%) potential surge-type glaciers were located in the
interior area of the Tibetan Plateau during the period of 1970–2009. Thus, more observations
on the surging glaciers on the Tibetan Plateau are required.

Geladandong Peak in the Central Tibetan Plateau is the highest mountain in the source
region of the Yangtze River (Figs 1a, b). There were 19 surge-type glaciers identified based
on elevation and velocity changes analysis (Yan and others, 2019; Gao and others, 2021;
King and others, 2021).

Gangjiaquba Glacier (33.46°N, 91.17°E, GLIMS ID G091171E33460N) originates from
Geladandong Peak (Figs 1b, c). In 1968, it covered an area of 37.44 ± 1 km2, had an average
thickness of 146 ± 3m and descended across a large altitudinal range of 6621–5300m a.s.l.
(Pu, 1994). There is a long medial moraine between tributaries 2 and 3 but the glacier is almost
devoid of debris except for this medial moraine. Gangjiaquba Glacier was reported as the largest
shrinkage in area and recession in length of all glaciers in Geladandong region, with five main
tributaries reducing to four tributaries between 1973 and 2013 (Xu and others, 2018), and was
identified as a surge-type glacier by King and others (2021). However, change of morphology
(geometry, crevasses) and detailed change of velocity during the active surge phase, and veloci-
ties over the quiescent phase, which was not shown in previous study (King and others, 2021),
are important parameters for the glacier surge model (Benn and others, 2019). Here changes in
surface velocity, surface elevation, tongue area and the medial moraine are employed to recog-
nize how the surge build up over the quiescent phase and how the glacier surges and terminates.

2. Datasets and methods

Thirty-nine Landsat 1 MSS, 5 TM, 7 ETM+ and 8 OLI images from 1973 to 2019, offered by
the United States Geological Survey (USGS, http://earthexplorer.usgs.gov/), were used in this
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study (Table S1). Velocities were extracted by employing the
COSI-CORR (Co-registration of Optically Sensed Images and
Correlation) software (Leprince and others, 2007; Scherler and
others, 2008), which has been proven to be effective for displace-
ment measurement using Landsat images (Pitte and others, 2016;
Paul and others, 2017; Chudley and Willis, 2018; Liu and others,
2020). We set the initial search window and the final window to
32 and 16 pixels for TM band 3 (64 and 16 pixels for OLI band 8),
which is a compromise between the image pixel size and the
expected displacement of the glacier surface. The threshold of
the signal-to-noise ratio was set to 0.95 and the step size of 2 pix-
els for TM (4 for OLI) was set for velocity interpolation with 60 m
resolution. The influence of cloud and shadow was removed by
the low-pass filter, and the anomalous flow direction of vectors
was removed manually (Fu and others, 2019). The displacement
was scaled to velocity with units of m a−1. Seventeen phases of vel-
ocity were calculated based on 18 images (Table S2).

The glaciomorphological change of glacier tongue area, medial
moraine, supraglacial lakes and crevasses were assessed by the ter-
minus evolution (Fig. 1). Six glacier-tongue-area binary images of
Landsat TM/OLI (30 July 1986, 31 August 1992, 17 September
1998, 1 September 2004, 1 August 2010, 2 October 2015) were
generated through the segmentation of the band ratio image
TM 3/TM 5 (for Landsat 8 image OLI 4/OLI 6) by a threshold
of 2.1–2.4 (Table S1). A binary classification image of glacier ton-
gue area from MSS (16 July 1973) was generated by the

minimum-distance supervised classification into ice and ice-free
areas, implementing in ENVI/IDL 5.3 software using the compos-
ite image of bands 7, 6 and 5 after resampling to 30 m × 30 m
resolution. Glacier tongue area changes between images were clas-
sified as 1 for expansion (non-glacier changing to glacier), 0 for
no change and −1 for shrinkage by post-event binary image
minus previous one. In addition, the annual medial moraine
was digitized to figure out the changes of tributaries based on
36 images. The position of medial moraine relative to 1973 was
calculated using the average of seven points on the change direc-
tion (Fig. S1). For supraglacial lake and crevasse changes, we clas-
sified only whether the features existed at each time period, and
did not calculate their area.

Glacier surface elevation changes were used to confirm the
surge through the downstream transfer of ice which is proven
to be a characteristic of the surge event (Grant and others,
2009; Sund and others, 2009). Three multitemporal digital eleva-
tion models (DEMs) from topographic maps of 1968 based on
aerial photography (DEM1968), shuttle radar topography mission
(SRTM) in band C from 2000, and SPOT 6/7 stereo image pairs
from 6 October 2013 and 18 November 2014 (DEM2014) were
provided by Xu and others (2018) for the elevation difference ana-
lysis. The penetration in snow and ice of SRTM C has been cor-
rected using SRTM X. The error due to the co-registration and
coarse resolution was removed using the method of Gardelle
and others (2012). The difference between SRTM and

Fig. 1. Location of the Geladandong region and the Gangjiaquba Glacier. (a) The location of Geladandong region, (b) the location of the glacier (background is the
Landsat TM of 8 November 2008), and (c) the Gangjiaquba Glacier on the Landsat MSS of 16 July 1973. The tributaries are numbered 1–5. The glacier boundaries in
1973 and 2013 were obtained from Xu and others (2018).
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DEM1968 (DEM2014) off glacier area shown in Figure S2 was
assessed as 0.36 ± 8.95 m (−0.05 ± 3.92 m, mean ± std dev.).

3. Results

In the first cloud-free Landsat MSS from 1973, Gangjiaquba Glacier
covers an area of 36.56 ± 1.13 km2, has a length of 10.0 km and a
tongue with a width of 1.8 km. Seventeen velocity fields generated
between 1986 and 2019 indicate three stages to the evolution of
the surge (Fig. S3). Changes along the profile of the median flowline

are shown in Figure 2. From 1986 to 2010, the velocity across much
of the glacier area was <5m a−1, except for tributary 2 at the junc-
tion towards 3 (Figs S3a–g). Here, the velocity was 30–45m a−1

from 1986 to 1995, and fell below 5m a−1 after 1995. Between
2006 and 2010, the velocity rose to 30m a−1. In this stage, the
mean glacier velocity was <5m a−1 and changed little annually.

The second stage was from 2013 to 2016, and was marked by a
significant increase of motion over the ablation areas of tributaries
1 and 2, indicative of a surge during this period (Figs S3h–n).
Between 9 August 2013 and 28 August 2014, the velocity

Fig. 2. Evolution of flow velocities from 1986 to 2019 along the flowline in Figure S3. (a) The Hovmöller plot, (b) velocity from 9 August 2013 to 16 November 2014
(the surge build up to the maximum), (c) 16 November 2014 to 23 December 2016 (the surge weakening until exhausted), and (d) 23 December 2016 to 10 August
2019 (after the surge).

Fig. 3. Surface elevation changes of the glacier from 1968 to 2014 masked by the glacier boundary from 1973. (a) Changes between 1968 and 2000 (DBL: dynamic
balance line) and (b) changes between 2000 and 2014 (shadow area removed, purple line is the glacier boundary in 2000).
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Fig. 4. Changes of glacier tongue from 1973 to 2019. (a–f) The area change over 1973–1986, 1986–1992, 1992–1998, 1992–2004, 2004–2010, 2010–2015, the background is the panchromatic band of Landsat 8 OLI from 2013/08/09;
(g) the annual shrinkage area from during these periods; and (h) the position relative to 1973.
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increased to 45–86 m a−1 over the ablation area of tributary 2 and
propagated down to the terminus with the same speed (Figs S3h–
i), while the surge built up. The maximum motion of 1100 m a−1

(3.0 m d−1) occurred over 28 August to 16 December 2014, fol-
lowing the surge initiation (Figs 2a, b). A surge front, which
was described as a kinematic wave (Kamb and others, 1985),
accompanied this strongest acceleration of the glacier. After this
peak movement, the surge front advanced and weakened continu-
ously (Fig. S3c). The front disappeared between 2 October 2015

and 23 December 2016 with velocity decreasing to 45–85 m a−1,
similar to the pre-surge velocity. Although tributary 1 was also
observed to surge, it had a much lower maximum velocity than
tributary 2 during this surging phase (Figs S3h–j). The maximum
speed of tributary 1 was ∼150 m a−1, which occurred between 16
November 2014 and 8 March 2015, 3 months later than in tribu-
tary 2.

After 23 December 2016, the velocity decreased to <5 m a−1,
and the surge terminated (Fig. 2d). Meanwhile, the velocity

Fig. 5. Surface changes of Gangjiaquba Glacier from 2013 to 2019. The yellow arrows show the changes at the terminus of tributary 1, the green arrows show the
changes at the terminus of tributary 2, and the blue arrows show supraglacial lakes that formed after surging. Here arrows do not change with images.
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upstream of tributary 2 increased to 60 m a−1, indicative of a
potential subsequent phase of surging.

Change maps with a resolution of 30 m on the glacier surface
elevation from 1968 to 2014 are visualised in Figure 3. These indi-
cate a reduction in elevation of the tongue area at a rate of 2.0 ±
1.1 m a−1 from 1968 to 2000, alongside an area of thickening on
the junction of tributary 2 towards 3 at a rate of 0.35 ± 0.16 m
a−1 (Fig. 3a). This 1.5 km-long thickening zone (1.1 ± 0.4 km2

with 1.3 ± 0.2 × 107 m3 ice volume) is likely the reservoir zone.
From 2000 to 2014, ice transferred towards the snout from the
reservoir zone (Fig. 3b). A dynamic balance line was identified,
which had no elevation change when ice transferred to the receiv-
ing zone, and was observed on many glaciers (Raymond and
others, 1987; Kochtitzky and others, 2019). Continuous thicken-
ing in the upstream of tributary 3 and thinning in the lower
part from 1968 to 2014 steepened this tributary.

The glacier tongue covered an area of 10.7 ± 2.1 km2 in 1973.
The glacier tongue area experienced expansion and shrinkage at
the same time in different zones from 1973 to 2015 (Figs 4a–f).
The shrinkage occurred in the lower part of the tongue at hetero-
geneous speed temporally. The shrinkage rate of area increased
from 0.1 ± 0.02 to 0.27 ± 0.08 km2 a−1 from 1973 to 2004, and
then slowed down (Fig. 4g). Meanwhile, expansion was observed
at the junction of tributaries 2 towards the 3 over the observation
period, and the front of tributary 1 from 2010 to 2015 (Fig. 4h). In
combination with the surface velocity and elevation changes, it is
likely that the ice being received from tributary 2 displaced tribu-
tary 3 and thus the medial moraine between them. It moved
southeastwards by 356 ± 11.4 m (9.1 ± 0.3 m a−1) from 1973 to
2012, and 302 ± 11.3 m from 2012 to 2016 (Fig. S1 and Fig. 4h).

Changes of crevasses and supraglacial lakes on the terminus
from 2013 to 2019 are shown in Figure 5. From 9 August 2013
to 28 August 2014, an advance of 50 ± 11.3 m without an area
of fresh crevasses was observed. During the active surging phase
(28 August 2014 to 23 December 2016), many fresh transverse
crevasses emerged on the surging zone (Fig. 5c). However, the
surge bulge was not visible on Gangjiaquba glacier on Landsat
images during the observed period, which was clear on some
surge-type glaciers during the active surge phase (Murray and
others, 1998; Jiskoot and Juhlin, 2009). This surge also resulted
in a total advance of 500 ± 11.2 m by tributary 2 (Fig. 5, green
arrows), and of 180 ± 11.2 m by tributary 1 (Fig. 5, yellow arrows).

After the surge, an increase in supraglacial meltwater in ponds
and crevasses was observed over the surged zone (Fig. 5, blue
arrows). Soon after the surge (23 December 2016 to 10 August
2019), a recession of tributary 1 occurred, but not of tributary 2.

4. Discussion and conclusion

A complete surging process of Gangjiaquba Glacier was observed
through changes of velocity, terminus morphology and elevation
changes. Surging initiated in the summer of 2013, was active from
the end of summer in 2014–2016, and was depleted after 2016.
The surging lasted for ∼3 years, resulting in the terminus advan-
cing by 500 ± 11.2 m, pushing the medial moraine southeastwards
302 ± 11.3 m. The maximum velocity occurred between 28 August
and 2 December 2014, and was 1100 m a−1 (3 m d−1). It has com-
parable maximum velocity and similar surging duration with its
two adjacent surge-type glaciers (G091091E33424N and
G091071E33463N) (Yan and others, 2019), which have a similar
area as Gangjiaquba (27.03 ± 0.83 and 34.92 ± 1.08 km2) (Xu and
others, 2018). The maximum velocity observed in our study is
about seven times as that observed by King and others (2021). It
is the longer observation period by King and others (2021) that
reduce the velocity value. Correspondingly, the maximum velocity
of other surge-type glaciers (<100m a−1) in Geladandong region

was also much smaller than that of Gangjiaquba (Gao and others,
2021; King and others, 2021).

The maximum velocity of Gangjiaquba Glacier is comparable
to that of reported surging-type glaciers in the West Kunlun and
Central Kunlun Mountains (0.2–4.5 km a−1) (Yasuda and
Furuya, 2013; Chudley and Willis, 2018; Fu and others, 2019).
Although some surge-type glaciers in the West-Kunlun are
smaller, they have similar terminus advance (549–1524 m) but
longer surging duration (Chudley and Willis, 2018). However,
the maximum velocity of Gangjiaquba is much smaller than
that of the Shisper Glacier (48 m d−1) in the Karakoram
Mountains, even in the similar size with an area of 26 km2

(Rashid and others, 2020). Gangjiaquba has a much shorter sur-
ging duration than some surge-type glaciers in Svalbard (Murray
and others, 1998, 2003).

Transfer of ice from the reservoir area to the receiving area was
observed through the elevation changes from 1968 to 2014.
Although the reservoir zone of Gangjiaquba Glacier was not cal-
culated over the entire quiescent phase, the location of the
dynamic balance line changed little (cf. Raymond and others,
1987; Kochtitzky and others, 2019). Our observed length of reser-
voir zone of Gangjiaquba Glacier was much shorter than that of
Sabche Glacier in Nepal, which has a much smaller area (9.1
km2) (Lovell and others, 2018). This might be why this surge of
Gangjiaquba Glacier has a relatively low surge peak velocity.

Our results show two tributaries surged in different amplitudes
during 2013 and 2016, another tributary was still in thickening of
reservoir zone. This heterogeneous surging pattern across differ-
ent tributaries also occurs on other glaciers (Hewitt, 2007;
Shangguan and others, 2016; Paul, 2020).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2021.86
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