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Abstract
We prove for the first time that knot Floer homology and Khovanov homology can detect non-fibered knots and
that HOMFLY homology detects infinitely many knots; these theories were previously known to detect a mere six
knots, all fibered. These results rely on our main technical theorem, which gives a complete classification of genus-
1 knots in the 3-sphere whose knot Floer homology in the top Alexander grading is 2-dimensional. We discuss
applications of this classification to problems in Dehn surgery which are carried out in two sequels. These include
a proof that 0-surgery characterizes infinitely many knots, generalizing results of Gabai from his 1987 resolution
of the Property R Conjecture.
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1. Introduction

A fundamental question for any knot invariant asks which knots it detects, if any. The most famous open
version of this question asks whether the Jones polynomial detects the unknot. In this paper, we study
the closely related detection question for knot Floer homology and Khovanov homology, as well as for
Khovanov–Rozansky’s HOMFLY homology.

Considerable attention has been paid to this question over the last twenty years, and yet we have only
managed to prove that these homology theories detect six knots: the unknot [38, 47], the two trefoils
and the figure eight [1, 4, 18] and the two cinquefoils [2, 14]. Each of these detection results required
substantial new ideas, which have in several cases reverberated far beyond knot detection, but one thing
they have in common is that each (save for that of the unknot) relied crucially on the knot in question
being fibered. This paper expands the knot detection landscape dramatically. In particular, we prove for
the first time that knot Floer homology and Khovanov homology can detect non-fibered knots and that
HOMFLY homology detects infinitely many knots.

Our detection results are summarized in the list below. See Figure 1 for diagrams of the knots in
this list, which are each non-fibered of Seifert genus one. In particular, Wh±(𝑇2,3, 2) is the 2-twisted
Whitehead double of the right-handed trefoil with a positive or a negative clasp, respectively, and the
𝑃(−3, 3, 2𝑛 + 1) are pretzel knots. We prove that

◦ Knot Floer homology detects 52 and Wh+(𝑇2,3, 2).
◦ Knot Floer homology detects membership in each of the sets

{15𝑛43522, Wh−(𝑇2,3, 2)} and {𝑃(−3, 3, 2𝑛 + 1) | 𝑛 ∈ Z}.

◦ Khovanov homology detects 52.
◦ Khovanov homology together with the degree of the Alexander polynomial detects 𝑃(−3, 3, 2𝑛 + 1)

for each 𝑛 ∈ Z.
◦ HOMFLY homology detects 𝑃(−3, 3, 2𝑛 + 1) for each 𝑛 ∈ Z.

These new detection results rely on our surprising main result, Theorem 1.2, which gives a complete
classification of what we call nearly fibered genus-1 knots in 𝑆3. We motivate and explain Theorem 1.2
below and then state precise versions of the detection results above. We next outline the proof of Theorem
1.2, which combines in novel ways arguments involving sutured manifolds [16], involutions, the cyclic
surgery theorem [12] and foundational work of Birman and Menasco on braids [7, 8]. Finally, we discuss
applications of this theorem to problems in Dehn surgery, which are carried out in our papers [5, 6].
Perhaps the most striking of these is our proof in [5] that 0-surgery characterizes infinitely many knots,
where this was previously only known for the unknot, trefoils and figure eight by Gabai’s celebrated
1987 work on the Property R Conjecture [17].

1.1. Our results

Recall that knot Floer homology assigns to a knot 𝐾 ⊂ 𝑆3 a bigraded vector space over Q,

�HFK (𝐾;Q) =
⊕
𝑚,𝑎

�HFK𝑚(𝐾, 𝑎;Q),

where m and a are the Maslov and Alexander gradings, respectively. Letting

�HFK (𝐾, 𝑎;Q) =
⊕
𝑚

�HFK𝑚(𝐾, 𝑎;Q),

knot Floer homology detects the Seifert genus of K by the formula

𝑔(𝐾) = max{𝑎 | �HFK (𝐾, 𝑎;Q) ≠ 0} (1.1)
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Figure 1. All of the genus-1 nearly fibered knots in 𝑆3, up to taking mirrors; the labeled box on the
right indicates the number of signed half-twists.

Table 1. Knot Floer homologies of genus-1 nearly fibered knots, grouped by whether det(𝐾 ) is 7 or 9. The subscripts denote Maslov
gradings..

𝐾 �HFK (𝐾, 1;Q) �HFK (𝐾, 0;Q) �HFK (𝐾, −1;Q)

52 Q2
(2) Q3

(1) Q2
(0)

15𝑛43522 Q2
(0) Q4

(−1) ⊕ Q(0) Q2
(−2)

Wh− (𝑇2,3, 2) Q2
(0) Q4

(−1) ⊕ Q(0) Q2
(−2)

𝑃 (−3, 3, 2𝑛 + 1) Q2
(1) Q5

(0) Q2
(−1)

Wh+ (𝑇2,3, 2) Q2
(−1) Q4

(−2) ⊕ Q(0) Q2
(−3)

[47]. Moreover, K is fibered if and only if

dim �HFK (𝐾, 𝑔(𝐾);Q) = 1

[18, 44]. The knot Floer homology detection results for the unknot, trefoils and figure eight follow
readily from these properties, as the first is the only knot of genus zero and the others are the only
fibered knots of genus one. Detection for the cinquefoils is substantially more involved [14] but also
hinges on the fact that the cinquefoils are fibered.

We focus in this paper on what we call nearly fibered knots. These are non-fibered knots which are
as close as possible, from the knot Floer homology perspective, to being fibered:

Definition 1.1. A knot 𝐾 ⊂ 𝑆3 is nearly fibered if dim �HFK (𝐾, 𝑔(𝐾);Q) = 2.

Our main result is the complete classification of genus-1 nearly fibered knots:

Theorem 1.2. If 𝐾 ⊂ 𝑆3 is a genus-1 nearly fibered knot, then K is one of the knots

52, 15𝑛43522, Wh−(𝑇2,3, 2), Wh+(𝑇2,3, 2), 𝑃(−3, 3, 2𝑛 + 1) (𝑛 ∈ Z)

shown in Figure 1, or the mirror of one of these knots.

The knot Floer homologies of these knots are displayed for reference in Table 1, with the computations
explained in Appendix A. Together with Theorem 1.2 and the symmetry

�HFK𝑚(𝐾, 𝑎;Q) � �HFK−𝑚(𝐾,−𝑎;Q)

under taking mirrors, these computations immediately imply the promised detection results for knot
Floer homology, stated as Theorems 1.3, 1.4 and 1.5 below. The first of these makes precise our claim
that knot Floer homology detects the knots 52 and Wh+(𝑇2,3, 2):

Theorem 1.3. Let 𝐾 ⊂ 𝑆3 be a knot, and let 𝐽 ∈ {52, Wh+(𝑇2,3, 2)}. If

�HFK (𝐾;Q) � �HFK (𝐽;Q)

as bigraded vector spaces, then 𝐾 = 𝐽.
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The next two theorems make precise our claim that knot Floer homology detects membership in each
of the sets

{15𝑛43522, Wh−(𝑇2,3, 2)} and {𝑃(−3, 3, 2𝑛 + 1) | 𝑛 ∈ Z}.

Note from Table 1 that knot Floer homology cannot distinguish the knots in either set.

Theorem 1.4. Let 𝐾 ⊂ 𝑆3 be a knot, and let 𝐽 ∈ {15𝑛43522, Wh−(𝑇2,3, 2)}. If

�HFK (𝐾;Q) � �HFK (𝐽;Q)

as bigraded vector spaces, then 𝐾 ∈ {15𝑛43522, Wh−(𝑇2,3, 2)}.

Theorem 1.5. Let 𝐾 ⊂ 𝑆3 be a knot, and let 𝐽 ∈ {𝑃(−3, 3, 2𝑛 + 1) | 𝑛 ∈ Z}. If

�HFK (𝐾;Q) � �HFK (𝐽;Q)

as bigraded vector spaces, then 𝐾 ∈ {𝑃(−3, 3, 2𝑛 + 1) | 𝑛 ∈ Z}.

As alluded to above, Theorem 1.3 is the first result which shows that knot Floer homology can detect
non-fibered knots. We note that it is also the first knot Floer detection result for knots whose Floer
homology is not thin (i.e., not supported in a single 𝛿 = 𝑚 − 𝑎 grading).

We now turn to our detection results for Khovanov homology. Recall that reduced Khovanov homol-
ogy also assigns to a knot 𝐾 ⊂ 𝑆3 a bigraded vector space over Q,

Kh(𝐾;Q) =
⊕
ℎ,𝑞

Kh
ℎ,𝑞
(𝐾;Q),

where h and q are the homological and quantum gradings, respectively. We use Theorem 1.2 together
with Dowlin’s spectral sequence from Khovanov homology to knot Floer homology [13] to prove that
reduced Khovanov homology detects 52:

Theorem 1.6. Let 𝐾 ⊂ 𝑆3 be a knot, and suppose that

Kh(𝐾;Q) � Kh(52;Q)

as bigraded vector spaces. Then 𝐾 = 52.

As mentioned previously, Theorem 1.6 is the first result showing that Khovanov homology can detect
non-fibered knots. Using the same strategy, we can also nearly show for the first time that Khovanov
homology detects infinitely many knots:

Theorem 1.7. Let 𝐾 ⊂ 𝑆3 be a knot, and suppose for some 𝑛 ∈ Z that

Kh(𝐾;Q) � Kh(𝑃(−3, 3, 2𝑛 + 1);Q)

as bigraded vector spaces. If in addition the Alexander polynomial Δ𝐾 (𝑡) has degree 1, then 𝐾 =
𝑃(−3, 3, 2𝑛 + 1).

We expect that Kh(𝐾;Q) alone should detect each of these pretzel knots. Indeed, their reduced
Khovanov homologies are all 9-dimensional but (unlike their knot Floer homologies) are distinguished
by their bigradings. The only remaining obstacle is to show that there are no fibered knots of genus at
least two with the same reduced Khovanov homology as one of these pretzels. We are currently unable
to show this, which is the reason for the additional Alexander polynomial hypothesis in Theorem 1.7.

However, we can achieve the desired detection result using the reduced version of Khovanov–
Rozansky’s HOMFLY homology [35]. This theory assigns to a knot 𝐾 ⊂ 𝑆3 a triply-graded vector
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space over Q,

�̄� (𝐾;Q) =
⊕
𝑖, 𝑗 ,𝑘

�̄�𝑖, 𝑗 ,𝑘 (𝐾;Q),

which determines the HOMFLY polynomial of K. We use the fact that the HOMFLY polynomial encodes
the Alexander polynomial, together with recent results of Wang [64], to bypass the obstacle described
above and prove for the first time that HOMFLY homology detects infinitely many knots:

Theorem 1.8. Let 𝐾 ⊂ 𝑆3 be a knot, and suppose for some 𝑛 ∈ Z that

�̄� (𝐾;Q) � �̄� (𝑃(−3, 3, 2𝑛 + 1);Q)

as triply-graded vector spaces. Then 𝐾 = 𝑃(−3, 3, 2𝑛 + 1).

Remark 1.9. Some of the knots in Theorem 1.2 may be more familiar under other names. For instance, 61
is the pretzel knot 𝑃(−3, 3, 1). The knot 15𝑛43522 is one of the simplest hyperbolic knots, as tabulated in
the census [10], where it is labeled 𝑘8218. The twisted Whitehead doubles Wh+(𝑇2,3, 2) and Wh−(𝑇2,3, 2)
appear in the tabulation [28] as the knots 15𝑛115646 and 16𝑛696530, respectively.

We outline our proof of Theorem 1.2 in some detail below. For the reader interested in fewer details,
the key new idea is that if K is a genus-1 nearly fibered knot, then the fact that

dim �HFK (𝐾, 1;Q) = 2

is small allows us to determine the complement of a genus-1 Seifert surface F for K. This complement
is not simply a product 𝐹 × [−1, 1] since K is not fibered, but work of Juhász [32] provides us with
product annuli that we can use to cut the complement into simpler pieces and identify it anyway. In each
case, the complement of F admits an involution which extends over the complement of K, and by taking
quotients, we can reduce the classification problem in Theorem 1.2 to a difficult but ultimately solvable
question about 3-braids.

1.2. Proof outline

Let 𝐾 ⊂ 𝑆3 be a genus-1 nearly fibered knot, so that

dim �HFK (𝐾, 1;Q) = 2.

Let F be a genus-1 Seifert surface for K. Let us identify a closed tubular neighborhood of F with the
product 𝐹 × [−1, 1], and consider the sutured Seifert surface complement

𝑆3 (𝐹) := (𝑀, 𝛾) = (𝑆3 \ int(𝐹 × [−1, 1]), 𝜕𝐹 × [−1, 1]).

Then 𝑆3 is recovered by gluing this neighborhood back in,

𝑆3 = 𝑆3(𝐹) ∪ (𝐹 × [−1, 1]),

and K is the image of the suture

𝑠(𝛾) = 𝜕𝐹 × {0}

in this glued manifold. Our strategy is to first identify the complement 𝑆3 (𝐹) abstractly, in a way which
does not remember its embedding into 𝑆3, and then classify the gluings that recover 𝑆3 from this abstract
point of view, so as to ultimately determine the knot K.

https://doi.org/10.1017/fmp.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.28


6 J. A. Baldwin and S. Sivek

It will be helpful to consider the following slightly different perspective. Let

𝑀𝐹 := 𝑆3 (𝐹) ∪ (𝐷2 × [−1, 1]),

in which we identify each circle

𝜕𝐹 × {𝑡} ⊂ 𝜕𝑆3(𝐹)

with the corresponding 𝜕𝐷2 × {𝑡}. Then 𝑀𝐹 has two toroidal boundary components and can be viewed
as the 3-manifold obtained from 𝑆3

0 (𝐾) by removing a neighborhood of the capped off Seifert surface.
This manifold contains a distinguished arc

𝛼 := {0} × [−1, 1] ⊂ 𝐷2 × [−1, 1] ⊂ 𝑀𝐹 ,

whose complement recovers 𝑆3(𝐹), where the suture 𝑠(𝛾) is identified with a meridian of 𝛼.
Work of Juhász [30] tells us that the sutured Floer homology of 𝑆3(𝐹) has dimension

dim SFH(𝑆3 (𝐹);Q) = dim �HFK (𝐾, 1;Q) = 2.

This dimension is sufficiently small that another theorem of Juhász [32] guarantees the existence of
an essential product annulus A inside of 𝑆3 (𝐹). Because F has genus 1, we can guarantee that the
components of 𝜕𝐴 are homologically essential in their respective copies of F, or equivalently in the
tori of 𝜕𝑀𝐹 , so by Dehn filling along curves dual to 𝜕𝐴, we can identify 𝑀𝐹 as the complement of a
2-component cable link, in which A is the cabling annulus.

A similar argument shows that the manifold obtained by decomposing 𝑆3 (𝐹) along A also contains
an essential product annulus B, since such decompositions preserve the dimension of sutured Floer
homology. We prove that B separates 𝑆3 (𝐹) \ 𝐴 into two pieces and argue based on the dimensions of
the sutured Floer homologies of these pieces that the component containing 𝛾 must be a product sutured
manifold. We then use this to show that the arc 𝛼 in 𝑀𝐹 can be isotoped into the cabling annulus A.

It follows that the manifold obtained by cutting 𝑀𝐹 open along the cabling annulus A can alternatively
be obtained by first removing a neighborhood of 𝛼 to form 𝑆3 (𝐹) and then decomposing 𝑆3 (𝐹) along
a product disk to remove the rest of the annulus A. Since 𝑆3(𝐹) is a subset of 𝑆3, this cut-open
manifold with torus boundary must then be the complement of a knot 𝐶 ⊂ 𝑆3, with sutures isotopic
to 𝜕𝐴. Moreover, its sutured Floer homology is also 2-dimensional, since product disk decomposition
preserves dimension. Using this, we argue that C is an unknot or a trefoil and conclude the following:

Theorem 5.1. Up to orientation reversal, 𝑀𝐹 must be the complement of the (2, 4)-cable of either the
unknot or the right-handed trefoil, and 𝛼 is an arc in the cabling annulus.

This then gives us two possibilities (up to orientation reversal) for 𝑆3 (𝐹), which we recall is obtained
from 𝑀𝐹 by removing a neighborhood of 𝛼. The next important observation is that in both cases, there
is an involution

𝜄 : 𝑆3(𝐹) → 𝑆3 (𝐹)

which fixes 𝛾 setwise and restricts to a hyperelliptic involution on the once-punctured tori 𝑅+(𝛾) and
𝑅−(𝛾), as shown in Figures 7 and 18. The quotient of 𝑆3 (𝐹) by this involution is a sutured 3-ball with
connected suture. It is natural to identify this quotient 3-ball with the complement of a thickened disk
in 𝑆3,

𝑆3(𝐹)/𝜄 � 𝑆3 (𝐷2) = (𝑆3 \ int(𝐷2 × [−1, 1]), 𝜕𝐷2 × [−1, 1]),

and the quotient map realizes 𝑆3(𝐹) as the branched double cover of this ball along a tangle 𝜏 ⊂ 𝑆3 (𝐷2),
as shown in Figures 7 and 19.
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As discussed at the beginning, 𝑆3 is recovered by gluing 𝐹 × [−1, 1] to 𝑆3 (𝐹) by a map which in
particular identifies 𝜕𝐹 × [−1, 1] with 𝛾. For any such gluing map 𝜑, the facts that the once-punctured
torus admits a unique hyperelliptic involution up to isotopy, and that this commutes with 𝜑 up to isotopy
– note that these facts require our assumption that 𝑔(𝐹) = 1 – imply that 𝜄 extends to an involution 𝜄 of
the glued manifold

𝑌𝜑 = 𝑆3(𝐹) ∪𝜑 (𝐹 × [−1, 1]),

whose restriction to the piece 𝐹 × [−1, 1] is a hyperelliptic involution on each 𝐹 ×{𝑡}. The quotient map

𝑌𝜑 → 𝑌𝜑/𝜄

therefore restricts on this piece to a branched double covering

𝐹 × [−1, 1] → 𝐷2 × [−1, 1]

along some 3-braid

𝛽 ⊂ 𝐷2 × [−1, 1] .

It follows that 𝑌𝜑 is the branched double cover of

𝑆3 (𝐷2) ∪ (𝐷2 × [−1, 1]) � 𝑆3

along the link 𝜏 ∪ 𝛽. Moreover, K is the lift of the braid axis

𝜅 = 𝜕𝐷2 × {0} = 𝑠(𝛾)/𝜄

in this double cover, as shown in Figures 7 and 8 in the case that 𝑀𝐹 is the complement of the (2, 4)-
cable of the unknot. In particular, 𝑌𝜑 � 𝑆3 if and only if 𝜏 ∪ 𝛽 is an unknot.

This leads to our strategy for identifying K:

1. Identify all 3-braids 𝛽 such that 𝜏 ∪ 𝛽 is an unknot.
2. For each such 𝛽, lift 𝜅 to the branched double cover

Σ2(𝑆
3, 𝜏 ∪ 𝛽) � Σ2(𝑆

3,𝑈) � 𝑆3,

and this lift 𝜅 is the corresponding knot K.

The first step is generally difficult and takes up a lot of room in this paper. Our approach is to find a
crossing of 𝜏 whose various resolutions are all relatively simple and then understand surgeries between
the branched double covers of these resolutions, making heavy use of the cyclic surgery theorem [12]
throughout. We eventually conclude the following:

Theorem 6.1. If 𝑀𝐹 is the complement of the (2, 4)-cable of the unknot, then K must be 52, 15𝑛43522 or
a pretzel knot 𝑃(−3, 3, 2𝑛 + 1), up to mirroring.

Theorem 7.1. If 𝑀𝐹 is the complement of the (2, 4)-cable of the right-handed trefoil, then K must be a
twisted Whitehead double Wh±(𝑇2,3, 2).

Given that taking the mirror of K corresponds to reversing the orientation of 𝑀𝐹 , this completes the
proof of Theorem 1.2.

Remark 1.10. One of the main inspirations for this work and for our approach was a paper by Cantwell
and Conlon [9], who showed (among other things) that if K is either 52 or 𝑃(−3, 3, 2𝑛 + 1), then 𝑀𝐹 is
the complement of the (2, 4)-torus link.
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1.3. Other applications

One of the strengths of knot Floer homology is its relationship to the Heegaard Floer homology of
Dehn surgeries on knots. Indeed, the fact that knot Floer homology detects the unknot can be used to
give another proof that the unknot is uniquely characterized by each of its nontrivial Dehn surgeries
(this was first proved via different but similar means by Kronheimer–Mrowka–Ozsváth–Szabó in [37]).
Likewise, Ozsváth–Szabó used the fact that knot Floer homology detects the trefoils and figure eight to
prove that these knots are also characterized by each of their nontrivial surgeries [53].

In [6], we use Theorem 1.2 to prove that Dehn surgeries of nearly all rational slopes uniquely
characterize the knot 52:
Theorem 1.11 [6]. Let 𝐾 ⊂ 𝑆3 be a knot, and suppose that r is a rational number for which there is an
orientation-preserving homeomorphism

𝑆3
𝑟 (𝐾) � 𝑆3

𝑟 (52).

If r is not a positive integer, then 𝐾 = 52.
This is the strongest result to date concerning characterizing slopes for any hyperbolic knot other

than the figure eight. Note that we cannot hope to extend Theorem 1.11 to all positive integers, since,
for example, 𝑆3

1 (52) � 𝑆3
1 (𝑃(−3, 3, 8)), as shown in [6].

Using Theorem 1.11, we can then determine all of the ways in which the Brieskorn sphere Σ(2, 3, 11)
can arise from Dehn surgery on a knot in 𝑆3:
Theorem 1.12 [6]. Given a knot 𝐾 ⊂ 𝑆3 and a rational number r, there exists an orientation-preserving
homeomorphism

𝑆3
𝑟 (𝐾) � Σ(2, 3, 11)

if and only if (𝐾, 𝑟) is either (𝑇−2,3,−
1
2 ) or (52,−1).

We note that similar results were achieved for Σ(2, 3, 5) by Ghiggini in [18], and for Σ(2, 3, 7) by
Ozsváth–Szabó in [53].

Similarly, the only knots for which 0-surgery was previously known to be characterizing are the
unknot, trefoils and figure eight, by a 1987 theorem of Gabai [17]. (This is an immediate corollary of
Gabai’s proof that 𝑆3

0 (𝐾) determines the Seifert genus of K as well as whether or not K is fibered.)
Combining the case 𝑟 = 0 of Theorem 1.11 with the main result of [5] lets us add the infinitely many
knots of Theorem 1.2 to this list.
Theorem 1.13 [6, 5]. Let 𝐾 ⊂ 𝑆3 be a genus-1 nearly fibered knot. If for some knot 𝐽 ⊂ 𝑆3 there is an
orientation-preserving homeomorphism

𝑆3
0 (𝐾) � 𝑆3

0 (𝐽),

then 𝐽 = 𝐾 .

1.4. Coefficients

Every Floer theory and link homology theory in this paper will be considered with coefficients in Q
unless specified otherwise (as in Appendix A). For this reason, we will typically omit the coefficients
from our notation for these theories going forward.

1.5. Organization

In §2, we review necessary background on sutured Floer homology. In §3–§5, we classify the possible
pairs (𝑀𝐹 , 𝛼), eventually proving Theorem 5.1. In §6, we determine the knots K arising when 𝑀𝐹
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is the complement of a cabled unknot, proving Theorem 6.1. In §7, we do the same when 𝑀𝐹 is the
complement of a cabled trefoil, proving Theorem 7.1. This proves Theorem 1.2, and the knot Floer
homology detection results in Theorems 1.3, 1.4 and 1.5 follow immediately. In §8, we use Dowlin’s
spectral sequence to prove the Khovanov homology detection results in Theorems 1.6 and 1.7. We then
apply Theorem 1.7 in §9 to prove the HOMFLY homology detection result in Theorem 1.8. We finish
with Appendix A, detailing the computations which appear in Table 1.

2. Sutured Floer homology background

In this section, we briefly review some facts about sutured Floer homology which will be of use in this
paper, and establish some notation. See [16, 29, 30] for more background.

Following Gabai [16], a sutured manifold is a pair (𝑀, 𝛾), where M is a compact, oriented 3-manifold
and 𝛾 ⊂ 𝜕𝑀 is a union of annuli 𝐴(𝛾) and tori 𝑇 (𝛾), all of which are pairwise disjoint. We identify
an oriented simple closed curve inside each annulus that is isotopic to the core of that annulus and
take the sutures 𝑠(𝛾) to be their union. We orient the components of 𝑅(𝛾) = 𝜕𝑀 − int(𝛾) so that their
boundary orientations agree with the orientations of 𝑠(𝛾) and then let 𝑅+(𝛾) and 𝑅−(𝛾) consist of
those components of 𝑅(𝛾) whose orientations agree or disagree with the boundary orientation of 𝜕𝑀 ,
respectively.

Juhász [29, Definition 2.2] calls (𝑀, 𝛾) a balanced sutured manifold if M has no closed components,
the subsurfaces 𝑅+(𝛾) and 𝑅−(𝛾) have the same Euler characteristic, and every component of 𝜕𝑀
contains an annulus of 𝐴(𝛾). In this case, the set of tori 𝑇 (𝛾) must be empty.

Sutured Floer homology, as defined by Juhász in [29], assigns to a balanced sutured manifold (𝑀, 𝛾)
a vector space over Q,

SFH(𝑀, 𝛾) =
⊕

𝔰∈Spin𝑐 (𝑀,𝛾)

SFH(𝑀, 𝛾, 𝔰),

generalizing the hat version of Heegaard Floer homology. For example, given a knot 𝐾 ⊂ 𝑌 , we consider
the sutured knot complement

𝑌 (𝐾) := (𝑌 \ 𝑁 (𝐾), 𝛾𝜇),

whose sutures 𝑠(𝛾𝜇) are the union of two oppositely oriented meridians of K. Moreover, given a Seifert
surface F for K, we identify a closed tubular neighborhood of F with the product 𝐹 × [−1, 1] and define
the sutured Seifert surface complement by

𝑌 (𝐹) := (𝑀, 𝛾) = (𝑌 \ int(𝐹 × [−1, 1]), 𝜕𝐹 × [−1, 1]),

with suture

𝑠(𝛾) = 𝜕𝐹 × {0}

and

𝑅±(𝛾) = 𝐹 × {±1}.

Then sutured Floer homology recovers the knot Floer homology of K, as well as its summand in the top
Alexander grading with respect to F, by

SFH(𝑌 (𝐾)) � �HFK (𝑌, 𝐾), (2.1)

SFH(𝑌 (𝐹)) � �HFK (𝑌, 𝐾, [𝐹], 𝑔(𝐹)), (2.2)

as shown in [29, Proposition 9.2] and [30, Theorem 1.5], respectively.
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Juhász also proved [29, 30] that sutured Floer homology detects whether a balanced sutured manifold
is taut and whether it is a product, as stated in Theorem 2.1 below. Recall for this theorem that a sutured
manifold (𝑀, 𝛾) is taut if it is irreducible and if 𝑅(𝛾) is incompressible and Thurston norm-minimizing
in

𝐻2(𝑀, 𝛾).

It is a product sutured manifold if it is of the form

(𝑀, 𝛾) � (Σ × [−1, 1], 𝜕Σ × [−1, 1])

with 𝑠(𝛾) = 𝜕Σ × {0}, where Σ is a compact, oriented surface with no closed components.
Theorem 2.1. Let (𝑀, 𝛾) be a balanced sutured manifold.
◦ If (𝑀, 𝛾) is irreducible and not taut, then SFH(𝑀, 𝛾) � 0.
◦ If (𝑀, 𝛾) is taut, then dim SFH(𝑀, 𝛾) ≥ 1.
◦ If (𝑀, 𝛾) is taut and not a product, then dim SFH(𝑀, 𝛾) ≥ 2.
Proof. These claims are [29, Proposition 9.18] (whose proof is attributed to Yi Ni), [30, Theorem 1.4]
and [30, Theorem 9.7], respectively. �

Remark 2.2. If 𝐾 ⊂ 𝑆3 is a knot and F is a genus-minimizing Seifert surface for K, then the sutured
Seifert surface complement 𝑆3(𝐹) is taut.

Sutured Floer homology behaves well with respect to sutured manifold decompositions

(𝑀, 𝛾)
𝑆
� (𝑀 ′, 𝛾′)

for certain surfaces 𝑆 ⊂ (𝑀, 𝛾), as stated precisely in [30, Theorem 1.3]. In this paper, we will be
concerned with decompositions along:
◦ product disks, which are properly embedded disks

𝑆 ⊂ (𝑀, 𝛾)

such that 𝜕𝑆 meets the sutures 𝑠(𝛾) in two points; and
◦ product annuli, which are properly embedded annuli

𝑆 ⊂ (𝑀, 𝛾)

such that 𝜕𝑆 has one component in 𝑅+(𝛾) and the other component in 𝑅−(𝛾).
The two theorems below state that sutured Floer homology is preserved under product disk decompo-
sition, and under product annulus decomposition with mild additional hypotheses.
Theorem 2.3 [29, Lemma 9.13]. Let (𝑀, 𝛾) be a balanced sutured manifold. If (𝑀 ′, 𝛾′) is obtained by
decomposing (𝑀, 𝛾) along a product disk, then

SFH(𝑀, 𝛾) � SFH(𝑀 ′, 𝛾′).

Theorem 2.4 [30, Lemma 8.9]. Let (𝑀, 𝛾) be a balanced sutured manifold such that 𝐻2(𝑀) � 0. Let

𝑆 ⊂ (𝑀, 𝛾)

be a product annulus where at least one component of 𝜕𝑆 is nonzero in 𝐻1 (𝑅(𝛾)). If (𝑀 ′, 𝛾′) is obtained
by decomposing (𝑀, 𝛾) along S, then

SFH(𝑀 ′, 𝛾′) � SFH(𝑀, 𝛾).
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Remark 2.5. These two theorems are closely related to the fact that decompositions along product disks
and along product annuli preserve tautness [16, Lemma 3.12].

We say that a product annulus 𝑆 ⊂ (𝑀, 𝛾) is essential if it is incompressible and if it is not isotopic
to any component of 𝛾 by an isotopy which keeps 𝜕𝑆 in 𝑅(𝛾) at all times. As discussed in §1.2, our
proof of Theorem 1.2 relies on finding essential product annuli in the sutured complement of a genus-1
Seifert surface for a nearly fibered knot. Our main source of such annuli will be the following result:

Theorem 2.6. Let (𝑀, 𝛾) be a taut balanced sutured manifold with 𝐻2(𝑀) � 0, and suppose that
(𝑀, 𝛾) is not a product (Σ × [−1, 1], 𝜕Σ× [−1, 1]) in which Σ is either an annulus or a pair of pants. If

dim SFH(𝑀, 𝛾) < 4

and

dim SFH(𝑀, 𝛾) ≤ 1
2 𝑏1 (𝜕𝑀),

then (𝑀, 𝛾) contains an essential product annulus S.

Proof. Since (𝑀, 𝛾) is taut and dim SFH(𝑀, 𝛾) < 4, [31, Corollary 2.2] says that (𝑀, 𝛾) is horizontally
prime (see [31, Definition 1.7]). If (𝑀, 𝛾) is also reduced, meaning that it does not contain an essential
product annulus, and if it is not one of the forbidden products, then [32, Theorem 3] says that

dim SFH(𝑀, 𝛾) ≥ 1
2 𝑏1 (𝜕𝑀) + 1.

By hypothesis, this is not the case, so since (𝑀, 𝛾) is not such a product, it is not reduced. (The products
were not excluded in the statement of [32, Theorem 3], but the proof assumes that there are no essential
product disks in (𝑀, 𝛾), which by [32, Lemma 2.13] holds if and only if (𝑀, 𝛾) is not one of these
products. See [19, Remark 5.10].) �

Lastly, we record the following for eventual use in our proof of Theorem 5.1.

Proposition 2.7. Let 𝐾 ⊂ 𝑆3 be a nontrivial knot, and let

(𝑆3 \ 𝑁 (𝐾), 𝛾0)

denote the balanced sutured manifold whose sutures 𝑠(𝛾0) are a union of two oppositely oriented Seifert
longitudes. Then

dim SFH(𝑆3 \ 𝑁 (𝐾), 𝛾0) ≥ 4.

Proof. For any balanced sutured manifold (𝑀, 𝛾), a choice of homology orientation for the pair
(𝑀, 𝑅−(𝛾)) gives rise to an absolute lift of the relative Z/2Z-grading on SFH(𝑀, 𝛾), and therefore
to a well-defined Euler characteristic

𝜒(SFH(𝑀, 𝛾, 𝔰)) ∈ Z

for each 𝔰 ∈ Spin𝑐 (𝑀, 𝛾), as described in [15]. Fixing an 𝐻1 (𝑀)-affine isomorphism

𝜄 : Spin𝑐 (𝑀, 𝛾) → 𝐻1 (𝑀),

these Euler characteristics can be packaged as an element

𝜏(𝑀, 𝛾) =
∑

𝔰∈Spin𝑐 (𝑀,𝛾)

𝜒(SFH(𝑀, 𝛾, 𝔰)) · 𝜄(𝔰)

of the group ring Z[𝐻1 (𝑀)].
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Let us write 𝐸𝐾 = 𝑆3 \ 𝑁 (𝐾) for convenience. Then

𝜏(𝐸𝐾 , 𝛾0) = 0

as shown in [15, Example 8.1], which means that

𝜒(SFH(𝐸𝐾 , 𝛾0, 𝔰)) = 0

for each 𝔰 ∈ Spin𝑐 (𝐸𝐾 , 𝛾0). In particular, dim SFH(𝐸𝐾 , 𝛾0, 𝔰) is always even.
Since K is nontrivial, its complement 𝐸𝐾 is irreducible. Thus, if we let

𝑆 = {𝔰 ∈ Spin𝑐 (𝐸𝐾 , 𝛾0) | SFH(𝐸𝐾 , 𝛾0, 𝔰) � 0},

then [15, Theorem 1.4] tells us that for all 𝛼 ∈ 𝐻2(𝐸𝐾 , 𝜕𝐸𝐾 ;R), we have

max
𝔰,𝔱∈𝑆
〈𝔰 − 𝔱, 𝛼〉 = 𝑥𝑠 (𝛼),

where 𝑥𝑠 is the sutured Thurston norm on (𝐸𝐾 , 𝛾0). If 𝛼 is the class of a Seifert surface for K, with
genus 𝑔 = 𝑔(𝐾) ≥ 1, then we compute by [15, Lemma 7.3] that

𝑥𝑠 (𝛼) = 𝑥(𝛼) = 2𝑔 − 1,

and since this is nonzero, there must be two different Spin𝑐 structures 𝔰 on (𝐸𝐾 , 𝛾0), each pairing
differently with 𝛼, for which SFH(𝐸𝐾 , 𝛾0, 𝔰) is nonzero. But then SFH(𝐸𝐾 , 𝛾0) has dimension at least
two in each of these two Spin𝑐 structures, so we conclude that

dim SFH(𝐸𝐾 , 𝛾0) ≥ 4,

as desired. �

3. Nearly fibered knots and essential annuli

Let 𝐾 ⊂ 𝑆3 be a nearly fibered knot of genus g, as in Definition 1.1. Then

dim �HFK (𝐾, 𝑔) = 2.

Since this dimension is less than 4, [31, Theorem 2.3] says that K has a unique genus-g Seifert surface
F, up to isotopy. In this section, we will use Theorem 2.6 to study essential product annuli in the sutured
Seifert surface complement

𝑆3 (𝐹) = (𝑆3 \ int(𝐹 × [−1, 1]), 𝜕𝐹 × [−1, 1]).

The lemma below guarantees the existence of such annuli with nice boundary properties.

Lemma 3.1. Let 𝐾 ⊂ 𝑆3 be a nearly fibered knot, and let F be a Seifert surface for K of genus 𝑔 = 𝑔(𝐾).
Then there is an essential product annulus A in the sutured manifold

(𝑀, 𝛾) = 𝑆3 (𝐹)

whose boundary components

𝐴± = 𝜕𝐴 ∩ 𝑅±(𝛾)

are not both boundary-parallel in their respective surfaces 𝑅±(𝛾).
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Proof. Let us check that the hypotheses of Theorem 2.6 are met. First, note that 𝑆3 (𝐹) is not one of the
excluded products, since 𝑅+(𝛾) = 𝐹 × {1} is not an annulus or pair of pants. Next, we have that

𝐻2 (𝑆
3 (𝐹)) � �̃�0(𝐹) � 0 (3.1)

by Alexander duality. We also know that 𝑆3 (𝐹) is irreducible (in fact, this sutured manifold is taut, per
Remark 2.2) and that

dim SFH(𝑆3(𝐹)) = dim �HFK (𝐾, 𝑔) = 2

by (2.2). Note that 𝑔 ≥ 1 since the unknot is not nearly fibered. Therefore,

dim SFH(𝑀, 𝛾) = 2 ≤ 2𝑔 = 1
2 𝑏1(𝜕𝑀),

and so Theorem 2.6 provides an essential product annulus 𝐴 ⊂ (𝑀, 𝛾) = 𝑆3 (𝐹).
Let us suppose for a contradiction that both boundary components

𝐴± ⊂ 𝑅±(𝛾)

of A are boundary-parallel in their respective surfaces. We recover the knot complement

𝐸𝐾 = 𝑆3 \ 𝑁 (𝐾)

from M by gluing 𝑅+(𝛾) to 𝑅−(𝛾) by some homeomorphism, and we can assume that this gluing map
sends 𝐴+ to 𝐴− since these curves are boundary-parallel in 𝑅±(𝛾), respectively. Then A becomes a torus
𝑇 ⊂ 𝐸𝐾 which meets F in a boundary-parallel circle.

We first claim that T is incompressible in 𝐸𝐾 . Indeed, its fundamental group is spanned by a longitude
𝜆 of K and the image c of a curve

{pt} × [−1, 1] ⊂ 𝑆1 × [−1, 1] � 𝐴,

which is homologically essential in 𝐸𝐾 since it is dual to F. If some product 𝜆𝑖𝑐 𝑗 is nullhomotopic in
𝐸𝐾 , then its homology class satisfies

0 = [𝜆𝑖𝑐 𝑗 ] · 𝐹 = 𝑗 ,

so it is a power 𝜆𝑖 of the longitude of K, but then 𝑖 = 0 since K is a nontrivial knot in 𝑆3. Therefore, 𝜆𝑖𝑐 𝑗

is nullhomotopic in T as well.
We next claim that T is not boundary-parallel. Indeed, if it were, then T and 𝜕𝐸𝐾 would cobound

a thickened torus intersecting F in a properly embedded annulus, in which case cutting 𝐸𝐾 back open
along F would give a thickened annulus in (𝑀, 𝛾) which is the trace of an isotopy between A and 𝛾 that
keeps 𝜕𝐴 in 𝑅(𝛾) at all times. But A is essential, which by definition implies that no such isotopy exists
– a contradiction.

We have shown that under these circumstances, K must be a satellite knot, and the torus T splits
its exterior into two pieces: the exterior 𝐸𝐶 of the companion C and the exterior 𝐸𝑃 of the pattern
𝑃 ⊂ 𝑆1 × 𝐷2. But then T splits the Seifert surface F into two pieces as well, one of which is an annulus
in 𝐸𝑃 cobounded by the image of 𝐴± and the boundary 𝜕𝐹. This annulus gives an isotopy of the pattern
P into T, where it is identified with a longitude of C, so P must be a cable pattern with winding number
one. But this means that P is isotopic to the core of 𝑆1 × 𝐷2, so T is boundary-parallel, and we have a
contradiction. We conclude that 𝐴± cannot both be boundary-parallel, as desired. �
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3.1. The manifold 𝑴𝑭

While Lemma 3.1 applies to nearly fibered knots of any genus, we are especially interested in the
genus-1 case. In this setting, we introduce the following construction, as in §1.2, which we will refer to
repeatedly throughout the paper.

Definition 3.2. Let F be a genus-1 Seifert surface for a nontrivial knot 𝐾 ⊂ 𝑆3. We define

𝑀𝐹 = 𝑆3(𝐹) ∪
(
𝐷2 × [−1, 1]

)
to be the manifold obtained by gluing 𝐷2 × [−1, 1] to 𝑆3 (𝐹) by a diffeomorphism

𝜕𝐷2 × [−1, 1] � 𝜕𝐹 × [−1, 1]

which preserves the interval coordinate. The boundary 𝜕𝑀𝐹 is a disjoint union of two tori,

𝑇± = (𝐹 × {±1}) ∪ (𝐷2 × {±1}).

Let 𝛼 be the properly embedded arc in 𝑀𝐹 given by

𝛼 = {0} × [−1, 1] ⊂ 𝐷2 × [−1, 1] .

Then (𝑀, 𝛾) = 𝑆3 (𝐹) is clearly recovered by removing the neighborhood

𝑁 (𝛼) = 𝐷2 × [−1, 1]

of 𝛼 from 𝑀𝐹 , with suture 𝑠(𝛾) given by the meridian

𝜇𝛼 = 𝜕𝐷2 × {0}

of the arc 𝛼.

As noted in §1.2, 𝑀𝐹 can also be described as the manifold obtained from the 0-surgery 𝑆3
0 (𝐾) by

removing a tubular neighborhood of the torus �̂� formed by capping off the Seifert surface F with a disk
in the solid surgery torus. This perspective shows the following:

Lemma 3.3. Let F be a genus-1 Seifert surface for a nontrivial knot 𝐾 ⊂ 𝑆3. Then the manifold 𝑀𝐹 is
irreducible, and the tori 𝑇+ and 𝑇− are incompressible.

Proof. [17, Corollary 8.2] says that 𝑆3
0 (𝐾) admits a taut foliation with �̂� a compact leaf. Cutting open

along this leaf then gives a taut foliation on 𝑀𝐹 for which 𝑇± are compact leaves, from which the lemma
follows. �

We end this section with the following lemma:

Lemma 3.4. Let F be a genus-1 Seifert surface for a nearly fibered knot 𝐾 ⊂ 𝑆3, and let

𝐴 ⊂ 𝑀𝐹

be the image of the annulus provided by Lemma 3.1 under the inclusion of 𝑆3(𝐹) into 𝑀𝐹 . Then the
boundary components

𝐴± = 𝜕𝐴 ∩ 𝑇±

are each homologically essential in their respective tori 𝑇±.
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Proof. Lemma 3.1 says that at least one of the boundary components of A, which we can take to be 𝐴+
without loss of generality, is not boundary-parallel in 𝑅+(𝛾), where

(𝑀, 𝛾) = 𝑆3 (𝐹).

Since 𝑅+(𝛾) is a once-punctured torus in the case at hand, and the torus 𝑇+ is obtained by capping off
𝑅+(𝛾) with a disk, it follows that 𝐴+ is homologically essential in 𝑇+.

It remains to show that 𝐴− is homologically essential in 𝑇−. If not, then this means that 𝐴− must be
boundary-parallel when viewed as a curve in the once-punctured torus 𝑅−(𝛾). In this case, 𝐴− bounds
the disk 𝐷 ⊂ 𝑇− which caps off 𝑅−(𝛾) to form 𝑇−. Then the union

𝐴 ∪ 𝐷

is a disk bounded by 𝑇+. Pushing this disk slightly into the interior of 𝑀𝐹 gives a compressing disk
for 𝑇+. But this contradicts the fact that 𝑇+ is incompressible, per Lemma 3.3. It follows that 𝐴− is
homologically essential in 𝑇−, completing the proof of the lemma. �

This lemma is notable in part for the following consequence, as mentioned in §1.2:

Remark 3.5. It follows from Lemma 3.4 that if F is a genus-1 Seifert surface for a nearly fibered knot,
then 𝑀𝐹 is the complement of a 2-component cable link in some 3-manifold, with

𝐴 ⊂ 𝑀𝐹

being the cabling annulus. Indeed, since the curves 𝐴± are homologically essential in 𝑇±, there are
curves 𝑐± ⊂ 𝑇± which are homologically dual to 𝐴±. Then 𝑀𝐹 is the complement

𝑀𝐹 � 𝑌 \ 𝑁 (𝐿),

where Y is the closed 3-manifold obtained by Dehn filling the tori 𝑇± along the curves 𝑐±, and L is
the 2-component link given by the union of the cores of the solid tori in this filling. Recall that our
eventual goal is to prove that 𝑀𝐹 is the complement of 2-component cables of the unknot or trefoils, per
Theorem 5.1.

Remark 3.6. As indicated in Lemma 3.4, we will henceforth view the annulus A of Lemma 3.1 as living
in 𝑆3 (𝐹) or 𝑀𝐹 interchangeably.

4. On the manifold 𝑴𝑭 and the arc 𝜶

Let 𝐾 ⊂ 𝑆3 be a nearly fibered knot, with a Seifert surface F of genus 1. Let

𝛼 ⊂ 𝑀𝐹

be the arc in Definition 3.2 whose complement recovers 𝑆3 (𝐹). Per Remark 3.5, 𝑀𝐹 is the complement
of a 2-component cable link, with cabling annulus

𝐴 ⊂ 𝑀𝐹

as provided in Lemma 3.4. By construction, 𝛼 is disjoint from A. Our goal in this section is to prove
that it can be isotoped to lie in this cabling annulus, however. This is a key step toward our eventual
classification of 𝑀𝐹 and thus 𝑆3 (𝐹) in the next section.

Proposition 4.1. Let F be a genus-1 Seifert surface for a nearly fibered knot 𝐾 ⊂ 𝑆3. Let

𝐴 ⊂ 𝑀𝐹
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Figure 2. Decomposing (𝑀𝐹 , 𝛾𝐹 ) along the annulus A to form (𝑀𝐴, 𝛾𝐴) and then removing the arc 𝛼
to obtain the sutured manifold (𝑀𝛼, 𝛾𝛼). The thick curves in the middle and right pictures indicate the
sutures for these manifolds; there are no sutures on the left because 𝐴(𝛾𝐹 ) is empty.

be the annulus provided by Lemma 3.4. Then the arc 𝛼 admits an isotopy, keeping 𝜕𝛼 in 𝜕𝑀𝐹 at all
times, which carries 𝛼 to a properly embedded arc in A.

Proposition 4.1 will follow from a combination of several lemmas in this section. To start, note that
we can view 𝑀𝐹 as a (non-balanced) sutured manifold (𝑀𝐹 , 𝛾𝐹 ), where 𝛾𝐹 = 𝐴(𝛾𝐹 ) �𝑇 (𝛾𝐹 ) is empty
and the two boundary tori 𝑇± are oriented so that

𝑅+(𝛾𝐹 ) = 𝑇+, 𝑅−(𝛾𝐹 ) = 𝑇−.

Choose an orientation for A and consider the sutured manifold decomposition

(𝑀𝐹 , 𝛾𝐹 )
𝐴
� (𝑀𝐴, 𝛾𝐴)

along A, illustrated in Figure 2. In particular,

(𝑀𝐴, 𝛾𝐴)

is a balanced sutured manifold with torus boundary, whose sutures 𝑠(𝛾𝐴) are the union of two oppositely
oriented curves of the same slope as the boundary components of A.

Since 𝛼 is disjoint from A in 𝑀𝐹 , we can also view 𝛼 as a properly embedded arc in 𝑀𝐴. From this
perspective, we then define the sutured arc complement

(𝑀𝛼, 𝛾𝛼) := (𝑀𝐴 \ 𝑁 (𝛼), 𝛾𝐴 ∪ 𝑁 (𝜇𝛼))

pictured on the right side in Figure 2, where

𝑁 (𝜇𝛼) := 𝑁 (𝛼) ∩ 𝜕𝑀𝛼

is a neighborhood in 𝜕𝑀𝛼 of the meridian 𝜇𝛼 of 𝛼.
Note that (𝑀𝛼, 𝛾𝛼) can alternatively be obtained from (𝑀, 𝛾) = 𝑆3 (𝐹) via sutured manifold decom-

position

𝑆3 (𝐹)
𝐴
� (𝑀𝛼, 𝛾𝛼) (4.1)

along the product annulus A (to be precise, the annulus whose image in 𝑀𝐹 is A), and the image of 𝛾
under this decomposition is 𝑁 (𝜇𝛼). It follows from Lemma 3.4 that at least one (in fact, both) of the
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boundary components of

𝐴 ⊂ 𝑆3(𝐹)

is homologically essential in 𝑅(𝛾). Moreover, we have by Alexander duality as in (3.1) that

𝐻2(𝑆
3 (𝐹)) � 0.

The product annulus decomposition in (4.1) therefore preserves sutured Floer homology,

SFH(𝑀𝛼, 𝛾𝛼) � SFH(𝑆3 (𝐹)) � Q2, (4.2)

by Theorem 2.4. Since 𝑆3 (𝐹) is taut, it follows that (𝑀𝛼, 𝛾𝛼) is taut as well (Remark 2.5).

Lemma 4.2. We have 𝐻2(𝑀𝛼; 𝑅) � 0 and 𝐻2 (𝑀𝐴; 𝑅) � 0 for any commutative ring R.

Proof. Forgetting about the sutures, note that the Seifert surface complement

𝑆3 (𝐹) � 𝑆3 \ int(𝐹 × [−1, 1])

can be recovered from 𝑀𝛼 by gluing a thickened annulus 𝑁 (𝐴′) along 𝛾𝐴 by a map which identifies
𝜕𝐴′ with 𝑠(𝛾𝐴). The Mayer–Vietoris sequence associated to the decomposition

𝑆3(𝐹) � 𝑀𝛼 ∪𝛾𝐴 𝑁 (𝐴′)

with coefficients in R (which we momentarily suppress for convenience) reads in part

𝐻2 (𝛾𝐴)︸��︷︷��︸
�0

→ 𝐻2(𝑀𝛼) ⊕ 𝐻2(𝑁 (𝐴
′))︸��������︷︷��������︸

�0

→ 𝐻2(𝑆
3 (𝐹))︸�������︷︷�������︸
�0

→ 𝐻1 (𝛾𝐴) → 𝐻1(𝑀𝛼) ⊕ 𝐻1 (𝑁 (𝐴
′)).

We have that

𝐻2 (𝑆
3(𝐹); 𝑅) � �̃�0 (𝐹; 𝑅) � 0,

by Alexander duality, so the leftmost portion of the sequence tells us that 𝐻2 (𝑀𝛼; 𝑅) � 0, proving the
first claim.

Moreover, the map 𝐻1(𝛾𝐴; 𝑅) → 𝐻1 (𝑁 (𝐴
′); 𝑅) sends the class [𝑠(𝛾𝐴)] to

[𝜕𝐴′] = 0 ∈ 𝐻1(𝑁 (𝐴
′); 𝑅).

Since the rightmost map in the sequence is injective, and

𝑟 · [𝑠(𝛾𝐴)] ≠ 0 ∈ 𝐻1 (𝛾𝐴; 𝑅) for all 𝑟 ∈ 𝑅 \ {0},

it follows that

𝑟 · [𝑠(𝛾𝐴)] ≠ 0 ∈ 𝐻1(𝑀𝛼; 𝑅) for all 𝑟 ∈ 𝑅 \ {0}.

Note that the meridian 𝜇𝛼 of 𝛼 and the sutures 𝑠(𝛾𝐴) cobound the pair of pants 𝑅+(𝛾𝛼) ⊂ 𝜕𝑀𝛼 . It
follows that

[𝜇𝛼] = ±[𝑠(𝛾𝐴)] ∈ 𝐻1 (𝑀𝛼; 𝑅),

and therefore that

𝑟 · [𝜇𝛼] ≠ 0 ∈ 𝐻1 (𝑀𝛼; 𝑅) for all 𝑟 ∈ 𝑅 \ {0}. (4.3)
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To prove the second claim, note that 𝑀𝐴 is recovered from 𝑀𝛼 by gluing back the neighborhood
𝑁 (𝛼) along the annular neighborhood 𝑁 (𝜇𝛼) of 𝜇𝛼,

𝑀𝐴 � 𝑀𝛼 ∪𝑁 (𝜇𝛼) 𝑁 (𝛼). (4.4)

Let us consider the Mayer–Vietoris sequence corresponding to this decomposition. Since

𝐻2(𝑀𝛼; 𝑅) � 𝐻2(𝑁 (𝛼); 𝑅) � 𝐻1(𝑁 (𝛼); 𝑅) � 0,

the portion of the sequence beginning at 𝐻2(𝑀𝛼; 𝑅) ⊕ 𝐻2(𝑁 (𝛼); 𝑅) has the form

0→ 𝐻2(𝑀𝐴; 𝑅) → 𝐻1 (𝑁 (𝜇𝛼); 𝑅)︸������������︷︷������������︸
�𝑅

→ 𝐻1 (𝑀𝛼; 𝑅),

with 𝐻1(𝑁 (𝜇𝛼); 𝑅) generated by the class [𝜇𝛼]. Then it follows from (4.3) that the rightmost map is
injective, and we conclude by exactness that 𝐻2 (𝑀𝐴; 𝑅) � 0, as desired. �

The next lemma provides the product annulus B mentioned in §1.2:

Lemma 4.3. There exists an essential product annulus 𝐵 ⊂ (𝑀𝛼, 𝛾𝛼).

Proof. We know that (𝑀𝛼, 𝛾𝛼) is a taut balanced sutured manifold, with 𝐻2(𝑀𝛼;Z) = 0 by Lemma
4.2, and its boundary 𝜕𝑀𝛼 is a connected genus-2 surface. Then

dim SFH(𝑀𝛼, 𝛾𝛼) = 2

by (4.2), so Theorem 2.6 provides the desired annulus. �

Given the product annulus B from Lemma 4.3, let us denote its boundary circles by

𝐵± = 𝜕𝐵 ∩ 𝑅±(𝛾𝛼).

Neither 𝐵+ nor 𝐵− bounds a disk in 𝑅(𝛾𝛼), since B is essential and hence incompressible. It follows that
𝐵+ and 𝐵− are each boundary-parallel curves in the pairs of pants 𝑅+(𝛾𝛼) and 𝑅−(𝛾𝛼), respectively. In
particular, 𝐵± are each isotopic in 𝜕𝑀𝛼 either to a component of 𝑠(𝛾𝐴) or to the meridian 𝜇𝛼 of 𝛼. We
rule out the latter possibility below:

Lemma 4.4. Neither 𝐵+ nor 𝐵− is isotopic in 𝜕𝑀𝛼 to the meridian 𝜇𝛼 of 𝛼.

Proof. Suppose that 𝐵+ is isotopic in 𝜕𝑀𝛼 to 𝜇𝛼 but 𝐵− is not. From the discussion above, 𝐵− must
then be isotopic in 𝜕𝑀𝛼 to a component of 𝑠(𝛾𝐴). Recall that 𝑀𝐴 is obtained from 𝑀𝛼 by gluing back a
thickened disk (namely, the neighborhood 𝑁 (𝛼)) along a neighborhood of the meridian 𝜇𝛼, as in (4.4).
It follows that under the inclusion

𝑀𝛼 ↩→ 𝑀𝐴,

the boundary component 𝐵+ of the annulus B gets capped off with a disk D, so that

𝐵 ∪ 𝐷 ⊂ 𝑀𝐴

is a disk bounded by the curve 𝐵− ⊂ 𝜕𝑀𝐴. This disk then gives rise under the inclusion

𝑀𝐴 ↩→ 𝑀𝐹

to a disk in 𝑀𝐹 bounded by the image

𝐵− ⊂ 𝑇− ⊂ 𝜕𝑀𝐹 .
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But 𝐵− is isotopic in 𝑇− to the boundary component 𝐴− of the annulus A, which by Lemma 3.4 is
homologically essential. The fact that this curve bounds a disk in 𝑀𝐹 then contradicts the fact that the
torus 𝑇− is incompressible, as shown in Lemma 3.3.

Swapping the roles of 𝐵+ and 𝐵− leads to the same contradiction, so let us now assume that the
curves 𝐵± are both are isotopic in 𝜕𝑀𝛼 to 𝜇𝛼. In this case, reversing the decompositions 𝑆3 (𝐾)

𝐹
�

𝑆3 (𝐹)
𝐴
� (𝑀𝛼, 𝛾𝛼), we can glue 𝐵+ to 𝐵− to turn the annulus B into a closed, embedded surface Σ𝐵 in

𝑆3 (𝐾) that meets F transversely in a single boundary-parallel curve. Then Σ𝐵 must be a torus, since if
it were a Klein bottle, it could not embed in 𝑆3 (𝐾) ⊂ 𝑆3; as a torus in 𝑆3, it must bound a solid torus
𝑉𝐵 on one side or the other.

If 𝑉𝐵 ⊂ 𝑆3 were contained in the knot complement 𝑆3(𝐾), then

𝑉𝐵 ∩ 𝐹 ⊂ 𝑉𝐵

would be a properly embedded, punctured torus (consisting of F minus a collar neighborhood of its
boundary) in the solid torus 𝑉𝐵; but then it must compress inside 𝑉𝐵 and hence in 𝑆3 (𝐾), contradicting
the incompressibility of F. Thus, 𝑉𝐵 must not lie entirely in 𝑆3(𝐾), and this means that it must contain
𝜕
(
𝑆3 (𝐾)

)
= 𝜕𝑁 (𝐾) as well as the knot K. We now argue exactly as in the proof of Lemma 3.1: the

torus 𝜕𝑉𝐵 = Σ𝐵 must be incompressible in 𝑆3 (𝐾), realizing K as a satellite knot, but then the annulus
𝐹 ∩𝑉𝐵 provides an isotopy from K to its companion knot, so the satellite pattern must have been trivial.
This means that Σ𝐵 = 𝜕𝑉𝐵 is boundary-parallel in 𝑆3(𝐾). Decomposing again along F and then A, we
conclude that our original annulus B must have been parallel to an annular neighborhood of 𝜇𝛼 in 𝜕𝑀𝛼.
But this contradicts the claim from Lemma 4.3 that B is essential, so we are done. �

The proof of Lemma 4.4 in the case where both of 𝐵± are isotopic to 𝜇𝛼 was substantially longer in
the original version of this paper; we thank one of the referees for providing the much simpler argument
used here.

Lemma 4.5. The annulus B separates 𝑀𝐴, and its oriented boundary meets the torus 𝜕𝑀𝐴 in a pair of
parallel but oppositely oriented essential curves.

Proof. Let us orient B as well as its boundary curves 𝐵+ and 𝐵− so that

𝜕𝐵 = 𝐵+ � −𝐵−.

Recall from Lemma 4.2 that 𝐻2(𝑀𝐴) = 0. Therefore, the long exact sequence of the pair (𝑀𝐴, 𝜕𝑀𝐴)

reads in part

0→ 𝐻2(𝑀𝐴, 𝜕𝑀𝐴)
𝜕∗
−→ 𝐻1 (𝜕𝑀𝐴) → 𝐻1 (𝑀𝐴).

If B is nonseparating in 𝑀𝐴, then it is nonzero in 𝐻2(𝑀𝐴, 𝜕𝑀𝐴). It then follows from the exact sequence
above that the class [𝜕𝐵] is nonzero in 𝐻1(𝜕𝑀𝐴), and hence that

[𝐵+] ≠ [𝐵−] ∈ 𝐻1(𝜕𝑀𝐴). (4.5)

Let us suppose for a contradiction that this is the case.
As discussed before Lemma 4.4, 𝐵+ and 𝐵− are each isotopic in 𝜕𝑀𝛼 either to components of the

sutures 𝑠(𝛾𝐴) or to a meridian of the arc 𝛼, as unoriented curves. We ruled out the latter possibility in
Lemma 4.4. Therefore, when viewed as curves in 𝜕𝑀𝐴, 𝐵± are each isotopic to components of 𝑠(𝛾𝐴)

(and are thus core circles of 𝑅±(𝛾𝐴)). In particular, 𝐵+ and 𝐵− are isotopic to one another as unoriented
curves in 𝜕𝑀𝐴. Given (4.5), it must therefore be the case that 𝐵+ and 𝐵− are parallel, oppositely oriented
curves in 𝜕𝑀𝐴.
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Figure 3. We decompose (𝑀𝐴, 𝛾𝐴) along B to obtain (𝑀2, 𝛾2) � (𝑀
′, 𝛾′). Removing 𝛼 and adding

a meridional suture produces (𝑀2, 𝛾2) � (𝑀3, 𝛾3), which is also the result of decomposing (𝑀𝛼, 𝛾𝛼)

along B.

Forgetting their orientation, these curves cobound an annulus in 𝜕𝑀𝐴, whose union with B is then a
Klein bottle

Σ ⊂ 𝑀𝐴.

Since 𝑀𝐴 is orientable, the Klein bottle Σ must be one-sided and in particular nonseparating. This
implies that the mod-2 intersection pairing

𝐻1(𝑀𝐴, 𝜕𝑀𝐴;Z/2Z) × 𝐻2(𝑀𝐴;Z/2Z) → Z/2Z

is nonzero. But this contradicts the fact that 𝐻2(𝑀𝐴;Z/2Z) = 0, by Lemma 4.2. Therefore, [𝐵+] = [𝐵−],
and then B has the desired properties. �

Lemma 4.6. The arc 𝛼 ⊂ 𝑀𝐴 can be isotoped rel endpoints so that it lies in 𝜕𝑀𝐴 and meets the sutures
𝑠(𝛾𝐴) transversely in a single point.

Proof. Lemma 4.5 implies that decomposing (𝑀𝛼, 𝛾𝛼) along the product annulus B produces a discon-
nected balanced sutured manifold

(𝑀𝛼, 𝛾𝛼)
𝐵
� (𝑀2, 𝛾2) � (𝑀3, 𝛾3),

where we have labeled the components so that (𝑀2, 𝛾2) has two sutures and (𝑀3, 𝛾3) has three, as
depicted in Figure 3.

Indeed, in 𝑀𝐴, the components of 𝜕𝐵 are core circles of the annuli 𝑅+(𝛾𝐴) and 𝑅−(𝛾𝐴), so decom-
posing (𝑀𝐴, 𝛾𝐴) along the separating B produces a disjoint union of two sutured manifolds, with two
sutures each,

(𝑀𝐴, 𝛾𝐴)
𝐵
� (𝑀2, 𝛾2) � (𝑀

′, 𝛾′).

One of these components is disjoint from the arc 𝛼, so we label it (𝑀2, 𝛾2). We then remove a tubular
neighborhood of 𝛼 from the other component (𝑀 ′, 𝛾′) and add a meridional suture 𝜇𝛼 to get (𝑀3, 𝛾3).

Since the components of 𝜕𝐵 are homologically essential in 𝑅(𝛾𝐴), we have that

SFH(𝑀𝛼, 𝛾𝛼) � SFH((𝑀2, 𝛾2) � (𝑀3, 𝛾3))

� SFH(𝑀2, 𝛾2) ⊗ SFH(𝑀3, 𝛾3),

by Theorem 2.4. Since the left side is 2-dimensional, per (4.2), it follows that

dim SFH(𝑀𝑖 , 𝛾𝑖) = 1
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Figure 4. Left, the product sutured manifold (𝑀 ′, 𝛾′), together with the arc 𝛼. Right, the same manifold
with 𝛼 isotoped into 𝜕𝑀 ′.

for some 𝑖 ∈ {2, 3}. Then Theorem 2.1 tells us that the corresponding (𝑀𝑖 , 𝛾𝑖) is a product sutured
manifold (note that (𝑀𝑖 , 𝛾𝑖) is taut since (𝑀𝛼, 𝛾𝛼) is taut, per Remark 2.5).

Suppose first that (𝑀2, 𝛾2) is a product sutured manifold. Since 𝜕𝑀2 is a torus and the sutures
𝑠(𝛾2) consist of two parallel essential curves on this torus, 𝑅+(𝛾2) is an annulus, and so there is a
homeomorphism

(𝑀2, 𝛾2) �
(
(𝑆1 × 𝐼) × [−1, 1], (𝑆1 × 𝜕𝐼) × [−1, 1]

)
.

But if this is the case, then B could have been isotoped onto the component of 𝛾𝛼 which became a
component of 𝛾2, by an isotopy keeping 𝜕𝐵 in 𝑅(𝛾𝛼) at all times. This contradicts the fact that B is
essential.

It follows that (𝑀3, 𝛾3) is a product sutured manifold. Since 𝑅+(𝛾3) is a pair of pants P, we have that

(𝑀3, 𝛾3) � (𝑃 × [−1, 1], 𝜕𝑃 × [−1, 1]).

One component of the sutures 𝑠(𝛾3) is a meridian 𝜇𝛼 of 𝛼, and (𝑀 ′, 𝛾′) is recovered by gluing back a
thickened disk 𝐷2 × 𝐼 along an annular neighborhood of this meridian. The meridian 𝜇𝛼 corresponds
to a certain boundary component of P. Letting

𝑆1 × [0, 1] = 𝑃 ∪ 𝐷2

be the annulus formed by capping off this boundary component with a disk, we then have the identification

(𝑀 ′, 𝛾′) �
(
(𝑆1 × [0, 1]) × [−1, 1], (𝑆1 × {0, 1}) × [−1, 1]

)
,

where the arc 𝛼 ⊂ 𝑀 ′ is given by

𝛼 = {pt} × [−1, 1] ⊂ 𝑀 ′

for some point

pt ∈ 𝐷2 ⊂ (𝑆1 × [0, 1]),

as depicted in Figure 4.
The portion of 𝜕𝑀 ′which came from the annulus B (i.e., which was in the interior of 𝑀𝐴) is contained

in a tubular neighborhood 𝑁 ⊂ 𝜕𝑀 ′ of one of the two components of 𝛾′ – let us say the component

(𝑆1 × {0}) × [−1, 1] .
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Figure 5. Viewing 𝑀𝐴 as a submanifold of 𝑀𝐹 , the arc 𝛼 ⊂ 𝜕𝑀𝐴 lies in a pushoff of the annulus A.
On the right, we see the region swept out by the isotopy of 𝛼 into A.

Since 𝛼 is disjoint from B, we can isotope this arc into 𝜕𝑀 ′ \ 𝑁 while keeping its endpoints fixed, so
that it meets the other component

(𝑆1 × {1}) × [−1, 1]

of 𝛾′ in an arc {pt} × [−1, 1], as indicated in Figure 4. Gluing (𝑀 ′, 𝛾′) and (𝑀2, 𝛾2) back together to
form (𝑀𝐴, 𝛾𝐴), this gives an isotopy in 𝑀𝐴 which fixes the endpoints of 𝛼 while carrying 𝛼 to an arc
in 𝜕𝑀𝐴 which meets the sutures 𝑠(𝛾𝐴) in one point. �

With Lemma 4.6 in hand, we may now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. Viewing 𝛼 as an arc in 𝑀𝐴, Lemma 4.6 says that we can isotope it rel its
endpoints to lie in 𝜕𝑀𝐴, so that it meets the sutures 𝑠(𝛾𝐴) transversely in a single point, as shown on
the left side of Figure 5.

Recall that 𝑀𝐴 was formed from 𝑀𝐹 by removing the interior of a tubular neighborhood 𝐴× [−1, 1],
where the original cabling annulus A is identified as 𝐴 × {0}. We can arrange the interval coordinate so
that 𝛼 ⊂ 𝐴 × {1}, and then the desired isotopy is simply 𝜙𝑡 (𝑥) = (𝑥, 1 − 𝑡) for 𝑥 ∈ 𝛼. �

5. Identifying the manifolds 𝑴𝑭 and 𝑺3(𝑭)

Let 𝐾 ⊂ 𝑆3 be nearly fibered, with a genus-1 Seifert surface F. According to Proposition 4.1, we can
assume that the arc

𝛼 ⊂ 𝑀𝐹

in Definition 3.2, whose complement recovers 𝑆3 (𝐹), lies in the annulus

𝐴 ⊂ 𝑀𝐹

of Lemma 3.4; moreover, Remark 3.5 says that A is a cabling annulus. In this section, we use these facts
to identify the manifold 𝑀𝐹 and hence the sutured Seifert surface complement 𝑆3 (𝐹). Specifically, we
prove the following:

Theorem 5.1. Let 𝐾 ⊂ 𝑆3 be a nearly fibered knot, with genus-1 Seifert surface F. Then, up to possibly
replacing K with its mirror, the manifold 𝑀𝐹 is the complement of either

1. the (2, 4)-cable of the unknot in 𝑆3, or
2. the (2, 4)-cable of the right-handed trefoil in 𝑆3.

In each case, the arc 𝛼 is a properly embedded arc in the cabling annulus.
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Figure 6. A schematic picture which shows that decomposing (𝑀𝐹 , 𝛾𝐹 ) along the cabling annulus A
is the same as first removing a neighborhood of 𝛼 ⊂ 𝐴 and then decomposing along the product disk D.

Proof. As defined in §4, the manifold (𝑀𝐴, 𝛾𝐴) is obtained from (𝑀𝐹 , 𝛾𝐹 ) by decomposing along the
cabling annulus A provided in Lemma 3.4,

(𝑀𝐹 , 𝛾𝐹 )
𝐴
� (𝑀𝐴, 𝛾𝐴).

Recall from Definition 3.2 that

(𝑀, 𝛾) = 𝑆3 (𝐹)

can be recovered from 𝑀𝐹 by removing a neighborhood 𝑁 (𝛼) of the arc 𝛼, where the suture 𝑠(𝛾) is
identified with a meridian 𝜇𝛼 of 𝛼. By Proposition 4.1, we can assume that 𝛼 ⊂ 𝐴. Therefore, when we
remove a neighborhood of 𝛼 from 𝑀𝐹 to form 𝑆3 (𝐹), what remains of the cabling annulus A is a product
disk 𝐷 ⊂ 𝑆3 (𝐹). Thus, (𝑀𝐴, 𝛾𝐴) can alternatively be obtained via the product disk decomposition

𝑆3 (𝐹)
𝐷
� (𝑀𝐴, 𝛾𝐴),

as indicated in Figure 6.
This shows in particular that 𝑀𝐴 is a subset of 𝑆3, as

𝑀𝐴 ⊂ 𝑆3 (𝐹) ⊂ 𝑆3.

Since 𝑀𝐴 has torus boundary, it follows that 𝑀𝐴 can be identified with the complement of a knot 𝐶 ⊂ 𝑆3

and moreover that we have an identification of sutured manifolds,

(𝑀𝐴, 𝛾𝐴) � (𝑆3 \ 𝑁 (𝐶), 𝛾𝑟 ),

where the sutures 𝑠(𝛾𝑟 ) are a union of two parallel oppositely oriented curves of slope r, with respect
to the Seifert framing of C. Furthermore, we have

SFH(𝑆3 \ 𝑁 (𝐶), 𝛾𝑟 ) � SFH(𝑆3 (𝐹)) � Q2, (5.1)

by Theorem 2.3. It remains to determine the slope r and the knot C.
Suppose first that 𝑟 = 0. Then C is the unknot because otherwise, we would have

dim SFH(𝑆3 \ 𝑁 (𝐶), 𝛾0) ≥ 4,

by Proposition 2.7, contradicting (5.1). But then 𝑀𝐹 is the complement of the (2, 0)-cable of the unknot
in 𝑆3, which contradicts the fact in Lemma 3.3 that 𝑀𝐹 is irreducible.
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The above argument shows that 𝑟 ≠ 0. Note that we can identify (𝑆3 \ 𝑁 (𝐶), 𝛾𝑟 ) as the sutured
complement of the core 𝐶 ′ ⊂ 𝑆3

𝑟 (𝐶) of r-surgery on C, whose sutures are a union of two oppositely
oriented meridians of 𝐶 ′. With this in mind, equation (2.1) becomes

�HFK (𝑆3
𝑟 (𝐶), 𝐶

′) � SFH(𝑆3
𝑟 (𝐶) (𝐶

′))

� SFH(𝑆3 \ 𝑁 (𝐶), 𝛾𝑟 ) � Q2.

Since 𝑟 ≠ 0, the core 𝐶 ′ is rationally nullhomologous in 𝑆3
𝑟 (𝐶). It follows that there is a spectral sequence

Q2 � �HFK (𝑆3
𝑟 (𝐶), 𝐶

′) =⇒ ĤF(𝑆3
𝑟 (𝐶))

leading to the chain of inequalities

1 ≤ |𝐻1 (𝑆
3
𝑟 (𝐶);Z) | ≤ dim ĤF(𝑆3

𝑟 (𝐶))

≤ dim �HFK (𝑆3
𝑟 (𝐶), 𝐶

′) = 2.

We conclude that

dim ĤF(𝑆3
𝑟 (𝐶)) = 2, (5.2)

as this dimension has the same parity as

dim �HFK (𝑆3
𝑟 (𝐶), 𝐶

′) = 2.

It also has the same parity as

𝜒
(
ĤF(𝑆3

𝑟 (𝐶))
)
= |𝐻1 (𝑆

3
𝑟 (𝐶);Z) |,

which then implies that

|𝐻1 (𝑆
3
𝑟 (𝐶);Z) | = 2. (5.3)

Combining (5.2) and (5.3), we have shown that 𝑆3
𝑟 (𝐶) is an L-space. Moreover, if 𝑟 = 𝑝/𝑞 with 𝑞 ≥ 0

and gcd(𝑝, 𝑞) = 1, then |𝑝 | = 2.
We now recall from [54, Proposition 9.6] (see [27, §2] for details) that if 𝐶 ⊂ 𝑆3 is a nontrivial knot,

then r-surgery on C can only be an L-space if

|𝑟 | ≥ 2𝑔(𝐶) − 1.

Moreover, if we also have that 𝑟 > 0, then C must additionally be fibered [18, 44] and strongly
quasipositive [24]. Note that when C is knotted, we have that

0 < |𝑟 | < 1 ≤ 2𝑔(𝐶) − 1

for slopes 𝑟 = ±2/𝑞 unless 𝑞 = 1, so there are three cases to consider:

1. C is an unknot and 𝑟 = 2/𝑞 for some odd 𝑞 ∈ Z.
2. C is knotted and 𝑟 = 2. Then 𝑆3

2 (𝐶) is an L-space, so 𝑔(𝐶) = 1. Then C must be the right-handed
trefoil since this is the only genus-1, fibered, strongly quasipositive knot in the 3-sphere.

3. C is knotted and 𝑟 = −2. Then 𝑆3
−2(𝐶) is an L-space, so again, 𝑔(𝐶) ≤ 1. But now C must be the left-

handed trefoil since its mirror 𝐶 admits a positive L-space surgery and is therefore the right-handed
trefoil, as discussed above.
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In case (1), it follows that

(𝑀𝐴, 𝛾𝐴) � (𝑆3 \ 𝑁 (𝑈), 𝛾2),

since any two choices of 𝛾2/𝑞 are related by a homeomorphism of the solid torus 𝑆3\𝑁 (𝑈). We conclude
that

𝑀𝐹 � 𝑆3 \ 𝑁 (𝐶2,4 (𝑈)) � 𝑆3 \ 𝑁 (𝑇2,4).

Similarly, in case (2), we have that

(𝑀𝐴, 𝛾𝐴) � (𝑆3 \ 𝑁 (𝑇2,3), 𝛾2)

and therefore conclude that

𝑀𝐹 � 𝑆3 \ 𝑁 (𝐶2,4 (𝑇2,3)).

This leaves only case (3), in which

(𝑀𝐴, 𝛾𝐴) � (𝑆3 \ 𝑁 (𝑇−2,3), 𝛾−2).

Then we have

𝑀𝐹 � 𝑆3 \ 𝑁 (𝐶2,−4 (𝑇−2,3))

� −
(
𝑆3 \ 𝑁 (𝐶2,4 (𝑇2,3))

)
.

But in this case, we can replace K with its mirror 𝐾 , and doing so replaces 𝑀𝐹 with −𝑀𝐹 . So again,
case (2) applies here, and we are done. �

6. The (2, 4)-cable of the unknot

In this lengthy section, we determine all knots 𝐾 ⊂ 𝑆3 which arise from the first case of Theorem 5.1,
in which 𝑀𝐹 is the complement of the (2, 4)-cable of the unknot. Our goal is to prove the following:

Theorem 6.1. Let 𝐾 ⊂ 𝑆3 be a nearly fibered knot with genus-1 Seifert surface F, and suppose that

𝑀𝐹 � 𝑆3 \ 𝑁 (𝑇2,4).

Then K is one of the knots

52, 15𝑛43522, or 𝑃(−3, 3, 2𝑛 + 1) (𝑛 ∈ Z)

or their mirrors.

The key observation is that under the hypotheses of Theorem 6.1, 𝑀𝐹 admits an involution which
is rotation by 180◦ about an axis of symmetry containing the arc 𝛼 ⊂ 𝑀𝐹 . This then gives rise to an
involution 𝜄 of the sutured Seifert surface complement

(𝑀, 𝛾) = 𝑆3 (𝐹)

obtained by removing a neighborhood of 𝛼 from 𝑀𝐹 , where 𝑠(𝛾) is identified with a meridian 𝜇𝛼 of 𝛼.
This involution is depicted on the left side of Figure 7, while the right side illustrates the quotient

𝑆3(𝐹)/𝜄,

https://doi.org/10.1017/fmp.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.28


26 J. A. Baldwin and S. Sivek

Figure 7. Taking the quotient of 𝑆3(𝐹) � 𝑀𝐹 \ 𝑁 (𝛼) by an involution 𝜄 in the case where 𝑀𝐹 �
𝑆3 \ 𝑁 (𝑇2,4). On the left, 𝑆3(𝐹) is the complement in 𝑆3 of the white region, the involution is rotation
by 180◦ about the horizontal axis (in blue), and the meridian of 𝛼 (in red) is isotopic in 𝑆3(𝐹) to a
pushoff of K. The quotient (right) is a 3-ball, viewed as the complement in 𝑆3 of the white region; when
we isotope this white region to become a standard 𝐷2 × [−1, 1], the branch locus is carried along to
become the tangle 𝜏.

which is a sutured 3-ball with connected suture. As suggested by the figure, it is natural to identify this
quotient 3-ball with the complement of a thickened disk in 𝑆3,

𝑆3(𝐹)/𝜄 � 𝑆3 (𝐷2) = (𝑆3 \ int(𝐷2 × [−1, 1]), 𝜕𝐷2 × [−1, 1]),

and the quotient map realizes 𝑆3(𝐹) as the branched double cover of this ball along a tangle 𝜏 ⊂ 𝑆3 (𝐷2),
as shown in Figure 7.

Now, under the identification

𝛾 = 𝜕𝐹 × [−1, 1],

we can assume that 𝜄 restricts on each 𝜕𝐹 × {𝑡} ⊂ 𝛾 to a rotation of 𝜕𝐹 which is independent of t. Recall
that 𝑆3 is recovered by gluing 𝐹 × [−1, 1] back into

𝑆3(𝐹) = 𝑆3 \ int(𝐹 × [−1, 1])

by a map which in particular identifies

𝜕𝐹 × [−1, 1] � 𝛾
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via the identity. Any such gluing map

𝜑 : 𝜕 (𝐹 × [−1, 1]) → 𝜕𝑆3(𝐹)

is then determined by its restrictions to the once-punctured tori

𝜑+ : 𝐹 × {+1} → 𝑅+(𝛾),

𝜑− : 𝐹 × {−1} → 𝑅−(𝛾).

Note that 𝜄 restricts to a hyperelliptic involution on each of the once-punctured tori,

𝑅±(𝛾) ⊂ 𝜕𝑆3(𝐹).

Pulling back the involution 𝜄 via the maps 𝜑± then induces hyperelliptic involutions

𝜄± : 𝐹 × {±1} → 𝐹 × {±1}

which agree on the boundary under the canonical identification of these two surfaces. Since once-
punctured tori admit unique hyperelliptic involutions up to isotopy, we can extend 𝜄± to all of 𝐹× [−1, 1]
by a map restricting to a hyperelliptic involution on each 𝐹 × {𝑡}.

In summary, we have shown that 𝜄 extends to an involution 𝜄 of the glued manifold

𝑌𝜑 = 𝑆3(𝐹) ∪𝜑 (𝐹 × [−1, 1]),

whose restriction to the piece 𝐹 × [−1, 1] is a hyperelliptic involution on each 𝐹 ×{𝑡}. The quotient map

𝑌𝜑 → 𝑌𝜑/𝜄

therefore restricts on this piece to a branched double covering

𝐹 × [−1, 1] → 𝐷2 × [−1, 1]

along some 3-braid

𝛽 ⊂ 𝐷2 × [−1, 1] .

It follows that 𝑌𝜑 is the branched double cover of

𝑆3 (𝐷2) ∪ (𝐷2 × [−1, 1]) � 𝑆3

along the link 𝜏 ∪ 𝛽. Moreover, K is the lift 𝜅 of the braid axis

𝜅 = 𝜕𝐷2 × {0} = 𝑠(𝛾)/𝜄

of 𝛽 in this double cover. Since 𝑌𝜑 � 𝑆3 if and only if 𝜏 ∪ 𝛽 is an unknot, we conclude the following:

Lemma 6.2. Suppose that 𝐾 ⊂ 𝑆3 is a nearly fibered knot with genus-1 Seifert surface F and that

𝑀𝐹 � 𝑆3 \ 𝑁 (𝑇2,4).

Then there is a 3-braid 𝛽 ∈ 𝐵3 such that 𝜏 ∪ 𝛽 is an unknot in 𝑆3, and such that the lift

𝜅 ⊂ Σ2(𝜏 ∪ 𝛽) � 𝑆3

of 𝜅 is isotopic to K.
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Figure 8. An isotopy of the unknot 𝑈 = 𝜏 ∪ 𝛽 in the complement of 𝜅.

Figure 9. An isotopy takes the tangle 𝜏 ∪ (𝑚(𝛽)𝑦) to the mirror of the tangle 𝜏 ∪ 𝛽.

Figure 8 shows an isotopy of the unknot 𝑈 = 𝜏 ∪ 𝛽 into a simpler form, which we will use in the
subsections below.

In the sequel, we will often write 𝐾 = 𝐾𝛽 when K arises from a given braid 𝛽 ∈ 𝐵3 in the sense of
Lemma 6.2. We write each 3-braid as a word in

𝑥 = and 𝑦 =

where x and y denote positive crossings between the top two strands and the bottom two strands,
respectively. The following observations will help simplify our analysis in the following subsections.

Lemma 6.3. Let 𝑟 : 𝐵3 → 𝐵3 be the map which reverses a braid word, defined recursively by

𝑟 (1) = 1 and 𝑟 (𝑔𝑤) = 𝑟 (𝑤)𝑔

for any 𝑔 ∈ {𝑥±1, 𝑦±1}. If 𝛽 is a 3-braid for which 𝜏 ∪ 𝛽 is unknotted, then 𝜏 ∪ 𝑟 (𝛽) is also unknotted
and 𝐾𝛽 � 𝐾𝑟 (𝛽) .

Proof. We can rotate the diagram of the unknot 𝑈 = 𝜏 ∪ 𝛽 on the right side of Figure 8 about a vertical
axis, and this preserves the tangle 𝜏 and the linked curve 𝜅 while replacing the braid 𝛽 with its reverse
𝑟 (𝛽). It follows that 𝜏 ∪ 𝑟 (𝛽) is also unknotted, since it is isotopic to the unknot U. This isotopy also
carries 𝜅 to itself, so up to isotopy, 𝜅 must lift to both 𝐾𝛽 and 𝐾𝑟 (𝛽) in the branched double cover of U;
hence, 𝐾𝛽 � 𝐾𝑟 (𝛽) . �

Lemma 6.4. Let 𝑚 : 𝐵3 → 𝐵3 be the map which mirrors a braid word, defined recursively by

𝑚(1) = 1 and 𝑚(𝑔𝑤) = 𝑔−1𝑚(𝑤)

for any 𝑔 ∈ {𝑥±1, 𝑦±1}. If 𝛽 is a 3-braid for which 𝜏∪ 𝛽 is unknotted, then 𝜏∪
(
𝑚(𝛽)𝑦

)
is also unknotted,

and 𝐾𝑚(𝛽)𝑦 is the mirror of 𝐾𝛽 .

Proof. In Figure 9, we perform an isotopy of 𝑈 = 𝜏 ∪
(
𝑚(𝛽)𝑦

)
in the complement of 𝜅, and we quickly

find ourselves with a mirror image (reflecting across the plane of the page) of the diagram used to
recover 𝐾𝛽 . Thus, if 𝜏 ∪ 𝛽 is unknotted, then so is 𝜏 ∪

(
𝑚(𝛽)𝑦

)
, and the unknot 𝜅 for 𝜏 ∪

(
𝑚(𝛽)𝑦

)
lifts

to the mirror of the lift 𝐾𝛽 of the corresponding knot in the 𝜏 ∪ 𝛽 diagram. �
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Figure 10. Resolving the topmost crossing in the clasp of 𝑈 = 𝜏 ∪ 𝛽 in several different ways.

We remark that the mirror of 𝛽 is equal to the reverse of 𝛽−1 (i.e., 𝑚(𝛽) = 𝑟 (𝛽−1)).

Lemma 6.5. If 𝛽 ∈ 𝐵3 produces an unknot 𝑈 = 𝜏∪𝛽, then so does 𝑦𝑎𝛽𝑦−𝑎 for any 𝑎 ∈ Z, and moreover,
𝐾𝑦𝑎𝛽𝑦−𝑎 � 𝐾𝛽 .

Proof. It is straightforward to see that 𝜏 ∪ (𝑦𝛽𝑦−1) is isotopic to 𝜏 ∪ 𝛽 in the complement of 𝜅, so the
lemma follows by induction on a. �

We now outline the proof of Theorem 6.1.

Proof of Theorem 6.1. By Lemma 6.2, it suffices to classify the braids 𝛽 ∈ 𝐵3 such that 𝑈 = 𝜏 ∪ 𝛽 is
unknotted and to determine 𝐾 = 𝐾𝛽 for each of them.

Supposing that U is an unknot, in Subsection 6.1, we will identify an arc (see Figure 10) that lifts to
a knot 𝛾 in the branched double cover Σ2(𝑈) � 𝑆3. We will argue via the cyclic surgery theorem [12]
that 𝛾 must be an unknot or a torus knot, and we will study various surgeries on 𝛾 which must be lens
spaces or connected sums of lens spaces. In Subsections 6.2 and 6.3, we will study the cases 𝛾 � 𝑈 and
𝛾 � 𝑇𝑝,𝑞 separately, proving in Propositions 6.12 and 6.13 that 𝛽 must be one of

𝑥−1, 𝑥𝑦, or 𝑥𝑛𝑦−1𝑥𝑦 (𝑛 ∈ Z)

or

𝑥3𝑦−1𝑥2𝑦 or 𝑥−3𝑦𝑥−2,

respectively, up to reversal and conjugation by powers of y. Lemmas 6.3 and 6.5 tell us that it is enough
to consider these particular braids.

After classifying these braids, we devote Subsection 6.4 to determining the knot 𝐾𝛽 for each of

𝛽 = 𝑥−1, 𝑥𝑛𝑦−1𝑥𝑦, or 𝑥3𝑦−1𝑥2𝑦.

These cases occupy Propositions 6.21, 6.22 and 6.23, respectively, and they recover the knots 52,
𝑃(−3, 3, 2𝑛 + 1) and 15𝑛43522. The only remaining braids are

𝛽 = 𝑥𝑦 = 𝑚(𝑥−1)𝑦

and

𝛽 = 𝑥−3𝑦𝑥−2 = 𝑚(𝑥3𝑦−1𝑥2𝑦)𝑦,

but then Lemma 6.4 says that the corresponding 𝐾𝛽 are the mirrors of knots which we already found,
so the proof is complete. �
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The remainder of this lengthy section is devoted to proving the results cited in the proof of
Theorem 6.1.

6.1. Resolutions and the 3-braid 𝜷

In Figure 10, we take a fixed crossing (indicated by a dashed arc) of the unknot diagram from Figure 8
and modify it in several ways, changing the crossing to produce a new knot 𝐿𝛽 and also resolving the
crossing in two different ways to produce the links 𝐿

𝛽
0 and 𝐿

𝛽
1 . It is clear from the diagrams that 𝐿𝛽 is a

two-bridge knot and that 𝐿
𝛽
0 � 𝛽 and 𝐿

𝛽
1 �

�𝛽𝑦−1 are both closures of 3-braids.
The dashed arc on the left side of Figure 10 lifts to a simple closed curve 𝛾 in the branched double

cover Σ2 (𝑈) � 𝑆3. Then the Montesinos trick [40] says that Σ2 (𝐿
𝛽) can be realized as a half-integral

surgery on 𝛾:

Σ2(𝐿
𝛽) � 𝑆3

(2𝑛+1)/2(𝛾) for some 𝑛 ∈ Z. (6.1)

(Indeed, the branch loci U and 𝐿𝛽 agree outside a neighborhood of the indicated arc, so Σ2(𝐿
𝛽) and

Σ2 (𝑈) agree outside the branched double cover of that neighborhood, which in either case is a solid
torus. This says that Σ2(𝛽) comes from some surgery on 𝛾 in Σ2(𝑈) � 𝑆3, and then it must be half-
integral because the peripheral curves in 𝑆3 \ 𝑁 (𝛾) whose fillings produce Σ2 (𝑈) and Σ2(𝐿

𝛽) have
distance two in 𝜕𝑁 (𝛾).) Similarly, the 0- and 1-resolutions of that crossing correspond to consecutive
integral surgeries on 𝛾, which are each distance-1 from the 2𝑛+1

2 -surgery corresponding to the crossing
change: that is,

Σ2 (𝐿
𝛽
0 ) � 𝑆3

𝑛 (𝛾), Σ2(𝐿
𝛽
1 ) � 𝑆3

𝑛+1 (𝛾). (6.2)

To see that Σ2(𝐿
𝛽
0 ) and Σ2(𝐿

𝛽
1 ) are homeomorphic to 𝑆3

𝑛 (𝛾) and 𝑆3
𝑛+1 (𝛾), respectively, and not vice

versa, we note that the ordered triple (Σ2 (𝐿
𝛽),Σ2(𝐿

𝛽
1 ),Σ2(𝐿

𝛽
0 )) forms a surgery triad [52, Proposition

2.1], meaning that these three manifolds are all Dehn fillings of 𝑆3 \ 𝑁 (𝛾) along oriented curves
𝛼, 𝛼1, 𝛼0 ⊂ 𝜕𝑁 (𝛾) such that

𝛼 · 𝛼1 = 𝛼1 · 𝛼0 = 𝛼0 · 𝛼 = −1. (6.3)

(Note that following [52, Figure 1], their ‘𝐿0’ and ‘𝐿1’ are our 𝐿
𝛽
1 and 𝐿

𝛽
0 .) Up to reversing the orientation

of all three curves simultaneously, we can assume that 𝛼 = (2𝑛+1)𝜇+2𝜆, where 𝜇 and 𝜆 are a meridian
and longitude of 𝛾 and 𝜕𝑁 (𝛾) is oriented so that 𝜇 · 𝜆 = −1, and then there is no way to choose signs
for 𝛼1 = ±(𝑛𝜇 + 𝜆) and 𝛼0 = ±((𝑛 + 1)𝜇 + 𝜆) so that (6.3) is satisfied. However,

(𝛼, 𝛼1, 𝛼0) =
(
(2𝑛 + 1)𝜇 + 2𝜆,−(𝑛 + 1)𝜇 − 𝜆,−𝑛𝜇 − 𝜆

)
does satisfy (6.3), so Σ2(𝐿

𝛽
0 ) and Σ2(𝐿

𝛽
1 ) must correspond to n- and (𝑛 + 1)-surgeries in that order as

claimed.
From this discussion, we immediately deduce the following.

Lemma 6.6. The knot 𝛾 ⊂ Σ2(𝑈) � 𝑆3 is either an unknot or a nontrivial torus knot.

Proof. Since 𝐿𝛽 is a 2-bridge knot, we know that Σ2(𝐿
𝛽) is a lens space. But the cyclic surgery theorem

[12] says that a non-integral surgery on 𝛾 ⊂ 𝑆3 can only produce a lens space if 𝛾 is an unknot or a
nontrivial torus knot 𝑇𝑝,𝑞 . �

We will handle each of the two possible outcomes of Lemma 6.6 separately in the following subsec-
tions. The remainder of this subsection is devoted to some computations that will prove useful in that
work.
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Figure 11. A genus-1 Heegaard splitting of Σ2 (𝐿
𝛽).

Figure 12. Lifting arcs 𝛼𝑥 and 𝛼𝑦 in a 3-ball to closed curves 𝑐𝑥 and 𝑐𝑦 in a solid torus, viewed as its
branched double cover over a pair of properly embedded arcs.

To set the stage, we cut the given 2-bridge diagram of 𝐿𝛽 along a pair of vertical lines passing just
by 𝛽 on either side. Taking the double cover branched over each piece of 𝐿𝛽 in turn gives a genus-1
Heegaard splitting of Σ2(𝐿

𝛽), illustrated in Figure 11.
The solid tori 𝑆1×𝐷2 on either side of this splitting would be glued together to form 𝑆1×𝑆2 if the braid

𝛽 were trivial. But in general, the effect of gluing the middle 𝑇2 × 𝐼 to either 𝑆1 ×𝐷2 is to reparametrize
its boundary: the braid generators x and y act as positive Dehn twists along essential curves in 𝑆1 × 𝑆1,
which we have labeled 𝑐𝑥 and 𝑐𝑦 and oriented in Figure 12. Gluing after this reparametrization produces
the desired Heegaard splitting of Σ2(𝐿

𝛽).
The braid generators x and y act on the homology of the leftmost 𝑆1 × 𝐷2 by

[𝑐𝑥] · 𝑥 = [𝜏𝑐𝑥 (𝑐𝑥)] = [𝑐𝑥], [𝑐𝑥] · 𝑦 = [𝜏𝑐𝑦 (𝑐𝑥)] = [𝑐𝑥] + [𝑐𝑦],

[𝑐𝑦] · 𝑥 = [𝜏𝑐𝑥 (𝑐𝑦)] = [𝑐𝑦] − [𝑐𝑥], [𝑐𝑦] · 𝑦 = [𝜏𝑐𝑦 (𝑐𝑦)] = [𝑐𝑦] .

Equivalently, we can view them as fixing that 𝑆1×𝐷2, but acting on the rightmost 𝑆1×𝐷2 by the inverse
of the above action:

𝑥 · [𝑐𝑥] = [𝜏𝑐𝑥 (𝑐𝑥)] = [𝑐𝑥], 𝑦 · [𝑐𝑥] = [𝜏𝑐𝑦 (𝑐𝑥)] = [𝑐𝑥] − [𝑐𝑦],

𝑥 · [𝑐𝑦] = [𝜏𝑐𝑥 (𝑐𝑦)] = [𝑐𝑥] + [𝑐𝑦], 𝑦 · [𝑐𝑦] = [𝜏𝑐𝑦 (𝑐𝑦)] = [𝑐𝑦] .

Thus, if we fix the ordered basis ([𝑐𝑥], [𝑐𝑦]), then the (left) action of 𝐵3 on the rightmost 𝐻1(𝜕 (𝑆
1 ×

𝐷2)) � Z2 is given by a homomorphism

𝜌 : 𝐵3 → 𝑆𝐿2 (Z)

defined by

𝜌(𝑥) =

(
1 1
0 1

)
, 𝜌(𝑦) =

(
1 0
−1 1

)
. (6.4)

One can verify that this is well-defined since 𝜌(𝑥𝑦𝑥) = 𝜌(𝑦𝑥𝑦) =
( 0 1
−1 0

)
, and that 𝜌(Δ2) = −𝐼, where

Δ2 = (𝑥𝑦𝑥)2 = (𝑥𝑦)3 is the full twist which generates the center of 𝐵3.
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Lemma 6.7. The kernel of 𝜌 is generated by Δ4.
Proof. If 𝑤 ∈ 𝐵3 satisfies 𝜌(𝑤) = 𝐼, then the same is true for every conjugate of w, and Murasugi [42]
showed that w is conjugate to one of
1. Δ2𝑑𝑥𝑦−𝑎1𝑥𝑦−𝑎2 · · · 𝑥𝑦−𝑎𝑛 , where all 𝑎𝑖 are nonnegative and at least one is positive;
2. Δ2𝑑𝑦𝑚 for some 𝑚 ∈ Z; or
3. Δ2𝑑𝑥𝑚𝑦−1 where 𝑚 = −1,−2,−3.
In the second and third cases, we compute that

𝜌(Δ2𝑑𝑦𝑚) = (−1)𝑑
(

1 0
−𝑚 1

)
and 𝜌(Δ2𝑑𝑥𝑚𝑦−1) = (−1)𝑑

(
𝑚 + 1 𝑚

1 1

)
,

so the only such braids in the kernel are Δ4𝑑 = Δ2·2𝑑𝑦0. For the first case, we have

𝜌(𝑥𝑦−𝑎1 · · · 𝑥𝑦−𝑎𝑛 ) =

(
𝑎1 + 1 1
𝑎1 1

)
· · ·

(
𝑎𝑛 + 1 1
𝑎𝑛 1

)
,

and a straightforward induction on 𝑛 ≥ 1 shows that its entries are nonnegative integers and that the top
right entry is strictly positive. In particular, it cannot be ±𝐼 since it is not diagonal, so

𝜌(Δ2𝑑𝑥𝑦−𝑎1 · · · 𝑥𝑦−𝑎𝑛 ) = (−1)𝑑𝜌(𝑥𝑦−𝑎1 · · · 𝑥𝑦−𝑎𝑛 )

is not the identity either. We conclude that 𝜌(𝑤) = 𝐼 if and only if w is conjugate to some power of Δ4,
and then it must actually be that power of Δ4 since Δ2 is central. �

Lemma 6.8. If the representation (6.4) satisfies

𝜌(𝛽) =

(
𝑎 𝑏
𝑐 𝑑

)
,

then we have Σ2(𝐿
𝛽) � 𝑆3

𝑏/𝑑
(𝑈).

Proof. The curve 𝑐𝑦 bounds a disk in the rightmost 𝑆1×𝐷2 of Figure 11, so then 𝛽 · [𝑐𝑦] = 𝑏[𝑐𝑥]+𝑑 [𝑐𝑦]
bounds a disk in the rightmost (𝑇2 × 𝐼) ∪ (𝑆1 × 𝐷2). Thus, we can obtain the branched double cover
of 𝐿𝛽 by Dehn filling the leftmost 𝑆1 × 𝐷2 along 𝑏[𝑐𝑥] + 𝑑 [𝑐𝑦]. Thinking of the left 𝑆1 × 𝐷2 as the
complement of an unknot in 𝑆3, the oriented curves 𝑐𝑥 and 𝑐𝑦 correspond to a meridian and longitude
of that unknot, respectively, so this amounts to a Dehn filling of slope 𝑏

𝑑 . �

Lemma 6.9. We have tr 𝜌(𝛽) = 2 ± |𝐻1 (Σ2(𝐿
𝛽
0 );Z) |, where we define |𝐻1 | = 0 if 𝐻1 is infinite.

Proof. Inspecting the diagram for 𝐿
𝛽
0 � 𝛽 in Figure 10, we see that its branched double cover admits an

open book decomposition whose binding is the lift of the braid axis; the pages are punctured tori (i.e.,
the double cover of a disk with three branch points), and the monodromy acts on the homology of the
pages by 𝜌(𝛽). It follows that

𝐻1 (Σ2(𝐿
𝛽
0 );Z) � coker(𝜌(𝛽) − 𝐼 : Z2 → Z2).

Thus, if this order is finite, then it equals |det(𝜌(𝛽) − 𝐼) |, and otherwise, det(𝜌(𝛽) − 𝐼) = 0. Writing
𝜌(𝛽) =

(
𝑎 𝑏
𝑐 𝑑

)
with 𝑎𝑑 − 𝑏𝑐 = 1, we compute this order up to sign as

det(𝜌(𝛽) − 𝐼) = det
(
𝑎 − 1 𝑏

𝑐 𝑑 − 1

)
= (𝑎 − 1) (𝑑 − 1) − 𝑏𝑐 = (𝑎𝑑 − 𝑏𝑐) − (𝑎 + 𝑑) + 1,

which is equal to 2 − tr(𝜌(𝛽)), so tr(𝜌(𝛽)) = 2 ± |𝐻1 (Σ2(𝐿
𝛽
0 )) |, as claimed. �
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According to (6.1) and (6.2), we have some 𝑛 ∈ Z such that

Σ2 (𝐿
𝛽) � 𝑆3

(2𝑛+1)/2 (𝛾) and Σ2(𝐿
𝛽
0 ) � 𝑆3

𝑛 (𝛾),

so |𝐻1 (Σ2(𝐿
𝛽
0 )) | = |𝑛|, and we can write the conclusion of Lemma 6.9 more simply as

tr 𝜌(𝛽) = 2 ± 𝑛.

Lemma 6.10. Let 𝛽 be a 3-braid such that the link 𝐿𝛽 of Figure 10 satisfies

Σ2(𝐿
𝛽) � 𝑆3

𝑝/𝑞 (𝑈), 0 < 𝑞 ≤ 𝑝.

Let 𝑞 be any integer with 𝑞 · 𝑞 ≡ 1 (mod 𝑝), and write

𝑞 · 𝑞 = 𝑟 𝑝 + 1

for some 𝑟 ∈ Z. Then either

𝜌(𝛽) = (−1)𝑒
(
1 0
𝑘 1

) (
𝑞 𝑝
𝑟 𝑞

) (
1 0
ℓ 1

)
= 𝜌(Δ4𝑑+2𝑒𝑦−𝑘 )

(
𝑞 𝑝
𝑟 𝑞

)
𝜌(𝑦−ℓ) (6.5)

or

𝜌(𝛽) = (−1)𝑒
(
1 0
𝑘 1

) (
𝑞 𝑝
𝑟 𝑞

) (
1 0
ℓ 1

)
= 𝜌(Δ4𝑑+2𝑒𝑦−𝑘 )

(
𝑞 𝑝
𝑟 𝑞

)
𝜌(𝑦−ℓ ), (6.6)

where 𝑑 ∈ Z and 𝑒 ∈ {0, 1}.

Proof. Suppose that we have

𝜌(𝛽) =

(
𝑎 𝑏
𝑐 𝑑

)
.

Then by Lemma 6.8 and the classification of lens spaces up to orientation-preserving homeomorphism,
we must have (

𝑏
𝑑

)
= ±

(
𝑝

𝑞 + 𝑘 𝑝

)
or ±

(
𝑝

𝑞 + 𝑘 𝑝

)
for some 𝑘 ∈ Z. In this case, since det 𝜌(𝛽) = 1, we know that 𝜌(𝛽) must have the form

𝜌(𝛽) = ±

(
𝑞 + ℓ𝑝 𝑝

𝑟 + 𝑘𝑞 + ℓ(𝑞 + 𝑘 𝑝) 𝑞 + 𝑘 𝑝

)
or ±

(
𝑞 + ℓ𝑝 𝑝

𝑟 + 𝑘𝑞 + ℓ(𝑞 + 𝑘 𝑝) 𝑞 + 𝑘 𝑝

)
for some integers k and ℓ. These matrices factor exactly as in (6.5) and (6.6), completing the proof. �

In either case of Lemma 6.10, we have

tr 𝜌(𝛽) = (−1)𝑒 (𝑞 + 𝑞 + (𝑘 + ℓ)𝑝), (6.7)

which by Lemma 6.9 is equal to 2 ± |𝐻1 (Σ2(𝐿
𝛽
0 );Z) |. In other words, we must have

(−1)𝑒 (𝑞 + 𝑞 + (𝑘 + ℓ)𝑝) = 2 ± 𝑛, (6.8)

which will be useful in the following subsections.
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6.2. The case 𝜸 = 𝑼

For now, we suppose that the curve 𝛾 ⊂ Σ2(𝑈) � 𝑆3 from Subsection 6.1 is unknotted. We recall from
(6.1) that Σ2(𝐿

𝛽) � 𝑆3
(2𝑛+1)/2 (𝑈) for some integer n. Thus, in Lemma 6.10, we can take

(𝑝, 𝑞, 𝑞, 𝑟) = (2𝑛 + 1, 2, 𝑛 + 1, 1) or (2𝑛 + 1, 𝑛 + 1, 2, 1).

This gives

𝜌(𝛽) = 𝜌(Δ4𝑑+2𝑒𝑦−𝑘 )

(
𝑛 + 1 2𝑛 + 1

1 2

)
𝜌(𝑦−ℓ)

= 𝜌(Δ4𝑑+2𝑒𝑦−𝑘 )

(
1 𝑛
0 1

) (
1 0
1 1

) (
1 1
0 1

)
𝜌(𝑦−ℓ)

= 𝜌(Δ4𝑑+2𝑒𝑦−𝑘𝑥𝑛𝑦−1𝑥𝑦−ℓ )

(6.9)

in the first case, and

𝜌(𝛽) = 𝜌(Δ4𝑑+2𝑒𝑦−𝑘 )

(
2 2𝑛 + 1
1 𝑛 + 1

)
𝜌(𝑦−ℓ)

= 𝜌(Δ4𝑑+2𝑒𝑦−𝑘 )

(
1 1
0 1

) (
1 0
1 1

) (
1 𝑛
0 1

)
𝜌(𝑦−ℓ)

= 𝜌(Δ4𝑑+2𝑒𝑦−𝑘𝑥𝑦−1𝑥𝑛𝑦−ℓ )

(6.10)

in the second.
In each of (6.9) and (6.10), the braid 𝛽 is uniquely determined up to the value of 𝑑 ∈ Z since Lemma

6.7 says that Δ4 generates ker(𝜌). In fact, we can disregard the braids arising from (6.10) because up to
conjugation by powers of y, they are all obtained by reversing the braids from (6.9): we have

𝑟 (Δ4𝑑+2𝑒𝑦−𝑘𝑥𝑛𝑦−1𝑥𝑦−ℓ ) = Δ4𝑑+2𝑒𝑦−ℓ𝑥𝑦−1𝑥𝑛𝑦−𝑘

= 𝑦𝑘−ℓ ·
(
Δ4𝑑+2𝑒𝑦−𝑘𝑥𝑦−1𝑥𝑛𝑦−ℓ

)
· 𝑦−(𝑘−ℓ) .

It follows by Lemmas 6.3 and 6.5 that every knot K with 𝑀𝐹 � 𝑆3 \ 𝑁 (𝑇2,4) and 𝛾 unknotted has the
form 𝐾 � 𝐾𝛽 , where

𝛽 = Δ4𝑑+2𝑒𝑦−𝑘𝑥𝑛𝑦−1𝑥𝑦−ℓ

is one of the braids in (6.9). Recalling that Δ2 generates the center of 𝐵3, we can now rewrite them as

𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑+2𝑒𝑥𝑛𝑦−1𝑥𝑦−(𝑘+ℓ) (6.11)

with Lemma 6.5 in mind.

Lemma 6.11. Suppose that 𝛽 is a 3-braid of the form (6.11) and that its closure 𝐿
𝛽
0 = 𝛽 has branched

double cover 𝑆3
𝑛 (𝑈). Then the following must be true:

◦ If 𝑛 ≠ ±1, then 6(2𝑑 + 𝑒) = (𝑘 + ℓ) ± 1.
◦ If 𝑛 = ±1, then 6(2𝑑 + 𝑒) + 𝑛 − (𝑘 + ℓ) ∈ {−2, 0, 2}.

Proof. Since 𝑆3
𝑛 (𝑈) is a lens space, Hodgson and Rubinstein [26] proved that it is the branched double

cover of exactly one link in 𝑆3, which we know to be the (2, 𝑛) torus link. Thus, 𝛽 � 𝑇2,𝑛, and so Birman
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and Menasco [8] proved that up to conjugacy, we have

𝛽 ∼

{
𝑥𝑛𝑦±1, 𝑛 ≠ ±1
𝑥𝑦, 𝑥𝑦−1, or 𝑥−1𝑦−1, 𝑛 = ±1.

Now we can read from (6.11) that 𝛽 has exponent sum

𝜀(𝛽) = 6(2𝑑 + 𝑒) + 𝑛 − (𝑘 + ℓ),

where 𝜀 : 𝐵3 → Z is the homomorphism defined by 𝜀(𝑥) = 𝜀(𝑦) = 1. This exponent sum is invariant
under conjugation, so 𝜀(𝛽) must also be equal to 𝑛 ± 1 if 𝑛 ≠ ±1 and one of 2, 0,−2 otherwise. The
lemma follows immediately. �

Proposition 6.12. Let 𝛽 ∈ 𝐵3 be a braid for which𝑈 = 𝜏∪𝛽 is unknotted and the curve 𝛾 ⊂ Σ2(𝑈) � 𝑆3

is also unknotted. Up to reversal, there is some integer 𝑎 ∈ Z such that 𝑦𝑎𝛽𝑦−𝑎 is one of the 3-braids

𝑥−1, 𝑥𝑦, or 𝑥𝑛𝑦−1𝑥𝑦 (𝑛 ∈ Z).

Proof. As discussed above, it suffices to consider 𝛽 as in (6.9). We fix 𝑛 ∈ Z so that Σ2(𝐿
𝛽), Σ2(𝐿

𝛽
0 ),

and Σ2(𝐿
𝛽
1 ) are all surgeries on 𝛾 of slopes 2𝑛+1

2 , n and 𝑛 + 1, respectively, as guaranteed by (6.1) and
(6.2). Then in particular, Σ2(𝐿

𝛽
0 ) � 𝑆3

𝑛 (𝑈), with first homology of order |𝑛|, so Lemma 6.9 now says that

2 ± |𝑛| = tr(𝜌(𝛽)) = (−1)𝑒 (𝑛 + 3 + (𝑘 + ℓ) (2𝑛 + 1))

for 𝛽 as in (6.9). After multiplying through by (−1)𝑒, we have four cases, where in each case, we can
determine the value of 𝑒 ∈ {0, 1} from the sign of the constant term (−1)𝑒 ·2. These cases are as follows:

Case 1: 𝑛 + 3 + (𝑘 + ℓ) (2𝑛 + 1) = 𝑛 + 2, so 𝑒 = 0.
This simplifies to (𝑘 + ℓ) (2𝑛+1) = −1, so (𝑘 + ℓ, 𝑛) is either (1,−1) or (−1, 0). Then (6.11) becomes

𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑𝑥−1𝑦−1𝑥𝑦−1 = Δ4𝑑𝑦𝑥−1𝑦−2

or 𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑𝑦−1𝑥𝑦,

respectively, where we have simplified the first braid using the relation 𝑥−1𝑦−1𝑥 = 𝑦𝑥−1𝑦−1. Lemma
6.11 says that 𝑑 = 0 in each case, so now (6.11) becomes

𝑦𝑎𝛽𝑦−𝑎 = 𝑥−1𝑦−1 or 𝑥 (6.12)

for some 𝑎 ∈ Z.
Case 2: 𝑛 + 3 + (𝑘 + ℓ) (2𝑛 + 1) = −𝑛 + 2, so 𝑒 = 0.
After rearranging, we get

(𝑘 + ℓ + 1) (2𝑛 + 1) = 0,

and 2𝑛 + 1 is nonzero, so we must have 𝑘 + ℓ = −1. Now we apply Lemma 6.11 to see that if 𝑛 ≠ ±1,
then 12𝑑 = −1 ± 1, while if 𝑛 = ±1, then 12𝑑 + (±1) − (−1) ∈ {−2, 0, 2}. Thus, in either case, 𝑑 = 0,
and so (6.11) becomes

𝑦𝑘 𝛽𝑦−𝑘 = 𝑥𝑛𝑦−1𝑥𝑦. (6.13)

Case 3: 𝑛 + 3 + (𝑘 + ℓ) (2𝑛 + 1) = 𝑛 − 2, so 𝑒 = 1.
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This simplifies to (𝑘 + ℓ) (2𝑛 + 1) = −5, so (𝑘 + ℓ, 𝑛) is one of (5,−1), (−5, 0), (1,−3) or (−1, 2). In
each of these cases, equation (6.11) and Lemma 6.11 give us

𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑+2𝑥−1𝑦−1𝑥𝑦−5 = Δ4𝑑+2𝑦𝑥−1𝑦−6, 6(2𝑑 + 1) − 1 − 5 ∈ {−2, 0, 2}

𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑+2𝑦−1𝑥𝑦5, 6(2𝑑 + 1) = −5 ± 1
𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑+2𝑥−3𝑦−1𝑥𝑦−1, 6(2𝑑 + 1) = 1 ± 1

or 𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑+2𝑥2𝑦−1𝑥𝑦, 6(2𝑑 + 1) = −1 ± 1,

respectively. The third and fourth braids are ruled out by Lemma 6.11 because there is no such 𝑑 ∈ Z,
whereas the first and second braids must have 𝑑 = 0 and 𝑑 = −1, respectively. Thus, in the first case, we
have

𝑦𝑘 𝛽𝑦−𝑘 = Δ2𝑦𝑥−1𝑦−6 = 𝑦 · 𝑦𝑥𝑦𝑥𝑦𝑥 · 𝑥−1𝑦−6

= 𝑦2 · 𝑥𝑦𝑥 · 𝑦−5 = 𝑦2 · 𝑦𝑥𝑦 · 𝑦−5

= 𝑦3 · 𝑥𝑦−1 · 𝑦−3,

while we can rearrange the second case to get

𝑦𝑘+1𝛽𝑦−(𝑘+1) = (𝑥𝑦𝑥𝑦𝑥𝑦)−1𝑥𝑦4 = 𝑦−1 (𝑥𝑦𝑥)−1𝑦−1𝑥−1 · 𝑥𝑦4

= 𝑦−1 (𝑦𝑥𝑦)−1𝑦3

= 𝑦−2𝑥−1𝑦2.

Thus, up to conjugation by powers of y, the possible braids in this case are

𝑦𝑎𝛽𝑦−𝑎 = 𝑥𝑦−1 or 𝑥−1. (6.14)

Case 4: 𝑛 + 3 + (𝑘 + ℓ) (2𝑛 + 1) = −𝑛 − 2, so 𝑒 = 1.
This condition is equivalent to

(𝑘 + ℓ + 1) (2𝑛 + 1) = −4,

and 2𝑛+1 is odd so it must be ±1; hence, (𝑘 + ℓ, 𝑛) is either (−5, 0) or (3,−1). The first of these already
appeared in case 3, leading to

𝑦𝑘+1𝛽𝑦−(𝑘+1) = 𝑦−2𝑥−1𝑦2.

In the second case, equation (6.11) becomes

𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑+2𝑥−1𝑦−1𝑥𝑦−3 = Δ4𝑑+2𝑦𝑥−1𝑦−4,

while Lemma 6.11 says that 6(2𝑑 + 1) + (−1) − 3 ∈ {−2, 0, 2}; hence, 𝑑 = 0. Thus,

𝑦𝑘−1𝛽𝑦1−𝑘 = Δ2𝑥−1𝑦−3 = 𝑦𝑥𝑦𝑥𝑦𝑥 · 𝑥−1𝑦−3

= 𝑦 · 𝑥𝑦𝑥 · 𝑦−2 = 𝑦 · 𝑦𝑥𝑦 · 𝑦−2

= 𝑦2 · 𝑥𝑦 · 𝑦−2.

Thus, in this case, the possible braids all have the form

𝑦𝑎𝛽𝑦−𝑎 = 𝑥−1 or 𝑥𝑦. (6.15)
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Figure 13. The knot 𝜏 ∪ 𝛽 is a right-handed trefoil when 𝛽 is 𝑥𝑦−1 or 𝑥−1𝑦−1.

We now combine the lists of braids enumerated in (6.12), (6.13), (6.14) and (6.15) to see that for
some 𝑎 ∈ Z, the braid 𝑦𝑎𝛽𝑦−𝑎 must be one of

𝑥, 𝑥−1, 𝑥𝑦, 𝑥𝑦−1, 𝑥−1𝑦−1, or 𝑥𝑛𝑦−1𝑥𝑦 (𝑛 ∈ Z).

But we can eliminate 𝑥𝑦−1 and 𝑥−1𝑦−1 from this list because filling the tangle 𝜏 in with either of these
produces a right-handed trefoil, as shown in Figure 13.

The braid x is also redundant because if 𝑦𝑎𝛽𝑦−𝑎 = 𝑥, then

𝑦𝑎−1𝛽𝑦−(𝑎−1) = 𝑦−1𝑥𝑦 = 𝑥0𝑦−1𝑥𝑦

belongs to the family 𝑥𝑛𝑦−1𝑥𝑦. Thus, we can remove it, and we are now left with exactly the list of
braids promised in this proposition. �

6.3. The case where 𝜸 is a torus knot

In this subsection, we will suppose that 𝛾 � 𝑇𝑝,𝑞 for some p and q. Our goal is to prove the following.

Proposition 6.13. Suppose that 𝛽 ∈ 𝐵3 is a 3-braid for which 𝑈 = 𝜏 ∪ 𝛽 is unknotted, and the curve
𝛾 ⊂ 𝑆3 is a nontrivial knot. Then for some 𝑎 ∈ Z, we have

𝑦𝑎𝛽𝑦−𝑎 = 𝑥3𝑦−1𝑥2𝑦 or 𝑥−3𝑦𝑥−2

up to braid reversal.

We recall from Subsection 6.1 that 𝐿𝛽 is a 2-bridge link, so that

𝑆3
(2𝑛+1)/2 (𝛾) � Σ2 (𝐿

𝛽)

is a lens space. The only half-integral lens space surgeries on 𝛾 � 𝑇𝑝,𝑞 are those of slopes 𝑝𝑞 ± 1
2 [41],

so we must have 𝑛 + 1
2 ∈ {𝑝𝑞 −

1
2 , 𝑝𝑞 +

1
2 }; hence, exactly one of

𝑛 = 𝑝𝑞 − 1 : 𝑆3
𝑛 (𝛾) � 𝑆3

(𝑝𝑞−1)/𝑞2 (𝑈), 𝑆3
𝑛+1 (𝛾) � 𝑆3

𝑝/𝑞 (𝑈)#𝑆
3
𝑞/𝑝 (𝑈) (6.16)

𝑛 = 𝑝𝑞 : 𝑆3
𝑛 (𝛾) � 𝑆3

𝑝/𝑞 (𝑈)#𝑆
3
𝑞/𝑝 (𝑈), 𝑆3

𝑛+1 (𝛾) � 𝑆3
(𝑝𝑞+1)/𝑞2 (𝑈). (6.17)

occurs. These surgeries were determined by Moser [41, Proposition 3.2], though we follow the notational
conventions of Gordon [20, Corollary 7.4].

We now observe that whether 𝑛 = 𝑝𝑞 − 1 or 𝑛 = 𝑝𝑞, we have found a 3-braid 𝛽′ ∈ {𝛽, 𝛽𝑦−1} whose
closure has branched double cover

Σ2(𝛽′) � 𝑆3
𝑝/𝑞 (𝑈)#𝑆

3
𝑞/𝑝 (𝑈),
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which is not prime. A theorem of Kim and Tollefson [36] says that the link 𝛽′ is therefore a nontrivial
connected sum

𝛽′ � 𝐿1#𝐿2,

where Σ2(𝐿1) � 𝑆3
𝑝/𝑞
(𝑈) and Σ2(𝐿2) � 𝑆3

𝑞/𝑝
(𝑈). Now since 𝐿1#𝐿2 has braid index at most 3 and the

summands 𝐿𝑖 are nontrivial, the ‘braid index theorem’ of Birman and Menasco [7] shows that 𝐿1 and
𝐿2 are each closures of 2-braids. Thus, we can write

𝐿1 � 𝑇𝑎,2, 𝐿2 � 𝑇𝑏,2, (𝑎, 𝑏 ≠ ±1, 0),

where a and b cannot be ±1 or 0 because the branched double covers are nontrivial rational homology
spheres, and hence are neither 𝑆3 nor 𝑆1 × 𝑆2. Then we have

𝑆3
𝑝/𝑞 (𝑈) �

{
𝑆3
𝑎/1 (𝑈) 𝑎 > 0

𝑆3
|𝑎 |/( |𝑎 |−1) (𝑈) 𝑎 < 0,

𝑆3
𝑞/𝑝 (𝑈) �

{
𝑆3
𝑏/1(𝑈) 𝑏 > 0

𝑆3
|𝑏 |/( |𝑏 |−1) (𝑈) 𝑏 < 0.

In particular, this is only possible if |𝑝 | = |𝑎 | and |𝑞 | = |𝑏 |, and if, moreover,

|𝑞 | ≡ ±1 (mod |𝑝 |), |𝑝 | ≡ ±1 (mod |𝑞 |).

Lemma 6.14. Let 𝑃,𝑄 ≥ 2 be coprime positive integers satisfying

𝑃 ≡ ±1 (mod 𝑄) and 𝑄 ≡ ±1 (mod 𝑃).

Then 𝑃 = 𝑄 ± 1.

Proof. Write 𝑃 = 𝑘𝑄 ± 1, where 𝑃,𝑄 ≥ 2 implies that 𝑘 ≥ 1. If 𝑘 ≥ 2, then we have 𝑃 ≥ 2𝑄 − 1, so
either 𝑃 = 3 and then 𝑄 = 2 (hence 𝑃 = 𝑄 + 1), or 𝑃 > 3 and then we have

1 < 𝑄 ≤
𝑃 + 1

2
< 𝑃 − 1.

(The last two inequalities are equivalent to 𝑃 ≥ 2𝑄 − 1 and 𝑃 > 3, respectively.) But if 1 < 𝑄 < 𝑃 − 1,
then we cannot possibly have 𝑄 ≡ ±1 (mod 𝑃), so there are no other solutions with 𝑘 ≥ 2, and thus,
we must have 𝑃 = 𝑄 ± 1. �

Lemma 6.14 says that for 𝛾 � 𝑇𝑝,𝑞 , if we write 𝑃 = |𝑝 | and 𝑄 = |𝑞 |, then 𝑃 = 𝑄 ± 1, and (6.16) and
(6.17) tell us that either

𝑆3
(𝑝𝑞−1)/𝑞2 (𝑈) or 𝑆3

(𝑝𝑞+1)/𝑞2 (𝑈)

is the branched double cover of a 3-braid, depending on whether 𝑛 = 𝑝𝑞 − 1 or 𝑛 = 𝑝𝑞, respectively.
Reversing orientation if exactly one of p and q is negative replaces that 3-braid with its mirror, which is
still a 3-braid, and the surgered manifold is then

−𝑆3
(𝑝𝑞±1)/𝑞2 (𝑈) � 𝑆3

(−𝑝𝑞∓1)/𝑞2 (𝑈) � 𝑆3
(𝑃𝑄∓1)/𝑄2 (𝑈),

so in any case, we see that one of

𝑆3
(𝑃𝑄−1)/𝑄2 (𝑈) or 𝑆3

(𝑃𝑄+1)/𝑄2 (𝑈)

is the branched double cover of a 3-braid. This gives us strong restrictions on P and Q by the following
result of Murasugi.
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Table 2. Possible torus knots 𝛾 and the associated values of n for which Σ2 (𝐿
𝛽) is 2𝑛+1

2 -surgery on 𝛾, as tabulated in Lemma 6.17..

𝛾 𝑇2,3 𝑇−2,3 𝑇3,4 𝑇−3,4 𝑇4,5 𝑇−4,5

𝑛 5,6 −6,−7 12 −13 19 −20

Proposition 6.15 [43, Proposition 7.2]. Let 𝐿𝑟/𝑠 be the 2-bridge link with branched double cover
𝐿(𝑟, 𝑠) = 𝑆3

𝑟/𝑠
(𝑈), where 0 < 𝑠 < 𝑟 and s is odd. Then 𝐿𝑟/𝑠 has braid index 2 if and only if 𝑠 = 1, and

it has braid index 3 if and only if either

1. there are integers 𝑐, 𝑑 > 0 such that (𝑟, 𝑠) = (2𝑐𝑑 + 3𝑐 + 3𝑑 + 4, 2𝑐 + 3), or
2. there are 𝑐, 𝑑 > 0 such that (𝑟, 𝑠) = (2𝑐𝑑 + 𝑐 + 𝑑 + 1, 2𝑐 + 1).

Remark 6.16. We note that in the first and second cases of Proposition 6.15, we have

𝑟 =
(2𝑑 + 3)𝑠 − 1

2
and 𝑟 =

(2𝑑 + 1)𝑠 + 1
2

,

respectively, so if 𝐿𝑟/𝑠 has braid index 3, then s divides either 2𝑟 + 1 or 2𝑟 − 1. In particular, if the braid
index is at most 3, then we can draw the same conclusion, since braid index 2 implies 𝑠 = 1.

Putting all of this together, we can now show the following.

Lemma 6.17. Suppose that the link 𝜏 ∪ 𝛽 is unknotted and that 𝛾 is not an unknot. Then 𝛾 or its mirror
must be one of the torus knots 𝑇2,3, 𝑇3,4 or 𝑇4,5, and (𝛾, 𝑛) must be one of the pairs indicated in Table 2.

Proof. Lemma 6.6 says that 𝛾 � 𝑇𝑝,𝑞 for some p and q, and we have argued that if 𝑃 = |𝑝 | and 𝑄 = |𝑞 |,
then 𝑃 = 𝑄 ± 1; without loss of generality, we write 𝑃 = 𝑄 + 1 ≥ 3. We consider each parity of
P separately and determine in each case which lens space 𝑆3

(𝑃𝑄±1)/𝑄2 (𝑈) must arise as the branched
double cover of a 3-braid. Up to orientation, we know that the corresponding 𝑆3

(𝑝𝑞±1)/𝑞2 (𝑈) is either

n-surgery (i.e., Σ2(𝐿
𝛽
0 )) or (𝑛 + 1)-surgery (i.e., Σ2(𝐿

𝛽
1 )) on 𝛾, so the value of n follows immediately,

and then the precise lens spaces are determined by the relations

𝑆3
𝑝𝑞±1 (𝑇𝑝,𝑞) � 𝑆3

(𝑝𝑞±1)/𝑞2 (𝑈), 𝑆3
𝑝𝑞 (𝑇𝑝,𝑞) = 𝑆3

𝑝/𝑞 (𝑈)#𝑆
3
𝑞/𝑝 (𝑈)

and the relations 𝑆3
𝑟/𝑠
(𝑈) � 𝑆3

𝑟/(𝑠+𝑘𝑟 )
(𝑈) and 𝑆3

𝑟/𝑠
(𝑈) � −𝑆3

−𝑟/𝑠
(𝑈) for all 𝑟, 𝑠, 𝑘 .

Case 1: P is odd. Then Q is even, so if 𝜖 = ±1, then

𝐿(𝑃𝑄 + 𝜖, 𝑄2) = 𝐿(𝑄2 +𝑄 + 𝜖, 𝑄2) � −𝐿(𝑄2 +𝑄 + 𝜖, 𝑄 + 𝜖),

and 𝑄 + 𝜖 is odd. According to Murasugi’s result, and in particular Remark 6.16, it follows that

𝑠 = 𝑄 + 𝜖

divides one of

2𝑟 ± 1 = 2(𝑄2 +𝑄 + 𝜖) ± 1;

hence, it also divides

(2𝑟 ± 1 − 2𝑠) − 2𝑠(𝑄 − 𝜖) = (2𝑄2 ± 1) − 2(𝑄2 − 1) = 2 ± 1.

Thus, s must be either 1 or 3. Then 2 ≤ 𝑄 = 𝑠− 𝜖 says that (𝑃,𝑄) is either (3, 2) or (5, 4). We determine
the following possibilities:
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Table 3. Possible values of tr 𝜌(𝛽) for each torus knot 𝛾 and integer n..

𝛾 𝑛 Σ2 (𝐿
𝛽) 𝑝 𝑞 �̄� tr 𝜌(𝛽)

𝑇2,3 5 𝐿 (11, 8) 11 8 7 (−1)𝑒 (15 + 11(𝑘 + ℓ))
𝑇−2,3 −6 𝐿 (11, 3) 11 3 4 (−1)𝑒 (7 + 11(𝑘 + ℓ))
𝑇2,3 6 𝐿 (13, 8) 13 8 5 (−1)𝑒 (13 + 13(𝑘 + ℓ))
𝑇−2,3 −7 𝐿 (13, 5) 13 5 8 (−1)𝑒 (13 + 13(𝑘 + ℓ))
𝑇3,4 12 𝐿 (25, 18) 25 18 7 (−1)𝑒 (25 + 25(𝑘 + ℓ))
𝑇−3,4 −13 𝐿 (25, 7) 25 7 18 (−1)𝑒 (25 + 25(𝑘 + ℓ))
𝑇4,5 19 𝐿 (39, 32) 39 32 11 (−1)𝑒 (43 + 39(𝑘 + ℓ))
𝑇−4,5 −20 𝐿 (39, 7) 39 7 28 (−1)𝑒 (35 + 39(𝑘 + ℓ))

◦ If 𝑠 = 1, then (𝑃,𝑄) = (3, 2) and 𝜖 = −1, so the lens space in question is 𝐿(5, 4).
◦ If 𝑠 = 3 and 𝜖 = +1, then (𝑃,𝑄) = (3, 2), and the lens space is 𝐿(7, 4).
◦ If 𝑠 = 3 and 𝜖 = −1, then (𝑃,𝑄) = (5, 4), and the lens space is 𝐿(19, 16).

Case 2: P is even. Then Q is odd, so if 𝜖 = ±1, then

𝐿(𝑃𝑄 + 𝜖, 𝑄2) = 𝐿(𝑄2 +𝑄 + 𝜖, 𝑄2)

(with 𝑄2 odd) arises as the branched double cover of a 3-braid closure if

𝑠 = 𝑄2 divides 2𝑟 ± 1 = 2(𝑄2 +𝑄 + 𝜖) ± 1.

This is equivalent to 𝑄2 dividing 2𝑄 + (2𝜖 ± 1) ≤ 2𝑄 + 3, but given that Q is odd and 𝑄 ≥ 2, we have
𝑄2 > 2𝑄+3 unless 𝑄 = 3. So (𝑃,𝑄) = (4, 3) and 𝜖 = 1, and the lens space in question must be 𝐿(13, 9).

This completes the identification of the lens spaces in question when 𝛾 = 𝑇𝑝,𝑞 and 𝑝, 𝑞 are both
positive. If one of p and q is negative, then we can apply the same argument to the mirror of 𝛾 to
determine the value of −𝑛 and the proposition follows. �

In fact, we can rule out most of the pairs (𝛾, 𝑛) appearing in Lemma 6.17 as well.
Lemma 6.18. If 𝛾 is a nontrivial torus knot, then (𝛾, 𝑛, 𝑘 + ℓ, 𝑒) is either

(𝑇2,3, 5,−2, 1) or (𝑇−2,3,−6,−1, 0).

Proof. In Table 3, we tabulate the possible pairs (𝛾, 𝑛) from Lemma 6.17, together with
◦ the corresponding lens spaces

Σ2(𝐿
𝛽) � 𝑆3

(2𝑛+1)/2 (𝛾) � 𝐿(𝑝, 𝑞) := 𝑆3
𝑝/𝑞 (𝑈)

for some integers p and q;
◦ the integers p and q, as well as 𝑞 such that 𝑞 · 𝑞 ≡ 1 (mod 𝑝); and
◦ the resulting trace of 𝜌(𝛽), as determined by (6.7), given that Lemma 6.10 says that 𝜌(𝛽) must have

one of the two forms (6.5) or (6.6).
The lens spaces Σ2(𝐿

𝛽) in Table 3 are determined by the formulas

𝑆3
(2𝑟𝑠±1)/2(𝑇𝑟 ,𝑠) � 𝑆3

(2𝑟𝑠±1)/(2𝑟2)
(𝑈),

which again follow from [41] or [20].
Lemma 6.9 tells us that tr 𝜌(𝛽) = 2±𝑛, so we inspect Table 3 to see whether this is possible. We have

(𝛾, 𝑛) = (𝑇2,3, 6) : tr 𝜌(𝛽) ≡ 0 (mod 13), 2 ± 𝑛 ≡ 8, 9 (mod 13)
(𝛾, 𝑛) = (𝑇3,4, 12) : tr 𝜌(𝛽) ≡ 0 (mod 25), 2 ± 𝑛 ≡ 14, 15 (mod 25)
(𝛾, 𝑛) = (𝑇4,5, 19) : tr 𝜌(𝛽) ≡ 4, 35 (mod 39), 2 ± 𝑛 ≡ 21, 22 (mod 39),
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and the computations for (𝑇−2,3,−7), (𝑇−3,4,−13) and (𝑇−4,5,−20) are identical, so there is no solution
in any of these cases. This leaves only

(𝛾, 𝑛) = (𝑇2,3, 5) : (−1)𝑒 (15 + 11(𝑘 + ℓ)) = 2 ± 5

with solution (𝑘 + ℓ, 𝑒) = (−2, 1) and

(𝛾, 𝑛) = (𝑇−2,3,−6) : (−1)𝑒 (7 + 11(𝑘 + ℓ)) = 2 ± (−6)

with solution (𝑘 + ℓ, 𝑒) = (−1, 0). �

Proposition 6.19. If 𝛾 = 𝑇−2,3, then up to reversal, there is some integer a such that

𝑦𝑎𝛽𝑦−𝑎 = 𝑥3𝑦−1𝑥2𝑦.

Proof. In this case, we have (𝑛, 𝑘 + ℓ, 𝑒) = (−6,−1, 0) and Σ2 (𝐿
𝛽) = 𝐿(11, 3) by Lemma 6.18, so we

can write

𝜌(𝑦𝑘 𝛽𝑦−𝑘 ) = 𝜌(Δ4𝑑)

(
4 11
1 3

)
𝜌(𝑦) or 𝜌(Δ4𝑑)

(
3 11
1 4

)
𝜌(𝑦)

by (6.5) and (6.6). We compute that(
4 11
1 3

)
=

(
1 3
0 1

) (
1 0
1 1

) (
1 2
0 1

)
= 𝜌(𝑥3𝑦−1𝑥2)(

3 11
1 4

)
=

(
1 2
0 1

) (
1 0
1 1

) (
1 3
0 1

)
= 𝜌(𝑥2𝑦−1𝑥3),

and since ker(𝜌) is generated by Δ4, it follows that

𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑𝑥3𝑦−1𝑥2𝑦 or Δ4𝑑𝑥2𝑦−1𝑥3𝑦

for some 𝑑 ∈ Z. These two families of braids are reverses of each other since

𝛽 = Δ4𝑑𝑦−𝑘𝑥2𝑦−1𝑥3𝑦𝑘+1 =⇒ 𝑟 (𝛽) = Δ4𝑑𝑦𝑘+1 (𝑥3𝑦−1𝑥2𝑦)𝑦−(𝑘+1) ,

so we need only consider the first family – namely,

𝛽 = Δ4𝑑𝑦−𝑘𝑥3𝑦−1𝑥2𝑦𝑘+1.

In order to determine d, we recall that the link 𝐿
𝛽
1 from Figure 10 is the closure of 𝛽𝑦−1, and by (6.2),

we have

Σ2 (𝐿
𝛽
1 ) � 𝑆3

𝑛+1 (𝛾) = 𝑆3
−5 (𝑇−2,3) � 𝑆3

−5/4 (𝑈) � 𝐿(5, 1).

As a lens space, this must be the branched double cover of a unique knot [26], so we have �𝛽𝑦−1 � 𝑇2,5.
Then Birman and Menasco’s classification theorem from [8] says that 𝛽𝑦−1 must be conjugate to 𝑥5𝑦±1,
so that 𝛽 has exponent sum

𝜀(𝛽) = 𝜀(𝛽𝑦−1) + 1 = 6 ± 1.

However, we can read off the explicit form for 𝛽 above that 𝜀(𝛽) = 12𝑑 + 5, so we must have 𝑑 = 0. �
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Proposition 6.20. If 𝛾 = 𝑇2,3, then up to reversal, there is some integer a such that

𝑦𝑎𝛽𝑦−𝑎 = 𝑥−3𝑦𝑥−2.

Proof. In this case, we have (𝑛, 𝑘 + ℓ, 𝑒) = (5,−2, 1) and Σ2(𝐿
𝛽) = 𝐿(11, 8) by Lemma 6.18, so we

can write

𝜌(𝑦𝑘 𝛽𝑦−𝑘 ) = 𝜌(Δ4𝑑+2)

(
7 11
5 8

)
𝜌(𝑦2) or 𝜌(Δ4𝑑+2)

(
8 11
5 7

)
𝜌(𝑦2)

by (6.5) and (6.6). We compute that(
7 11
5 8

)
=

(
1 1
0 1

) (
1 0
2 1

) (
1 1
0 1

) (
1 0
1 1

) (
1 1
0 1

)
= 𝜌(𝑥𝑦−2𝑥𝑦−1𝑥)(

8 11
5 7

)
=

(
1 1
0 1

) (
1 0
1 1

) (
1 1
0 1

) (
1 0
2 1

) (
1 1
0 1

)
= 𝜌(𝑥𝑦−1𝑥𝑦−2𝑥),

so now since Δ4 generates ker(𝜌), we have

𝑦𝑘 𝛽𝑦−𝑘 = Δ4𝑑+2𝑥𝑦−2𝑥𝑦−1𝑥𝑦2 or Δ4𝑑+2𝑥𝑦−1𝑥𝑦−2𝑥𝑦2

for some 𝑑 ∈ Z.
In order to determine d, we note that the braid closure 𝛽 = 𝐿

𝛽
0 satisfies

Σ2(𝐿
𝛽
0 ) � 𝑆3

5 (𝑇2,3) � 𝑆3
5/4 (𝑈) � Σ2 (𝑇−2,5),

so 𝐿
𝛽
0 � 𝑇−2,5 since every lens space is the branched double cover of a unique knot [26]. Then 𝛽 must

be conjugate to either 𝑥−5𝑦 or 𝑥−5𝑦−1 [8], so its exponent sum is 𝜀(𝛽) = −5 ± 1. But in either of the
above families, we have 𝜀(𝛽) = 12𝑑 + 8, so in fact, 𝑑 = −1. Moreover, if we reverse the second family
above, then we get

𝛽 = Δ−2𝑦−𝑘𝑥𝑦−1𝑥𝑦−2𝑥𝑦𝑘+2 =⇒ 𝑟 (𝛽) = 𝑦𝑘+2 (Δ−2𝑥𝑦−2𝑥𝑦−1𝑥𝑦2)𝑦−(𝑘+2) ,

so up to reversal, it suffices to consider only the family of braids

𝑦𝑘 𝛽𝑦−𝑘 = Δ−2𝑥𝑦−2𝑥𝑦−1𝑥𝑦2.

We can simplify this somewhat by writing

𝑦𝑘 𝛽𝑦−𝑘 = 𝑦−1𝑥−1𝑦−1𝑥−1𝑦−1𝑥−1 · 𝑥𝑦−2𝑥𝑦−1𝑥𝑦2

= 𝑦−1𝑥−1𝑦−1 · 𝑥−1𝑦−3𝑥︸���︷︷���︸
= 𝑦𝑥−3𝑦−1

·𝑦−1𝑥𝑦2

= 𝑦−1𝑥−4𝑦−2𝑥𝑦2

= 𝑦−1𝑥−3𝑦 · 𝑦−1𝑥−1𝑦−2︸������︷︷������︸
= 𝑥−2𝑦−1𝑥−1

·𝑥𝑦2

= 𝑦−1𝑥−3𝑦𝑥−2𝑦,

and so

𝑦𝑘+1𝛽𝑦−(𝑘+1) = 𝑥−3𝑦𝑥−2,

as claimed. �
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Table 4. Some braids 𝛽 such that 𝜏 ∪ 𝛽 is unknotted, and the resulting knots 𝐾 = 𝐾𝛽 ..

𝛽 𝑦𝑎𝑥−1𝑦𝑎 𝑦𝑎𝑥𝑛𝑦−1𝑥𝑦1−𝑎 𝑦𝑎𝑥3𝑦−1𝑥2𝑦1−𝑎

𝐾𝛽 52 𝑃 (−3, 3, 2𝑛 + 1) 15𝑛43522

Figure 14. Recovering 𝐾𝛽 � 52 in the case 𝛽 = 𝑥−1. In the last step, we indicate the axis of symmetry
(i.e., the preimage of U) for reference.

We can now complete the main result of this subsection.

Proof of Proposition 6.13. Lemmas 6.17 and 6.18 tell us that if 𝛾 is knotted, then it must be a trefoil. If
it is a left-handed trefoil, then Proposition 6.19 says that up to reversal, 𝛽 is conjugate to 𝑥3𝑦−1𝑥2𝑦 by
some power of y. Otherwise, it is a right-handed trefoil, so by Proposition 6.20, either 𝛽 or its reverse is
conjugate to 𝑥−3𝑦𝑥−2 by some power of y. �

6.4. Some knots arising from specific braids

In this subsection, we consider several families of 3-braids 𝛽 that arise in Propositions 6.12 and 6.13,
producing unknots when inserted into the tangle 𝜏 of Figure 8. We will determine the corresponding
nearly fibered knots 𝐾 = 𝐾𝛽 which arise as lifts of 𝜅 to Σ2(𝑈) � 𝑆3. The results are summarized in
Table 4; the proofs in each case occupy Propositions 6.21, 6.22 and 6.23, respectively.

Proposition 6.21. The family of braids 𝛽 = 𝑦𝑎𝑥−1𝑦−𝑎 produces 𝐾𝛽 � 52.

Proof. By Lemma 6.5, it suffices to take 𝑎 = 0, so 𝛽 = 𝑥−1. We insert this into the tangle 𝜏 from
Figure 8, apply an isotopy so that 𝑈 = 𝜏 ∪ 𝛽 bounds a planar disk and 𝜅 winds around it, and then cut 𝜅
open along that disk and glue two copies together to construct the lift 𝐾𝛽 = 𝜅. This process is illustrated
in Figure 14, where we isotope 𝑈∪ 𝜅 into a convenient position and then take the branched double cover
with respect to U at the last step; the resulting diagram of 𝜅 is isotopic to 52, as claimed. �
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Figure 15. Recovering 𝐾𝛽 � 𝑃(−3, 3, 2𝑛 + 1) in the case 𝛽 = 𝑦𝑥𝑛𝑦−1𝑥, part 1: isotoping 𝑈 ∪ 𝜅 so that
U bounds a disk in the plane. Here, each box labeled ‘n’ contains n signed crossings.

Figure 16. Recovering 𝐾𝛽 � 𝑃(−3, 3, 2𝑛 + 1) in the case 𝛽 = 𝑦𝑥𝑛𝑦−1𝑥, part 2: taking branched covers
to construct the claimed pretzel knots.

Proposition 6.22. The braids 𝛽 = 𝑦𝑎𝑥𝑛𝑦−1𝑥𝑦1−𝑎 produce 𝐾𝛽 � 𝑃(−3, 3, 2𝑛 + 1).

Proof. Again, by Lemma 6.5, we need only consider 𝛽 = 𝑦𝑥𝑛𝑦−1𝑥. In Figure 15, we insert this braid
into 𝜏 � 𝜅 and perform an isotopy so that the unknot 𝑈 = 𝜏 ∪ 𝛽 clearly bounds a disk, and then in
Figure 16, we use this to lift 𝜅 to the knot 𝐾𝛽 = 𝜅 in the branched double cover Σ2(𝑈) � 𝑆3. In the end,
we are left with a diagram of 𝑃(3,−3, 2𝑛 + 1), which is isotopic to 𝑃(−3, 3, 2𝑛 + 1). �

Proposition 6.23. The braids 𝛽 = 𝑦𝑎𝑥3𝑦−1𝑥2𝑦1−𝑎 produce 𝐾𝛽 � 15𝑛43522, possibly up to mirroring.
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Figure 17. The braid 𝛽 = 𝑥3𝑦−1𝑥2𝑦 leads to 𝐾𝛽 � 15𝑛43522.

Proof. In this case, Lemma 6.5 says that we need only consider 𝛽 = 𝑥3𝑦−1𝑥2𝑦, as shown in Figure 17.
We can repeat the same procedure as in Propositions 6.21 and 6.22 to find 𝐾𝛽 , but this is not very
enlightening because we find it hard to identify 15-crossing knots from their diagrams.

Instead, we ask SnapPy [11] to do the hard work for us: we give it the link 𝑈 ∪ 𝜅 on the left side
of Figure 17, do a (2, 0)-Dehn filling of U (i.e., an orbifold Dehn filling of U with meridional slope,
so that U has cone angle 𝜋), and then look at the double covers of the result that are not themselves
orbifolds. SnapPy can produce triangulations of these, and it identifies one of them as the complement
of 15𝑛43522, so this must be 𝐾𝛽 . �

Remark 6.24. SnapPy looks for isometries between a given pair of hyperbolic manifolds by first
attempting to produce a canonical triangulation of each and then comparing the resulting triangulations
combinatorially. Thus, when it succeeds, as in the proof of Proposition 6.23, the result is certifiably
true: it has found identical triangulations of each, and it does not need any numerical approximation to
verify that the triangulations agree.

As explained at the beginning of this section, this completes the proof of Theorem 6.1.

7. The (2, 4)-cable of the trefoil

In this section, we determine all knots 𝐾 ⊂ 𝑆3 which arise from the second case of Theorem 5.1, in which
𝑀𝐹 is the complement of the (2, 4)-cable of the right-handed trefoil. Our goal is to prove the following:
Theorem 7.1. Let 𝐾 ⊂ 𝑆3 be a nearly fibered knot with genus-1 Seifert surface F, and suppose that

𝑀𝐹 � 𝑆3 \ 𝑁 (𝐶2,4 (𝑇2,3)).

Then K is one of the twisted Whitehead doubles

Wh+(𝑇2,3, 2) or Wh−(𝑇2,3, 2).

Just as in Section 6, we observe that under the hypotheses of Theorem 7.1, the sutured Seifert surface
complement 𝑆3(𝐹) admits an involution 𝜄, illustrated in Figure 18, realizing this complement as the
branched double cover of a sutured 3-ball along a tangle 𝜏, as shown in Figure 19. The exact same
reasoning as in the previous section then implies the following analogue of Lemma 6.2:

Lemma 7.2. Suppose that 𝐾 ⊂ 𝑆3 is a nearly fibered knot with genus-1 Seifert surface F and that

𝑀𝐹 � 𝑆3 \ 𝑁 (𝐶2,4 (𝑇2,3)).

Then there is a tangle 𝜏 and a 3-braid 𝛽 ∈ 𝐵3, depicted in Figure 20, such that 𝜏 ∪ 𝛽 is an unknot in 𝑆3,
and such that the lift

𝜅 ⊂ Σ2(𝜏 ∪ 𝛽) � 𝑆3

of the pictured curve 𝜅 is isotopic to K.
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Figure 18. The involution 𝜄 of 𝑆3 (𝐹) � 𝑀𝐹 \ 𝑁 (𝛼) in the case where 𝑀𝐹 � 𝑆3 \ 𝑁 (𝐶2,4 (𝑇2,3)), given
by 180◦ rotation about the horizontal axis (in blue). The meridian of 𝛼 (in red) is isotopic in 𝑆3(𝐹) to a
pushoff of K.

Figure 19. Taking the quotient of 𝑆3 (𝐹) by the involution 𝜄 from Figure 18, followed by an isotopy. The
quotient has branch locus 𝜏 (blue) and a curve 𝜅 (red) which lifts to K.

With Lemma 7.2 at hand, we are left to determine which braids 𝛽 cause 𝜏 ∪ 𝛽 to be unknotted.
Supposing that it is indeed an unknot U, we choose a crossing in Figure 21, indicated by a red dashed
arc, and produce two link diagrams 𝐿𝛽 and 𝐿

𝛽
0 by changing that crossing and by taking its 0-resolution,

respectively. We can see in Figure 21 that

𝐿𝛽 � 𝑇−2,3#(𝜏−1/4 ∪ 𝛽), 𝐿
𝛽
0 � (𝜏−1/7 ∪ 𝛽),

where 𝜏−1/4 and 𝜏−1/7 are tangle diagrams differing only in the circled rational sub-tangles, having −4
and −7 half-twists, respectively.
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Figure 20. An isotopy of the tangle 𝜏 ∪ 𝛽 in the complement of 𝜅.

Lemma 7.3. If 𝜏 ∪ 𝛽 is an unknot, then so are 𝜏−1/4 ∪ 𝛽 and 𝜏−1/7 ∪ 𝛽.

Proof. Just as in Section 6, the Montesinos trick tells us that there is a curve 𝛾 ⊂ Σ2(𝑈) � 𝑆3 and an
integer 𝑛 ∈ Z such that

Σ2(𝐿
𝛽) � 𝑆3

(2𝑛+1)/2(𝛾), Σ2(𝐿
𝛽
0 ) � 𝑆3

𝑛 (𝛾).

Since Σ2(𝐿
𝛽) arises as non-integral surgery on a knot 𝛾 ⊂ 𝑆3, it must be irreducible [21]. But we also

know that

Σ2(𝐿
𝛽) � 𝐿(3, 2)#Σ2 (𝜏−1/4 ∪ 𝛽),

and if this is irreducible, then the second summand must be 𝑆3, so then 𝜏−1/4∪ 𝛽 must be unknotted [63].
Now that we have Σ2(𝐿

𝛽) � 𝐿(3, 2) � 𝑆3
3/2(𝑈) arising from a non-integral surgery on 𝛾, of slope

2𝑛+1
2 , we know that 𝛾 must be an unknot or a torus knot [12]. In fact, it cannot be a nontrivial torus knot

since otherwise, no surgery would produce a lens space of order 3 [41]. So 𝛾 is an unknot, and then we
must have 2𝑛+1

2 = 3
2 , or 𝑛 = 1. But in this case, we have

Σ2(𝐿
𝛽
0 ) � 𝑆3

𝑛 (𝛾) � 𝑆3
1 (𝑈) � 𝑆3,

so again by [63], we can conclude that 𝜏−1/7 ∪ 𝛽 � 𝐿
𝛽
0 is an unknot. �
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Figure 21. A crossing change and 0-resolution of 𝜏 ∪ 𝛽 at the indicated crossing.

Figure 22. Two rational tangle replacements produce the links 𝜏1/0 ∪ 𝛽 and 𝜏0/1 ∪ 𝛽 � 𝛽.

Lemma 7.4. If 𝜏 ∪ 𝛽 is an unknot, then the link 𝜏1/0 ∪ 𝛽 depicted in Figure 22 is an unknot, and the
3-braid closure 𝛽 is a 2-component unlink.
Proof. We take the tangles 𝜏−1/4 and 𝜏−1/7 in Figure 21 and replace their circled twist regions with
rational tangles of slopes 1

0 or 0
1 to get the tangles 𝜏1/0 and 𝜏0/1 depicted in Figure 22, observing that

𝜏0/1 ∪ 𝛽 � 𝛽.

Lemma 7.3 says that 𝜏−1/4∪𝛽 and 𝜏−1/7∪𝛽 are both unknotted, so their branched double covers satisfy

Σ2 (𝜏−1/4 ∪ 𝛽) � Σ2(𝜏−1/7 ∪ 𝛽) � 𝑆3.

In particular, if we remove the circled rational subtangles from either unknot, then the branched double
cover of what remains is a knot complement 𝑆3 \ 𝑁 (𝐿), and it has two different Dehn fillings (corre-
sponding to the rational tangles of slopes − 1

4 and − 1
7 ) which both produce 𝑆3. Then L must be an unknot

[22, Theorem 2], and the fillings that produce Σ2(𝜏−1/4 ∪ 𝛽) and Σ2(𝜏−1/7 ∪ 𝛽) must have slopes 1
𝑛 and

1
𝑛−3 for some 𝑛 ∈ Z.
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It follows that if we replace these rational tangles with one of slope 1
0 , then this corresponds to a

Dehn filling of 𝑆3 \ 𝑁 (𝐿) of slope 1
𝑛+4 , and then

Σ2(𝜏1/0 ∪ 𝛽) � 𝑆3
1/(𝑛+4) (𝐿) � 𝑆3

since L is unknotted. We apply Waldhausen’s result [63] once again to see that 𝜏1/0 ∪ 𝛽 is an unknot.
Similarly, if we instead use the rational tangle that produces 𝜏0/1 ∪ 𝛽, then the corresponding Dehn

filling of 𝑆3 \𝑁 (𝐿) is at distance one from both the 1
𝑛 - and 1

𝑛−3 -fillings, so it must have slope 0
1 . In other

words, we have shown that

Σ2 (𝛽) � Σ2(𝜏0/1 ∪ 𝛽) � 𝑆3
0 (𝐿) � 𝑆1 × 𝑆2.

But the only link in 𝑆3 with branched double cover 𝑆1 × 𝑆2 is the two-component unlink [62], so this
determines 𝛽 up to isotopy. �

We can now apply methods from Section 6 to determine all of the possible braids 𝛽 to which Lemma
7.2 might apply.

Proposition 7.5. If 𝜏 ∪ 𝛽 is unknotted, where 𝜏 is the tangle shown in Figure 20, then

𝛽 = 𝑦𝑎𝑥±1𝑦−𝑎

for some 𝑎 ∈ Z.

Proof. Lemma 7.4 tells us that the knot 𝜏1/0∪ 𝛽 on the left side of Figure 22 is an unknot, with branched
double cover 𝑆3. Using the representation 𝜌 : 𝐵3 → 𝑆𝐿2 (Z) from (6.4), which was defined by

𝜌(𝑥) =

(
1 1
0 1

)
, 𝜌(𝑦) =

(
1 0
−1 1

)
,

we apply Lemma 6.10 with (𝑝, 𝑞, 𝑞, 𝑟) = (1, 1, 1, 0) to see that

𝜌(𝛽) = (−1)𝑒
(
1 0
𝑘 1

) (
1 1
0 1

) (
1 0
ℓ 1

)
= 𝜌(Δ4𝑑+2𝑒𝑦−𝑘𝑥𝑦−ℓ )

for some integers 𝑒 ∈ {0, 1} and 𝑑, 𝑘, ℓ. (Note that the knot labeled 𝐿𝛽 in Lemma 6.10, as depicted in
Figure 10, is our 𝜏1/0 ∪ 𝛽 and that the two cases (6.5) and (6.6) of Lemma 6.10 coincide since 𝑞 = 𝑞.)
In fact, we recall from Lemma 6.7 that ker(𝜌) is generated by Δ4, so we must have

𝛽 = Δ4𝑑+2𝑒𝑦−𝑘𝑥𝑦−ℓ .

Now we use the other conclusion of Lemma 7.4 – namely, that the 3-braid closure 𝛽 is a 2-component
unlink. Viewing this as the (2, 0)-torus link, Birman and Menasco [8] proved that 𝛽 must be conjugate
to either y or 𝑦−1, so that its exponent sum is ±1 and

tr 𝜌(𝛽) = tr 𝜌(𝑦±1) = 2.

But we can also compute that

tr 𝜌(𝛽) = tr 𝜌(𝑦𝑘 𝛽𝑦−𝑘 ) = (−1)𝑒 tr
((

1 1
0 1

) (
1 0

𝑘 + ℓ 1

))
= (−1)𝑒 (𝑘 + ℓ + 2).

Thus, (𝑘 + ℓ, 𝑒) is either (0, 0) or (−4, 1).
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Figure 23. An isotopy of the unknot 𝑈 = 𝜏 ∪ 𝛽, where 𝛽 = 𝑦𝑎𝑥 𝜖 𝑦−𝑎.

Suppose first that (𝑘 + ℓ, 𝑒) = (0, 0). Then 𝛽 = Δ4𝑑𝑦ℓ𝑥𝑦−ℓ for some integer d. In this case, its
exponent sum is 12𝑑 + 1, and since this is equal to ±1, we must have 𝑑 = 0.

In the remaining case, we have (𝑘 + ℓ, 𝑒) = (−4, 1), so 𝛽 = Δ4𝑑+2𝑦ℓ · 𝑦4𝑥 · 𝑦−ℓ for some d. The
exponent sum is 12𝑑 + 11 = ±1, so then 𝑑 = −1, and we have

𝑦−ℓ 𝛽𝑦ℓ = Δ−2𝑦4𝑥.

We now use the braid relation 𝑥𝑦𝑥 = 𝑦𝑥𝑦 to see that

𝑦2 (Δ2𝑥−1)𝑦−2 = 𝑦2 (𝑦 · 𝑥𝑦𝑥 · 𝑦)𝑦−2 = 𝑦2 (𝑦2𝑥𝑦2)𝑦−2 = 𝑦4𝑥,

and since Δ2 is central, it follows that

𝑦−ℓ 𝛽𝑦ℓ = Δ−2𝑦4𝑥 = 𝑦2𝑥−1𝑦−2

or

𝛽 = 𝑦ℓ+2𝑥−1𝑦−(ℓ+2) .

This completes the proof. �

We now determine the knots 𝐾𝛽 that arise in Lemma 7.2.

Lemma 7.6. Suppose that K satisfies the hypotheses of Lemma 7.2, and write 𝐾 = 𝐾𝛽 where K arises
as the lift of the curve 𝜅 in the branched double cover of the unknot 𝑈 = 𝜏 ∪ 𝛽. Then K is isotopic to
either 𝐾𝑥 or 𝐾𝑥−1 .

Proof. By Proposition 7.5, we know that 𝛽 = 𝑦𝑎𝑥 𝜖 𝑦−𝑎, where 𝑎 ∈ Z and 𝜖 = ±1. These are illustrated
in Figure 23, where we have started with a slight isotopy of the unknot 𝑈 = 𝜏 ∪ 𝛽 from Figure 21. The
bottom of Figure 23 makes it clear that up to isotopy, the knot 𝐾𝛽 only depends on 𝜖 and the parity of a
because the tangle relation

𝑇
𝑇

𝑇� �

lets us identify the links 𝑈 ∪ 𝜅 for 𝛽 = 𝑦𝑎+2𝑥 𝜖 𝑦−(𝑎+2) and for 𝛽 = 𝑦𝑎𝑥 𝜖 𝑦−𝑎 up to isotopy. Thus, we need
only consider the cases 𝑎 = 0 and 𝑎 = 1.

https://doi.org/10.1017/fmp.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.28


Forum of Mathematics, Pi 51

Figure 24. Simplifying the case 𝑎 = 0, where 𝛽 = 𝑥±1, by an isotopy.

Figure 25. Simplifying the case 𝑎 = 1, where 𝛽 = 𝑦𝑥±1𝑦−1, by an isotopy.

Starting from the bottom of Figure 23, we simplify part of the corresponding diagrams by an isotopy
in Figures 24 and 25, corresponding to 𝑎 = 0 and 𝑎 = 1, respectively. In Figure 26, we further isotope
the diagrams for each 𝑈 ∪ 𝜅, starting from the simplifications in Figures 24 and 25, and we see that the
corresponding links for 𝛽 = 𝑥 and 𝛽 = 𝑦𝑥𝑦−1 are isotopic to each other in a way which carries U to U
and 𝜅 to 𝜅, as are the links for 𝛽 = 𝑥−1 and 𝛽 = 𝑦𝑥𝑦−1. It follows that

𝐾𝑥 � 𝐾𝑦𝑎𝑥𝑦−𝑎 and 𝐾𝑥−1 � 𝐾𝑦𝑎𝑥−1𝑦−𝑎

for all 𝑎 ∈ Z since it is true for 𝑎 = 1 and since for fixed 𝜖 , the knot 𝐾𝑦𝑎𝑥 𝜖 𝑦−𝑎 depends only on the parity
of a. Thus, every 𝐾𝛽 must be isotopic to either 𝐾𝑥 or 𝐾𝑥−1 , as claimed. �
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Figure 26. The diagrams 𝑈 ∪ 𝜅 for 𝛽 = 𝑥±1 and 𝛽 = 𝑦𝑥±1𝑦−1. Each arrow represents a 180◦ rotation
about the z-axis or the x-axis according to its label, where we view the page as the 𝑥𝑦-plane.

Proposition 7.7. We have 𝐾𝑥 � Wh+(𝑇2,3, 2).

Proof. We take the link with components 𝑈 = 𝜏 ∪ 𝛽 (where 𝛽 = 𝑥) and 𝜅 from the top row of Figure 26
and isotope it into a convenient position in the first half of Figure 27. Having done so, in the remainder
of Figure 27, we then take the branched double cover with respect to the unknot U, lifting 𝜅 to the knot
𝜅 = 𝐾𝑥 as we do so, and then isotope it further until it is recognizable as the 2-twisted, positively clasped
Whitehead double of 𝑇2,3. �

Proposition 7.8. We have 𝐾𝑥−1 � Wh−(𝑇2,3, 2).

Proof. Just as in Proposition 7.7, we take the link with components 𝑈 = 𝜏 ∪ 𝛽 and 𝜅, this time with
𝛽 = 𝑥−1, as pictured in the third row of Figure 26. In Figure 28, we carry out an isotopy, take the
branched double cover with respect to the unknot U, and then lift 𝜅 to the knot 𝜅 = 𝐾𝑥−1 , which we
recognize after further isotopy as the 2-twisted, negatively clasped Whitehead double of 𝑇2,3. �

We can now finish the proof of Theorem 7.1 and then conclude Theorem 1.2.

Proof of Theorem 7.1. We apply Lemma 7.2, according to which K is the lift of 𝜅 in the branched double
cover of the unknot 𝑈 = 𝜏 ∪ 𝛽. Although there are infinitely many such 𝛽 (see Proposition 7.5), Lemma
7.6 says that in fact K must arise from this construction for either 𝛽 = 𝑥 or 𝛽 = 𝑥−1. In the case 𝛽 = 𝑥,
Proposition 7.7 says that 𝐾 � Wh+(𝑇2,3, 2), and if instead we have 𝛽 = 𝑥−1, then 𝐾 � Wh−(𝑇2,3, 2) by
Proposition 7.8. This completes the proof. �
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Figure 27. A proof that 𝐾𝑥 � Wh+(𝑇2,3, 2), beginning with the link 𝑈 ∪ 𝜅 from the top row of Figure
26 and ending with the lift 𝐾𝑥 = 𝜅 of 𝜅 to Σ2(𝑈) � 𝑆3.

Proof of Theorem 1.2. Letting F be a genus-1 Seifert surface for K, we proved in Theorem 5.1 that up
to replacing K with its mirror, the manifold 𝑀𝐹 must be the complement of the (2, 4)-cable of either
the unknot or the right-handed trefoil. In the unknot case, Theorem 6.1 says that K is one of

52, 15𝑛43522, or 𝑃(−3, 3, 2𝑛 + 1)

for some 𝑛 ∈ Z. Likewise, in the trefoil case, Theorem 7.1 tells us that K is either

Wh+(𝑇2,3, 2) or Wh−(𝑇2,3, 2).

Thus, either K or its mirror must be one of the knots listed above. �

8. Detection results for Khovanov homology

Our goal in this section is to prove the detection results for reduced Khovanov homology stated in
Theorems 1.6 and 1.7. We will do so after establishing some preliminary results. We continue to work
with coefficients in Q throughout this section.
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Figure 28. A proof that 𝐾𝑥−1 � Wh−(𝑇2,3, 2), beginning with the link 𝑈∪ 𝜅 from the third row of Figure
26 and ending with the lift 𝐾𝑥−1 = 𝜅 of 𝜅 to Σ2(𝑈) � 𝑆3.

Recall that both reduced Khovanov homology and knot Floer homology admit bigradings, which can
be collapsed to a single 𝛿-grading, defined for these two theories by

gr𝛿 = 1
2 gr𝑞 − grℎ ,

gr𝛿 = gr𝑚 − gr𝑎,

respectively. We say that either invariant is thin if it is supported in a unique 𝛿-grading. Given a knot
𝐾 ⊂ 𝑆3, Dowlin’s spectral sequence [13]

Kh(𝐾) =⇒ �HFK (𝐾)

from reduced Khovanov homology to knot Floer homology respects the 𝛿-gradings on either side, up
to an overall shift. This implies the following:

Lemma 8.1. Let 𝐾 ⊂ 𝑆3 be a knot for which Kh(𝐾) is thin. Then �HFK (𝐾) is thin and

dim �HFK (𝐾) = dim Kh(𝐾) = det(𝐾).
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Proof. Suppose that Kh(𝐾) is thin. Then the fact that Dowlin’s spectral sequence respects the 𝛿-grading
up to an overall shift, together with the symmetry [48]

�HFK𝑚(𝐾, 𝑎) � �HFK−𝑚(𝐾,−𝑎),

implies that �HFK (𝐾) is also thin. Recall that the graded Euler characteristics of reduced Khovanov
homology and knot Floer homology recover the Jones and Alexander polynomials, respectively [33, 48]:

𝑉𝐾 (𝑡) =
∑
ℎ,𝑞

(−1)ℎ𝑡𝑞/2 dim Kh
ℎ,𝑞
(𝐾), (8.1)

Δ𝐾 (𝑡) =
∑
𝑚,𝑎

(−1)𝑚𝑡𝑎 dim �HFK𝑚(𝐾, 𝑎). (8.2)

Supposing that Kh(𝐾) and �HFK (𝐾) are supported in 𝛿-gradings 𝛿1 and 𝛿2, respectively, it follows that

𝑉𝐾 (−1) = (−1) 𝛿1 dim Kh(𝐾),

Δ𝐾 (−1) = (−1) 𝛿2 dim �HFK (𝐾),

and thus,

dim �HFK (𝐾) = |Δ𝐾 (−1) | = det(𝐾) = |𝑉𝐾 (−1) | = dim Kh(𝐾),

as claimed. �

The next result pertains to the geography of knot Floer homology. For this result, recall that for any
knot 𝐾 ⊂ 𝑆3, there are two differentials on knot Floer homology,

𝜉 = 𝜉1 + 𝜉2 + · · · +

𝜔 = 𝜔1 + 𝜔2 + · · · +,

where 𝜉𝑖 and 𝜔𝑖 are, respectively, sums of maps of the form

𝜉𝑖𝑎 : �HFK𝑚(𝐾, 𝑎) →�HFK𝑚−1(𝐾, 𝑎 − 𝑖) (8.3)

𝜔𝑖
𝑎 : �HFK𝑚(𝐾, 𝑎) →�HFK𝑚−1(𝐾, 𝑎 + 𝑖). (8.4)

Indeed, given a doubly-pointed Heegaard diagram for the knot 𝐾 ⊂ 𝑆3,

(Σ, 𝛼, 𝛽, 𝑧, 𝑤),

the differential 𝜕 in the Heegaard Floer complex

ĈF(𝑆3) = ĈF(Σ, 𝛼, 𝛽, 𝑤)

is a sum 𝜕 = 𝑑0 + 𝑑1, where 𝑑0 counts those disks that avoid the basepoint z, and 𝑑1 counts the rest. Then

�HFK (𝐾) � 𝐻∗(ĈF(Σ, 𝛼, 𝛽, 𝑤), 𝑑0),

and 𝜉 is the differential on this homology induced by 𝑑1. The map 𝜔 is defined in the same way but with
the roles of z and w swapped. It follows from the definition that the homology with respect to either
differential recovers the Heegaard Floer homology of 𝑆3,

𝐻∗(�HFK (𝐾), 𝜉) � 𝐻∗(�HFK (𝐾), 𝜔) � Q. (8.5)
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Furthermore, the components 𝜉1 and 𝜔1 anticommute. (This follows from Ozsváth–Szabó’s original
construction of CFK∞(𝐾) in [48]; it is also stated explicitly in [3, Equation (3.7)] where our 𝜉1 and 𝜔1

correspond to their Ψ𝑝 and Ω𝑝 .)
When �HFK (𝐾) is thin, we have that 𝜉 = 𝜉1 and 𝜔 = 𝜔1 according to the grading shifts in (8.3) and

(8.4). In particular,

𝜉𝜔 = −𝜔𝜉.

Moreover, in this case, the two homology groups in (8.5) are supported in Alexander gradings 𝜏(𝐾)
and −𝜏(𝐾), respectively, where 𝜏(𝐾) is the Ozsváth–Szabó tau invariant [46]. With this background in
place, we may now prove the following:

Lemma 8.2. Let 𝐾 ⊂ 𝑆3 be a knot of genus 𝑔 ≥ 1 for which �HFK (𝐾) is thin. Then

dim �HFK (𝐾, 𝑔) ≤ dim �HFK (𝐾, 𝑔 − 1).

If in addition K is fibered with |𝜏(𝐾) | < 𝑔, then this is a strict inequality.

Proof. Suppose that 𝑔 ≥ 1 and �HFK (𝐾) is thin. Then 𝜉 = 𝜉1 and 𝜔 = 𝜔1 and 𝜉𝜔 = −𝜔𝜉. If

dim �HFK (𝐾, 𝑔) > dim �HFK (𝐾, 𝑔 − 1),

then we have also that

dim �HFK (𝐾,−𝑔) > dim �HFK (𝐾, 1 − 𝑔),

by conjugation symmetry. The complex (�HFK (𝐾), 𝜉), given by

�HFK (𝐾, 𝑔)
𝜉𝑔
−−→�HFK (𝐾, 𝑔 − 1)

𝜉𝑔−1
−−−→ . . .

𝜉2−𝑔
−−−→�HFK (𝐾, 1 − 𝑔)

𝜉1−𝑔
−−−→�HFK (𝐾,−𝑔),

then has nontrivial homology in both of the Alexander gradings g and −𝑔, meaning that

dim 𝐻∗(�HFK (𝐾), 𝜉) ≥ 2,

a contradiction. This proves the first claim.
Now suppose that K is also fibered, and assume for a contradiction that |𝜏(𝐾) | < 𝑔 but

dim �HFK (𝐾, 𝑔) = dim �HFK (𝐾, 𝑔 − 1) = 1.

The fact that 𝜏(𝐾) ≠ ±𝑔 implies that the complexes (�HFK (𝐾), 𝜉) and (�HFK (𝐾), 𝜔) both have trivial
homology in Alexander grading g. This implies that the components

�HFK (𝐾, 𝑔)
𝜉𝑔
−−→�HFK (𝐾, 𝑔 − 1)

𝜔𝑔−1
−−−−→�HFK (𝐾, 𝑔)

of 𝜉 and 𝜔 are both nontrivial, and hence so is their composition, since

�HFK (𝐾, 𝑔) � �HFK (𝐾, 𝑔 − 1) � Q.

Letting x be a generator of �HFK (𝐾, 𝑔), this shows that 𝜔(𝜉 (𝑥)) ≠ 0. However, 𝜉 (𝜔(𝑥)) = 𝜉 (0) = 0,
which contradicts the fact that 𝜉𝜔 = −𝜔𝜉. �

We now prove Theorem 1.6, which states that reduced Khovanov homology detects 52.
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Proof of Theorem 1.6. Suppose that

Kh(𝐾) � Kh(52)

as bigraded vector spaces. Note that Kh(52) is thin since 52 is alternating [39]. It then follows from
Lemma 8.1 that the knot Floer homology of K is thin and that

dim �HFK (𝐾) = det(52) = 7.

Let 𝑔 ≥ 1 be the genus of K, and let us first suppose that K is not fibered. Then

dim �HFK (𝐾,±𝑔) ≥ 2.

Together with the fact from Lemma 8.2 that

dim �HFK (𝐾, 𝑔) ≤ dim �HFK (𝐾, 𝑔 − 1),

and the fact that the total dimension is 7, this implies that 𝑔 = 1 and the sequence

(dim �HFK (𝐾, 𝑎) | −1 ≤ 𝑎 ≤ 1) = (2, 3, 2).

In particular, K is a nearly fibered knot of genus 1, and it follows from Theorem 1.2 and Table 1 that
K is either 52 or 52. But reduced Khovanov homology distinguishes 52 from its mirror, so we have that
𝐾 = 52, as desired.

Finally, let us suppose for a contradiction that K is fibered. First, note that

|𝜏(𝐾) | < 𝑔. (8.6)

Indeed, if |𝜏(𝐾) | = 𝑔 instead, then either K or its mirror is strongly quasipositive [24, Theorem 1.2].
In this case, [56, Proposition 4] implies that Rasmussen’s invariant [58] satisfies 𝑠(𝐾) = ±2𝑔. Since
Kh(𝐾) is thin, it is supported in the 𝛿-grading

1
2 𝑠(𝐾) = ±𝑔,

as argued at the end of [1, Proof of Theorem 1]. Since Kh(52) is supported in 𝛿-grading 1, it follows
that 𝑔 = 1. Then K is a fibered knot of genus 1, and hence a trefoil or the figure eight, but this violates
our assumption that

Kh(𝐾) � Kh(52).

The strict inequality in (8.6) therefore holds.
It then follows from Lemma 8.2 that

1 = dim �HFK (𝐾, 𝑔) < dim �HFK (𝐾, 𝑔 − 1).

The fact that dim �HFK (𝐾) = 7 then implies that either 𝑔 = 1, which cannot happen (since K is not a
trefoil or the figure eight, as discussed above), or else 𝑔 > 1 and

�HFK (𝐾, 𝑎) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Q if 𝑎 = ±𝑔

Q2 if 𝑎 = ±(𝑔 − 1)
Q if 𝑎 = 0
0 otherwise.
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Let us assume the latter holds. Note in this case that if 𝑔 > 2, then the complex (�HFK (𝐾), 𝜉) must have
nontrivial homology in both Alexander gradings 𝑔 − 1 and 1 − 𝑔, meaning that

dim 𝐻∗(�HFK (𝐾), 𝜉) ≥ 2,

a contradiction. Therefore, 𝑔 = 2 and

(dim �HFK (𝐾, 𝑎) | −2 ≤ 𝑎 ≤ 2) = (1, 2, 1, 2, 1).

The complexes (�HFK (𝐾), 𝜉) and (�HFK (𝐾), 𝜔) therefore take the forms

Q2
𝜉2
−−→ Q2

1
𝜉1
−−→ Q0

𝜉0
−−→ Q2

−1
𝜉−1
−−→ Q−2

and

Q2
𝜔1
←−− Q2

1
𝜔0
←−− Q0

𝜔−1
←−−− Q2

−1
𝜔−2
←−−− Q−2,

respectively, where the subscripts indicate the Alexander grading. The fact that

𝜏(𝐾) ≠ ±𝑔 = ±2

implies that the homologies of these complexes are trivial in Alexander gradings ±2. This implies that
the components 𝜉2, 𝜉−1, 𝜔−2, and 𝜔1 are all nontrivial. Moreover, 𝜉1 and 𝜉0 cannot both be nontrivial,
as this would imply that their composition is nontrivial, which would violate 𝜉2 = 0. Let us assume
without loss of generality that

𝜉1 ≠ 0 and 𝜉0 = 0.

Let x be an element of �HFK (𝐾,−1) for which 𝜉−1(𝑥) ≠ 0. Then

𝜔(𝜉 (𝑥)) = 𝜔−2 (𝜉−1(𝑥)) ≠ 0,

while

𝜉 (𝜔(𝑥)) = 𝜉0(𝜔−1(𝑥)) = 0,

contradicting the fact that 𝜔𝜉 = −𝜉𝜔. We have therefore ruled out the possibility that K is fibered,
completing the proof of Theorem 1.6. �

Remark 8.3. One can use a similar argument to prove the slightly stronger result that if Kh(𝐾) is 7-
dimensional and supported in a unique 𝛿-grading d, then, up to taking mirrors, either 𝐾 = 52, or else
𝑑 = 3 and

�HFK (𝐾) � �HFK (𝑇2,7)

as bigraded vector spaces. Though relatively straightforward, proving this takes quite a bit of room, so
we do not pursue it here.

Finally, we prove Theorem 1.7, which states that reduced Khovanov homology together with the
degree of the Alexander polynomial detects each pretzel knot 𝑃(−3, 3, 2𝑛 + 1).

Proof of Theorem 1.7. Suppose that

Kh(𝐾) � Kh(𝑃(−3, 3, 2𝑛 + 1))

https://doi.org/10.1017/fmp.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.28


Forum of Mathematics, Pi 59

as bigraded vector spaces, and that Δ𝐾 (𝑡) has degree one. Then K is not fibered. Starkston proved
[60, Theorem 4.1] that the reduced Khovanov homology of this pretzel is thin. It then follows from
Lemma 8.1 that the knot Floer homology of K is thin, and that

dim �HFK (𝐾) = det(𝑃(−3, 3, 2𝑛 + 1)) = 9.

Since �HFK (𝐾) is thin and Δ𝐾 (𝑡) has degree one, we conclude from (8.2) and the genus detection (1.1)
that 𝑔(𝐾) = 1. Since K is not fibered, we have that

dim �HFK (𝐾,±1) ≥ 2.

Together with the fact from Lemma 8.2 that

dim �HFK (𝐾, 1) ≤ dim �HFK (𝐾, 0),

and the fact that the total dimension is 9, this implies that the sequence

(dim �HFK (𝐾, 𝑎) | −1 ≤ 𝑎 ≤ 1) = (2, 5, 2) or (3, 3, 3).

But in the latter case, we would have

Δ𝐾 (𝑡) = ±(3𝑡 − 3 + 3𝑡−1),

which would imply that Δ𝐾 (1) = ±3, but Δ𝐾 (1) = 1 for any knot 𝐾 ⊂ 𝑆3. Therefore,

dim �HFK (𝐾, 1) = 2,

and hence K is nearly fibered of genus 1. The fact that �HFK (𝐾) is thin and 9-dimensional then means,
by Theorem 1.2 and Table 1, that K must be a pretzel knot 𝑃(−3, 3, 2𝑚 + 1) for some 𝑚 ∈ Z (the mirror
of any such pretzel is another such pretzel). But

Kh(𝑃(−3, 3, 2𝑚 + 1)) � Kh(𝑃(−3, 3, 2𝑛 + 1))

for 𝑚 ≠ 𝑛, by [60, Theorem 4.1] or the more general [25, Theorem 3.2]. We conclude that 𝐾 =
𝑃(−3, 3, 2𝑛 + 1), as desired. �

9. Detection results for HOMFLY homology

As mentioned in §1.1, reduced HOMFLY homology, defined by Khovanov–Rozansky in [35], assigns
to a knot 𝐾 ⊂ 𝑆3 a triply-graded vector space over Q,

�̄� (𝐾) =
⊕
𝑖, 𝑗 ,𝑘

�̄�𝑖, 𝑗 ,𝑘 (𝐾),

which determines the HOMFLY polynomial of K by the relation

𝑃𝐾 (𝑎, 𝑞) =
∑
𝑖, 𝑗 ,𝑘

(−1) (𝑘− 𝑗)/2𝑎 𝑗𝑞𝑖 dim �̄�𝑖, 𝑗 ,𝑘 (𝐾).

Our goal in this section is to prove Theorem 1.8, which says that reduced HOMFLY homology detects
each pretzel knot 𝑃(−3, 3, 2𝑛 + 1). We begin with the following computation:

Lemma 9.1. We have dim �̄� (𝑃(−3, 3, 2𝑛 + 1)) = 9 for all 𝑛 ∈ Z.

https://doi.org/10.1017/fmp.2024.28 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.28


60 J. A. Baldwin and S. Sivek

Figure 29. Building 𝑃(−3, 3, 1) by attaching a band to a 2-component unlink.

In order to prove this lemma, let us first recall that Khovanov–Rozansky also defined for each integer
𝑁 ≥ 1 a reduced 𝔰𝔩𝑁 homology theory [34], which assigns to a knot 𝐾 ⊂ 𝑆3 a bigraded vector space
over Q,

�̄�𝑁 (𝐾) =
⊕
𝑖, 𝑗

�̄�
𝑖, 𝑗
𝑁 (𝐾).

Khovanov homology is related to the 𝔰𝔩2 theory by the following change in gradings:

Kh
ℎ,𝑞
(𝐾) � �̄�𝑞,−ℎ

2 (𝐾). (9.1)

Rasmussen proved in [59, Theorem 2] that there is a spectral sequence which starts at �̄� (𝐾) and
converges to �̄�𝑁 (𝐾), for each 𝑁 ≥ 1. Moreover, when this spectral sequence collapses at the first page,
as it does for N sufficiently large, the reduced HOMFLY homology determines the 𝔰𝔩𝑁 theory [59,
Theorem 1] by

�̄� 𝐼 ,𝐽
𝑁 (𝐾) �

⊕
𝑖+𝑁 𝑗=𝐼
(𝑘− 𝑗)/2=𝐽

�̄�𝑖, 𝑗 ,𝑘 (𝐾). (9.2)

In particular, dim �̄� (𝐾) = dim �̄�𝑁 (𝐾) for 𝑁 � 0.

Proof of Lemma 9.1. Let us write

𝐾𝑛 = 𝑃(−3, 3, 2𝑛 + 1)

for convenience. First, note that 𝐾0 is the 2-bridge knot 61. It therefore follows from [57, Theorem 1]
that 𝐾0 is N-thin for all 𝑁 > 4, which implies by [57, Corollary 4.3] that

dim �̄�𝑁 (𝐾0) = det(𝐾0) = 9 for all 𝑁 > 4.

Next, observe that 𝐾0 can be obtained via band surgery on the 2-stranded pretzel link 𝑃(−3, 3), which
is a split link (in fact, a 2-component unlink), as shown in Figure 29. Each 𝐾𝑛 can then be obtained
from 𝐾0 by adding n full twists to that band, so a theorem of Wang [64, Proposition 1.7] says that for
any 𝑁 ≥ 2, the dimension

dim �̄�𝑁 (𝐾𝑛)

is independent of n. Thus, for any 𝑛 ∈ Z, the above computation for 𝐾0 tells us that

dim �̄�𝑁 (𝐾𝑛) = 9 for all 𝑁 > 4

and hence that dim �̄� (𝐾𝑛) = 9, as desired. �

With this computation in hand, we may now prove Theorem 1.8.
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Proof of Theorem 1.8. Suppose that

�̄� (𝐾) � �̄� (𝑃(−3, 3, 2𝑛 + 1))

as triply-graded vector spaces. Then K has the same HOMFLY polynomial as 𝑃(−3, 3, 2𝑛 + 1). Since
the HOMFLY polynomial specializes to the Alexander polynomial, we have that

Δ𝐾 (𝑡) = Δ𝑃 (−3,3,2𝑛+1) (𝑡) = −2𝑡 + 5 − 2𝑡−1.

In particular,

dim �̄�2(𝐾) = dim Kh(𝐾) ≥ det(𝐾) = |Δ𝐾 (−1) | = 9.

Since we also know from the computation in Lemma 9.1 that

dim �̄� (𝐾) = dim �̄� (𝑃(−3, 3, 2𝑛 + 1)) = 9,

it follows that the spectral sequence from �̄� (𝐾) to �̄�2(𝐾) must collapse at the first page. Therefore,
�̄� (𝐾) determines �̄�2(𝐾) as in (9.2). In particular, it follows that

�̄�2(𝐾) � �̄�2(𝑃(−3, 3, 2𝑛 + 1))

as bigraded vector spaces. Then we have by (9.1) that

Kh(𝐾) � Kh(𝑃(−3, 3, 2𝑛 + 1))

as bigraded vector spaces. Since K has the same Alexander polynomial and reduced Khovanov homology
as 𝑃(−3, 3, 2𝑛 + 1), Theorem 1.7 says that 𝐾 = 𝑃(−3, 3, 2𝑛 + 1). �

A. Computations of knot Floer homology

In this appendix, we explain the knot Floer homology calculations recorded in Table 1. The computation
for 52 follows from the fact that it is alternating [45, Theorem 1.3]. For the pretzel knots 𝑃(−3, 3, 2𝑛+1),
we apply [51, Theorem 1.3] (but see also [25, Theorem 1]). For the twisted Whitehead doubles, Hedden
[23, Theorem 1.2] computed their knot Floer homology over Z/2Z, but his results work over arbitrary
fields. This leaves only the knot 15𝑛43522, which will occupy the remainder of this appendix.

Proposition A.1. We have that

�HFK (15𝑛43522, 𝑎;Q) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q2
(0) 𝑎 = 1
Q4
(−1) ⊕ Q(0) 𝑎 = 0
Q2
(−2) 𝑎 = −1,

where the subscripts denote Maslov gradings.

To start, we can carry out the same computation with coefficients in a finite field using a program by
Zoltán Szabó [61], and over F = Z/2Z, we find that

�HFK (15𝑛43522, 𝑎;F) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F2
(0) 𝑎 = 1
F4
(−1) ⊕ F(0) 𝑎 = 0
F2
(−2) 𝑎 = −1.

Proposition A.1 will then follow from the universal coefficient theorem if we can show that�HFK (15𝑛43522;Z) has no 2-torsion.
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Suppose, for a contradiction, that there is 2-torsion in some Alexander grading a. Then by the universal
coefficient theorem, it must contributeF summands to consecutive homological (i.e., Maslov) gradings of�HFK (15𝑛43522, 𝑎;F). By inspection, it can only possibly contribute F(−1) ⊕F(0) to �HFK (15𝑛43522, 0;F),
and therefore

�HFK (15𝑛43522, 𝑎;Q) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q2
(0) 𝑎 = 1
Q3
(−1) 𝑎 = 0
Q2
(−2) 𝑎 = −1.

That is,

�HFK (15𝑛43522;Q) � �HFK (52;Q)

as bigraded vector spaces. Since this knot Floer homology is thin, we have that

CFK∞(15𝑛43522;Q) � CFK∞(52;Q)

up to filtered chain homotopy equivalence [55, Lemma 5]. Since the complex CFK∞(𝐾) determines
[48] the Heegaard Floer homology of n-surgery on a knot 𝐾 ⊂ 𝑆3 for integers

𝑛 ≥ 2𝑔(𝐾) − 1 = 1,

it follows that

dim ĤF(𝑆3
1 (15𝑛43522);Q) = dim ĤF(𝑆3

1 (52);Q)

= dim ĤF(−Σ(2, 3, 11);Q) = 3.

We will use this together with the following lemma to get a contradiction.

Lemma A.2. If 𝐾 ⊂ 𝑆3 is a knot of genus at least 2, then dim ĤF(𝑆3
±1 (𝐾);Q) ≥ 5.

Proof. By the surgery exact triangles

· · · → ĤF(𝑆3;Q) → ĤF(𝑆3
0 (𝐾);Q) → ĤF(𝑆3

1 (𝐾);Q) → . . . ,

and

· · · → ĤF(𝑆3;Q) → ĤF(𝑆3
−1 (𝐾);Q) → ĤF(𝑆3

0 (𝐾);Q) → . . . ,

it suffices to show that dim ĤF(𝑆3
0 (𝐾);Q) ≥ 6.

Let 𝔰𝑖 ∈ Spin𝑐 (𝑆3
0 (𝐾)) be the Spin𝑐 structure with

〈𝑐1 (𝔰𝑖), [Σ̂]〉 = 2𝑖,

where Σ̂ ⊂ 𝑆3
0 (𝐾) is a capped-off Seifert surface for K. Then according to [48, Corollary 4.5] and the

way in which knot Floer homology detects the genus 𝑔 = 𝑔(𝐾), which is at least 2, we have

HF+(𝑆3
0 (𝐾), 𝔰𝑔−1;Q) � �HFK (𝐾, 𝑔;Q) � 0.

Likewise,

HF+(𝑆3
0 (𝐾), 𝔰1−𝑔;Q) � 0,
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by the conjugation symmetry of Heegaard Floer homology. Furthermore, HF+(𝑆3
0 (𝐾), 𝔰0;Q) is nontriv-

ial because 𝔰0 is torsion (see [50, §10.6]).
We now recall from [49, Proposition 2.1] that ĤF(𝑌, 𝔰) is nonzero if and only if HF+(𝑌, 𝔰) is nonzero,

so we have shown that

ĤF(𝑆3
0 (𝐾), 𝔰𝑖) � 0

for each 𝑖 = 𝑔 − 1, 0, 1 − 𝑔. In fact, each of these Spin𝑐 summands has Euler characteristic zero [49,
Proposition 5.1] and hence even dimension, so the total dimension of ĤF(𝑆3

0 (𝐾)) must be at least
2 + 2 + 2 = 6, as claimed. �

Proof of Proposition A.1. Supposing otherwise, we have already argued that

dim ĤF(𝑆3
1 (15𝑛43522);Q) = 3.

We now observe the following coincidences in SnapPy [11]:

In[1]: M1 = Manifold(’K15n43522(1,1)’)
In[2]: N1 = Manifold(’9_42(-1,1)’)
In[3]: M1.is_isometric_to(N1)
Out[3]: True
In[4]: M2 = Manifold(’K15n43522(-1,1)’)
In[5]: N2 = Manifold(’8_20(-1,1)’)
In[6]: M2.is_isometric_to(N2)
Out[6]: True

In other words, if K15n43522, 8_20 and 9_42 denote each of 15𝑛43522, 820 and 942 with the fixed
chirality given by SnapPy (which may or may not be mirror to their usual chiralities), then we have

𝑆3
1 (K15n43522) � ±𝑆

3
−1 (9_42), 𝑆3

−1 (K15n43522) � ±𝑆
3
−1 (8_20).

But 820 and 942 both have genus 2, so we can apply Lemma A.2 to conclude that

dim ĤF(𝑆3
±1 (15𝑛43522);Q) ≥ 5,

and we have a contradiction. �
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