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Abstract We provide an algorithm for constructing a Kirby diagramof a 4-dimensional open book given
a Heegaard diagram of the page. As an application, we show that any open book with trivial monodromy
is diffeomorphic to an open book constructed with a punctured handlebody as page and a composition
of torus twists and sphere twists as monodromy.
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1. Introduction

Obstructions to the existence of open books are found in all dimensions and are known
to be complete in all dimensions except 4 [25]. Kirby calculus is a successful approach to
studying 4-dimensional manifolds [10], which we would like to apply to study open books
in dimension 4.
We introduce the notion of a half open book, a generalization of a ‘lens thickening’ [2],

whose Kirby diagram is well known. Our Algorithm 4.4 for constructing a Kirby diagram
of an open book simply involves adding a framed link to a Kirby diagram of a half
open book, which corresponds to gluing two half open books together (Figure 1). This
will quickly yield Theorem 7.2, where we show that an open book constructed with an
arbitrary page and a trivial monodromy can be alternatively constructed using a simple
page, namely, a punctured handlebody, and a simple but nontrivial monodromy composed
of sphere twists and torus twists. A handlebody is a 3-manifold with boundary obtained
from D3 by attaching 1-handles, and by a punctured handlebody, we mean a handlebody
with open 3-balls removed from its interior. Finally, we prove that the diffeomorphism
type of the spin of a lens space L(p, q) is independent of q, a result due to [18, 22, 23],
using Kirby calculus. Section 5 is dedicated to examples that effectively capture the main
ideas.
We start by recalling the definitions necessary to state our main results. Given a

compact oriented 3-manifold M with a non-empty boundary called a page and a self-
diffeomorphism ϕ : M →M that restricts to the identity map in a neighbourhood of ∂M
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2 C.-S. Hsueh

Figure 1. Gluing two half open books gives an open book.

Figure 2. Handle decomposition to the Heegaard diagram (of the punctured solid torus).

called the monodromy, the open book Ob(M,ϕ) is diffeomorphic to the closed 4-manifold
M × [0, 1]/ ∼ϕ, where the equivalence relation is given by

(x, 1) ∼ϕ (ϕ(x), 0) for all x ∈M and

(x, t) ∼ϕ (x, t′) for all x ∈ ∂M, t, t′ ∈ [0, 1].

Theorem 7.2. Given any compact oriented 3-manifold M with a non-empty bound-
ary, there exists a monodromy ϕ on a punctured handlebody H such that Ob(H,ϕ) is
diffeomorphic to Ob(M, id).

A Heegaard diagram is a way of presenting a 3-manifold with non-empty boundary in
R2. We think of R2 as the boundary of the 0-handle ∂D3 = S2 with a single point removed
to which we attach 1- and 2-handles. The attaching region of a 1-handle is indicated with
a pair of D2’s and the attaching sphere of a 2-handle is represented by a simple closed
curve as in Figure 2. Similarly, one can regard R3 as the boundary of the 4-dimensional
0-handle with a point removed. In the 4-dimensional case, the attaching region of a 1-
handle is specified by a pair of D3’s. In addition to marking the attaching sphere, the
framing of a 2-handle also needs to be specified. A parallel curve of the attaching sphere
of a 2-handle can be used to encode a trivialization of its tubular neighborhood in R3.
As a consequence of [16], there is essentially a unique way to obtain a closed 4-manifold
by attaching 3- and 4-handles. Hence such a diagram, called a Kirby diagram, defines
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Kirby diagrams of 4-dimensional open books 3

Figure 3. Algorithm 4.4.

a closed 4-manifold up to diffeomorphism. A closed 4-manifold has no unique Kirby
diagram, handle pair creation/cancellation, and handle sliding form a complete set of
moves that allows one to go from one diagram to another of the same manifold [4]. For
an exposition of Kirby diagrams and Heegaard diagrams the reader is referred to the
book [10] by Gompf and Stipsicz.

Algorithm 4.4. Given a Heegaard diagram of M and the image under ϕ of each 2-
handle in M, one obtains a Kirby diagram of the open book Ob(M,ϕ) by applying the
following algorithm:

(1) Replace every 1-handle attaching region with a pair of D3s.
(2) Add blackboard framing to every 2-handle attaching sphere.
(3) Add behind the blackboard plane a half-meridian with blackboard framing to each

2-handle attaching sphere.
(4) Add in front of the blackboard plane a half-meridian with blackboard framing to

each 2-handle attaching sphere and then replace them with their images under the
monodromy ϕ.

The result of step 2 is a Kirby diagram of a half open book, see Algorithm 4.1. To
place the image under ϕ of the 2-handles into the Kirby diagram of the half open book,
we identify each half-space in R3 separated by the blackboard with the page manifold,
which will be explained in Proposition 4.3.
In Figure 3, the Kirby diagram obtained using Algorithm 4.4, with page punctured solid

torus and monodromy torus twist (Defintion 6.2) as input, consists of a 1-handle whose
belt sphere intersects the attaching sphere of a 2-handle and another 2-handle whose belt
sphere intersects the attaching sphere of a 3-handle. Handle cancellation results in a blank
diagram, a Kirby diagram of S 4, where a single 4-handle is glued to the 0-handle. This
implies that Ob(M ′, ϕ′) is diffeomorphic to Ob(M,ϕ)#S4, where M

′
is obtained from M

by taking a connected sum with a punctured solid torus and ϕ′ is the composition of ϕ
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4 C.-S. Hsueh

with a trivial extension of a torus twist. In particular, Figure 3 exhibits a 4-dimensional
open book stabilization as mentioned in [14].
Kirby diagrams of spun 4-manifolds, which are open books with binding S 2, are con-

structed in [20]. An algorithm to obtain a trisection from a Kirby diagram is presented
in [15]. For a practical algorithm obtaining a trisection diagram from a 4-dimensional
open book, see [14].

1.1. Convention

Throughout this paper, all maps are smooth and all manifolds are compact, oriented,
connected and smooth. There is a preferred way to smooth corners [10, Remark 1.3.3],
and hence we do distinguish between manifolds with and without corners. Concerning
handle decomposition of 3-manifolds with a non-empty boundary, we always assume that
there are a unique 0-handle and no 3-handles [10, p. 112] and that handles are attached
in order of non-decreasing indices to the boundary of handles of lower indices.

2. Background

An open book is a geometric structure that arises naturally from many fields of mathe-
matics. The application of open books includes the study of fibered knots [1], zero sets of
complex polynomials [19], spun embeddings [21] and contact structures [8], just to name
a few.
An open book decomposition (B, π) of a closed n-manifold X consists of a binding B

and a fibration π : X\B → S1. The binding is a non-empty, not necessarily connected,
codimension two submanifold of X a with trivial normal bundle. On a neighbourhood
N(B) ⊂ X of B, there exists a trivialization N(B) ≈ B × D2 using polar coordinates
(r, φ) on D2, such that π|N(B)\B = φ. For each t ∈ S1, the preimage π−1(t) is called a

fibre and its compactification π−1(t) is called a page of the open book.
An abstract open book decomposition (M,ϕ) of a closed n-manifold X consists of a page

M and a monodromy ϕ. The page is a compact (n − 1)-manifold M with a non-empty
boundary, and themonodromy is an orientation-preserving self-diffeomorphism onM that
equals the identity map in a neighbourhood of the boundary ∂M . X is diffeomorphic to
the closed n-manifold

M × [0, 1]/ ∼ϕ,

denoted by Ob(M,ϕ), where the equivalence relation is given by

(x, 1) ∼ϕ (ϕ(x), 0) for all x ∈M and

(x, t) ∼ϕ (x, t′) for all x ∈ ∂M, t, t′ ∈ [0, 1].

An abstract open book decomposition (M,ϕ) gives rise to an open book decomposition
whose binding is ∂M × [0, 12 ]/ ∼ϕ and whose pages are M × {t}. Since Kirby dia-
grams are defined up to diffeomorphism, we do not need to distinguish between abstract
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and non-abstract open book decompositions. More details can be found in [5] and [7,
Remark 2.6].
In dimension 3, every closed manifold has open book decompositions [1]. All closed,

simply connected manifolds of dimension ≥ 6 with vanishing signature admit open book
decompositions [28], and all closed manifolds of odd dimension ≥ 7 admit open book
decompositions [17]. Quinn proved the state-of-the-art theorem of open books showing
that an n-manifold admits an open book decomposition if and only if its signature and its
Quinn-invariant vanish, where n 6=4 [25]. The Quinn invariant, also called the asymmet-
ric signature, of a simply connected manifold vanishes if and only if the usual signature
does. It is extracted from a version of a middle-dimensional intersection form with group
ring coefficients and takes values in a certain Witt group of such forms. This obstruc-
tion class vanishes if and only if the corresponding form admits stably a Lagrangian.
For further details on this, we refer to the original works [25, 26]. It remains unknown
whether these obstructions are complete for the case n =4. Thus, we would like to ini-
tiate a study of 4-dimensional open books using a tool exclusive to dimension 4 – Kirby
diagrams.

3. Kirby diagrams of half open books

An open book is given by two copies of half open books glued together. Thus, a Kirby
diagram of an open book with page M can be obtained from a Kirby diagram of a half
open book, with the same page, by adding a framed link. The main goal of this section is
to present Algorithm 3.7 for constructing a Kirby diagram of half open books. We begin
by introducing our non-standard definitions.
Let M be a compact (n− 1)-manifold with a non-empty boundary.

Definition 3.1. The half open book with page M is the n-manifold M × [0, 12 ]/ ∼1
2
,

where the equivalence relation is given by

(x, t) ∼1
2
(x, t′) for all x ∈ ∂M, t, t′ ∈ [0, 1/2].

Call M ×{0} and M ×{ 1
2} ⊂ ∂(M × [0, 12 ]/ ∼1

2
) the front and back cover of the half open

book, respectively. The codimension two submanifold ∂M of the half open book is called
the binding.

The double of an n-manifold N with a non-empty boundary, denoted by DN, is an
n-manifold without boundary obtained from N by gluing −N to it along the boundary
using the identity map on ∂N . The boundary of the half open book with page M, which
consists of the front and back cover glued along the binding, is diffeomorphic to DM.

Definition 3.2. Given a monodromy ϕ : M → M , we glue two half open books with
page M with ϕ as follows:

• glue the front cover of the second copy to the back cover of the first copy using the
identity map id and
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6 C.-S. Hsueh

• glue the back cover of the second copy to the front cover of the first copy using the
monodromy map ϕ.

Let Dϕ(M × [0, 12 ]/ ∼1
2
) denote the result of gluing two half open books with page M

with ϕ.

Remark 3.3. Definition 3.2 is well-defined since a monodromy map is equal to the
identity map in a neighbourhood of ∂M . The result of gluing two half open booksDid(M×
[0, 12 ]/ ∼1

2
) with the identity map is the double D(M × [0, 12 ]/ ∼1

2
) of the half open book.

This explains our choice of notation.

Proposition 3.4. The result of gluing two half open books is an open book; more
explicitly, Dϕ(M × [0, 12 ]/ ∼ 1

2
) is diffeomorphic to Ob(M,ϕ).

Proof. The proof follows by definition. Gluing to the back cover of M × [0, 12 ]/ ∼ 1
2

the front cover of M × [12 , 1]/ ∼1
2
with the identity map, we get M × [0, 1]/ ∼, where

(x, t) ∼ (x, t′) for all x ∈ ∂M, t, t′ ∈ [0, 1]. Gluing the back cover of M × [12 , 1]/ ∼1
2
to

the front cover of M × [0, 12 ]/ ∼1
2
using ϕ is equivalent to identifying (x, 1) with (ϕ(x), 0)

for all (x, 1) ∈M × [0, 1]/ ∼, which gives Ob(M,ϕ). �

Example 3.5. The half open book with page [0, 1] is given by identifying (0, 0) ∈
[0, 1]× [0, 12 ] with (0, t) for all t ∈ [0, 12 ] and identifying (1, 0) with (1, t) for all t ∈ [0, 12 ].
It is diffeomorphic to D2, and its boundary, the double of [0, 1], is diffeomorphic to S 1.
By Proposition 3.4, the open book Ob([0, 1], id) is diffeomorphic to D(D2) = S2.

Proposition 3.6. A handle decomposition of an (n − 1)-dimensional manifold M
induces a handle decomposition of the n-dimensional half open book M × [0, 12 ]/ ∼1

2
.

Proof. Firstly, we construct a handle decomposition of M × [0, 12 ] from a handle
decomposition of M. Suppose M is diffeomorphic to the result

Dn−1 ∪φ1
h1 · · · ∪φm hm

of attaching the handle hi via the attaching map φi to ∂Dn−1 for i = 1, . . . ,m. Here,
the subscript i is not the index of the handle but an enumeration. To begin with, the
(n−1)-dimensional 0-handle Dn−1 of M induces an n-dimensional 0-handle ofM× [0, 12 ].
Now, assume that the first i handles of M have induced i -many handles of M × [0, 12 ],
i.e. assume we have obtained a handle decomposition of Mi−1 × [0, 12 ], where Mi−1 =

Dn−1 ∪ϕ1
h1 · · · ∪φi−1

hi−1 and 0 < i− 1 < m. Let φi : ∂D
k ×D(n−1)−k → ∂Mi−1 be the

attaching map of an (n− 1)-dimensional k -handle hi. Then, it induces an n-dimensional
k -handle h′i of M × [0, 12 ] with attaching map

φ′i : ∂D
k ×D(n−1)−k × [0, 1/2] → ∂(Mi−1 × [0, 1/2])
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given componentwise by

(φi, id[0, 12 ]
) : ∂Dk ×D(n−1)−k × [0, 1/2] → ∂Mi−1 × [0, 1/2] ⊂ ∂ (Mi−1 × [0, 1/2]) ,

such thatMi× [0, 12 ] is diffeomorphic to (Mi−1× [0, 12 ])∪φ′
i
h′i. Note that D

(n−1)−k× [0, 12 ]

is diffeomorphic to Dn−k. By induction, we obtain a handle decomposition of M × [0, 12 ].
Secondly, we show that ∼ 1

2
preserves the handle decomposition, i.e. the handle decom-

position on M × [0, 12 ] induces a handle decomposition on M × [0, 12 ]/ ∼1
2
. Let us look

closely at some k -handle h′i in M × [0, 12 ]. If φ′i(∂D
k × D(n−1)−k × [0, 12 ]) ∩ ∂(M ×

[0, 12 ]) = ∅, then no identification will take place on this handle. Then, by using the

identification D(n−1)−k × [0, 12 ] ≈ Dn−k, φ′i can be seen as an attaching map of an
induced n-dimensional k -handle in (M × [0, 12 ])/ ∼ 1

2
and we are done. The points

φ′i(∂D
k × int(D(n−1)−k) × [0, 12 ]) ⊂ int(M) × [0, 12 ] always remain distinct points in

the quotient of ∼1
2
. Hence, if φ′i((∂D

k) × D(n−1)−k × [0, 12 ]) ∩ ∂(M × [0, 12 ]) 6= ∅, then
φ′−1
i (∂(M× [0, 12 ])) ⊆ ∂Dk×∂D(n−1)−k× [0, 12 ] and points (p, t) ∈ φ′i(∂D

k×∂D(n−1)−k×
[0, 12 ]) = φi(∂D

k × ∂D(n−1)−k) × [0, 12 ] get identified for all t ∈ [0, 12 ]. We can identify

these points in the preimage already and thus identify (x, y, t) ∈ ∂Dk×∂D(n−1)−k× [0, 12 ]
for all t ∈ [0, 12 ] and abusively denote the quotient space by(

∂Dk × ∂D(n−1)−k × [0, 1/2]
)
/ ∼ 1

2
.

Let φ′′i denote the map induced by φ′i, then

φ′′i

(
(∂Dk × ∂D(n−1)−k × [0, 1/2])/ ∼1

2

)

=
(
φ′i(∂D

k × ∂D(n−1)−k × [0, 1/2])
)
/ ∼1

2
.

This implies

φ′′i

(
(∂Dk ×D(n−1)−k × [0, 1/2])/ ∼ 1

2

)
=

(
φ′i(∂D

k ×D(n−1)−k × [0, 1/2])
)
/ ∼ 1

2

⊂ ∂(Mi−1 × [0, 1/2])/ ∼1
2
.

To see that φ′′i is an n-dimensional k -handle in (M × [0, 12 ])/ ∼1
2
, it remains to show that(

∂Dk ×D(n−1)−k × [0, 12 ]
)
/ ∼1

2
is diffeomorphic to ∂Dk ×Dn−k.

It suffices to observe that
(
D(n−1)−k × [0, 12 ]

)
/ ∼1

2
is diffeomorphic to Dn−k, where

(y, t) ∼1
2
(y, t′) for all y ∈ ∂D(n−1)−k, t, t′ ∈ [0, 12 ]. Map the equivalence class [D(n−1)−k×

{0}] to the upper hemisphere of Dn−k, the equivalence class [D(n−1)−k×{ 1
4}] to the disc
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Figure 4. A 2-dimensional 1-handle inducing a 3-dimensional 1-handle.

Figure 5. Replace every 1-handle attaching region in the given Heegaard diagram with a pair of
D3s.

bounded by the equator, the equivalence class [D(n−1)−k×{ 1
2}] to the lower hemisphere,

and everything in between correspondingly. �

In Figure 4, we assume that the black and blue edges of the 1-handle D1 ×D1 are in
the boundary of M, so the rectangular faces spanned by them in the product M × [0, 12 ]
will each be collapsed to an edge in the half open book M × [0, 12 ]/ ∼1

2
.

From now on, let M be a compact 3-manifold with a non-empty boundary.

Algorithm 3.7. Given a Heegaard diagram of M, one obtains a Kirby diagram of the
half open book with page M by applying the following algorithm:

(1) Place the given Heegaard diagram in the yz-plane in R3, assuming the positive x-
direction points out of the paper.

(2) Replace every 1-handle attaching region with a pair of D3s as shown in Figure 5.
(3) Add in the yz-plane a parallel knot to each 2-handle attaching sphere to indicate the

blackboard framing.

Proof. By Proposition 3.6, M × [0, 12 ] and M × [0, 12 ]/ ∼ 1
2

admit equivalent han-

dle decompositions and are diffeomorphic to each other, and thus M × [0, 12 ] and
M × [0, 12 ]/ ∼1

2
share an equivalent Kirby diagram. Let us construct a Kirby diagram

of the former one. A handle decomposition of M induces a handle decomposition of
M × [0, 12 ] in the following way:
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• A 3-dimensional 0-handle induces a 4-dimensional 0-handle. So we will now attach
handles to ∂D4−{point} ≈ R3 instead of to ∂D3−{point} ≈ R2. Since Heegaard
diagrams are defined in R2, they can be embedded in the yz -plane in R3.

• A 3-dimensional 1-handle induces a 4-dimensional 1-handle. Thus, the attaching
region of a 1-handle becomes a pair of D3s.

• A 3-dimensional 2-handle induces a 4-dimensional 2-handle with framing given by
the product structure of M × [0, 12 ], which coincides with the blackboard framing.

�

4. Kirby diagrams of 4-dimensional open books

By assumption, any 3-dimensional page and therefore any 4-dimensional half open book,
with the induced handle decomposition (Proposition 3.6), have no 3-handles. Gluing a
half open book with one 0-handle x 1-handles, and y 2-handles to a 4-manifold X along
common boundary introduces y 2-handles, x 3-handles and one 4-handle, i.e. adds a
y-component framed link to a Kirby diagram of X. Since an open book is obtained by
gluing two half open books, we add a framed link to a Kirby diagram of the half open
book to obtain a Kirby diagram of the open book.

4.1. Trivial monodromy

Let M be the page, a compact 3-manifold with non-empty boundary, as before. We
denote the identity map on the page by id.

Algorithm 4.1. Given a Heegaard diagram of M, one obtains a Kirby diagram of the
open book Ob(M, id) by applying the following algorithm:

(1) Use Algorithm 3.7 to get a Kirby diagram of the half open book with page M.
(2) Add a 0-framed meridian to each blackboard-framed 2-handle attaching sphere in

the Kirby diagram of the half open book.

Proof. By Proposition 3.4 and Remark 3.3, Ob(M,ϕ) is diffeomorphic to Dϕ(M ×
[0, 12 ]/ ∼1

2
) = D(M × [0, 12 ]/ ∼1

2
) when the monodromy ϕ is (isotopic to) the identity

map. For completeness, we summarize the proof given in [10] showing that adding a
0-framed meridian to each 2-handle attaching sphere in a Kirby diagram gives a Kirby
diagram of the double.
A handle decomposition on DX = X∪handles is obtained by adding handles to X,

where X =M × [0, 12 ]/ ∼1
2
. It suffices to understand the induced 2-handles. A 2-handle h

in X induces a 2-handle h
′
in DX with the roles of core and cocore reversed. Since we are

gluing using the identity map, the attaching map of an induced 2-handle ϕ : ∂D2×D2 →
D2 × ∂D2 ⊂ ∂X is given by interchanging the factors of ∂D2 ×D2. Thus, h

′
is attached

along the belt sphere of h, which is isotopic to a meridian of the attaching sphere of h.
The framing of the induced 2-handle is given by the product framing coming from the
product structure of the 2-handle D2 × D2, which coincides with the Seifert framing.
Therefore, to get a Kirby diagram of the open book, add a 0-framed meridian to each
2-handle attaching sphere in a Kirby diagram of the half open book. �
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10 C.-S. Hsueh

Figure 6. Attaching a 2-handle along ∂D3.

Remark 4.2. The framings of a 4-dimensional 2-handle are classified by elements of
π1(O(2)) ≈ Z. When the attaching sphere ϕ(∂D2) bounds a Seifert surface, the attaching
sphere can be pushed along it to give a parallel knot and hence a canonical choice of the
0-th framing.

4.2. Non-trivial monodromy

Under the standard assumptions that handles are attached with non-decreasing indices
to the boundary of handles of lower indices and that there are a unique 0-handle and no
3-handle, the cocore of a 2-handle in M is an arc in M with end-points in ∂M .

Proposition 4.3. The cocore of a 2-handle in the back cover of the half open book
with page M corresponds to a half-meridian behind the yz-plane in a Kirby diagram of
the half open book.

Proof. Recall that a Heegaard diagram of M records where 1- and 2-handles are
attached to the boundary of the 0-handle. Situate a Heegaard diagram in the yz -plane
of R3, and view the region in front of the yz -plane as the interior of the 0-handle and
the yz -plane as the boundary of the 0-handle (with a point removed). A 2-handle of M
is being attached to ∂D3 from behind the yz -plane in this perspective.
Now, we recall the construction of a Kirby diagram of a half open book. We place a

Heegaard diagram of the page in the yz -plane in R3, replace each D2 with a D3 and
add blackboard framing to each 2-handle attaching sphere. The blank space in R3 is the
boundary of the half open book, which consists of two copies of M, namely, the front and
back covers. Without loss of generality, we may identify the region behind the yz -plane
with the back cover and the region in front of the yz -plane with the front cover. Thus, the
cocore of a 2-handle in the back cover corresponds to a half-meridian, with end-points
on the yz -plane, of the 2-handle attaching sphere as shown in Figure 6. Similarly, a half-
meridian in front of the yz -plane corresponds to the cocore of a 2-handle in the front
cover. �

Algorithm 4.4. Given a Heegaard diagram of M and the image under the monodromy
ϕ of each 2-handle in M, one obtains a Kirby diagram of the open book Ob(M,ϕ) by
applying the following algorithm:
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Figure 7. Step 2 of Algorithm 4.4.

Figure 8. Kirby diagram of half open book (with page punctured solid torus).

(1) Use Algorithm 3.7 to get a Kirby diagram of the half open book with page M.
(2) Add behind the yz-plane a half-meridian with blackboard framing to each 2-handle

attaching sphere in the Kirby diagram of the half open book as in Figure 7.
(3) Add in front of the yz-plane a half-meridian with blackboard framing to each 2-handle

attaching sphere in the Kirby diagram of the half open book and then replace them
with their images under ϕ.

Proof. By Proposition 3.4, Ob(M,ϕ) is diffeomorphic to Dϕ(M × [0, 12 ]/ ∼1
2
), and

the goal is to construct a Kirby diagram of Dϕ(M × [0, 12 ]/ ∼1
2
). Recall that the

boundary of the half open book M × [0, 12 ]/ ∼1
2
consists of front and back covers, which

are diffeomorphic to the page M.
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Figure 9. Kirby diagram of open book with page punctured solid torus and monodromy with
the composition of 3 torus twists (Defintion 6.2).

Let us focus on the Kirby diagram of the half open book lying in the yz -plane in R3

provided by Algorithm 3.7. Figures 8 and 9 provide a running example. The blank space
in a Kirby diagram of a manifold without 3- and 4-handles represents a subset of the
boundary. We identify the region in front of and behind the yz -plane with the front and
back cover of the half open book, respectively, as described in the proof of Proposition 4.3.
The yz -plane itself, where the front and back covers meet, corresponds to the binding
∂M ⊂M × [0, 12 ]/ ∼1

2
.

Also recall that Definition 3.2, Dϕ(M × [0, 12 ]/ ∼1
2
) is obtained by gluing two copies

of M × [0, 12 ]/ ∼1
2
along the boundary. Namely,

• glue the front cover of the second copy to the back cover of the first copy with
the identity map and

• glue the back cover of the second to the front cover of the first with the given
monodromy ϕ.

A handle decomposition on Dϕ(M × [0, 12 ]/ ∼ 1
2
) is obtained by adding handles to the

half open book M × [0, 12 ]/ ∼1
2
. It suffices to understand the induced 2-handles. The

attaching sphere of an induced 2-handle is the union of ‘two attaching arcs’, one in the
front and one in the back cover. In the back cover, where the gluing map is the identity
map, the attaching arc is given by a half-meridian of the 2-handle attaching sphere as in
the proof of Algorithm 4.1. In the front cover, the gluing map is given by the monodromy
ϕ and not the identity map. Hence, instead of a half-meridian, the attaching arc is given
by the image under ϕ of the half-meridian. Using the identification of a half-meridian
with the cocore of a 2-handle (Proposition 4.3), we conclude that in the front cover, the
attaching arc is given by the image of the cocore of the 2-handle. Similarly, a framing
indicating parallel knot consists of two arcs: a parallel arc of the half-meridian behind
the yz -plane and the image under ϕ of a parallel arc of the half-meridian (or cocore of
2-handle) in the other half-space. �
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Figure 10. A punctured handlebody and its Heegaard diagram.

Figure 11. Left to right: D2 ∪ h1, (D2 ∪ h1)× [0, 1
2
], (D2 ∪ h1)× [0, 1

2
]/ ∼ 1

2
.

5. Examples

Given g, n ≥ 0, let Hg,n denote the punctured handlebody obtained from a 0-handle D3

by attaching g 1-handles and n 2-handles to ∂D3. For example, H1,0 is a solid torus and
H0,1 is a punctured ball. When g = n = 1, the punctured handlebody is also referred to
as a punctured solid torus (Figure 2). A punctured handlebody has a canonical handle
decomposition and hence a canonical Heegaard diagram as shown in Figure 10.

5.1. Constructing Heegaard diagrams of 3-dimensional open books

The construction of a Heegaard diagram of a 3-dimensional open book using half open
books is more straightforward, and thus it is a good idea to see an example in dimension 3
before returning to dimension 4. We carefully go through the construction of a Heegaard
diagram of the 3-dimensional open book Ob(D2 ∪h1, ψ) with page annulus. The method
essentially follows [13].
The half open book (D2∪h1)×[0, 12 ]/ ∼1

2
is a solid torusH1,0 as visualized in Figure 11,

whose canonical Heegaard diagram consists of a pair of D2s. Let L be a line in R2 going
through the centres of the pair of D2s, then the two regions separated by L correspond
to the front and back covers of the half open book. We only need to take care of the
attaching sphere of the 2-handle induced by the 1-handle of D2 ∪ h1.
When the monodromy ψ = id is trivial, add a meridian around D2, because the

attaching sphere coincides with the belt sphere of the 1-handle. We obtain a Heegaard
diagram of S1 × S2 as illustrated in Figure 12. This is expected since Ob(D2 ∪ h1, id) is
diffeomorphic to DH1,0, and the double of a solid torus is diffeomorphic to S1 × S2.
Now, we consider the monodromy ψ given by the composition of three Dehn twists

along the core of the annulus. The Heegaard diagrams of Ob(D2 ∪ h1, ψ) and Ob(D2 ∪
h1, id) should look the same on one side of L since we always glue using the identity map
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14 C.-S. Hsueh

Figure 12. Ob(D2 ∪ h1, id) is diffeomorphic to S1 × S2.

Figure 13. The attaching sphere (red) of the induced 2-handle is marked on the Heegaard dia-
gram (top), on the back cover (left) and on the front cover (right) of the half open book H1,0.

on the back cover. Without loss of generality, add a half meridian to a D2 below L. The
non-trivial monodromy only plays a role above L in the front cover of the half open book.
Since the image of the cocore of the 1-handle is an arc in D2 ∪h1 running thrice through
the 1-handle, we add an arc above L that intersects the D2 thrice before joining with the
half meridian as reflected in Figure 13. We obtain a Heegaard diagram of the lens space
L(3, 1), which will be defined in Section 5.3.

5.2. 2-sphere bundles over 2-sphere

Now, we construct a Kirby diagram of the open book with page punctured ballH0,1 and
trivial monodromy. The punctured ball is obtained by removing an open ball from D3, or
it can also be obtained by attaching a single 2-handle to D3. This handle decomposition
gives rise to a Heegaard diagram consisting of a single unknot. Using Algorithm 3.7, we
obtain a Kirby diagram of the half open book consisting of an unknot with blackboard
framing, which is a Kirby diagram of D2 × S2 [10, p. 120]. Finally, apply Step 2 of
Algorithm 4.1 to get a Hopf link with each component labeled 0 as in Figure 14(c). It is
well known that the output is a Kirby diagram of the trivial S 2-bundle over S 2 [10, p.
127], and thus Ob(H0,1, id) is diffeomorphic to S2 × S2.
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Figure 14. Applying Algorithm 4.1.

Figure 15. Using Algorithm 4.4, we observe that Ob(H0,1, σ) is diffeomorphic to S2×̃S2, the
twisted S2-bundle over S2.

The mapping class group of the punctured ball H0,1, denoted by

MCG(H0,1, ∂H0,1),

is the group of isotopy classes of orientation-preserving diffeomorphisms of the punctured
ball that fix the boundary pointwise. Elements in MCG(H0,1, ∂H0,1) are equivalent to
the isotopy classes of loops in the space Ω of all orientation-preserving diffeomorphisms
of S 2. Ω deformation retracts to the rotation group SO(3) [27], and thus

MCG(H0,1, ∂H0,1) ≈ π1(Ω) ≈ π1(SO(3)) ≈ π1(RP
3) ≈ Z/2Z.

Consequently, there can be at most two non-diffeomorphic open books with the punctured
ball as page. The generator of MCG(H0,1, ∂H0,1) is given by a boundary parallel sphere
twist σ (Defintion 6.1) as discussed in [3, Lemma 2.5]. Construction of a Kirby diagram
of Ob(H0,1, σ) using Algorithm 4.4 is demonstrated in Figure 15.
Let (σ)n = σ ◦ · · · ◦ σ denote the composition of n sphere twists, which changes

the framing of the cocore by n. (σ)n is isotopic to the identity map when n is even
and isotopic to a single sphere twist when n is odd because a sphere twist generates
MCG(H0,1, ∂H0,1) ≈ Z/2Z. According to Algorithm 4.4, Ob(H0,1, (σ)

n) has a Kirby
diagram consisting of a Hopf link labeled 0 and n. This shows that the diffeomorphism
type of the 4-manifold represented by the Hopf link labeled 0 and n only depends on the
parity of n [10, 130], as summarized in Figure 16.

5.3. Spun and twist spun lens spaces

Let p, q be relatively prime, non-negative integers. The lens space

L(p, q) = S3
/
(Z/pZ)
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16 C.-S. Hsueh

Figure 16. S2×̃S2 (top) and S2 × S2 (bottom): the only two open books with the punctured
ball as page.

Figure 17. For clarity, blackboard framing is omitted here.

=
{
(z1, z2) ∈ C2

∣∣|z1|2 + |z2|2 = 1
}/

(z1, z2) ∼ (e2πi/p · z1, e2πiq/p · z2)

is a closed 3-manifold, which can also be obtained by gluing together two solid tori with a
diffeomorphism on the boundary that takes a meridian of one torus to a curve −pλ+ qµ
on the other torus, where λ and µ denote the longitude and meridian, respectively. The
solid torus can be decomposed into a 0-handle and a 1-handle. Therefore, a lens space
can be decomposed into a 0-handle, a 1-handle, a 2-handle and a 3-handle. (The 2- and
3-handles are induced by the 0- and 1-handles.) To get a handle decomposition of the
punctured lens space L(p, q)−D3, simply remove the 3-handle. This handle decomposition
leads to a Heegaard diagram of L(p, q)−D3 as depicted in Figure 17(a).
Figure 18 demonstrates the construction of a Kirby diagram of the open book

Ob(L(3, 1)−D3, id) using Algorithm 4.1.

Given a closed 3-manifoldM, let M̊ denoteM with an open 3-ball removed. Gordon [11]

defines the spin of M to be obtained in gluing M̊ ×S1 to S2×D2 using the identity map
on the boundary idS2×S1 . Observe that the open book Ob(L(p, q) − D3, id) is the spin
of a lens space, also known as a spun lens space. One obtains a Kirby diagram of a spun
lens space as illustrated by Figure 17.
The twisted spin of M is obtained by gluing M̊ × S1 to S2 × D2 by the unique self-

diffeomorphism of S2 × S1 not extending over S2 × D2 [9]. Since twisted spin of the
lens space L(p, q) is diffeomorphic to Ob(L(p, q)−D3, σ), where σ is a boundary parallel
sphere twist (Defintion 6.1), we can apply Algorithm 4.4.
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Figure 18. Left to right: input Heegaard diagram of L(3, 1)−D3, a Kirby diagram of half open
book with page L(3, 1)−D3 and output Kirby diagram of the open book Ob(L(3, 1)−D3, id).

Figure 19. Left to right: a Heegaard diagram of D3 and a Kirby diagram of half open book with
page D3, a Kirby diagram of S4.

5.4. Open books with page handlebody

Let us look at Kirby diagrams of the family of open books with page handlebody Hg,0,
g ≥ 0. Starting with the most basic case g =0 and trivial monodromy, we would like to
construct a Kirby diagram of Ob(D3, id) using two different input Heegaard diagrams of
D3. Firstly, the empty diagram is by definition the result of attaching nothing to D3 and
thus is a Heegaard diagram of D3. The empty diagram remains empty after applying
each step in Algorithm 4.1, and thus we obtain a Kirby diagram of S 4. Secondly, by
handle cancellation [10, Proposition 4.2.9], the ‘dumbbell’ as illustrated in Figure 19 is
another Heegaard diagram of D3. By handle cancellation, the output of Algorithm 4.1 is
again a Kirby diagram of S 4. Therefore, independent of the choice of input, we conclude
that Ob(D3, id) is diffeomorphic to S 4.
Given g > 0, each one of the g 1-handles of the page Hg,0 induces a 1-handle of

hob(Hg,0). Thus, hob(Hg,0) is diffeomorphic to the result #gS
1 × D3 of attaching g

1-handles to D4. A Kirby diagram of this manifold with a non-empty boundary, as given
by Algorithm 3.7, consists of g pairs of D3s. Since an open book with trivial monodromy
is obtained by taking the double of the half open book, Ob(Hg,0, id) is diffeomorphic
#gS

1 × S3. The output Kirby diagram of Algorithm 4.1, also consisting of g pairs of
D3s, should be interpreted as the closed manifold #gS

1 × S3.
Algorithms 4.1 and 4.4 are done after the first step in the absence of 2-handles.

Consequently, the output Kirby diagram of Ob(Hg,0, id) coincides with the output Kirby
diagram of Ob(Hg,0, ϕ) for any monodromy ϕ : Hg,0 → Hg,0. This reflects the triviality
of the mapping class group MCG(Hg,0, ∂Hg,0)— two diffeomorphisms F, F ′ on Hg,0 are
isotopic if and only if their restrictions ∂F, ∂F ′ to the boundary are isotopic [12].

6. Open books with page punctured solid torus

The goal of this section is to introduce notions and techniques in preparation for Section 7.
Firstly, we define so-called torus twist and sphere twist monodromies on a punctured han-
dlebody. Then, we construct a Kirby diagram of an open book with page punctured solid
torus and monodromy a composition of torus and sphere twists. It turns out that such
twists provide us with sufficiently many monodromies needed in the proof of Theorem 7.2.
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Finally, we show how to obtain an entire family of Kirby diagrams of an open book with
page punctured solid torus and monodromy with a composition of torus and sphere twists.

6.1. Twists along sphere and torus

Let S be an embedded surface with trivial normal bundle in a 3-manifoldM. Identifying
a regular neighbourhood of S in M with S × [0, 1] and choosing a representation ft of a
generator of π1(Diff(S), id) give rise to a monodromy on M called twist along S given byft × id[0,1] on S × [0, 1],

id elsewhere.

Note that properly embedded spheres and tori are the only closed, orientable surfaces for
which the group π1(Diff(S), id) is non-trivial [6]. In particular, the generator is unique
for S 2 as seen in §5.2.
Given a punctured handlebody Hg,n, we indicate the index of a handle in the

superscript and enumerate handles of each index in the subscript as follows:

Hg,n = D3 ∪ h11 ∪ h12 ∪ · · · ∪ h1g ∪ h21 ∪ h22 ∪ · · · ∪ h2n.

Definition 6.1. Let n> 0, and let Sj be a properly embedded sphere in Hg,n parallel
to the boundary of D3 ∪ h2j ⊂ Hg,n for each j = 1, . . . , n. A twist along Sj is called a

sphere twist and is denoted by σj.

A sphere twist σj changes the framing of the cocore of the j -th 2-handle while fixing
the cocore as shown in Figure 20. When n =1, we simply denote a sphere twist on the
handlebody with one puncture by σ.

Definition 6.2. Let g, n > 0 and let T j
l be a properly embedded torus in Hg,n parallel

to the boundary of D3 ∪ h1l ∪ h2j ⊂ Hg,n for each l = 1, . . . , g and j = 1, . . . , n. A twist

along T j
l is called a torus twist and is denoted by τ jl .

A torus twist τ jl pushes the puncture inside D3 ∪H2
j ⊂ Hg,n around the l -th 1-handle

and back to its starting position, or equivalently, it sends the cocore of the j -th 2-handle
to an arc in Hg,n running through the l -th 1-handle. Similarly, let τ denote a torus twist
when g = n = 1.
Composing two torus twists (Figure 21) pushes the puncture around the 1-handle

twice, and thus the cocore of the 2-handle gets mapped to an arc running through the
1-handle twice and so on.

Example 6.3. The composition of torus twists τ12 ◦τ22 : H2,2 → H2,2 sends the cocore of
the second 2-handle to an arc running through the second 1-handle and sends the cocore
of the first 2-handle to an arc also running through the second 1-handle as demonstrated
in Figure 22.
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Figure 20. A sphere twist on the punctured ball H0,1.

Figure 21. Torus twist on the punctured solid torus H1,1.

Figure 22. A twist along T 2
2 followed by a twist along T 1

2 .

Figure 23. A composition of three torus twists.

6.2. An example

We apply Algorithm 4.4 step-by-step with inputs:

• a Heegaard diagram of the punctured solid torus H1,1 as in Figure 2 and
• image under σ ◦ τ ◦ τ ◦ τ of the 2-handle. (Figure 23 only shows the image of the
cocore of the 2-handle.)

Step 1: Use Algorithm 3.7 to get a Kirby diagram of the half open book with page H1,1,
which consists of a pair of D3s and an unknot with blackboard framing in the yz -plane
in R3. Step 2: Add behind the yz -plane a half-meridian with blackboard framing to the
unknot. Step 3: Add in front of the yz -plane a half-meridian with blackboard framing to
the unknot and replace it with its image under σ ◦ τ ◦ τ ◦ τ . In Figure 23, the pair of
circles (blue) on the torus each bound a disc, which then bounds a solid cylinder inside
H1,1. This solid cylinder corresponds to the 1-handle as seen in Figure 2. Observe that
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Figure 24. Left to right: a Heegaard diagram of H1,1, a Kirby diagram of half open book and a
Kirby diagram of Ob(H1,1, σ ◦ τ ◦ τ ◦ τ).

Figure 25. Some other Kirby diagrams of Ob(H1,1, σ ◦ τ ◦ τ ◦ τ).

Figure 26. Some Kirby diagrams of Ob(H1,1, τ ◦ τ ◦ τ).

the cocore of the 2-handle (red) gets mapped to an arc running through the 1-handle
three times. Thus, the image of the half-meridian is an arc running through D3 thrice.
Since the monodromy contains a sphere twist, the image of a parallel arc of the cocore
twists once along the image of the cocore.

6.3. Equivalence of Kirby diagrams

When going from the middle to the right in Figure 24, one could have also obtained
any Kirby diagram shown in Figure 25. The fact that these Kirby diagrams represent
diffeomorphic manifolds will be useful when it comes to proving Corollaries 7.3 and 7.4.
It suffices to show that the family of diagrams in Figure 26 are equivalent.

Definition 6.4. A Kirby diagram is said to come from a p-braid if it is a Kirby
diagram obtained from a p-stranded braid, or p-braid for short, by

• embedding the braid in the thickened yz-plane in R3,
• closing it off by attaching a pair of identified D3s,
• adding blackboard framing and
• adding a 0-framed meridian.
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Figure 27. A Kirby diagram coming from a braid whose closure is a knot.

Figure 28. A handle slide changes the crossing.

We are interested in Kirby diagrams that come from a p-braid whose closure is a
knot (for example Figure 27). Lemma 6.5 implies that the Kirby diagrams in Figure 26
represent diffeomorphic 4-manifolds.

Lemma 6.5. All Kirby diagrams that come from a p-braid whose closure is a knot
represent diffeomorphic 4-manifolds.

Proof. A p-braid induces a permutation on p letters. First claim: p-braids that induce
the same permutation on p letters give rise to Kirby diagrams representing diffeomorphic
4-manifolds. If two non-equivalent p-braids induce the same permutation on p letters,
then they are related by crossing changes. By isotopy, move the 0-framed meridian close
to a crossing and then slide the 2-handle over it to change the crossing as shown in
Figure 28. Note that the framing of both 2-handles remains unchanged. The handle
slide is a Kirby diagram invariant move, hence proving the first claim. Consequently, a
permutation on p letters defines a Kirby diagram.
Second claim: permutations up to conjugation by a cycle of length two give rise to Kirby

diagrams representing diffeomorphic 4-manifolds. Isotope the 2-handle that intersects
with the attaching region D3 along ∂D3. We can switch the places of two intersections
without changing the framing of the 2-handle as shown in Figure 29(a). This Kirby
diagram isotopy corresponds to adding a conjugate pair of braids to each end of a braid
as shown in Figure 29(b) or equivalently to conjugating the induced permutation by a
cycle of length two. This proves the second claim.
On one hand, if two p-braids induce the same permutation, then we are done by the

first claim. On the other hand, if two p-braids induce different permutations, then p> 1.
A p-braid whose closure is a knot induces a permutation with no fixed points that can be
represented by a cycle (a1a2 . . . ap) of length p. According to the following computation,
for i 6= j,

(aiaj)(a1 . . . ai . . . aj . . . ap)(ajai) = (a1 . . . aj . . . ai . . . ap),
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Figure 29. Isotoping the 2-handle along the boundary of the D3 switching the places of two
intersections corresponds to adding a conjugate pair of braids.

Figure 30. Left to right: Perturb the Kirby diagram by rotating the 0-framed meridian from
a position transverse to the paper to lay down on the paper. We have encountered the Kirby
diagram on the left in Figure 18, which is a Kirby diagram of Ob(L(3, 1) −D3, id). The Kirby
diagram on the right represents Ob(H1,1, σ ◦ τ ◦ τ ◦ τ) as seen in Figure 24.

permutations on p letters with no fixed points are all equivalent up to conjugations by a
cycle of length two. The proof is complete by the second claim. �

7. Applications

One can perturb a Kirby diagram of a 4-dimensional open book with trivial monodromy
in such a way that one recognizes a different open book decomposition of the same 4-
manifold as demonstrated in Figure 30. For example, it follows that Ob(L(3, 1)−D3, id)
is diffeomorphic to Ob(H1,1, σ ◦ τ ◦ τ ◦ τ). With this observation and Proposition 7.1,
we prove that any open book constructed with trivial monodromy admits an open book
decomposition with a punctured handlebody as page. Corollary 7.4 shows that the spin
of a lens space L(p, q) only depends on p [18, 22, 23].
The following proposition delivers the existence of a desired monodromy for

Theorem 7.2.

Proposition 7.1. Given g, n > 0. There exists a monodromy on Hg,n that sends the
cocore of the j-th 2-handle to an arc in Hg,n running through the 1-handles

hj1 , . . . , hjk(j) ,

where {j1, . . . , jk(j)} ⊂ {0, 1, . . . , g}, for all j = 1, . . . , n.

Proof. It follows by Definition 6.2 that

ϕ = Tn ◦ · · · ◦ T2 ◦ T1,where Ti = τ iik(i)
◦ · · · ◦ τ ii1 ,
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Figure 31. Rotate about the dashed line (red) so that the 0-framed meridian lies on the yz-plane.
This forces two small intervals of αi to leave the yz-plane.

for all i = 1, . . . , n, is a monodromy on Hg,n that sends the cocore of the j -th 2-handle
to an arc in Hg,n running through the 1-handles

hj1 , . . . , hjk(j)

for all j = 1, . . . , n. �

Theorem 7.2. Given any compact oriented 3-manifold M with a non-empty boundary,
there exists a monodromy ϕ on a punctured handlebody H such that Ob(H,ϕ) is diffeo-
morphic to Ob(M, id). Furthermore, suppose M admits a handle decomposition with a
single 0-handle, g 1-handles and n 2-handles, then H = Hg,n and ϕ is given by a compo-

sition of sphere twists and torus twists, namely, a torus twist τ jl each time the attaching
sphere of the j-th 2-handle runs through the l-th 1-handle in M.

Proof. Suppose M is not a punctured handlebody, otherwise, just take H =M and
the theorem is trivial. Given a Heegaard diagram of M that came from a standard
handle decomposition without 3-handles, with n 2-handles (note that n > 0, since n =0
would imply that M is a handlebody) and g 1-handles, Algorithm 3.7 produces a Kirby
diagram of the half open book with pageM that consists of n blackboard-framed 2-handle
attaching spheres α1, . . . , αn and g pairs of D3s. According to Algorithm 4.1, adding a
0-framed meridian βi to each αi gives a Kirby diagram of the open book Ob(M, id). Note
that αi lies in the yz -plane and βi is transverse to the yz -plane for all i = 1, . . . , n. We
will perturb this Kirby diagram of Ob(M, id) to a Kirby diagram of Ob(Hg,n, ϕ), for
some monodromy ϕ : Hg,n → Hg,n given by a composition of twists along spheres and
tori embedded in Hg,n.
Perturb this Kirby diagram of Ob(M, id) so that each meridian βi becomes an unknot

in the yz -plane. As a result, two small intervals of the 2-handle attaching sphere αi,
i = 1, . . . , n, are forced to leave the yz -plane as shown in Figure 31. The perturbed Kirby
diagram of Ob(M, id) still represents the same 4-manifold. We would like to consider the
perturbed Kirby diagram as the union of αi, i = 1, . . . , n and a Kirby diagram of some
half open book X. We remove all the αis from the perturbed Kirby diagram and refer to
the resulting Kirby diagram as X. To see the page of the half open book X, we perform
Algorithm 3.7 in a reversed manner: remove the framing coefficients of the 2-handle
attaching spheres in X and replace all D3s with D2s. This leaves us with n unknots and
g pairs of D2s in the yz -plane, which is a Heegaard diagram of the punctured handlebody
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Hg,n. Hence, the perturbed Kirby diagram of Ob(M, id) is the union of the framed 2-
handle attaching spheres α1, . . . , αn and a Kirby diagram of the half open book with
page Hg,n. It remains to show the existence of a monodromy ϕ : Hg,n → Hg,n such that
the Kirby diagram of Ob(Hg,n, ϕ) is given by adding αi, i = 1, . . . , n, to X.
Let us see what properties the desired ϕ must satisfy by analysing our target, the

perturbed Kirby diagram of Ob(M, id).

• The framed arc that is immersed behind the yz -plane would be the image of the
attaching sphere in the back cover of the half open book with page Hg,n. (Recall
Step 2 of Algorithm 4.4: add behind the yz -plane a half-meridian with blackboard
framing.)

• The framed arc that popped out of the yz -plane together with the rest of that
framed 2-handle attaching sphere in the yz -plane would be the image of the
attaching sphere in the front cover of the half open book. (Recall the part of a
Kirby diagram in front of the yz -plane is identified with the front cover of the
half open book with page Hg,n.)

Suppose αj runs through the 1-handles hj1 , hj2 , . . . , hjk(j) , possibly with multiplicity,

then the desired monodromy ϕ must send the cocore of the j -th 2-handle to an arc in
Hg,n running through the 1-handles hj1 , hj2 , . . . , hjk(j) for all j = 1, . . . , n. There exists

such a monodromy by Proposition 7.1, namely,

ϕ = Tn ◦ · · · ◦ T2 ◦ T1,where Tj = τ jhjk(j)
◦ · · · ◦ τ jhj1

for all j = 1, . . . , n. (If αl does not run through any D3s in the Kirby diagram of
Ob(M, id), then Tl is just the identity map. This cannot be the case for all l ∈ {1, . . . , n}
because M is by assumption, not a punctured handlebody.) Compose ϕ with a com-
position of sphere twists σj to correct the framing of the image of αj, j = 1, . . . , n, if
necessary. �

Corollary 7.3. Every spun lens space is an open book with the punctured solid torus
H1,1 as page. More specifically, Ob(L(p, q) −D3, id) is diffeomorphic to Ob(H1,1, (σ)

q ◦
(τ)p), where (σ)q ◦ (τ)p denotes a composition of p torus twists and q sphere twists.

Proof. It follows Algorithm 4.4 that a Kirby diagram coming from a p-braid, whose
closure is a knot, is a Kirby diagram of Ob(H1,1, (τ)

p). By Lemma 6.5, we may con-
sider the p-braid given in Figure 32(c). One can check that the braid in Figure 32(c) is
equivalent to the product of q copies of the braid in Figure 32(a).
To get a Kirby diagram of Ob(H1,1, (σ)

q ◦ (τ)p), we simply add q twists to the parallel
knot as shown in Figure 33.
The braid has been chosen so that the Kirby diagram in Figure 33 can be isotoped to

a Kirby diagram of the spun lens space Ob(L(p, q) − D3, id) as in Figure 17 by pulling
the q over-strands outwards. This shows that Ob(H1,1, (σ)

q ◦ (τ)p) is diffeomorphic to
Ob(L(p, q)−D3, id).
The case (p, q) = (5, 4) is demonstrated in Figure 34. �
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Figure 32. A family of p-braids whose closure are knots.

Figure 33. A Kirby diagram of Ob(H1,1, (σ)
q ◦ (τ)p).

Figure 34. Ob(H1,1, (σ)
4 ◦ (τ)5) is diffeomorphic to Ob(L(5, 4)−D3, id).

Corollary 7.4 is a particular case of Pao’s and Plotnick’s work [22, 23], placed into
context by Meier [18, Corollary 2.4]. We provide a Kirby calculus proof.
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Figure 35. Ob(L(2, 3)−D3, id) is diffeomorphic to Ob(L(2, 1)−D3, id). To go from the first row
to the second, slide the other 2-handle over the 0-framed meridian. In the middle of the second
row, we rotate the pair of D3.

Figure 36.

Corollary 7.4. For all 1 ≤ q < p, the diffeomorphism type of a spun lens space
Ob(L(p, q)−D3, id) is independent of q.

Proof. We first show that the diffeomorphism type of a spun lens space
Ob(L(p, q)−D3, id) is independent of the parity of q, for q < 2p.
We will show that Ob(L(p, 2k) − D3, id), k ∈ N, p, 2k coprime and 2k < 2p are dif-

feomorphic to each other. Similarly, Ob(L(p, 2k + 1) −D3, id), k ∈ N, p, 2k + 1 coprime
and 2k+1 < 2p are diffeomorphic to each other. The proof of the latter is essentially the
same and hence omitted. See Figure 35.
When p > 2k, consider the Kirby diagram of Ob(L(p, 2k)−D3, id) shown in Figure 17.

There are 2k strands to the right of D3 on the right-hand side; perform the isotopy shown
in Figure 36(b) to each one of them.
As a result, the parallel knot gains 2k twists in total. Slide the 2-handle over the 0-

framed meridian k times to undo these 2k twists restoring blackboard framing as shown
in Figure 37. Hence, we have shown that a Kirby diagram of Ob(L(p, 2k)−D3, id) and a
Kirby diagram that comes from a p-braid whose closure is a knot represent diffeomorphic
4-manifolds for each integer 2k < p coprime with p.
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Figure 37. Slide the blackboard-framed 2-handle over the 0-framed meridian to change the
framing by two.

Figure 38. A Heegaard diagram of L(p, q), where p < q < 2p and p, q coprime. The attaching
sphere of the 2-handle travels around the D2 q times and runs through the 1-handle p times.

When p < 2k < 2p, construct a Kirby diagram of Ob(L(p, 2k) − D3, id) with
Algorithm 4.1 using the Heegaard diagram in Figure 38 as input.
There are 2k strands between the centres of the D3s, we free this space as follows:

counting from the left, pull the first p strands (as in Figure 36(a)) over the left D3 to
the other side. There are also 2k strands to the right of the right D3; counting from the
right, pull the first 2k − p strands (as in Figure 36(b)) over the right D3 to the other
side.
As a result, the parallel knot gains 2k twists in total. We slide the blackboard-framed 2-

handle over the 0-framed meridian k times to restore blackboard framing. Having cleaned
up the space between the D3s, we rotate a D3 (the other D3 rotates synchronously) so
that a p-braid is formed in between the pair of D3s. This shows that a Kirby diagram of
Ob(L(p, 2k)−D3, id) and a Kirby diagram that comes from a p-braid whose closure is a
knot represent diffeomorphic 4-manifolds for each integer 2k ∈ (p, 2p) coprime with p.
By Lemma 6.5, Kirby diagrams that come from a p-braid whose closure is a knot rep-

resent diffeomorphic 4-manifolds. Therefore, Ob(L(p, 2k)−D3, id), k ∈ N, p, 2k coprime
and 2k < 2p, are diffeomorphic to each other.
Finally, by Rolfsen’s twist, L(p, q) is diffeomorphic to L(p, q+np) for all n ∈ N [24], thus

L(p, 2k), p > 2k, is diffeomorphic to L(p, 2k + p). By assumption, p and 2k are coprime,
and hence 2k+ p is odd. Since we have already established that the diffeomorphism type
is independent of the parity of q, for q < 2p, this completes the proof. �
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