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Abstract

We present an extension of vendor-managed inventory (VMI) problems by considering
advertising and pricing policies. Unlike the results available in the literature, the demand
is supposed to depend on the retail price and advertising investment policies of the
manufacturer and retailers, and is a random variable. Thus, the constructed optimization
model for VMI supply chain management is a stochastic bi-level programming problem,
where the manufacturer is the upper level decision-maker and the retailers are the
lower-level ones. By the expectation method, we first convert the stochastic model
into a deterministic mathematical program with complementarity constraints (MPCC).
Then, using the partially smoothing technique, the MPCC is transformed into a
series of standard smooth optimization subproblems. An algorithm based on gradient
information is developed to solve the original model. A sensitivity analysis has been
employed to reveal the managerial implications of the constructed model and algorithm:
(1) the market parameters of the model generate significant effects on the decision-
making of the manufacturer and the retailers, (2) in the VMI mode, much attention
should be paid to the holding and shortage costs in the decision-making.

2010 Mathematics subject classification: primary 90C30; secondary 62K05, 68T37.

Keywords and phrases: game theory, stochastic models, smoothing algorithm,
optimization, vendor-managed inventory problems.

1. Introduction

Vendor-managed inventory (VMI) is a family of business modes, where the buyer
(retailer) provides information on the market to the vendor (manufacturer) of products,
while the vendor manages not only its own inventory of finished products but also
the raw material inventory. Additionally, the manufacturer often compensates its
retailers for the holding and shortage costs caused by the variation in the replenishment
cycle, and each retailer is only responsible for the inventory cost if the products have
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been sold. In practice, the VMI model has been successful through its applications by
many big box retailers such as Wal-Mart and Procter.

Recently, VMI has attracted much attention from the academic community
and entrepreneurs. The advantages of implementing a VMI include improvement
of inventory requirements and customer services. Hohmann and Zelewski [11]
demonstrated that the use of VMI leads to a dramatic reduction of the bullwhip
effect in supply chains. Other benefits of VMI include improvement in forecasting
accuracy and reduction in transportation cost [22]. In the past six decades, many results
available in the literature were based on the deterministic demand, such as the famous
economic order quantity (EOQ) model. However, due to information asymmetry and
market uncertainty, customer demand is often time-varying, especially when faced
with variants of selling policies. For example, Kiesmuller and Broekmeulen [15]
studied a VMI problem in a stochastic multi-products system. Lee and Ren [16]
constructed a VMI model to determine the optimal replenishment policy in a single-
vendor and a single-supplier VMI system with stochastic demand. Mateen et al. [18]
discussed how a vendor and multiple retailers interact in a VMI system under
stochastic demand. More results in the research of stochastic models can be found
in the literature [3, 8, 9, 13, 26].

Taking into consideration the structural properties of VMI systems, Yu [28]
investigated how the vendor increases profit by using the Stackelberg game. Zhou [32]
established a Stackelberg game model, assuming that the manufacturer dominates
the supply chain, and studied the quantity discount pricing policies with stochastic
and asymmetric demand. In many existing results, the Stackelberg game has been
used to describe the relationship between the manufacturer and the retailers (see,
for example, [6, 19–21, 24, 27]). However, in these VMI models, the advertising
investment policies are not regarded as decision variables, and the demand is assumed
not to depend on the price and advertisement policies.

Note that Subramanyam and Kumaraswamy [23] have developed a deterministic
EOQ model which considers the impacts of advertising budget and price variations on
demand. Goyal and Gunasekaran [10] extended the model to treat the perishable goods
in a multi-stage supply chain. However, in their research, the advertising investments
were only treated as input parameters, that is, the exogenous variables of models.
Yu [29] was the first to incorporate the advertisement and price into the VMI model
as the decision variables, but the constructed Stackelberg equilibrium model must be
simple enough that the presented backward induction procedure can solve the model.
In the case where the demand is price-and-advertisement-dependent as well as being
a continuous random variable, no efficient algorithm (other than heuristic algorithms)
has been found to solve the constructed VMI models.

Aiming at the construction of a more practicable VMI model, we intend to present
an optimization model for maximizing the profits of the VMI system with one
manufacturer (vendor) and multiple retailers. As done in [28, 32], the relationship
between the manufacturer and the retailers is primarily in the framework of the
Stackelberg game [5, 12], where the manufacturer is the leader and the retailers are
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the followers. However, compared with the existing results, all of the distribution
quantities, advertising investments, and prices of products will be incorporated into
the model as endogenous variables in this paper. Additionally, in accordance with
the practical marketing environment, we assume that the demand is price-and-
advertisement-dependent and is a continuous random variable when the price and
advertising investments are fixed. Owing to uncertainty of demand, it is necessary
to take into account the shortage loss and holding cost in the constructed VMI
model.

Since the constructed model in this paper is a stochastic nonlinear bi-level
programming problem, we first derive its deterministic equivalent formulation by
the expectation method [4, 25]. Then, unlike with the existing results, we
reformulate the bi-level programming problem as a mathematical program with
complementarity constraints (MPCC) in virtue of the optimality conditions of the
lower-level problem [17]. Finally, based on the partially smoothing technique [5],
the MPCC is transformed into a series of standard smooth optimization subproblems.

Note that the profit model derived from the expectation method is involved in
computing integrals containing the unknown decision variables. Thus, any popular
optimization software or existing powerful algorithms such as the sequential quadratic
programming (SQP) method in the standard optimization theory cannot be directly
used to solve the constructed model. This complexity prompts another focus of this
paper on the development of an efficient algorithm to solve the model. Compared
with the heuristic algorithms available in the literature, our algorithm will search for
the optimal solution based on the analytical properties of the model. In particular,
the gradient information of the objective function and constraints will be explored to
generate better approximate solutions in a deterministic and efficient fashion.

In summary, using the model and algorithm in the paper, we attempt to answer the
following questions by numerical simulation.

(1) How does one efficiently determine the optimal retail price and advertising
investment in the VMI system under continuous random demand?

(2) What are the influences of market parameters on the optimal retail price, the
advertising investments and the profits of manufacturers and retailers?

(3) What are the effects of randomness in the demand on the maximum profits of
the manufacturer and the retailers?

(4) What are the impacts of holding cost and shortage cost on the optimal retail price
and the profits of all the players?

The rest of the paper is organized as follows. The next section is devoted to
formulation of the bi-level programming model for the VMI problems. Reformulation
of the bi-level programming model as an MPCC is presented in Section 3. In Section 4,
an efficient algorithm is developed. Preliminary applications and a sensitivity analysis
of the model are conducted in Section 5. Some conclusions are drawn in the last
section.
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2. Bi-level programming model for VMI problems

In this section, we construct a bi-level programming model for VMI problems.

2.1. Notation and assumptions For convenience, we first present the relevant
notation used in this paper.

Indices.

i : the index of retailers.
m : the number of retailers.

Parameters.

cm : the manufacturing cost for the manufacturer ($/unit).
cp : the wholesale price of the finished product ($/unit).

Hbi : the holding cost paid by the manufacturer at the location of retailer i
($/unit/time).

Lbi : the shortage cost paid by the manufacturer to retailer i ($/unit/time).
Ii : the inventory cost paid by retailer i ($/unit/time).

Ti : the transportation cost of the finished products shipped from the manufacturer
to retailer i ($/unit).

P : the production capacity of the manufacturer.
Sm : the fixed cost for the manufacturer.
Sbi : the fixed cost for retailer i.

TDC : the total direct cost for the manufacturer ($/time).
TIDC : the total indirect cost for the manufacturer ($/time).
πbi : the profit of retailer i ($/time).
πm : the profit of the manufacturer ($/time).

Decision variables of retailers.

pi : the retail price in the market of retailer i ($/unit).
p : the vector of retail prices, p = (p1, p2, . . . , pm).
ai : the advertising investment of retailer i ($/time).
a : the vector of advertising investments of retailers, a = (a1, a2, . . . , am).

Decision variables of the manufacturer.

Qi : the distribution quantity from the manufacturer to retailer i.
Q : the vector of distribution quantities, Q = (Q1,Q2, . . . ,Qm).
A : the advertising investment of the manufacturer ($/time).

We make the following assumptions in order to construct a mathematical model, in
view of its applicability and computability.

(1) A manufacturer and a number of retailers are included in the VMI system. All
of them are risk-neutral to the random demand.
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(2) The manufacturer produces only one type of finished product and distributes it
to its retailers at the same wholesale price.

(3) The retailers sell the finished products to the consumers at a different retail
prices in their individual regional markets. There is no competition among
the retailers. This means that the demands for all the retailers are mutually
independent random variables.

(4) Due to the VMI arrangement, the inventory level is managed by the
manufacturer, and the manufacturer must be responsible for the retailers’
holding costs and shortage costs caused by the variation in the replenishment
cycle, as a punishment for the manufacturer.

(5) The demand depends on the retail price and advertising investments from both
the manufacturer and the retailer, and is perturbed by the random behaviour
of consumers (see, for example, the work by Karray and Martı́n-Herrán [14]).
Mathematically, the demand for retailer i is

Di(pi, ai, A, ξi) = di(pi, ai, A)ξi, (2.1)

where di : R+ → R is a function with respect to the retail price pi and the
advertising investments ai and A, and ξi describes the random perturbation of
markets.

2.2. Demand function In order to describe the profit functions, we assume that the
demand in equation (2.1) is specified by

di(pi, ai; A) =
ki(ai + a0)αi (A + A0)βi

pρi
i

,

ξi v fi(ξi),
(2.2)

where ki > 0, a0 > 0, A0 > 0, 0 < αi < 1, 0 < βi < 1 and ρi > 1 are given constants,
and fi is the density function of the continuous random variable ξi with a support
set [0,∞). In practice, A is the advertising investment of the manufacturer, a0

and A0 represent the initial advertising investments of the retailer and manufacturer,
respectively, ai is the advertising investment of retailer i, ki is the market scale of
retailer i, αi is the advertising investment sensitivity coefficient of retailer i, βi is the
advertising investment sensitivity coefficient of the manufacturer, and ρi is the retail
price sensitivity coefficient of the product in the market of retailer i.

As for the randomness of demand, it is often captured by a random variable with
normal distribution [2]. In particular, if ξi ∼ N(µi, σ

2
i ), i = 1, 2, . . . ,m. Then, the

cumulative distribution function of ξi is given by

Fi(x) = Fi(x; µi, σi) =

∫ x

−∞

fi(ξi) dξi

=

∫ x

−∞

1
√

2πσi
e−(ξi−µi)2/2σ2

i dξi, i = 1, 2, . . . ,m.
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From the definition of the demand function, it is clear that the demand for products
decreases as the retail price increases, and increases as the advertising investments of
the manufacturer and retailer i increase. Combined with the random perturbation ξi,
the expectation of Di is

E[Di(pi, ai; A, ξi)] =
ki(ai + a0)αi (A + A0)βi

pρi
i

µi,

which is useful for maximizing the profits under random demand. In general, we
assume that µi = 1 (see [7]).

Note that another popular model of demand is additive, given by Di = di(pi, ai; A) +

ξi. Compared to the additive demand, the multiplicative demand defined by (2.1)
and (2.2) exhibits the desirable property that the variance of the demand depends on
the mean of the demand. Zhang et al. [30, 31] have shown that different representations
of the random demand can generate serious effects on practical managerial policies.

In this paper, we mainly focus on the random multiplicative demand associated with
the retail price and advertising investments, such that some managerial implications are
drawn from the constructed model and the developed algorithm under this stochastic
market demand.

2.3. Lower-level optimization model for retailers The profit of each retailer is
equal to the difference between the total revenue and the total cost. The total revenue
is

pi min{Qi,Di}.

The total cost consists of the products’ procurement cost, the inventory cost, the
advertising cost ai and the fixed cost Sbi. Specifically, the procurement and inventory
costs can be expressed as cpQi and Ii min{Qi,Di}, respectively. Note that as a VMI
partnership, the inventory cost for the retailer is only proportional to the quantity
of product which is sold by the retailer since the inventory level is managed by the
manufacturer. Thus, the inventory cost of the redundant product caused by product
replenishment policies must be compensated to the retailers by the manufacturer.
Consequently, the profit of the retailer i is given by

πbi(pi, ai; Qi, A, ξi) = (pi − Ii) min{Qi,Di} − cpQi − ai − Sbi.

As the decision variables of the retailer i, the retail price and advertising investment
should satisfy the following constraints:

pi ≥ cp + Ii, ai ≥ 0.

Thus, the lower-level optimization model for retailer i, i = 1, 2, . . . ,m, is given by

maximize pibi(pi, ai; Qi, A, ξi) = (pi − Ii) min{Qi,Di} − cpQi − ai − Sbi

subject to pi ≥ cp + Ii, ai ≥ 0.
(2.3)
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2.4. Upper-level optimization model for manufacturer The profit of the
manufacturer is the difference between the overall revenue and the total costs. The
overall revenue is

m∑
i=1

cpQi.

The total costs are divided into two parts: direct and indirect costs. The
direct costs (TDC) include the production cost, the transportation cost from the
manufacturer to retailers, the advertising investment and the fixed cost. Consequently,
the mathematical expression for the total costs is

m∑
i=1

Qi(cm + Ti) + A + Sm.

The indirect costs (TIDC) of the manufacturer under VMI are

Hbi(Qi − Di)+ + Lbi(Di − Qi)+,

where (Di − Qi)+ = max{Di − Qi, 0}. Therefore, the profit of the manufacturer is

πm(Qi, A; p, a, ξ) =

m∑
i=1

cpQi − TDC − TIDC

=

m∑
i=1

(cp − Ti − cm)Qi − A − Sm

−

m∑
i=1

(Hbi(Qi − Di)+ + Lbi(Di − Qi)+).

As the decision variables of the manufacturer, the distribution quantities and
advertising investment should satisfy the following conditions:

m∑
i=1

Qi ≤ P, A ≥ 0. (2.4)

Clearly, the conditions in (2.4) are the constraints of production capacity and
nonnegativeness of the advertising investment.

Based on the above analysis, we obtain the upper-level optimization model for the
manufacturer as follows:

maximize πm(Q, A; p, a, ξ) =

m∑
i=1

(cp − Ti − cm)Qi − A − Sm

−

m∑
i=1

(Hbi(Qi − Di)+ + Lbi(Di − Qi)+)

subject to A ≥ 0,
m∑

i=1

Qi ≤ P.

(2.5)
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2.5. Bi-level programming model for VMI problems In light of models (2.3)
and (2.5), we construct a stochastic bi-level programming model for the handled VMI
problems as follows:

maximize πm(Q, A; p, a, ξ) =

m∑
i=1

(cp − Ti − cm)Qi − A − Sm

−

m∑
i=1

(Hbi(Qi − Di)+ + Lbi(Di − Qi)+)

subject to A ≥ 0,
m∑

i=1

Qi ≤ P,

(pi, ai) is the solution of the following optimization problem:
maxpi,ai πbi(pi, ai; Qi, A, ξi)

= (pi − Ii) min{Qi,Di} − cpQi − ai − Sbi

subject to pi ≥ cp + Ii, ai ≥ 0.

(2.6)

Due to the existence of random demands in (2.6), we first transform (2.6) into a
deterministic equivalent formulation by the expectation method. For simplification,
we denote zi = Qi/di, where di is defined in equation (2.1). Then, the expected profit
of the manufacturer is

Em = E(πm)

=

m∑
i=1

(cp − Ti − cm)Qi − A − Sm −

m∑
i=1

(
Hbi

∫ zi

0
(Qi − Di) f (εi) dεi

+ Lbi

∫ +∞

zi

(Di − Qi) f (εi) dεi

)
,

and the expected profit of the retailer i can be written as

Ebi = E(πbi)

= (pi − Ii)
( ∫ zi

0
Di f (εi) dεi +

∫ +∞

zi

Qi f (εi) dεi

)
− cpQi − ai − Sbi.

Thus, by the expectation method, the deterministic equivalent formulation of the
stochastic model (2.6) is given by

minimize Gm(Q, A; p, a)

= −E(πm) =

m∑
i=1

(Ti + cm − cp)Qi + A + Sm

+

m∑
i=1

(
Hbi

∫ zi

0
(Qi − Di) f (εi) dεi + Lbi

∫ +∞

zi

(Di − Qi) f (εi) dεi

)
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subject to A ≥ 0,
m∑

i=1

Qi ≤ P, (2.7)

(pi, ai) are the solutions of the following optimization problem:
minimize Gbi(pi, ai; Qi, A)

= −E(πbi) = (Ii − pi)
( ∫ zi

0
Di f (εi) dεi +

∫ +∞

zi

Qi f (εi) dεi

)
+cpQi + ai + Sbi

subject to pi ≥ cp + Ii, ai ≥ 0, i = 1, 2, . . . ,m.

Remark 2.1. Unlike an ordinary bi-level programming problem, model (2.5) contains
two objective functions with complicated definite integrals which are associated with
the unknown decision variables. Consequently, any popular optimization software
or the existing powerful algorithms in the standard optimization theory cannot be
directly used to solve model (2.5). Thus, an interesting issue is how to develop
efficient algorithms, other than heuristic algorithms, to find the equilibrium point of
model (2.5).

3. Reformulation of the bi-level programming model

In this section, we will transform the bi-level programming problem into an MPCC
based on the gradient information of the lower-level optimization problem.

Let λi and γi be the Lagrangian multipliers corresponding to the two types
of constraints in model (2.3). Then, the Lagrangian function of the lower-level
optimization model can be written as

Lbi(pi, ai; λi, γi) = (Ii − pi)
( ∫ zi

0
Di f (εi) dεi +

∫ +∞

zi

Qi f (εi) dεi

)
+ cpQi + ai + Sbi − λi(pi − cp − Ii) − γiai.

To simplify the calculation, denote

pi
′ = pi − cp − Ii,

ai
′ = ai,

di
′ =

ki(ai
′ + a0)αi (A + A0)βi

(pi
′ + cp + Ii)ρi

,

zi
′ =

Qi

di
′
.

Then, Lbi has a more compact form:

Lbi = −(pi
′ + cp)

( ∫ zi
′

0
Di
′ f (εi) dεi +

∫ +∞

zi
′

Qi f (εi) dεi

)
+ cpQi + ai

′ + Sbi − λi pi
′ − γiai

′. (3.1)
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From equation (3.1) it is clear that under suitable constraint qualification conditions
any optimal solution of the lower-level optimization model satisfies the following
Karush–Kuhn–Tucker (KKT) conditions [5, 17]:

{(pi
′ + cp)(ρi − 1) − cp − Ii}ki(ai

′ + a0)αi (A + A0)βi

(pi
′ + cp + Ii)ρi+1

∫ zi
′

0
ξi f (ξi) dξi

−Qi

∫ +∞

z′i

f (ξi) dξi − λi = 0,

−(pi
′ + cp)αiki(ai

′ + a0)αi−1(A + A0)βi

(pi
′ + cp + Ii)ρi

∫ z
′

i

0
ξi f (ξi) dξi + 1 − γi = 0,

λi ≥ 0, pi
′ ≥ 0, λi pi

′ = 0,
γi ≥ 0, ai

′ ≥ 0, γiai
′ = 0.

(3.2)

Set 

p′ = (p1
′, p2

′, . . . , pm
′),

a′ = (a1
′, a2

′, . . . , am
′),

Y =

(
p′

a′

)
,

f1i(yi) =
((pi

′ + cp)(ρi − 1) − cp − Ii)ki(ai
′ + a0)αi (A + A0)βi

(pi
′ + cp + Ii)ρi+1 ,

×

∫ zi
′

0
ξi f (ξi) dξi − Qi

∫ +∞

z′i

f (ξi) dξi

f2i(yi) =
−(pi

′ + cp)αiki(ai
′ + a0)αi−1(A + A0)βi

(pi
′ + cp + Ii)ρi

∫ z
′

i

0
ξi f (ξi) dξi + 1,

F(yi) =

(
f1i(yi)
f2i(yi)

)
.

(3.3)

Then, the KKT conditions in (3.2) are formulated as the following standard
complementarity problem, which is involved in the unknown upper-level decision
variables:

Y ≥ 0, F(yi) ≥ 0, YT F(yi) = 0.

Similar to [5], we replace the above complementarity constraints with the following
smooth inequality constraints:

Y ≥ 0, F(yi) ≥ 0, Φε(yi) ≤ 0,

where

Φε(yi) =

(
φε,1(yi)
φε,2(yi)

)
,

φε,1(yi) = 1
2 [pi

′ + f1i(yi) − ψε{pi
′ − f1i(yi)}],

φε,2(yi) = 1
2 [ai

′ + f2i(yi) − ψε{ai
′ − f2i(yi)}],

ψε(t) =
2t
π

arctan
( t
ε

)
.

(3.4)
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Then, the bi-level programming model (2.5) is reformulated as a standard optimization
problem:

minimize Gm(x)

subject to
m∑

i=1

Qi ≤ 0, A ≥ 0,

Y ≥ 0, F(yi) ≥ 0,Φε(yi) ≤ 0, i = 1, 2, . . . ,m,

(3.5)

where

x = (Q, A, p′, a′),
Gm(x) = −E(πm)

=

m∑
i=1

(Ti + cm + Hp − cp)Qi + A + Sm

+

m∑
i=1

(
Hbi

∫ zi
′

0
(Qi − Di

′) f (εi) dεi + Lbi

∫ +∞

zi
′

(Di
′ − Qi) f (εi) dεi

)
.

(3.6)

Remark 3.1. Unlike an ordinary smooth nonlinear optimization problem, the objective
function and nonlinear constraints of model (3.5) are associated with computing
complicated integrals. Note that these contain the unknown decision variables in the
case that the demand is a continuous random variable. Thus, the standard optimization
techniques or existing software packages, such as Matlab, CPLEX, and Lingo, cannot
be directly employed to solve model (3.5). On the other hand, if a heuristic algorithm
is applied to solve model (3.5), then there is often a high computational cost due to
the random search of iterative points. In addition, for heuristic algorithms, the random
approach causes difficulty in establishing the theory of convergence.

Remark 3.2. Since model (3.5) is a difficult nonlinear optimization problem, the next
section is devoted to the development of an efficient algorithm to solve (3.5) based on
the gradient information of the objective and constraints.

4. Development of gradient-based algorithm

In this section, we intend to develop an efficient algorithm to solve model (3.5).
Heuristic algorithms or analytic methods such as the backward induction
procedure [29] are the popular methods available in the literature for solving bi-
level programming problems. However, due to the complexity of model (3.5), the
existing analytic methods are not suitable for solving model (3.5). Although any
heuristic algorithm can be modified to solve model (3.5), its numerical efficiency is
often not satisfactory, because its analytic properties are not employed to search for an
optimal solution of this model. Zhang et al. [30] have demonstrated that the numerical
efficiency of algorithms based on gradient information is better than that of heuristic
algorithms, as they are used to solve random optimization models arising from global
supply chain management problems.

The above-mentioned reasons impel us to develop a gradient-information-based
algorithm to solve model (3.5). Specifically, owing to the difficulty in numerically
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solving the nonlinear constrained optimization model (3.5), we first approximate this
model by a series of linear programming problems based on the gradient information
of the objective function and the constraints. Then, by solving a linearized subproblem,
we obtain a search direction at a given approximate solution of model (3.5). Finally,
by a suitable line search rule, a step length along the search direction is computed,
such that a better approximate solution is obtained.

By direct calculation, we can get the following results.

Proposition 4.1. Let f1i(yi) be defined as in (3.3). Then,

∂ f1i(yi)
∂Qi

=
((pi

′ + cp)ρi − cp)Qi(pi
′ + cp + Ii)ρi−1

ki(ai
′ + a0)αi (A + A0)βi

f (zi
′) −

∫ +∞

zi
′

f (ξi) dξi,

∂ f1i(yi)
∂A

=
((pi

′ + cp)(ρi − 1) − cp − Ii)kiβi(ai
′ + a0)αi (A + A0)βi−1

(pi
′ + cp + Ii)ρi+1

×

∫ zi
′

0
ξi f (ξi) dξi −

((pi
′ + cp)(ρi − 1) + pi

′)(pi
′ + cp + Ii)ρi−1 f (zi

′)
ki(ai

′ + a0)αi (A + A0)βi+1 ,

∂ f1i(yi)
∂pi
′

=
(cp − 2Ii)kiβi(ai

′ + a0)αi (A + A0)βi

(pi
′ + cp + Ii)ρi+2

∫ zi
′

0
ξi f (ξi) dξi

−
((pi

′ + cp)(ρi − 1) + pi
′)Q2

i βi(pi
′ + cp + Ii)ρi−1)

kiβi(ai
′ + a0)αi (A + A0)βi+1 f (zi

′),

∂ f1i(yi)
∂ai
′

=
((pi

′ + cp)(ρi − 1) − cp − Ii)αiki(ai
′ + a0)αi−1(A + A0)βi

(pi
′ + cp + Ii)ρi+1

∫ zi
′

0
ξi f (ξi) dξi

−
((pi

′ + cp)(ρi − 1) + pi
′)Q2

i αi(pi
′ + cp + Ii)ρi−1

ki(ai
′ + a0)αi+1(A + A0)βi

f (zi
′).

Proposition 4.2. Let f2i(yi) be defined as in (3.3). Then,

∂ f2i(yi)
∂Qi

=
−(pi

′ + cp)αiQi(pi
′ + cp + Ii)ρi

ki(ai
′ + a0)αi+1(A + A0)βi

f (zi
′),

∂ f2i(yi)
∂A

=
(pi
′ + cp)Q2

i αiβi(pi
′ + cp + Ii)ρi

ki(ai
′ + a0)αi+1(A + A0)βi+1 f (zi

′)

−
pi
′αiβiki(ai

′ + a0)αi−1(A + A0)βi−1

(pi
′ + cp + Ii)ρi

∫ zi
′

0
ξi f (ξi) dξi,

∂ f2i(yi)
∂pi
′

=
((pi

′ + cp)ρi − pi
′ − cp − Ii)αiki(ai

′ + a0)αi−1(A + A0)βi

(pi
′ + cp + Ii)

ρ
i

×

∫ zi
′

0
ξi f (ξi) dξi −

pi
′Q2

i αiρi(pi
′ + cp + Ii)ρi−1

ki(ai
′ + a0)αi+1(A + A0)βi

f (zi
′),
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∂ f2i(yi)
∂ai
′

=
(pi
′ + cp)Q2

i α
2
i (pi

′ + cp + Ii)ρi

ki(ai
′ + a0)αi+2(A + A0)βi

f (zi
′)

−
pi
′αi(αi − 1)ki(ai

′ + a0)αi−2(A + A0)βi

(pi
′ + cp + Ii)ρi

∫ zi
′

0
ξi f (ξi) dξi.

Proposition 4.3. Let φε,1(yi) and φε,2(yi) be defined as in (3.4). Then,

∂φε,1(yi)
∂Qi

=
1
2
∂ f1i

∂Qi)
+

(∂ f1i/∂Qi) arctan((pi
′ − f1i)/ε)

π
+
ε(pi

′ − f1i)(∂ f1i/∂Qi)
π(ε2 + (pi

′ − f1i)2)
,

∂φε,1(yi)
∂A

=
1
2
∂ f1i

∂A
+

(∂ f1i/∂A) arctan((pi
′ − f1i)/ε)

π
+
ε(pi

′ − f1i)(∂ f1i/∂A)
π(ε2 + (pi

′ − f1i)2)
,

∂φε,1(yi)
∂pi
′

=
1
2

(
1 +

∂ f1i

∂pi
′

)
−

(
1 −

∂ f1i

∂pi
′

)arctan((pi
′ − f1i)/ε)
π

−
ε(pi

′ − f1i)(1 − (∂ f1i/∂pi
′))

π(ε2 + (pi
′ − f1i)2)

,

∂φε,1(yi)
∂ai
′

=
1
2
∂ f1i

∂ai
′

+
(∂ f1i/∂ai

′) arctan((pi
′ − f1i)/ε)

π
+
ε(pi

′ − f1i)(∂ f1i/∂ai
′)

π(ε2 + (pi
′ − f1i)2)

,

∂φε,2(yi)
∂Qi

=
1
2
∂ f2i

∂Qi
+

(∂ f2i/∂Qi) arctan((ai
′ − f2i)/ε)

π
+
ε(ai

′ − f2i)(∂ f2i/∂Qi)
π(ε2 + (ai

′ − f2i)2)
,

∂φε,2(yi)
∂A

=
1
2
∂ f2i

∂A
+

(∂ f2i/∂A) arctan((ai
′ − f2i)/ε)

π
+
ε(ai

′ − f2i)(∂ f2i/∂A)
π(ε2 + (ai

′ − f2i)2)
,

∂φε,2(yi)
∂pi
′

=
1
2
∂ f2i

∂pi
′

+
(∂ f2i/∂pi

′) arctan((ai
′ − f2i)/ε)

π
+
ε(ai

′ − f2i)(∂ f2i/∂pi
′)

π(ε2 + (ai
′ − f2i)2)

,

∂φε,2(yi)
∂ai
′

=
1
2

(
1 +

∂ f2i

∂ai
′

)
−

(
1 −

∂ f2i

∂ai
′

)
×

arctan((ai
′ − f2i)/ε)
π

−
ε(ai

′ − f2i)(1 − ∂ f2i/∂ai
′)

π(ε2 + (ai
′ − f2i)2)

.

Proposition 4.4. Let Gm(x) be defined as in (3.6). Then,

∂Gm(x)
∂Qi

= cm + Ti + Hp − cp + (Hbi − Ii)
∫ zi

′

0
f (ξi) dξi − Lbi

∫ +∞

0
f (ξi) dξi,

∂Gm(x)
∂A

=

(
Lbi

∫ +∞

zi
′

ξi f (ξi) dξi − (Hbi + Ii)
∫ zi

′

0
ξi f (ξi) dξi

)
×
βiki(ai

′ + a0)αi (A + A0)βi−1

(pi
′ + cp + Ii)ρi

+ 1,

∂Gm(x)
∂pi
′

=

(
(Hbi + Ii)

∫ zi
′

0
ξi f (ξi) dξi − Lbi

∫ +∞

zi
′

ξi f (ξi) dξi

)
×
ρiki(ai

′ + a0)αi (A + A0)βi

(pi
′ + cp + Ii)ρi + 1

,
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∂Gm(x)
∂ai
′

=

(
Lbi

∫ +∞

zi
′

ξi f (ξi) dξi − (Hbi + Ii)
∫ zi

′

0
ξi f (ξi) dξi

)
×
αiki(ai

′ + a0)αi−1(A + A0)βi

(pi
′ + cp + Ii)ρi

.

Remark 4.5. For a given point xk, Propositions 4.1 to 4.3 are useful for computing
the gradients of f1i(yi), f2i(yi), φε,1(yi) and φε,2(yi), which are referred to as ∇ f1i(yi),
∇ f2i(yi), ∇φε,1(yi) and ∇φε,2(yi), respectively. Thus, the gradients of F(yi) and Φε(yi),
referred to as ∇F(yi) and ∇Φε(yi) respectively, are obtained. By Proposition 4.4, the
gradient of the objective function at xk can be calculated.

By the above gradient information, we can construct a linear approximate model
of (3.5) at a given point xk. Specifically, denote d = x − xk; then any nonzero solution
of the following linear programming problem determines a feasible descent direction
of model (3.5) at xk (see the work by Birge et al. [1]):

(DF(x))

minimize z
subject to∇Gm(xk)T d − z ≤ 0,

m∑
i=1

Qk
i + dQi − z ≤ P, i = 1, 2, . . . ,m,

Ak + dA + z ≥ 0, Yk + dY + z ≥ 0,
F(yk) + ∇F(yk)T d + z ≥ 0,
Φε(yk) + ∇Φε(yk)T d − z ≤ 0,
‖d‖∞ ≤ 1,

(4.1)

where dQi , dA and dY are the components of d corresponding to the variables Qi, A and
Y , respectively. Thus, (4.1) is called the linearized subproblem in solving model (3.5).
Determination of a search direction by solving (4.1) is one of the main steps in the
following algorithm.

Algorithm 1: Modified Topkis–Veinott algorithm [1, 30]
Step 0 Choose an initial point x0 ∈ D and z0 large enough; ε1 > 0 is a given constant.

Set k := 0.
Step 1 If |zk| < ε1, the algorithm stops. Otherwise, go to Step 2.
Step 2 For the given xk, solve subproblem (4.1). Its solution is referred to as dk.
Step 3 With dk, compute αmax

k = max{α|xk + αdk ∈ D}. Then, find an optimal
step length by solving the following single-variable optimization model:

min
0≤α≤αmax

k

Gm(xk + αdk). (4.2)

Denote the optimal solution of (4.2) as αk.
Step 4 Set xk+1 := xk + αkdk. Update k := k + 1. Return to Step 1.
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Remark 4.6. Since it is often difficult to calculate the optimal step length αk in Step 3
of Algorithm 1, instead of solving the problem (4.2) we find αk = ηiαmax

k satisfying the
following inequality:

Gm(xk + αkdk) ≤ Gm(xk) + δαk∇Gm(xk)T dk,

where i is the largest integer such that the above inequality holds. Further, 0 < η < 1
and 0 < δ < 1 are given constants.
Remark 4.7. Algorithm 1 can be regarded as a modified variant of the Topkis–Veinott
method in [1] for solving the complicated model (3.5). Unlike more popular SQP-
type algorithms for solving smooth nonlinear constrained optimization problems, the
Topkis–Veinott method does not require the second-order information of the objective
function to generate a search direction. As done in Step 2 of Algorithm 1, we obtain
the search direction dk by solving the linearly approximate model (4.1). Actually,
because it is difficult to obtain the second-order information of the objective function,
SQP-type algorithms are not suited to solving model (3.5).

Another advantage of Algorithm 1 is that it can globally converge to a Fritz–John
point in the case where model (3.5) has no KKT point (see Birge et al. [1]). In other
words, Algorithm 1 may work well for solving this model in the cases where SQP-type
methods do not.

From Propositions 4.1 to 4.4, it is clear that the complexity of model (3.5) does
not eliminate its first-order smoothness. In other words, this model is still a smooth
nonlinear optimization problem. Similar to the proofs in [1] for the Topkis–Veinott
method, we can prove the following properties of Algorithm 1.

Theorem 4.8. Let {xk} be a sequence generated by Algorithm 1 in solving model (3.5).
Then, any accumulation point of {xk} is a Fritz–John point of this model.

5. Preliminary applications and sensitivity analysis

In this section, we first conduct a case study on the VMI problems to show the
practicability and computability of the presented model. Then, by sensitivity analysis,
we intend to investigate the impacts of some key model parameters on decision-
making.

In order to illustrate the effectiveness of Algorithm 1, we first apply the proposed
model and algorithm in this paper to solve a practical VMI problem in which there are
a manufacturer and two retailers. In model (3.5), we choose the values of the model
parameters (also see [29]):

m = 2, ki = 15 000, αi = 0.5, βi = 0.5, ρi = 1.6, P = 1 000 000,
Hbi = 32, Lbi = 60, cp = 200, Sm = 100, Sbi = 50, a0 = 650 000,
A0 = 650 000, cm = 20, Hp = 20, Ti = 20,
Ii = 30, µi = 1, σi = 1.

The computer code of Algorithm 1 is written using MATLAB 2012b, and run on
a personal computer with the operating system Windows 8.1, a 1.8 GHz CPU and

https://doi.org/10.1017/S1446181117000384 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000384


262 Y. Li, Z. Wan and J. Liu [16]

4.00 GB RAM. As we implement Algorithm 1 to solve (3.5), the total escaped CPU
time of Algorithm 1 is 11.221 s, and the Stackelberg equilibrium solution is obtained:

x∗ = (390 000.177, 390 000.177, 533 367.722, 1091.253,
1091.253, 2 649 907.191, 2 649 907.191).

In other words, the optimal distribution quantities from the manufacturer to retailers
1 and 2 are 390 000.177 and 390 000.177, respectively. The optimal advertising
investment of the manufacturer is 533 367.722. The optimal retail prices in the market
of retailers 1 and 2 are 1091.253 and 1091.253, respectively. Also, the optimal
advertising investments of retailers 1 and 2 are 2 649 907.191 and 2 649 907.191,
respectively. The corresponding profits of the manufacturer and retailers are

πm(Qi, A) = 67 917 365.441, πbi(pi, ai) = 66 039 676.269,

respectively. The above preliminary application has shown that the proposed model
and Algorithm 1 in this paper are promising.

5.1. Sensitivity analysis of market parameters In this sensitivity analysis, we
attempt to answer the following questions by changing the values of the model
parameters.

(1) What are the impacts of the market parameters, such as αi and ρi, on the optimal
decisions and the profits?

(2) What are the impacts of the holding cost paid by the manufacturer at the location
of retailer i on the optimal decisions and on the maximal profits?

(3) What are the impacts of the shortage cost paid by the manufacturer at the
location of retailer i on the optimal decisions and on the maximal profits?

We first study the impacts of the market parameters. To begin with, let us consider
the elasticity coefficient of advertising investment αi. In Figure 1, we plot the
dependence relation between αi and the profits, that is, between the demand and the
advertising investment of the manufacturer, respectively. We take into consideration
the uncertainty of the demand by setting three different standard deviations. As a
result, three curves in Figures 1(a) to 1(c) are obtained, which correspond to the three
standard deviations σ = 1, 2, 3, respectively.

From Figure 1, the following is clear.

(1) The profits of both the manufacturer and the retailers dramatically rise with the
increasing elasticity coefficient of the advertising investment. Different from the
results for the manufacturer’s profit, for given αi small enough (αi ≤ 0.56), the
retailer’s profit is not sensitive to the uncertainty of the demand (the standard
deviation). However, if αi is large enough (αi > 0.56), the uncertainty of the
demand generates a serious impact on the retailer’s profit. Actually, the retailer’s
profit becomes greater for decreasing standard deviation σ. The smaller the
standard deviation, the greater the retailer’s profit (see Figures 1(a) and 1(b)).
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Figure 1. Effects of advertising investment elasticity.

(2) For the given standard deviation, the demand increases as the elasticity
coefficient of the advertising investment increases. It is easily seen that the
demand of the smaller standard deviation is greater than that of the larger
standard deviation (see Figure 1(c)).

(3) The manufacturer’s advertising investment first increases and then decreases as
the elasticity coefficient of the advertising investment increases. The process of
change is consistent for different standard deviations (see Figure 1(d)).

Next, we study the impact of the retail price’s elasticity coefficient ρi. The
dependence relations between ρi and the profits, demand, retail price and retailer’s
advertising investment are presented in Figure 2. First, Figure 2(a) indicates that the
manufacturer’s profit goes down with an increment of ρi. Clearly, in the case where
the standard deviation σ = 3, the increasing price elasticity results in a linear reduction
of the manufacturer’s profit.

In contrast, in the case where the standard deviation is 3, the retailer’s profit is less
sensitive to the change in ρi for ρi (ρi 6 1.6) small enough, but reduces sharply if ρi
is large enough. A similar result arises in the case where the standard deviation is
4 (see Figure 2(b)). Figure 2(c) demonstrates that for the given standard deviation
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Figure 2. Effects of retail price’s elasticity.

the demand decreases as ρi increases. Note that the demand with a smaller standard
deviation is greater than that with a greater standard deviation. From Figures 2(d)
and 2(e), it follows that:

(1) both, the optimal sales price and the advertising investment of the retailers
increase as ρi increases;

(2) for a smaller standard deviation, the sales price or the retailer’s advertising
investment becomes greater.
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5.2. Sensitivity analysis of holding cost We now investigate the influences of unit
holding cost on optimal decision-making, which is paid by the manufacturer at the
location of the retailer.

We discuss two cases: σ = 3 and σ = 4. More intuitively, in the two cases we obtain
the relations between the holding cost and the manufacturer’s profit in Figures 3(a)
and 3(b). The relations between the holding cost and the retailer’s profit are plotted in
Figures 3(c) and 3(d). In Figures 3(e) and 3(f), we evaluate the impacts of the holding
cost on the demand, and the relations between the holding cost and the retail price are
presented in Figures 3(g) and 3(h).

In summary, from Figure 3, the following is clear.

(1) The profits, the demand and the retail price have a significant linear correlation
with the holding cost Hbi. Specifically, the increment of Hbi leads to the linear
increase of the manufacturer’s profit and the demand. However, the opposite
results occur for the retailer’s profit and the retail price.

(2) The manufacturer’s profit, demand and retail price become greater as the
standard deviation grows.

(3) The increment of Hbi results in the increase of the manufacturer’s profit and the
decrease of the retailer’s profit. Therefore, the value of Hbi seriously affects the
system equilibrium point.

5.3. Sensitivity analysis of shortage cost In this section, we analyze the effects of
the shortage cost paid by the manufacturer at the location of the retailer.

Figure 4 demonstrates the following points.

(1) The manufacturer’s profit increases as the shortage cost increases. In addition,
the manufacturer’s profit for a smaller standard deviation is greater than that for
a larger standard deviation. In Figure 4(a), the curve with a standard deviation
of 3 is always over that with standard deviation 4.

(2) As the shortage cost Lbi rises, both the retailer’s profit and the demand also go
up (see Figures 4(b) and 4(c)).

(3) The incrementing of Lbi contributes to a rise in the retail price. Different from the
results of the manufacturer’s profit, a smaller standard deviation does not always
mean a higher profit. There exists a balance point, at which the two profits are
the same.

6. Conclusions and directions for future research

In this paper, we have constructed a stochastic bi-level programming model to
formulate VMI problems. The holding cost, shortage cost and randomness of demand
have been taken into consideration for optimal decision-making on distribution
quantities, advertising investments and pricing in the VMI supply chain.

For the constructed random model, a deterministic equivalent formulation was
obtained by the expectation method. Then, we reformulated the bi-level programming
problem into a MPCC. Based on a smoothing technique, we transformed the MPCC
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Figure 3. Sensitivity of holding cost.
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Figure 4. Sensitivity of shortage cost.

into a series of standard constrained optimization subproblems such that an efficient
algorithm is developed to solve the original model.

By sensitivity analysis, managerial implications of the model have been obtained in
virtue of the model and algorithm.

(1) The parameters of the model related to the market have significant effects on
the decision-making performance of the manufacturer and the retailers. The
uncertainty of demand generates a greater effect on the retailer’s profit than
on the manufacturer’s profit for the given retailer’s elasticity coefficient of
advertising investment. The bigger the standard deviation (the uncertainty of
demand), the more the advertising investment and the less the profit. Thus, it
is helpful to take into consideration the uncertainty of demand in practice, as
discussed in this paper.

(2) For the manufacturer, given a fixed standard deviation, an increasing elasticity
coefficient of advertising investment leads to increase in demand and a reduction
in the advertising investment. As a result, the manufacturer’s profit increases.
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(3) For the retailer, given a fixed standard deviation, an increasing elasticity
coefficient of the retail prices leads to a decreasing demand, an increasing retail
price and an increasing advertising investment. But the increased retail price is
not enough to compensate for the incrementing of the advertising investment.
Consequently, the retailer’s profit reduces.

(4) In the VMI model, the holding and shortage costs should be paid much attention
in the decision-making. Actually, the manufacturer as the leader must be
responsible for retailers’ holding costs and shortage costs caused by the variation
in the replenishment cycle.

In future, our model can be further extended to multi-product and multi-
manufacturer supply chains, instead of a single product and one manufacturer. In
addition, as the competition in price and the advertising investment among retailers
are incorporated into the extended model, it would be valuable to develop efficient
algorithms to solve these complicated models.
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