ANZIAM J. 43(2002), 559-566

GROWTH THEOREMS FOR HOMOGENEOUS SECOND-ORDER
~ DIFFERENCE EQUATIONS

STEVO STEVIC!

(Received 15 October 1999; revised 19 June 2000)

Abstract

In this paper we investigate the boundedness and asymptotic behaviour of the solutions
of a class of homogeneous second-order difference equations with a single non-constant
coefficient. These equations model, for example, the amplitude of oscillation of the weights
on a discretely weighted vibrating string. We present several growth theorems. Two
examples are also given.

1. Introduction
In this paper we shall study the second-order linear difference equation of the form
Xpp1 + bpxy +x,0, =0, neN, )

where x,, is the desired solution and b, is a given real sequence. We shall investigate
the boundedness and asymptotic behaviour of the solution of (1). '

This equation models, for example, the amplitude of oscillation of the weights on
a discretely weighted vibrating string {1, pp. 15-17].

Results for similar problems for second-order differential equations can be found
in [3].

If b, = —2, n € N, we have x,,; — 2x, + x,_; = 0. This equation has a general
solution in the form an + b, where qa, b are arbitrary real numbers and thus has
unbounded solutions. It is well-known that if b, = d € R, n € N, where d > 2
or d < —2, then the equation also has unbounded solutions. This motivates us to
investigate the cases when —2 < b, < 2, n € N, especially when b, — 0 as n — 0.
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560 Stevo Stevié [21

The following “symmetry principle” is very useful in the consideration of (1). If
we make the change y, = (—1)"x,, (1) becomes

(_1)n+l(y’l+l — DpYn +yn—l) == 0, ne N,
that is,
Yn+1 — bnyn + Yn-1 = 0, ne N.

Thus it is enough to investigate the cases when —2 < b, < 0, n € N. For example,
if we show that, under some conditions, when —2 < b, < 0, n € N, (1) has either
bounded or unbounded solutions, then this also holds for (1) when0 < b, < 2,n € N.

Using the substitution b, = —2/(1 + ¢,) we may transform the relation of interest
into

Xnpt — 2Xn + Xpg + Ci(Xnp1 +X,21) =0, neN, 2

which is in a more suitable form for the calculations which follow (see also [8]).

2. Preliminaries

For investigation of the boundedness and asymptotic behaviour of the solution x,,,
we will need a few auxiliary lemmas. The first of these is a discrete variant of the
Bellman-Gronwall lemma. The continuous case of this lemma can be found in [2]
and [6].

LEMMA 1. If x,, c,. > 0, ¢ is a positive constant and x, < ¢ + Z _1 Cixi, n €N,
then x, < cexp( o1 c,) neN.
Proof of this lemma and further generalizations can be found in [4] (see also [8]).

LEMMA 2. Let c¢,, n € N U {0}, be a positive sequence and x, be a solution of the
difference equation (2). Then

2 2 2
(xn+l - xn) + Cnx,.+| + Cn-l-x,,
n-1

= (x; —x0)? + eix + cox} + Z(Cm —c¢_)x}, neN. 3)

i=1
PROOF. Multiplying (2) by x,4+1 — Xp—1 = Xn4t — Xn + Xn — X, We get

(xn+l - xn)2 - (xn - xn—l)2 + Cn(x:.H —-x:_[) = 0, neN. (4)
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It follows from (4) that

D M@ —x) = i = xia) 1+ Y alxd, —x2 ) =0.

i=] i=1

Hence for all n € N we obtain (3).

3. Main results

We are now in a position to formulate and to prove the main results of this paper.
From hereafter we shall exclude the trivial solution from our considerations.

THEOREM 1. Let ¢c,, n € N U {0}, be a positive nonincreasing sequence and x,, be
a solution of (2). Then the sequences x,,, — x, and c,,_,x: are bounded. Further, if
lim,_, o ¢, > O, then x, is bounded.

PROOF. From (3) we have
(Xnst = %)% + Cax2) + Cao1x? < (x1 — X0)* + c1xg + cox?

since Z;‘;‘(cm - c;_,)xf < 0. From that we have the first part of our theorem. In
particular, ¢,-1x2 < (x; — x0)*> + ¢.x2 + cox? = M, for all n € N. Therefore if
lim,_, o ¢, > 0, we have

M M

xl< < = < +00.
Cn—1 hmn—»oo Cn

Thus the second part of our theorem follows.

THEOREM 2. Let c,, n € N U {0}, be a positive nondecreasing sequence such that
Cq > 8 for n > ng and x, be a solution of (2). Then limsup,_, ,, c,x2 > 0.

PROOF. Without loss of generality we may suppose that ny = 1. From (3) we get
(Xngt = %)% + Cax2) + Camix? = (x) — x0)* + c1x2 + cox?l.

On the other hand (x; — x0)? + ¢;x2 + cox? > 0, since we may suppose that xq and x,
are not both equal to zero at the same time.

By the inequality between the arithmetic and geometric means and since ¢, > §,
we have

2
(Knst — Xa)? < 2(x2,, +x2) < g(c,,x,f+l + ¢iixl), neN.
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From all of the above we obtain
2 2 2 2 2 2
1+ 3 (Cnxpyy + Caoixy) = (X1 —x0)" + x5 +cox; >0, neN.

Letting n — oo in the last inequality we obtain that

4

(2 + 3) limsup c,x2 > (x; — x0)2 + c1x2 + cox? > 0
n—o00

Thus the theorem follows.

The following theorem was essentially proved in [8]. In order to make this paper
more complete we shall present its proof here.

HEOREM 3. Let ¢c,,n € NU {0}, be a sequence such that ¢, > é > 0, n € Nan
T 3. Le N U {0}, b h th §>0 N and
Z;"f |¢is1 — €i—1] < 00. Then all the solutions of (2) are bounded.

PROOEF. From (3) we have

n—-1
2 _ 2 2 2 2
C1X; < (X1 — X0)" + 1xy + coxy + E lciv1 — Cizilx}, neN

i=l

since ¢; > 0.
Since ¢, = § > 0, n € N, by the Bellman-Gronwall lemma we get

(x1 — x0)* + c1x2 + cox?
xf - : Lexp 3 ; [Cisr — Cizal ] .

1A

8

Hence

IA

2 2 2 g

x: (x, — xg) +8C|xo + cox; exp (3 Z lcin — il ) < +00.
i=1

Therefore all solutions of (2) are bounded.

THEOREM 4. Let c,, n € N U {0}, be a positive nondecreasing sequence such that
1 <m < cpy1fch <M < 00, n € NU {0} and x, be a solution of (2). Then

- -2 -
xf - 0(0:4(M+1) 1) and xf _ ﬁ(c:"/"" +MP JmP I)

foreachp =2, p € N.
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PROOF. From (3) we have

n—1

Ca1X2 < (01 — X0) + ex3 + cox? + ) (e — Cioi)xl, nEN

i=1

since ¢; > 0.
The last inequality can be writen in the form

¢ Ci_
Cp— 1x < C+ Z( o l)c(+p—1x,‘21 (5)

Cl+p 1

where C = (x| — x0)? + c1x2 + cox} and p € N is fixed.
Since ¢, > 0, (5) is equivalent to

n+p~1

Ci-1 (Cl+l Ci— l) 2
Cntp-1X) ]—[ — =<C+ E o Ciet%is
i+p—1
that is,
n+p—1
Ci (c —Ci—1)

2 [ i+1 i-1 2
cnipx2 < [ — C+§ —C——c,+,, X;
i=n i-1 i+p—1

n—1 (C C )
i+1 — Ci-1 2
SMP Cc+ E ———Cip-1X;

i=1 Ci+p—l

By the condition of the theorem and the discrete Bellman-Gronwall lemma we obtain
¢

Gripois? < Cexp ):

i=1 cl+p 1

since Cit+1 — Ci—1 = 0.
Let us estimate the sum Y~} (ciy1 ~ ¢i—1)/Cisp—1. First, we note that
i=l P

n—1 p=2 n—1 p—1
C.+| — Ci—) Z Ciy1 — G Citj Ci — Ci— Cigj—1

+

C PR
P i+p—1 Citl P —y Ci+i+l = =l Ciyj

By the condition of the theorem we have ¢;/¢;yy < 1/m for all i € N. Thus, for
p = 2, we have

R

-1 n—-1 n-1
. o1 . 1
< - + : (©)
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and for p =1,

3
|
—

E
\

n—

Ciy1 — Ci—1 < Ciy1 — CiM + Z Ci — Ci—t
— C -

C.
i=1 '

On the other hand, we have

Cit+] — Ci “ dx
b B = 7
=1 Cit1 - -/6“1 X ( )
and
n-1 Cat
ot ®
i=1 Gi 0 X
By (6)—(8), we get

n—1
Z Cit1 — Ci—1 < 1 /C" dx + 1 fc"_l dx
Ciop—t — mP2 o x  omPTl o x

i=1 0

1 1
= (Inc, —In¢) + (nc,-y —Ingy), for p > 2,
mp—2 mp-!

and

Z G~ %0 < M(ne, —Iney) + (nc,e —lIngy), for p=1.

Hence, since ¢, is nondecreasing, we have

remzom (1 1Y +C, for p>2
nc¢, , =
i=1 CI+P 1 - mp—2 mp=1 i orp
and
n-1
ZC'H L< M+ Dlne, +C, for p = 1.
i=1

From all of the above we get

1 1
Crip- lx < Cexp (MP (mP‘Z + m”‘l) Inc, + C) , for p>2

and c,x2 < Cexp(M(M + 1)Inc, + C), for p = 1. Thus we have

MP [mP-24-MP fmP~! < Cc MP [mP =24+ MP [mP !

Ctp-1X, < Cc, Crtp1 :

for p > 2,
that is,
MP ImP—2 L.
xp < Cepl Ty ! ©)

and ¢,x2 < Cc¥™*D for p = 1. From that the theorem follows readily.
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REMARK 1. Throughout the above proof we used C to denote a positive constant,
the value of which may vary from line to line.

COROLLARY 1. Let ¢, n € N, be a positive bounded nondecreasing sequence such
that 1 <m < cpp1/ch < M < 00, n € N. Then all the solutions of (2) are bounded.

REMARK 2. Note that the condition 1 < m < ¢,41/c, < M < 00, n € N, implies
that the sequence (c,) in Theorem 1 and Corollary 1 is nondecreasing.

THEOREM 5. Let d,, n € N, be a positive, unbounded, strictly concave sequence.
Then Equation (1) where b, = —(d,+, + d._1)/d, has unbounded solution and b, —
—2asn— oo.

PROOF. It is obvious that d, is an unbounded solution of (1). Since d, is a strictly
concave sequence, that is, d,,+d,_; <2d,, neN, we have d,.,—d,<d,—d,-;, neN.
Thus the sequence d,,, — d, is decreasing. Therefore there exists lim,_, oo (dn+1 — dn)
of finite or infinite value (that is, —00). Let lim,_,oo(dny1 — dn) = d. If d < 0 from
d, =d + Z;‘;‘ (diy1 — d;) we conclude that d, is negative for sufficiently large n.
Then we arrive at a contradiction with the positivity assumption on d,. So we have
d > 0. Hence d,,, > d,, n € N. Since

d,
lim (d,,, — d,) = lim d, ( o 1) =d < 40
n—00 n—00 d

n

and lim,_, ., d, = 400, we get lim,_, oo (d,+1/d,) = 1. It follows that

d, dn-
lim by, = — lim 2%t o
n—00 n—00 d,
EXAMPLE 1. Consider the difference equation
1 )+ In(n—1
Xp4l — n(n + ) + n(n ) Xp+Xp = O, n=> 2.

Inn

This equation is of the form of (1) and obviously has solution x, = Inn and d, = Inn,
n > 2, satisfying the conditions of Theorem 5.

EXAMPLE 2. Consider the difference equation

n+D*+(n-1*
x,,+,—( +1) n"( ) Xn+x,-1=0, neN, ae(1).

This equation is of the form of (1) and obviously it has solution x, = n®. Itis clear
that d, = n® is a positive, unbounded and strictly concave sequence, since the function
fx)=x% a € (0, 1), is such a function.
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By the “symmetry principle” we can obtain analogous theorems in the case b, €
0,2),n eN.
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