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Abstract. A Dso-topological Markov chain is a topological Markov chain provided with
an action of the infinite dihedral group Ds. It is defined by two zero-one square
matrices A and J satisfying AJ = JAT and J2 = I. A flip signature is obtained from
symmetric bilinear forms with respect to J on the eventual kernel of A. We modify
Williams” decomposition theorem to prove the flip signature is a Dyo-conjugacy invariant.
We introduce natural Dy,-actions on Ashley’s eight-by-eight and the full two-shift. The
flip signatures show that Ashley’s eight-by-eight and the full two-shift equipped with
the natural Dy,-actions are not Dy-conjugate. We also discuss the notion of D-shift
equivalence and the Lind zeta function.
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1. Introduction

A topological flip system (X, T, F) is a topological dynamical system (X, T) consisting
of a topological space X, a homeomorphism 7 : X — X and a topological conjugacy F :
(X, T™Y) = (X, T) with F? = Idy. (See the survey paper [6] for the further study of flip
systems.) We call the map F a flip for (X, T). If F is a flip for a discrete-time topological
dynamical system (X, T'), then the triple (X, T, F) is called a Dyo-system because the
infinite dihedral group

Doo = (a,b:ab=ba" ' and b* = 1)
acts on X as follows:
(a,x) > T(x) and (b,x)+—> F(x) (x € X).

Two Deo-systems (X, T, F) and (X', T', F') are said to be Dyy-conjugate if there is a
Doo-equivariant homeomorphism 6 : X — X’. In this case, we write
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X, T, =X, T, F)

and call the map 0 a Doo-conjugacy from (X, T, F) to (X', T', F’).
Suppose that A is a finite set. A topological Markov chain, or TMC for short, (X4, o4)
over A is a shift space which has a zero-one A x A matrix A as a transition matrix:

Xa={xeA”: A(xj, xj+1) = lforalli € Z}.

A Dgo-system (X, T, F) is said to be a Dyo-topological Markov chain, or Do,-TMC for
short, if (X, T') is a topological Markov chain.

Suppose that (X, T) is a shift space. A flip F for (X, T) is called a one-block flip if
xo = x, implies F(x)o = F(x")o for all x and x” in X. If F is a one-block flip for (X, T),
then there is a unique map 7 : A — A such that

F(x)i =t(x_;) and t>=1dy (x € X;i € 7).

The representation theorem in [4] says that if (X, T, F) is a Doo-TMC, then there is a
TMC (X', T’) and a one-block flip F’ for (X', T’) such that (X, T, F) and (X', T', F')
are Doo-conjugate.

Suppose that A is a finite set and that A and J are zero-one A x A matrices satisfying

AJ=JAT and JP=1. (1.1

Since J is zero-one and J2 = I, it follows that J is symmetric and that for any a € A, there
is a unique b € A such that J(a, b) = 1. Thus, there is a unique permutation ty : A — A
of order two satisfying

J@ab)y=1<15a)=>b (a,beA.
It is obvious that the map ¢, : A — A” defined by
ps(x)i =t7(x—) (x € X)
is a one-block flip for the full A-shift (A%, o). Since AJ = JAT implies
Ala, b) = A(ty(b), ty(a)) (a,beA),

it follows that ¢ ; (X4) = X4. Thus, the restriction ¢4, ; of ¢; to X4 becomes a one-block
flip for (X4, 04). A pair (A, J) of zero-one A x A matrices satistying equation (1.1) will
be called a flip pair.

The classification of shifts of finite type up to conjugacy is one of the central problems
in symbolic dynamics. There is an algorithm determining whether or not two one-sided
shifts of finite type (N-SFTs) are N-conjugate. (See §2.1 in [5].) In the case of two-sided
shifts of finite type (Z-SFTs), however, one cannot determine whether or not two systems
are Z-conjugate, even though many Z-conjugacy invariants have been discovered. For
instance, it is well known (Proposition 7.3.7 in [8]) that if two Z-SFTs are Z-conjugate,
then their transition matrices have the same set of non-zero eigenvalues. In 1990, Ashley
introduced an eight-by-eight zero-one matrix, which is called Ashley’s eight-by-eight and
asked whether or not it is Z-conjugate to the full two-shift. (See Example 2.2.7 in [5] or
§3 in [2].) Since the characteristic polynomial of Ashley’s eight-by-eight is ¢ (r — 2), we
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could say Ashley’s eight-by-eight is very simple in terms of spectrum and it is easy to
prove that Ashley’s eight-by-eight is not N-conjugate to the full two-shift. Nevertheless,
this problem has not been solved yet. Meanwhile, both Ashley’s eight-by-eight and the
full-two shift have one-block flips. More precisely, if we set

11000000 0000T1000
00100010 00000100
00010100 00000010

4|01 0000001 ;_| 00000001
10001000/ 100000O0TO0]|
0000T100°1 01 000000
001007100 00100000
00010010 | 0001000 0 |

I 1 1 0 0 1
p[ U] [0 e k[0 0]

then A is Ashley’s eight-by-eight, ¢4 ; is a unique one-block flip for (X4, 04), B is
the minimal zero-one matrix defining the full two-shift and (Xp, op) has exactly two
one-block flips ¢p; and ¢p k. It is natural to ask whether or not (X4, 04, 94.y) is
Dso-conjugate to (Xp, op, ¢p,1) or (Xp, 0B, ¢, k). In this paper, we introduce the notion
of flip signatures and prove

Xa,04,04,7) 2 (X, 0B, 90B,1), (1.3)

(X4, 04,04,5) & (Xp, 0B, 9B.K) (14)
and

(XB, 0B, 9B,1) %2 (XB, 0B, VB ,K)- (L5)

When (A, J) and (B, K) are flip pairs, it is clear that if 6 is a Dy-conjugacy
from (X4, 04, ¢a.7) to (Xp, 0B, ¢B.k), then 0 is also a Z-conjugacy from (X4, o4) to
(Xp, op). However, equation (1.5) says that the converse is not true.

We first introduce analogues of elementary equivalence (EE), strong shift equivalence
(SSE) and Williams’” decomposition theorem for Do,-TMCs. Let us recall the notions of
EE and SSE. (See [8, 9] for the details.) Suppose that A and B are zero-one square matrices.
A pair (D, E) of zero-one matrices satisfying

A=DFE and B=ED

is said to be an EE from A to B and we write (D, E) : AX B.If (D, E): AX B, then
there is a Z-conjugacy yp g from (X4, 04) to (Xp, op) satisfying

ype(x) =y & foralli € Z, D(x;,y;) = Ei, xiy1) = 1. (1.6)

The map yp g is called an elementary conjugacy.
An SSE of lag [ from A to B is a sequence of [ elementary equivalences

(D1,E)):AX A, (D2, E)):AIX A ..., (D,E):AXB.
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It is evident that if A and B are strong shift equivalent, then (X4, 04) and (Xp, op) are
Z-conjugate. Williams’ decomposition theorem, found in [9], says that every Z-conjugacy
between two Z-TMCs can be decomposed into the composition of a finite number of
elementary conjugacies.

To establish analogues of EE, SSE and Williams’ decomposition theorem for
Dso-TMCs, we first observe some properties of a Dyo-system. If (X, T, F) is a
Dyo-system, then (X, T, T" o F) are also Dy,-systems for all integers n. It is obvious
that 7" are D,-conjugacies from (X, T, F) to (X, T, T2" 6 F) and from (X, T, T o F)
to (X, T, T?"*! o F) for all integers n. For one’s information, we will see that (X, T, F)
is not Dyo-conjugate to (X, T, T o F) in Proposition 6.1.

Let (A, J) and (B, K) be flip pairs. A pair (D, E) of zero-one matrices satisfying

A=DE, B=ED and E=KD'J

is said to be a Doo-half elementary equivalence (D~o-HEE) from (A, J) to (B, K) and
write (D, E) : (A, J) = (B, K). In Proposition 2.1, we will see that if (D, E) : (A, J) =
(B, K), then the elementary conjugacy yp. g from equation (1.6) becomes a D,-conjugacy
from (X4, 04, 9a.7) to (Xp, 0B, 0p o ¢p k). We call the map yp g a Doo-half elementary
conjugacy from (Xa, oa, pa,j) to (Xp, 0,0 0 ¢p k).

A sequence of [ D-half elementary equivalences

(D1, E1) : (A, J) R (A2, 1), ..., (AL D) : (A, D)) X (B, K)

is said to be a D-strong shift equivalence (Do-SSE) of lag [ from (A, J) to (B, K). If
there is a Doo-SSE of lag [ from (A, J) to (B, K), then (X4, 04, ¢4.7) is Doo-conjugate
to (Xp, o, 0}3 o ¢p.x). If [ is an even number, then (X4, 04, ¢a,7) is Dso-conjugate to
(XB, 0B, 9B k), while if [ is an odd number, then (X4, 04, ¢4.s) is Dx-conjugate to
(XB,oB,0 0 ¢p k). In §4, we will see that Williams’ decomposition theorem can be
modified as follows.

PROPOSITION A. Suppose that (A, J) and (B, K) are flip pairs.

(1)  Two Doo-TMCs (Xa, 04, ¢a,7) and (Xg, o, 9B k) are Dso-conjugate if and only if
there is a Doo-SSE of lag 21 between (A, J) and (B, K) for some positive integer l.

(2) Two Doo-TMCs (Xa, 04, ¢a,7) and (Xp, 0B, 0B o ¢p k) are Duo-conjugate if and
only if there is a Do-SSE of lag 21 — 1 between (A, J) and (B, K) for some positive
integer L.

To introduce the notion of flip signatures, we discuss some properties of Dyo-TMCs. We
first indicate notation. If A; and A are finite sets and M is an A; x A, zero-one matrix,
then for each a € A;, we set

Fu@)={be A : M(a,b) =1}
and for each b € A, we set
Pyub) ={a e A : M(a,b) = 1}.

When (X, T) is a TMC, we denote the set of all n-blocks occurring in points in X by B, (X)
for all non-negative integers n.
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Suppose that (A, J) and (B, K) are flip pairs and that (D, E) is a Dso-HEE from (A, J)
to (B, K). Since B is zero-one and B = E D, it follows that
Fpla)) N Fp(az) # S = Pgla)) NPelaz) = 2,
Pe(a1) NPe(ax) # @ = Fpla)) N Fplax) = 2, (L.7)
for all ay, ap € B1(X4). Suppose that u and v are real-valued functions defined on 51 (X4)

and B (Xp), respectively. If | B; (X4)| = m and |31 (Xg)| = n, then u and v can be regarded
as vectors in R™ and R", respectively. If u and v satisfy

foralla € Bi(Xa) u(@)= Y wv(b), (1.8)
beFp(a)
then for each a € B1(X4), we have

u(ry@u@ = Y vk®) Y vb)
bePg (a) beFp(a)

by E = KD'J and equation (1.7) leads to

Yo u@@u@= Y, > vk@)vb).

aeBB1(Xy) beBi(Xp) dePp(b)

Since J and K are symmetric, this formula can be expressed in terms of symmetric bilinear
forms with respect to J and K. If we write (u, u); = u'Ju and (Bv, v)x = (Bv) Kv,
then we have

(u, u)y = (Bv, v)g.

We note that if both A and B have \ as their real eigenvalues and v is an eigenvector of B
corresponding to A, then u satisfying equation (1.8) is an eigenvector of A corresponding
to N. We consider the case where A and B have O as their eigenvalues and find out
some relationships between the symmetric bilinear forms ( , )y and ( , )x on the
generalized eigenvectors of A and B corresponding to 0 when (A, J) and (B, K) are
Do-half elementary equivalent.

We call the subspace KC(A) of u € R™ such that A?u = 0 for some p € N the eventual
kernel of A:

K(A) ={u e R" : APy = 0 for some p € N}.

If u e K(A)\ {0} and p is the smallest positive integer for which A?u = 0, then the
ordered set

o ={A""Yu, ..., Au, u)

is called a cycle of generalized eigenvectors of A corresponding to 0. In this paper, we
sometimes call « a cycle in KC(A) for simplicity. The vectors A”~ !y and u are called the
initial vector and the terminal vector of «, respectively, and we write

Ini(e) = A? 'y and Ter(a) = u.
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We say that the length of « is p and write |«| = p. It is well known [3] that there is a
basis for KC(A) consisting of a union of disjoint cycles of generalized eigenvectors of A
corresponding to 0. The set of bases for K(A) consisting of a union of disjoint cycles of
generalized eigenvectors of A corresponding to 0 is denoted by Bas (KC(A)). We will prove
the following proposition in §3.

PROPOSITION B. Suppose that (D, E) : (A, J) = (B, K). Then there exist bases £(A) €
Bas(KC(A)) and E(B) € Bas(K(B)) such that if p > 1 and o = {uy,uz, ..., up} is a
cycle in E(A), then one of the following holds.

(1) Thereisacycle p = {vi, va, ..., vpyp1}) in E(B) such that
Dvgy1 =ur and Eup=v, (k=1,...,p).
(2) Thereisacycle B ={vy,va, ..., v, 1} in E(B) such that
Dvy =ur and Eupyi=v (k=1,...,p—1).

In either case, we have
(Ini(), Ter(a)); = (Ini(B), Ter(B)) k. (1.9)

In Lemma 3.3, we will show that there is a basis £(A) € Bas(K(A)) such that for
every cycle o in £(A), the restriction of symmetric bilinear form ( , ); to span(«)
is non-degenerate and in Lemma 3.2, we will see that the restriction of symmetric
bilinear form ( , ); to span(x) is non-degenerate if and only if the left-hand side of
equation (1.9) is not O for a cycle o in £(A). In this case, we define the sign of a cycle
o ={ug,uz,...,up}in E(A) by

+1 if (Ini(e), Ter(a)) ;> 0,

O =11 i (i), Ter(@)y < 0.

We denote the set of |«| such that « is a cycle in £(A) by Znd (K (A)). It is clear that
Ind(K(A)) is independent of the choice of basis for K(A). We denote the union of the
cycles a of length p in £(A) by £,(A) for each p € Ind(K(A)) and define the sign of
E,(A) by

sen(€p(A)) = I1 sgn(@).

{a:ais acycle in £,(A)}

In §3, we will prove the sign of £,(A) is also independent of the choice of basis for X(A)
if the restriction of ( , ), to span(e) is non-degenerate for every cycle o in £, (A).

PROPOSITION C. Suppose that £(A) and £'(A) are two distinct bases in Bas(KC(A))
such that for every cycle a in E(A) or £'(A), the restriction of { , ); to span(a) is
non-degenerate. Then for each p € Ind(K(A)), we have

sgn(€p(A)) = sgn(€,(A)).
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Suppose that £(A) € Bas(K(A)) and that the restriction of ( , ); to span(w) is
non-degenerate for every cycle in £(A). We arrange the elements of Znd([C(A)) =

{p1, P2, ..., pa} to satisfy

pL<p2<...pa

and write

gp = sgn(&,(A)).

If |Znd(KC(A))| = k, then the k-tuple (e, &p,, - - ., £p,) is called the flip signature of
(A, J) and ¢, is called the leading signature of (A, J). The flip signature of (4, J) is
denoted by

F.Sig(A, J) = (&p;» Epys - - s Epy)-

The following is the main result of this paper.

THEOREM D. Suppose that (A, J) and (B, K) are flip pairs and that (X4, o4, ¢a,j) and
(XB, 0B, ¢B.x) are Doo-conjugate. If

FSig(A, J) = (€p1s Epys - - -5 Epy)
and
FSig(B, K) = (&g4;, €g30 - - - » £q3)>

then F.Sig(A, J) and F.Sig(B, K) have the same number of —1s and the leading signatures
ep, and g4y coincide:

Epa = Eqp-

In §7, we will compute the flip signatures of (A, J), (B, I) and (B, K), where A, J,
B, I and K are as in equation (1.2) and prove equations (1.3), (1.4) and (1.5). Actually,
we can obtain equations (1.3), (1.4) and (1.5) from the Lind zeta functions. In [4], an
explicit formula for the Lind zeta function for a D,-TMC was established, which can
be expressed in terms of matrices from flip pairs. From its formula (see also §6), it is
obvious that the Lind zeta function is a D,-conjugacy invariant. In Example 7.1, we will
see that the Lind zeta functions of (X4, 04, ¢4.7), (XB, 0B, ¢p.1) and (Xp, 0B, ¥B k)
are all different. In §6, we introduce the notion of D.-shift equivalence (Doo-SE) which
is an analogue of shift equivalence and prove that Dy,-SE is a Dy,-conjugacy invariant.
In Example 7.2, we will see that there are Do,-SEs between (A, J), (B, I) and (B, K)
pairwise. So the existence of Dy;-shift equivalence between two flip pairs does not imply
that the corresponding Z-TMCs share the same Lind zeta functions. This is a contrast
to the fact that the existence of shift equivalence between two defining matrices A and
B implies the coincidence of the Artin—-Mazur zeta functions [1] of the Z-TMCs (X4, 04)
and (Xp, op). Meanwhile, Example 7.5 says that the coincidence of the Lind zeta functions
of two Do-TMCs does not guarantee the existence of Dy.-shift equivalence between
their flip pairs. This is analogous to the case of Z-TMCs because the coincidence of

https://doi.org/10.1017/etds.2022.59 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.59

3420 S. Ryu

the Artin—-Mazur zeta functions of two Z-TMCs does not guarantee the existence of SE
between their defining matrices. (See §7.4 in [8].)

When (A, J) is a flip pair with |B1(X)| = m, the matrix A defines a linear transfor-
mation A : R™ — R™. The largest subspace R(A) of R” on which A is invertible is the
called the eventual range of A:

o0
R(A) = ﬂ AFR™.
k=1

Similarly, the eventual kernel X(A) of A is the largest subspace of R™ on which A is
nilpotent:

K(A) = U ker(A%).
k=1

With this notation, we can write R” = R(A) & K(A). (See §7.4 in [8].) The flip signature
of (A, J) is completely determined by /C(A), while the Lind zeta functions and the
existence of Do-shift equivalence between two flip pairs depend on the eventual ranges
of transition matrices. In other words, two flip signatures which have the same number of
—1s and share the same leading signature have nothing to do with the coincidence of the
Lind zeta functions or the existence of Dso-shift equivalence. As a result, flip signatures
cannot be a complete Dy,-conjugacy invariant. This will be clear in Example 7.4.

This paper is organized as follows. In §2, we introduce the notions of Dy,-half
elementary equivalence and D,-strong shift equivalence. In §3, we investigate symmetric
bilinear forms with respect to J and K on the eventual kernels of A and B when two
flip pairs (A, J) and (B, K) are Dyo-half elementary equivalent. In the same section,
we prove Propositions B and C. Proposition A and Theorem D will be proved in §§4
and 5, respectively. In §6, we discuss the notion of D -shift equivalence and the Lind zeta
function. Section 7 consists of examples.

2. Deo-strong shift equivalence
Let (A, J) and (B, K) be flip pairs. A pair (D, E) of zero-one matrices satisfying
A=DE, B=ED and E=KD'J

is said to be a Duo-half elementary equivalence from (A, J) to (B, K). If there is
a Dyo-half elementary equivalence from (A, J) to (B, K), then we write (D, E) :
(A, J) = (B, K). We note that symmetricities of J and K imply

E=KD'J& D=JE'K.

PROPOSITION 2.1. If (D, E) : (A, J) = (B, K), then (Xa, 04, ¢j.4) is Doo-conjugate to
(XB, 0B, 0B © YK B).

Proof. Since D and E are zero-one and A = DE, it follows that for all ajay € B2(X4),
there is a unique b € B1(Xp) such that

D(ay,b) = E(b,ar) = 1.
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We denote the block map which sends ajaz € Ba(X4) tob € B1(Xp) by I'p . If we define
the map yp g : (X4, 04) = (Xp,0p) by

vp.E(x)i =Tpr(xixit1) (x € Xp3i € Z),

then we have yp g oos = op o ypE.

Since (E, D) : (B, K) = (A, J), we can define the block map T'g p : B2(Xp) — B1(X4)
and the map yg p : (Xp, o) = (X4, 04) in the same way. Since yg p o yp g = Idx, and
vD,E © YE,p = ldx,, it follows that yp g is one-to-one and onto.

It remains to show that

YD,E ©9A,J = (0B O QBK) O VD,E- 2.1)
Since E=KD"J , it follows that
E(b,a)=1<% D(ty(a), k(b)) =1 (a € Bi(Xa), b € B1(Xp)).
This is equivalent to
D(a,b) =14 E(tg(), 15(a)) =1 (a € Bi(Xa), b € B1(Xp)).
Thus, we obtain
Ipelaiaz) =b < Ipe(ty(ax)ty(a) = tx(b) (a1a2 € B2(Xa)). (22)
By equation (2.2), we have
YD,E 0 9,A(x)i = I'p E(ry(x-i) 17 (x=i-1)) = Tk (p,E(Xx—i—1X—))
= ¢BKk ©YD,E(X)i+1 = (0B 0 ¢YB K) © ¥D,E(X);
for all x € X4 and i € Z and this proves equation (2.1). O
Let (A, J) and (B, K) be flip pairs. A sequence of [ half elementary equivalences
(D1, E1) : (A, )) R (Az, D),

(D2, E2) : (A, J2) = (As, J3),

(Dy, Ep) : (A, J) X (B, K)

is said to be a Do-SSE of lag | from (A, J) to (B, K). If there is a D,-SSE of lag [ from
(A, J) to (B, K), then we say that (A, J) is Dyo-strong shift equivalent to (B, K) and
write (A, J) = (B, K) (lag ]).

By Proposition 2.1, we have

(A, J) ~ (B, K) (lagl) = (Xa, 04, 9s.4) = (Xp, 08, 08’ 0 ¢k B). (2.3)
lis a conjugacy from (Xp, o, ¢k.B) to (Xp, 0B, op? o ¢k.B), the implication

in equation (2.3) can be rewritten as follows:

(A, J) = (B, K) (lag 2I) = (X4, 04, 97,4) = (XB, 0B, ¢k .,B) (2.4)

Because op
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and
(A, J)~ (B, K) (lag2l — 1) = (X4, 04, 91,4) = (Xp, 0B, 0B © 0k .B). (2.5)

In §4, we will prove Proposition A which says that the converses of equations (2.4) and
(2.5) are also true.

3. Symmetric bilinear forms

Suppose that (A, J) is a flip pair and that |B{(X4)| = m. Let V be an m-dimensional
vector space over the field C of complex numbers. Let (u, v); denote the bilinear form
V x V — C defined by

(u, v) — u' Ji (u,veV).

Since J is a non-singular symmetric matrix, it follows that the bilinear form ( , )y is
symmetric and non-degenerate. If u, v € V and (u, v); = 0, then u and v are said to be
orthogonal with respect to J and we write u L; v. From AJ = JAT, we see that A itself
is the adjoint of A in the following sense:

(Au, v)y = (u, Av)y. @3.1)

If X\ is an eigenvalue of A and u is an eigenvector of A corresponding to X, then for any
v € V, we have

Mu, v)y = (hu, v)y = (Au, v)j = (u, Av),. (3.2)

Let sp(A) denote the set of eigenvalues of A. For each N € sp(A), let Iy (A) denote the
set of u € V such that (A — \1)Pu = 0 for some p € N:

Ky (A) = {u € V : there exists p € N such that (A — \I)Pu = 0}.

If u € Ky (A) \ {0} and p is the smallest positive integer for which (A — N1)Pu = 0, then
the ordered set

a={(A=2DP"u, ..., (A=\Du,u)

is called a cycle of generalized eigenvectors of A corresponding to .. The vectors (A —
WP~ 1y and u are called the initial vector and the terminal vector of «, respectively, and
we write

Ini(e) = (A — 2P 'y and Ter(a) = u.

We say that the length of « is p and write || = p. It is well known [3] that there is a
basis for Ky (A) consisting of a union of disjoint cycles of generalized eigenvectors of A
corresponding to . From here on, when we say o = {u1, ..., u,} is a cycle in Iy (4),
it means « is a cycle of generalized eigenvectors of A corresponding to \, Ini(e) = uy,
Ter(a) = up and |a| = p.

Suppose that U/(A) is a basis for V consisting of generalized eigenvectors of A, A
has 0 as its eigenvalue and that £(A) is the subset of U/ (A) consisting of the generalized
eigenvectors of A corresponding to 0. Non-degeneracy of ( , ); says that for each
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u € E(A), there is a v € U(A) such that (u, v); # 0. The following lemma says that the
vector v must be in £(A).

LEMMA 3.1. Suppose that '\, u € sp(A). If '\ is distinct from the complex conjugate i of
W, then Ky (A) L; K, (A).

Proof. Suppose that
a={ur,...,up} and B ={vi,...,v4}
are cycles in Ky (A) and KC,, (A), respectively. Since equation (3.2) implies
Mui, vr)g = (ur, Avi)y = pur, vi)y,
it follows that
(w1, v1)y =0.
Using equation (3.2) again, we have

Mur, vjt1)y = (ur, pvjp1 +vj)y = aur, vi41)y + (U, vj)y

foreach j =1, ..., g — 1. By mathematical induction on j, we see that
(ul,vj)]:O (]= 1,...,6]).
Applying the same process to each us, . . . up, we obtain
foralli=1,...,p, forallj=1,...,q9, (u;,v;);=0. O
Remark. Non-degeneracy of ( , )y and Lemma 3.1 imply that the restrictionof { , );

to Ko (A) is non-degenerate.

From here on, we restrict our attention to the zero eigenvalue and the generalized
eigenvectors corresponding to 0. For notational simplicity, the smallest subspace of V
containing all generalized eigenvectors of A corresponding to 0 is denoted by K(A) and
we call the subspace KC(A) of V the eventual kernel of A. We may assume that the eventual
kernel of A is a real vector space. The set of bases for K(A) consisting of a union of disjoint
cycles of generalized eigenvectors of A corresponding to 0 is denoted by Bas(/IC(A)). If
E(A) € Bas(K(A)), the set of || such that « is a cycle in £(A) is denoted by Znd (C(A))
and we call Znd (K (A)) the index set for the eventual kernel of A. It is clear that Znd (IC(A))
is independent of the choice of £(A) € Bas(K(A)). When p € Znd(K(A)), we denote the
union of the cycles of length p in £(A) by £,(A).

LEMMA 3.2. Suppose that E(A) € Bas(K(A)) and that p € Ind(KC(A)).

(1)  Suppose that o is a cycle in E,(A). The restriction of { , )j to span(a) is
non-degenerate if and only if

(Ini(a), Ter(a)); # O.

(2) The restriction of { , )y to E,(A) is non-degenerate.
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Proof. Suppose that @ = {u1, ..., u,}isacyclein £,(A). By equation (3.1), we have

(i, ui)y = (ur, Auir1)y = (Auy, uiz1)y =0

and
(wivtujyy — (i ujp1)y = i1, Aujir)y — (i, ujr1)y =0 (3.3)
foreachi, j =1,..., p— 1. Suppose that T}, is the m x p matrix whose ith column is
u; foreachi =1,..., p. If weset (u;, up); = b; foreachi =1,2,..., p, then TI;FJT,,
is of the form
o o0 o0 --- 0 0 by
o o o --- 0 by b
T Ce
T, JT,=| 0 0 0 by by b3
by by by --- bp_g bp—l bp

This proves item (1).

To prove item (2), we only consider the case where Znd(K(A)) = {p, q}(p < q)
and both £,(A) and &;(A) have one cycles. Suppose that o« = {uy,...,u,} and g =
{v1, ..., vy} are cycles in £,(A) and &,(A), respectively. When T), is as above, we will
prove TpT JT, is non-singular. We let T, be the m x g matrix whose ith column is v; for
eachi =1,...,q.If Tisthe m x (p + ¢q) matrix defined by

T = [TP Tq]’
then

rhir, 1VIT

.

T = [TEFJTP TE'—JTq:|
q P q q

is non-singular by remark of Lemma 3.1. By arguments in the proof of item (1), we can

put
ro o0 o0 .- 0 0 by
o o0 o0 .- 0 b1 b
T .
T JT,=| 0 0 0 by by b3
L by by b3 --- bp—2 bp—l bp
and
ro o0 o0 .- 0 0 4
o o o0 --- 0 d d
rJir,= 0 0 0 - 4 & ds
Ldi do d3 --- dyg2 dy1 dy
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Now we consider Tl;r JT,. By equation (3.1), we have

(u, )y =0 k=1,...,g—-1),
(o, v)y =0 (k=1,...,q9—-2),

(up,ve)y =0 (k=1,...,9 —p).

If we set (u;, vy)y =c¢; foreachi =1,2,..., p, then the argument in equation (3.3)
shows that Tl;r J T, is of the form

o .- 0 0 0 --- 0 0 cl
0 0O 0 O 0 Cl 2

T N e
TP JT, = 0 0O 0 O c1 c c3
0 - ¢c1 ¢ ¢33 -+ Cp2 Cp-1 Cp

Finally, TqTJ T), is the transpose of T[;r JT,. Hence, by and d; must be non-zero and we
have Rank(7,] JT,) = p and Rank(7,] JT,) = q. O

The aim of this section is to find out a relationship between ( , )y and ( , )x on
bases £(A) € Bas(K(A)) and £(B) € Bas(K(B)) when (D, E) : (A, J) & (B, K). The
following lemma will provide us good bases to handle.

LEMMA 3.3. Suppose that A has the zero eigenvalue. There is a basis E(A) € Bas(IC(A))

having the following properties.

(1) Ifaisacyclein E(A), then the restriction of { , ) to span(w) is non-degenerate,
that is,

(Ini(a), Ter(cr)) ; # O.

(2) Suppose that o is a cycle in E(A) with Ter(a) = u and |a| = p. For each k =
0,1,...p—1,v=AP" 1%y is the unique vector in o such that (AFu, v); # 0.
(3) Ifa and B are distinct cycles in E(A), then

span(a) L span(B).

Proof. (1) Lemma 3.2 proves the case where £(A) has only one cycle. Suppose that £(A)
is the union of disjoint cycles 1, . . ., o of generalized eigenvectors of A corresponding
to O for some r > 1 and that |o1| < |az| < - - - < ||. Assuming

(Imi(aj), Ter(aj))y#0 (j=1,...,r—=1),

we will construct a cycle B of generalized eigenvectors of A corresponding to O
such that the union of the cycles «y,...,a,—1, 8 forms a basis for (A) and that

(Ini(B), Ter(B))s # 0.

By Lemma 3.2, we have

1] < fea| < -+ - < |ay-1] < ler| = (Ini(e,), Ter(e,)) s # 0.
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Thus, we only consider the case where there are other cycles in £(A) whose length is the
same as et |. If @ = {wy, ..., wy} and (wy, wy)y # O, there is nothing to do. So we
assume (w1, wy)y = 0. By non-degeneracy of ( , ); and Lemma 3.1, there is a vector
v € £(A) such that (wy, v); # 0. Since (wy, v); = (wy, Aq_lv)J, it follows that v must
be the terminal vector of a cycle in £(A) of length ¢ by the maximality of g. We put v; =
A9~y and vy = v and find a number k € R\ {0} such that {(w; — kvy, wy — kvg)y #O.
We denote the cycle whose terminal vector is wy — kvg by B. It is obvious that the length
of B is ¢ and that the union of the cycles «y, . . ., a,—1, B forms a basis of IC(A).

(2) We assume that £(A) has property (1) and that = {uy, ..., up}isacyclein £(A).
The proof of Lemma 3.2(1) says that if 7, is the m x p matrix whose ith column is u;,
then TJ JT, is of the form

o 0 o0 --- 0 0 by
o 0 o0 --- 0 by by
N iT,=| 0 0 0 -+ b by b
by by by --- by bp_1 by
We note that b must be non-zero. Now, there are unique real numbers ki, . . ., k, such
that if we set
ky kp—1 -0 ki
k=| 0o
0 0 kp
then K ' 7,7 J T, K becomes
0 0 0 b
0 O by O
K'TJIT,k =| @ Do
0O b --- 0 O
by 0 .- 0 O
If o’ is a cycle in K(A) whose terminal vector is w = le kiu;, then we have |o'| = p
and
. . by ifj=p—1-—i,
(Alw, Alwy, = |70 "I =F :

0 otherwise,

for each 0 <i, j < p — 1. If we replace o with o’ for each @ in £(A), then the result
follows.

(3) Suppose that £(A) has properties (1) and (2) and that £(A) is the union of disjoint
cycles oy, . . ., o of generalized eigenvectors of A corresponding to O for some r > 1 with
la1| < loz| < - -+ <o |. Assuming that

span(e;) Ly span(ej) (G, j=1,...,r = 1;i # ),
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we will construct a cycle 8 such that the union of the cycles «, . . ., ar—1, B forms a basis
for (A) and that «; is orthogonal to 8 with respect to J foreachi =1,...,r — 1.

Suppose that o = {u1,...,up} is a cycle in £(A) which is distinct from o, =
{wy, ..., wy}. We set

(ui,upyy=a (F0), (ui,wg)y=b (=1,...,p)

and

by by by
T=Wy — —Up— —Up | — - — ——Uj.
a a P a P a

Let B denote the cycle whose terminal vector is z.
We first show that 7 L ; span(f). Direct computation yields

(u1,z)y =0. (3.4)
Since Auj = 0, it follows that
i, Alz);=0 (j=1,....9-1)

by equation (3.1). Thus, (u1, A’z); =0forall j =0,...,q — 1.
Now, we show that uy L ; span(B). Direct computation yields

(uz,z)s =0.
From A2u, = 0, it follows that
(s, Az); =0 (j=2,...,q9—1).

It remains to show that (up, Az); = 0, but this is an immediate consequence of equations
(3.1) and (3.4).
Applying this process to each u; inductively, the result follows. O

COROLLARY 3.4. There is a basis £(A) € Bas(IC(A)) such that if u is the terminal
vector of a cycle o in E(A) with || = p, then v = AP~ Ky is the unique vector in E(A)
satisfying

(Aku,v); #£0

foreachk =0,1,...p— 1.

In the rest of the section, we investigate a relationship between ( , )y and ( , )x on
bases £(A) € Bas(K(A)) and £(B) € Bas(K(B)) when there is a Do-HEE between two
flip pairs (A, J) and (B, K). Throughout the section, we assume (A, J) and (B, K) are
flip pairs with |B1(X4)| = m and |B{(Xp)| = n and (D, E) is a Dxo-HEE from (A, J) to
(B, K).

We note that E = K D" J implies

(u, Dv)y = (Eu, v)x (u e R™ veR").

https://doi.org/10.1017/etds.2022.59 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.59

3428 S. Ryu

From this, we see that Ker(E) and Ran(D) are mutually orthogonal with respect to J and
that Ker(D) and Ran(E) are mutually orthogonal with respect to K, that is,

Ker(E) Ly Ran(D) and Ker(D) L Ran(E). 3.5)

LEMMA 3.5. There exist bases £(A) € Bas(K(A)) and E(B) € Bas(K(B)) having the
following properties.

(1)  Suppose that « is a cycle in E(A) with |a| = p and u = Ter(«). Then we have

u € Ran(D) < AP~y ¢ Ker(E). (3.6)
(2)  Suppose that B is a cycle in E(B) with |8| = p and v = Ter(B). Then we have

v € Ran(E) & BP~'v ¢ Ker(D).

Proof. We only prove equation (3.6). Suppose that £(A) € Bas(K(A)) has properties (1),
(2) and (3) from Lemma 3.3. Since (A?~lu, u); # 0, it follows that

u € Ran(D) = AP~ 'u ¢ Ker(E)

from equation (3.5).

Suppose that # ¢ Ran(D). To draw a contradiction, we assume that A?~'u ¢ Ker(E).
By non-degeneracy of ( , )k, there is a v € JL(B) such that (EAp_lu, v)g # 0, or
equivalently, (A?~'u, Dv); # 0. This is a contradiction because (A”~'u, u); # 0 and
(AP, wy; =0forall w € E(A) \ {u}. O

Now we are ready to prove Proposition B. We first indicate some notation. When p €
Ind(K(A)), let £,(A; HB’E) denote the union of cycles « in £,(A) such that Ter(a) ¢
Ran(D) and let £,(A; Bz;’ ) denote the union of cycles « in £,(A) such that Ter(a) €
Ran(D). With this notation, Proposition B can be rewritten as follows.

PROPOSITION B. If (D, E) : (A, J) = (B, K), then there exist bases E(A) € Bas(IC(A))

and E(B) € Bas(K(B)) having the following properties.

(1)  Suppose that p € Ind(K(A)) and o is a cycle in £,(A; ag’E) with Ter(a) = u.
There is a cycle B in £, 1(B; 9g.p) such that if Ter(B8) = v, then Dv = u. In this
case, we have

(AP, u); = (BPv, v)k. (3.7)

(2)  Suppose that p € Ind(K(A)), p>1 and o is a cycle in Ep(A;0p p) with
Ter(a) = u. There is a cycle B in £, 1(B; BED) such that if Ter(B) = v, then
v = Eu. In this case, we have

(AP, u); = (BP0, v)k. (3.8)

Proof. If we define zero-one matrices M and F by

0 D J 0
M_|:E 0j| and F_[O K]’
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then (M, F) is a flip pair. Suppose that £(A) € Bas(K(A)) and £(B) € Bas(K(B)) have
properties (1), (2) and (3) from Lemma 3.3. If we set

EA) DO = {[ g ] ‘ue&(A)and 0 € R”

and

OmEBS(B):”: S :| cve&(B)and0 e R™ ¢,

then the elements in £(A) & 0" or 0" & £(B) belong to IL(M). Conversely, every vector
in IC(M) can be expressed as a linear combination of vectors in £(A) & 0" and 0" & £(B).
Thus, the set E(M) = {£(A) ® 0"} U {0" & £(B)} becomes a basis for IL(M).

If « is a cycle in £(M), then |«| is an odd number by Lemma 3.5. If || =2p — 1 for
some positive integer p, then « is one of the following forms:

(R AP R BN R N A T
(R R E e e P AR

The formulae (3.7) and (3.8) follow from equation (3.3). ]

or

Suppose that £(A) € Bas(K(A)) has property (1) from Lemma 3.3. If « is a cycle in
E(A), we define the sign of o by

+1 if (Ini(®), Ter(a)) ;> 0,

sene) = {—1 if (Ini(a), Ter(a)), < 0.

We define the sign of £, (A) for each p € Znd(K(A)) by

sen(€,(A)) = [ sgn(@).

{ozais acycle in £,(A)}

When (D, E) : (A, J) & (B, K), we define the signs of £,(A; 83E) and £, (A; dp.g) for
each p € Znd(K(A)) in similar ways.

Proposition B says thatif (D, E) : (A, J) = (B, K), there existbases £(A) € Bas(K(A))
and £(B) € Bas(K(B)) such that

sgn(€p(A; 3 ) = sgn(€p11(B: 05 p)))  (p € Ind(K(A))),
and
sgn(€p(A; 85 ) = sgn(€p-1(B; 85 p))  (p € Tnd(K(A)); p > 1).

In Proposition 3.6 below, we will see that the sign of £1(A; 9y ) is always +1 if
E1(4; dp,g) is non-empty. We first prove Proposition C.
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Proof of Proposition C. Suppose that £(A) € Bas(K(A)) has properties (1), (2) and (3)

from Lemma 3.3 and that p € Znd(KC(A)). We denote the terminal vectors of the cycles

in £,(A) by uy, . .., u). Suppose that P is the m x g matrix whose ith column is u;)
foreachi =1,...,q.If weset M = (AP=1P)TJ P, then the entry of M is given by

Ap_l . . f - .’

M, j) = {é) uG, s 1E=J

otherwise,

and the sign of £,(A) is determined by the product of the diagonal entries of M, that is,

+1 if [[, MG, i) >0,

Ep(A) =
sgn(€,(A)) {_1 if [T, M, i) <O.

Suppose that £'(A) € Bas(K(A)) is another basis having property (1) from Lemma 3.3.
Then obviously £ ;, (A) is the union of g disjoint cycles. If w is the terminal vector of a cycle
in SI’,(A), then w can be expressed as a linear combination of vectors in £(A) N Ker(A?),
that is,

w = E cuu.

cy,€R
ueE(A)NKer(AP)

If u € & (A) for k < p, then AP~ 'y = 0. If u € E(A) for k > p or u € £,(A) and u is
not a terminal vector, then (A? Yu, u); =0 by property (2) from Lemma 3.3. This means
that the sign of EL(A) is not affected by vectors u € £ (A) for k # p or u € £,(A) \
Ter(€,(A)). In other words, if we write

q
w = Z ciuGy + Z cutt - (¢i, ¢y €R),
i=1

ueE(A)NKer(AP)\Ter(E, (A))

then we have

q q
(AP~ w, wy; = (AP~ Z Cill (i), Cill(i))J-
i=1 i=1
To compute the sign of £ ;, (A), we may assume that

q
w = Z Cill(j) (Cl, R (S R).
i=1

We denote the terminal vectors of the cycles in £'(A) by w,...,wy) and let Q
be the m x g matrix whose ith column is w( for each i =1,...,q. If we set N =
(AP~'O)TJ O, then H?:l N(i, i) # 0 since £'(A) has property (1) from Lemma 3.3.
So we have

+1 if [IL, NG, i) >0,

& (A) =
sen(&,(4) !—1 if [1, NG,i) <0.
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It is obvious that there is a non-singular matrix R such that PR = Q. Since N = RTMR
and M is a diagonal matrix, it follows that

q q
[[ Ma.h>0&]] NG.i)>0
i=1 i=1
and
q q
[[ Ma.<os ] NG.i) <o0. O
i1 i=1

PROPOSITION 3.6. Suppose that (D, E) : (A, J) = (B, K) and that Tnd (K (A)) contains
1. There is a basis E(A) € Bas(K(A)) such that if o is a cycle in E1(A; dp.p), then
sgn(a) = +1. Hence, we have

sgn(&1(A; opp)) =+1
if E1(A; 0p ) is non-empty.

Proof. Suppose that U/ is a basis for the subspace Ker(A) of X(A). We may assume that
foreachu € U,

ai,ay € Bi(X4), u(ay) #0and Pg(a;) NPglaz) = 9 = u(ay) =0 3.9

for the following reason. If u(az) # 0, then we define u1 and u; by

u(a) if Pg(a1) NPela) # 9,
ui(a) = .
0 otherwise,
and
u(a) if Pg(az) NPela) # 9,
uz(a) = .
0 otherwise.

It is obvious that {u1, uo} is linearly independent. We set u3z = u — u1 — uo. If uz # 0,
then obviously {u1, uy, u3} is also linearly independent. We set

Z/{/ e Z/{ U {M[, us, l/t3} \ {M}

If necessary, we apply the same process to u3 and to each u € U so that every element in
U’ satisfies equation (3.9) and then we remove some elements in ¢/’ so that it becomes a
basis for Ker(A).

We first show the following:

ueld = u(ryla)ua) >0 foralla € B;(Xy).

Suppose that u € U, ag € B1(X4) and that u(ag) # 0. If ap = t;(ap), then u(t;(ag))
u(ag) > 0 and we are done. When ag # t7(ap) and u(ty(ag)) = 0, there is nothing to do.
So we assume ag # T (ag) and u(zty(ag)) # 0. If there were b € Pg(ap) N Pr(ty(ap)),
then we would have

1= B(b, 1 (b)) = E(b, ap)D(ao, tx (b)) + E(D, 1y (a0)) D(z;(ao), Tk (b)) =2
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from E = KD'J. Thus, we have Pg(ag) NPe(ts(ag)) =2 and this implies
u(ty(ap)) = 0 by assumption (3.9).

Now, we denote the intersection of I/ and &£;(A; 85, g) by V and assume that the
elements of V are uy, . . ., ug, that is,

V=UNE(A; BB’E) ={uyr,...,ur}

By Lemma 3.2 and equation (3.5), for each u € V, there is a v € V such that (u, v); # 0.
If (u1, u1); = 0, we choose u; € V such that (u1, u;); # 0. There are real numbers ki, k3
such that {u; + kyu;, uy + kpu;} is linearly independent and that both (u| + kju;, u; +
kyu;)y and (uy + kou;, uy + kpu; )y are positive. We replace u; and u; with u; + kyu; and
u1 + kpu;. Continuing this process, we can construct a new basis for £1(A; 85, ) such that
if ¢ is a cycle in £1(A; dp.g)- then sgn(ar) = +1. O

Suppose that £(A) € Bas(K(A)) has property (1) from Lemma 3.3. We arrange the
elements of Znd (KC(A)) = {p1, p2, ..., pa} to satisfy

pPL<p2<:--<pa

and write

gp = sgn(&,(A)).
If |Znd(KC(A))|=k, then the k-tuple (gp,, €p,, ..., &p,) is called the flip signature of
(A, J) and ¢, is called the leading signature of (A, J). The flip signature of (A, J)
is denoted by

F.Sig(A, J) = (&pys Epys - - - > Epa)-
When the eventual kernel K(A) of A is trivial, we write
Ind(K(A)) = {0}
and define the flip signature of (A, J) by
F.Sig(A, J) = (+1).

We have seen that both the flip signature and the leading signature are independent of the
choice of basis £4 € Bas(K(A)) as long as £4 has property (1) from Lemma 3.3.
In the next section, we prove Proposition A and in §5, we prove Theorem D.

4. Proof of Proposition A

We start with the notion of Ds,-higher block codes. (See [5, 8] for more details about
higher block codes.) We need some notation. Suppose that (X, ox) is a shift space over a
finite set .4 and that ¢, is a one-block flip for (X, ox) defined by

P (x);i =t(x—;)) (x € X;i€Z).

For each positive integer n, we define the n-initial map i, : U,fin Bi(X) — B,(X), the
n-terminal map #, : Jz-,, Be(X) — B,(X) and the mirror map M,, : A" — A" by
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in(arar . ..ap) =ayay ...a, (ai...aym € Bu(X); m >n),

th(aiay . .. ay) = Ap—n+1Am—n+2 - - - Ay (@i ...am € Byp(X); m > n)
and
Mu(aray .. .ap) =a,...a1 (aj...a, € A").
For each positive integer n, we denote the map
aiay . ..ap — t(a)t(ay) ... t(a,) (aj...a, € A")

by 1, : A" — A", It is obvious that the restriction of the map M, o 1, to B,(X) is a
permutation of order 2.
For each positive integer n, we define the nth higher block code 4, : X — B, (X )Z by

ho(x)i = Xpijitn—11 (x € X;i € Z).

We denote the image of (X, ox) under A, by (X,, 0,) and call (X,, o) the nth higher
block shift of (X, ox). If we write v = M,, o 1, then the map ¢, : X,, — X, defined by

pu(x)i=v(x_) (x€Xpi€Z)

becomes a natural one-block flip for (X,,, 0;,). It is obvious that the nth higher block code
h, is a Doo-conjugacy from (X, oy, ¢;) to (X,,, oy, (a,,)”*1 o ¢y). We call the D,-system
(Xn, on, @u) the nth higher block Dso-system of (X, ox, ¢r).

For notational simplicity, we drop the subscript n and write T = 1, and M = M,, if the
domains of 7, and M,, are clear in the context.

Suppose that (A, J) is a flip pair. Then the flip pair (A,, J,) for the nth higher
block Doo-system (X, oy, @) of (Xa, 04, @a.7) consists of B,(X4) x B,(Xa) zero-one
matrices A, and J, defined by

AnG, vy = | T @O =@ B )

0 otherwise,

and

1 ifv=
By =t =M B,
0 otherwise,

In the following lemma, we prove that there is a D-SSE from (A, J) to (A, Jy).
LEMMA 4.1. Ifnis a positive integer greater than 1, then we have
(A1, 1) = (A, Jn) (lagn —1).

Proof. Foreachk=1,2,...,n— 1, we define a zero-one By (X4) X Bi4+1(X4) matrix
Dy and a zero-one By (X4) X Bi(X4) matrix Ey by

1 ifu=1ir(v),
Di(u,v) = { ,k( ) (u € Br(Xp), v € Biy1(Xa))
0 otherwise,
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and
1 ifu=rt®w),
Ex(v,u) = , (u € Br(Xa), v € Bry1(Xa)).
0 otherwise,
It is straightforward to see that (Dy, Ex) : (Ak, Jx) = (Agt1, Jry1) for each k. O]

In the proof of Lemma 4.1, (Xa,, > 0A;, > P, Jesy) 18 €qual to the second higher
block Doo-system of (Xy,, 04,, ¢4a,,s,) by recoding of symbols and the half elementary
conjugacy

YDeEx & (Kags O A A, 0) = KAy OAL 15 OAp 1 © OAg digr)

induced by (D, Ex) can be regarded as the second D.,-higher block code for each k =
1,2,...,n—1.A Dyo-HEE (D, E) : (A, J) = (B, K) is said to be a complete Doo-half
elementary equivalence from (A, J) to (B, K) if yp g is the second Dso-higher block
code.

In the rest of the section, we prove Proposition A.

Proof of Proposition A. We only prove part (1). One can prove part (2) in a similar way.

We denote the flip pairs for the nth higher block Dgo-system of (X4, 04, ¢a,7)
by (A, J,) for each positive integer n. If ¢ : (X4, 04, 0a.7) = (X, 0B, ¢pk) is a
Dso-conjugacy, then there are non-negative integers s and ¢ and a block map W :
Bs+:1+1(X4) = B1(Xp) such that

Y(x)i = V(X[i—s,itr) @ €Xypsi€lZ).

We may assume that s +¢ is even by extending the window size if necessary. By
Lemma 4.1, there is a Doo-SSE of lag (s +¢t) from (A, J) to (As+s+1, Js+s41). From
equation (2.4), it follows that the (s 4+ ¢ + 1)th Dyo-higher block code hg4,y1 is a
Doo-conjugacy. It is obvious that there is a Doo-conjugacy v induced by v satisfying

l[/' = w/ ] hs+t+1 and
X,y € hyp1(X) and  x9 = yo = ¥ (x)o = ¥’ (»o.

So we may assume s = t = 0 and show that there is a Dy,-SSE of lag 2/ from (A, J) to
(B, K) for some positive integer /.
If ¢! is the inverse of v, there is a non-negative integer m such that

v.y €Xp and  Ymm) = Y = ¥ Mo =¥""'(o (4.1
since w_l is uniformly continuous. For each k = 1, . . ., 2m + 1, we define a set 4; by
v
A = w | :1u,veBi(Xp), we Bj(Xa) and uW(w)v € Be(Xp) ¢,
u
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where i = |(k — 1)/2| and j = k — 2| (k — 1)/2]. We define A; x Aj matrices My and

Fj to be
v v v v
M w |, w =l& | Y(w V(w') | e BaXp,)
u u’ u u'
and ww’ (S] Bz(XAj)
and
’ v W= (Motg)(v), w = (Mo ry)(w)
Fy w |, | w =1s KRER 5= I
/
" " and v/ = (Mo tg)(u)
for all
v v
w |, w | € A
u u’

A direct computation shows that (Mg, Fy) is a flip pair for each k. Next, we define a
zero-one Ay x Ay matrix R; and a zero-one Agy; x Ay matrix S to be

rll o L] o 1) 21 o o= i)
¢ v and 71 (w) = i1 (w')
and
S, :}ll ’ :} N fe (W' W (w)') = ul(w)v
v ! and 11 (w') = i;(w),
for all
v v
€ Ax and w | € Aggr.
u u’

A direct computation shows that
(Ries Sk) = (My, Fi) = (Mi41, Fies1)-
Because M| = A and F| = J, we obtain
(A, J) = (Mom+1, Fom1) (lag 2m). (4.2)

Finally, equation (4.1) implies that the Do-TMC determined by the flip pair (M2,,+1,
Frm+1) is equal to the (2m + 1)th higher block Do-system of (X, 0, ¢k p) by recoding
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of symbols. From Lemma 4.1, we have
(B, K) = (Map+1, Fam+1) (lag 2m). (4.3)
From equations (4.2) and (4.3), it follows that
(A, ) ~ (B, K) (lag 4m). ]
5. Proof of Theorem D

We start with the case where (B, K) in Theorem D is the flip pair for the nth higher block
Doo-system of (X4, 04, ©4.7)-

LEMMA 5.1. Suppose that (B, K) is the flip pair for the nth higher block D-system of
(Xa, 04, 94.7)-
(1) If p € Ind(K(A)), then there is g € Ind (K ((B)) such that ¢ = p + n — 1 and that

sgn(&p(A)) = sgn(&y (B)).

2) IfqeInd(K((B))andq >n, then thereis p € Ind(K(A)) suchthatg=p+n — 1
and that

sgn(&p(A)) = sgn(&y(B)).
(3) Ifq € Ind(K((B)) and q < n, then we have
san(€,(B)) = +1.

Proof. We only prove the case n =2. We assume E(A) € Bas(C(A)) and E(B) €
Bas(KC(B)) are bases having properties from Proposition B. Suppose that « is a cycle
in £,(A) for some p € Ind(K(A)) and that u is the initial vector of o. For any ajas €

B>(X4), we have
ai

and this implies that Eu is not identically zero. By Lemma 3.5, o isacycle in £, (A; 83 £)-
Under the assumption that £(A) and £(B) have properties from Proposition B, we can find
a cycle 8 in £(B) such that the initial vector of 8 is Eu. Thus, we obtain

Ep(Asdp ) =2 and Epp1(B; 35 ) = 2, (.1

p € Tnd(K(A) & p+1€Ind(K(B) (p=1)
and
sgn(€p(A)) = sgn(€p+1(B))  (p € Ind(K(A))).
If £ (B) # @, then & (B) = &(B: 95 1,) by equation (5.1) and we have
sgn(€1(B)) = +1

by Propositions 3.6 and C. O
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Remark. If two Doo-TMCs are finite, then we can directly determine whether or not
they are Doo-conjugate. In this paper, we do not consider Do-TMCs that have finite
cardinalities. Hence, when (B, K) is the flip pair for the nth higher block Ds-system
of (X4, 04, pa,y) for some positive integer n > 1, B must have zero as its eigenvalue.

Proof of Theorem D. Suppose that (A, J) and (B, K) are flip pairs and that i :
(Xa,04,94.7) > (Xp, 0B, ¢p.x) 1s a Dyo-conjugacy. As we can see in the proof of
Proposition A, there is a Doo-SSE from (A, J) to (B, K) consisting of the even number of
complete Dyo-half elementary equivalences and (R, Sg) : (Mg, Fi) & (My41, Fry1)(k =
1,...,2m). In Lemma 5.1, we have already seen that Theorem D is true in the case of
complete Do-half elementary equivalences. So it remains to compare the flip signatures
of (My, Fy) and (My41, Fy41) foreachk = 1, .. ., 2m. Throughout the proof, we assume
Ax and (R, Sx) : (Mg, Fr) = (My+1, Fx+1) are as in the proof of Proposition A.

We only discuss the following two cases:

(1) (R2, $2) : (M2, F2) X (M3, F3);
() (R3, S3) : (M3, F3) X (My, Fy).

When k£ =1, (Ry, S1) is a complete Dyo-half elementary conjugacy from (A, J) to
(Aa, J). For each k = 4,5 ...,2m, one can apply the arguments used in cases (1) and
(2) to (Ry, Sk) : (Mg, Fr) = (My+1, Fr+1). More precisely, when k is an even number, the
argument used in case (1) can be applied and when k is an odd number, the argument used
in case (2) can be applied.

(1) Suppose that (B;, K7) is the flip pair for the second higher block Ds.-system of
(XB, 0B, 9B,k ). We first compare the flip signatures of (B>, K7) and (M3, F3). We define
a zero-one By (Xp) x Az matrix U, and a zero-one A3 x B> (Xp) matrix V; by

U [ by } 213 |1 ifby =dy and W(a) = by,
2 by |’ d2 0 otherwise,
1
and
. ;’z [ by } 1 ity = dy and W(ay) = by,
J L b 0 otherwise,
1
for all
b a3
|: b2 i| € B(Xg) and ar | € As.
1 d

A direct computation shows that
(U2, V2) 1 (B2, K2) = (M3, F3).

Remark of Lemma 5.1 says that /JC(B,) is not trivial. So there is a basis £(B)) €
Bas(K(B>)) for the eventual kernel of B, having property (1) from Lemma 3.3. Suppose
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that y = {wy, ..., wp}is acyclein £(By). Since
b3 b3
b3
Vawy az = w a | €As|,
W(az)
by by

it follows that wy ¢ Ker(V,). By Lemma 3.5, y is a cycle in £,(Ba; 82;2",2). Suppose that
E(M3) € Bas(K(M3)) is a basis for the eventual kernel of M3 having property (1) from
Lemma 3.3. Then it is obvious that for each p € Znd(K(B3)), we have

Ep(Baidg, ) =2 and  Epp1(M330, ) = 2. (5.2)
Hence,

p€Ind(K(B2) & p+1eIndK(M3) (p=1)
and

sgn(&p(B)) = sgn(&p+1(M3))  (p € Ind(K(B2)))

by Proposition C. If £1(M3) # @, then £1(M3) = E1(M3; 8‘721/2) by equation (5.2) and
we have

sgn(&1(M3)) = +1 (5.3)

by Propositions 3.6 and C.

Now, we compare the flip signatures of (M2, F>) and (M3, F3).Let B = {vy, ..., vp41}
be a cycle in £(M3) for some p > 1.1f b1byb3 € B3(Xp) and a, aé € W~ 1(by), then from
Ms3vy = vy, it follows that

b3 by
wllell]= T ¥ wfla
by azeV—1(b3) bacFp(b3) by
and this implies that
b3 b3
v ar = a
b] bl
Since vy is a non-zero vector, there is a block b1byb3 € B3(Xp) and a non-zero real number
k such that
b3
V1 a =k foralla; € \L'_l(bz).
by

Since M3v = 0, it follows that

b3 b3
Z Z V1 an =k Z V1 an =0.
ayeV—1(by) b3eFp(b2) by b3eFp(b) by
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From this, we see that

()= 2 e )

byeFp(b)

for any a; € \Il’l(bl) and ajay € B2(Xy4). Hence, v; € Ker(Ry) and B is a cycle in
51,+1 (M35; 85_2 Rz) by Lemma 3.5. From this, we see that

p+1eInd(K(M3)) & peInd(K(M)) (p=2)
and
2 € Ind(K(M3)) & 1 € Znd(K(M>; 81“;2,52))

Suppose that £(M3) € Bas(K(M3)) is a basis for the eventual kernel of M, having
property (1) from Lemma 3.3. If 1 € Znd (K (M>)) and £ (M>; 81;2’52) is non-empty, then
we have

sgn(E1(Ma; 9, 5,)) = +1
by Propositions 3.6, C and equation (3.5). Thus, we have
sgn(Ep+1(M3)) = sgn(€p(M2))  (p+1€Ind(K(M3)); p=1).

If 1 € ZTnd(KK(M3)) and £ (M3; Bg;Rz) is non-empty, then we have

sgn(€1(Ms; 85, p,)) = +1
and if £ (M3; 852’ Rz) is non-empty, then we have
sgn(€1(M3; dg, p,)) = +1

by equations (3.5), (5.3) and Propositions 3.6, C. As a consequence, the flip signatures of
(M>, F>) and (M3, F3) have the same number of —1s and their leading signatures coincide.
(2) Suppose that « is a cycle in C(M3) and that u is the initial vector of «. Since

b b
a4 by a4
S3u 3 =u as P ledl,
a as
g
b, (a2) by

it follows that S3u is not identically zero. The argument used in the proof of Lemma 5.1
completes the proof. O

6. Doo-shift equivalence and the Lind zeta functions

We first introduce the notion of D.-shift equivalence which is an analogue of shift
equivalence. Let (A, J) and (B, K) be flip pairs and let / be a positive integer. A Doo-shift
equivalence (Dxo-SE) of lag | from (A, J) to (B, K) is a pair (D, E) of non-negative
integral matrices satisfying

Al=DE, B'=ED, AD=DB and E=KD'J.
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We observe that AD = DB, E = KD J and the fact that (A, J) and (B, K) are flip
pairs imply EA = BE. If there is a Dyo-SE of lag [ from (A, J) to (B, K), then we say
that (A, J) is Dso-shift equivalent to (B, K) and write

(A, J) ~ (B, K) (lagl).
Suppose that
(D1, Ev), (D2, E2), ..., (Dy, Ep)
is a Dgo-SSE of lag [ from (A, J) to (B, K). If we set
D=DDy...D; and E=E;...EE,
then (D, E) is a Do-SE of lag [ from (A, J) to (B, K). Hence, we have
(A, J)~ (B,K) (lagl)= (A, J)~ (B, K) (lagl).

In the rest of the section, we review the Lind zeta function of a Dy,-TMC. In [4], an
explicit formula for the Lind zeta function of a Dy,-system was established. In the case of
a Do-TMC, the Lind zeta function can be expressed in terms of matrices from flip pairs.
We briefly discuss the formula.

Suppose that G is a group and that « is a G-action on a set X. Let F denote the set of
finite index subgroups of G. For each H € F, we set

pa(@) ={x e X :forallh € H a(h, x) = x}|.

The Lind zeta function ¢, of the action « is defined by

pH(@) G/H|
Ca(t)zexp( I 416/ ) (6.1)
HeF lG/H|

Itis clear thatif o : Z x X — X is given by a(n, x) = T"(x), then the Lind zeta function
¢y becomes the Artin-Mazur zeta function ¢7 of a topological dynamical system (X, 7).
The formula for the Artin—Mazur zeta function can be found in [1]. Lind defined the
function (6.1) in [7] for the case G = Z<.

Every finite index subgroup of the infinite dihedral group Dy = (a,b :ab =
ba~! and b? = 1) can be written in one and only one of the following forms:

@ or (a",dp) m=1,2,...;k=1,....,m—1)
and the index is given by
1G2/(@")| =2m or |Ga/(a™, a"b)| =m.

Suppose that (X, T, F) is a Dso-system. If m is a positive integer, then the number of
periodic points in X of period m will be denoted by p,, (T):

pm(T) = [{x € X : T"(x) = x}|.
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If m is a positive integer and #n is an integer, then p,, ,(T, F)) will denote the number of
points in X fixed by 7" and T" o F:

Pmn(T, F)=1{x € X : T"(x) =T" o F(x) = x}|.

Thus, the Lind zeta function {7 r of a Dso-system (X, T, F) is given by

oo " T oo m—1 " T.F
{r,F (1) = exp < Z Pz_’(n)tzm + Z Z %tm) 6.2)
m=1

m=1 k=0
It is evident if two Doo-systems (X, T, F) and (X', T’, F') are Doo-conjugate, then

pm(T) = pm(T/) and pm,n(T, F)= pm,n(T/s F/)
for all positive integers m and integers n. As a consequence, the Lind zeta function is a
Do-conjugacy invariant.
The formula (6.2) can be simplified as follows. Since T o F = F o T~! and F? = Idy,
it follows that

pm,n(T’ F) = pm,n+m(T7 F) = pm,n+2(T» F)
and this implies that
Puun (T F) = puo(T. F)  if m is odd, 6.3)
Pmn (T, F) = pmo(T, F) if m and n are even,
Pmn(T, F) = pn1(T, F) if misevenandn is odd.
Hence, we obtain

Pmo(T, F) if m is odd,

oL, F) 4+ pm1(T, F)
k=0 2

-1
mX: Pmn(T, F)
m

if m is even.

Using this, equation (6.2) becomes
1/2
¢ = £ exp (Gr.r (1)) .
where {7 is the Artin-Mazur zeta function of (X, T') and G r is given by

Pamo(T, F) + pom (T, F) tg,,,)

e ¢]

Grrt)=) <P2m—1,0(T, F) "'+

m=1

2

If there is a Dso-SSE of lag 2/ between two flip pairs (A, J) and (B, K) for some
positive integer [, then (X4, 04, ¢a,y) and (Xp, op, ¢p k) have the same Lind zeta
function by item (1) in Proposition A. The following proposition says that the Lind zeta
function is actually an invariant for D,-SSE.

PROPOSITION 6.1. If (X, T, F) is a Dxo-system, then
P2m—1,0(T, F) = pom—10(T, T o F),
Pam (T, F) = pom 1 (T, T o F),
Pom (T, F) = pomo(T, T o F)
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for all positive integers m. As a consequence, the Lind zeta functions of (X, T, F) and
(X, T, T o F) are the same.

Proof. The last equality is trivially true. To prove the first two equalities, we observe that
T"x)=F(x)=x<T"(Tx)=To(ToF)(Tx)=Tx
for all positive integers m. Thus, we have
Pmo(T, F)=pm1(T,ToF) (m=1,2,...). (6.4)

Replacing m with 2m yields the second equality. From equations (6.3) and (6.4), the first
equality follows. O

When (A, J) is a flip pair, the numbers py, s(ca, ¢a,s) of fixed points can be expressed
in terms of A and J for all positive integers m and § € {0, 1}. To present it, we indicate
notation. If M is a square matrix, then Ay will denote the column vector whose ith
coordinates are identical with ith diagonal entries of M, that is,

A () = M@, i).

For instance, if I is the 2 x 2 identity matrix, then

1
=[]
The following proposition is proved in [4].
PROPOSITION 6.2. If (A, J) is a flip pair, then
Pan—-10(04. @a0) = Ay (A" ALy,
P2mo(@as pas) = AgT(A™MA,
Pam1(0a. @as) = Aya (A" A4y

for all positive integers m.

7. Examples
Let A be Ashley’s eight-by-eight and let B be the minimal zero-one transition matrix for
the full two-shift, that is,

11000000
00100010
00010100
0100000 I 11

A=l 1 000100 0 andB:[ll:|‘
00001001
00100100
(0001001 0]
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There is a unique one-block flip for (X4, o4) and there are exactly two one-block flips for
(Xp, op). Those flips are determined by the permutation matrices

00001000
00000100
00000010
0000000 1 1 0 1
=l 10000000 ’12[01} and K:[lo}
01000000
00100000
(0001000 0|

In the following example, we calculate the Lind zeta functions of (Xa, 04, ¢4.7),
(XB, 0B, ¢p,1) and (Xp, 0B, 9B k).

Example 7.1. Direct computation shows that the number of fixed points of (X4, 04, ¢4.7),
(XB, 0B, ¢p.1) and (Xp, 0B, ¢p k) are as follows:

Pm(0a) = pm(o) = 2",
P2m—-1,0(04, ©A,7) = Pamo(0a, ay) =0,

M ifm # 6,

OA, ) =
DPom,1(0a, 0AT) {80 —

Pam-1008, 08.1) = 2", pano(0, 95.1) =2"T pawi(oB, @B1) = 2",

P2m—-10(08, ¥B.k) = P2m0(0B, 9B k) =0, pom1(oB, ¢p k) =2"

for all positive integers m. Thus, the Lind zeta functions are as follows:

Cas(t) = \/%—ZIZ exp (% + 8r12) ,
¢Ba(t) = S — exp <2t+—3t2>
: N =212
and
1 t?
{Bk (1) = i exp (m)

As a result, we see that

Xa,04,04,5) % XB, 0B, B,1),

(X4, 04, 04,5) # (XB, 0B, ¥B.K)

and

(XB, 0B, 9B,1) %2 (XB, 0B, PB.K)-
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Example 7.2. In spite of a7 # {B.1, a7 7 {B.x and B # (B k., there are Dy,-SEs
between (A, J), (B, I) and (B, K) pairwise. If D and E are matrices given by

S S G S S N
O S Sy S SN

then (D, E) is a Do-SE of lag 6 from (A, J) to (B, K) and from (A, J) to (B, I):
(D,E): (A, J)~(B,I)(lag6) and (D, E):(A,J)~ (B, K) (lag 6).
Direct computation shows that (B!, B!y is a Dso-SE from (B, I) to (B, K):
(B, By : (B, I) ~ (B, K) (lag 2])

for all positive integers /. This contrasts with the fact that the existence of SE between two
transition matrices implies that the corresponding Z-TMCs share the same Artin-Mazur
zeta functions. (See §7 in [8].)

Example 7.3. We compare the flip signatures of (A, J), (B, I) and (B, K). Direct
computation shows that the index sets for the eventual kernels of A and B are

Ind(K(A)) ={1,6} and Znd(K(B)) = {1}
and the flip signatures are

F.Sig(A, J) = (=1, +1),

F.Sig(B, I) = (+1)
and

F.Sig(B, K) = (—1).
By Theorem D, we see that

(X4, 04, 04,5) # (X, 0B, ¥B,1),

(X4, 04, 04,7) % (XB, 0B, ¥B,K)
and
(X, 0B, ¢8,1) & (XB, 08, ¢B.K)-

The flip signature is completely determined by the eventual kernel of a transition matrix,
while the Lind zeta functions and the existence of D-shift equivalence between two flip
pairs rely on the eventual ranges of transition matrices. The nilpotency index of Ashley’s
eight-by-eight A on the eventual kernel XC(A) is 6. In the case of (A, J) in Example 7.1,
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the number of periodic points p,,(c4) is completely determined by the eventual range
of A, the numbers of fixed points pm—10(0a, ¢a,7) and pa,.1(ca, ¢a,s) are completely
determined by the eventual ranges if m > 7, and p2;,.0(04, @a,7) is completely determined
by the eventual ranges if m > 6. In Example 7.2, (D, E) is actually the Ds.-SE from
(A, J) to (B, I) and from (A, J) to (B, K) having the smallest lag, and this means that
the existence of Dyo-SE from (A, J) to (B, I) and from (A, J) to (B, K) are not related
to the eventual kernels of A and B at all. Similarly, the existence of D.-SE from (B, I) to
(B, K) is not related to the eventual kernel of B at all. Therefore, the coincidence of the
Lind zeta functions or the existence of Dy.-shift equivalence are not enough to guarantee
the same number of —1s in the corresponding flip signatures or the coincidence of leading
signatures. The following example shows that the flip signatures of two flip pairs can have
the same number of —1s and share the same leading signatures even when their non-zero
eigenvalues are totally different.

Example 7.4. Let A and B be the minimal zero-one transition matrices for the even shift
and full two-shift, respectively:

1 1 0 |1
A= 0 0 1 and B:|:1 l:|'
L1 1 0 |
If we set
1 0 07
J=[ 0 0 1 and I:[(l)(l):|,
L0 1 0 |

then (A, J) and (B, K) are flip pairs. Let sp*(A) and sp*(B) be the sets of non-zero
eigenvalues of A and B, respectively:

145 1=-4/5
2 2

spi(A) = { } and sp*(B) = {2}.

Because sp*(A) and sp*(B) do not coincide, (X4, 64) and (Xp, o) are not Z-conjugate,
and hence (X4, 04, ¢4.7) and (Xp, 0B, ¢p k) are not Ds-conjugate. More precisely,
sp*(A) # sp*(B) implies that A and B are not shift-equivalent, and hence (A, J) and
(B, K) are not Dy-shift equivalent:

sp*(A) #sp*(B) = A~ B = (A, J) = (B, K).

In addition, sp*(A) # sp*(B) implies that the Artin—-Mazur zeta functions ¢4 (¢) and ¢p(¢)
of (X4, 04) and (Xp, op) do not coincide (see Ch. 7 in [8]), and hence the Lind zeta
functions ¢4,y (¢) and ¢p k (t) of (X4, 04) and (Xp, op) do not coincide:

sp*(A) # sp“(B) = ¢a(t) # {p(t) = Ca s () # {pk (1)
However, the flip signatures of (A, J) and (B, K) are the same:

F.Sig(A, J) = (+1) and F.Sig(B, K) = (+1).
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In the following example, we see that the coincidence of the Lind zeta functions does
not guarantee the existence of D,-SE between the corresponding flip pairs.

Example 7.5. Let

1 110000 1 100000
01 01000 01 01110
001 0010 001 1110
A=[0 001 001/, B=|0O0O0OT1U0 01
1 110100 1 000100
1 110010 001 00T10
| 0001 1 0 1| | 000 1 1 1 1|
and
1 0 000 0 0
00 0O0T1U00
00 00O0T1O0
J=1 000 0 0 0 1
0100000
0010000
| 000100 0|

The characteristic functions x4 and xp of A and B are the same:
xa(t) = xp(t) =t(t — D*(e* =3t + 1).

We denote the zeros of t> — 3¢ 4 1 by \ and . Direct computation shows that (A, J) and
(B, J) are flip pairs and (X4, 04, ¢a,7) and (Xp, 0p, ¢p, ) share the same numbers of

fixed points.
Pm =44+N" 4+ u",
M — 3>\m—1 S,U,m _ 3Mm—1
Pam=10 =" lp—4
)\m—i-l lum+l
P2m,0 = +

Ur—4  1p—4
550 — 21—t s5m 1 mt

= =1,2,....
pam1 -4  1a-4 " )

As a result, they share the same Lind zeta functions:

1 t43t2 13— 2%
exp .
2(1 — 24 =312 + 1% 1 —3t2 414

If there is a D-SE (D, E) from (A, J) to (B, J), then (D, E) also becomes a SE
from A to B. It is well known [8] that the existence of SE from A to B implies that A and B
have the same Jordan forms away from zero up to the order of Jordan blocks. The Jordan
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canonical forms of A and B are given by

1y N
w w
1100 11
0110 and 0 1 ,
00 1 1 11
00 0 1 0 1
- O_ L O_

respectively. From this, we see that (A, J) cannot be D-shift equivalent to (B, J).
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