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Abstract
Measurement of body composition is increasingly important in research and clinical settings but is difficult in very young children. Bioelectrical
impedance analysis (BIA) and air displacement plethysmography (ADP) are well-established but require specialist equipment so are not always
feasible. Our aimwas to determine if anthropometry and skinfold thickness measurements can be used as a substitute for BIA or ADP for assess-
ing body composition in very young New Zealand children. We used three multi-ethnic cohorts: 217 children at a mean age of 24·2 months with
skinfold and BIA measurements; seventy-nine infants at a mean age of 20·9 weeks and seventy-three infants at a mean age of 16·2 weeks, both
with skinfold and ADP measurements. We used Bland–Altman plots to compare fat and fat-free mass calculated using all potentially relevant
equations with measurements using BIA or ADP. We also calculated the proportion of children in the same tertile for measured fat or fat-free
mass and tertiles (i) calculated using each equation, (ii) each absolute skinfold, and (iii) sum of skinfold thicknesses. We found that even for the
best equation for each cohort, the 95 % limits of agreement with standard measures were wide (25–200 % of the mean) and the proportion of
children whose standard measures fell in the same tertile as the skinfold estimates was≤69 %.We conclude that none of the available published
skinfold thickness equations provides good prediction of body composition in multi-ethnic cohorts of very young New Zealand children with
different birth history and growth patterns.

Key words: Adiposity: Growth: Bioimpedance analysis: Air displacement plethysmography: Reproducibility of results: Ethnic
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Measurement of body composition in children is increasingly
important in both research and clinical settings, since body
composition early in life is a predictor of obesity and risk of
cardiometabolic diseases later in life(1–3). There are a number
of different methods for measurement of body composition.
The four-component method is considered the most accurate
in infants(4). However, it is not feasible in many settings, as it
needs measurements of body mass using a scale, of body water
using isotope dilution, of bone mineral mass using dual-energy
X-ray absorptiometry and of total body volumewith either air dis-
placement plethysmography (ADP) or under-water weighing(4).
As a result, two-component methods, which only measure fat
mass and fat-free mass, are easier to apply in most research
and clinical settings, especially in young children. These methods
include bioelectrical impedance analysis (BIA) and ADP.

BIA is based on measurement of the body’s resistance to a
small electric current and together with measures of height

and weight, can be used to estimate total body water, fat mass
and fat-free mass(5,6) when an appropriate prediction equation
is applied. This method is suitable for children as it is fast,
non-invasive, painless and requires little cooperation from the
child(7).

ADP is also fast and non-invasive and involves no radiation
exposure(8). Body volume is measured indirectly by measuring
the volume of air displaced inside an enclosed chamber(9). The
ADP technique is now widely used for measurement of body
composition in infants using the PEA POD (COSMED USA,
Inc.) which can measure body volume and body mass and
derive fat mass in infants <6months of age or <8 kg body
weight(8). ADP is limited by lack of portability and the fact that
some infants do not tolerate the measurement(10).

In situations where BIA or ADP are not available, skinfold
thickness measurements are the only practical alternative. This
approach is based on the assumption that the subcutaneous
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fat is representative of whole-body fat mass(11). It is popular as it
is an inexpensive, easy to perform, non-invasive method, which
can be used in non-clinical community settings. However,
high intra- and inter-observer variations have been reported(12),
and conversion of anthropometry and skinfold thickness data to
fat mass relies on published equations. Each of thesemany equa-
tions has been standardised on a different reference population
of different ethnic composition and age. As a result, not all equa-
tions are accurate for fat mass prediction in all populations.
This may have important implications for research involving
multi-ethnic study populations, including those found in New
Zealand. Further, there are few equations published for children
younger than 2 years. Our aim was to find out if anthropometric
and skinfold thickness measurements can be used as to accu-
rately predict fat mass comparedwith BIA or ADP inmulti-ethnic
cohorts of very young New Zealand children.

Methods

In this study, we used three different cohorts, in which
anthropometry and skinfold measurements had been performed
according to a commonprotocol based on theWHO’s Multicentre
Growth Reference Study of infants and children(13) and the
standards of the International Society for the Advancement of
Kinanthropometry(14). All assessors were trained by a single
paediatrician (C. J. D. M.) with experience in body composition
assessment and a nutritionist with International Society for the
Advancement of Kinanthropometry level 2 accreditation. Skinfold
thickness was measured twice at each site and the mean used for
analysis. If the difference between the two measurements was
>0·4mm, a third measurement was recorded and the median
used for analysis.

Ethnicity of the child was identified by the mother/caregiver
and prioritised according to the New Zealand health sector
protocol(15).

The first cohort comprised participants in the pre-hPOD
(hypoglycaemia Prevention with Oral Dextrose) study which
was a randomised trial of different doses of dextrose gel for
preventing neonatal hypoglycaemia(16). Participants were born
at risk of hypoglycaemia (infants of diabetic mothers, small
(birth weight < 10th centile on population or customised birth
weight charts or <2·5 kg) or large (birth weight > 90th
centile on population or customised birth weight charts or
>4·5 kg) or late preterm (from 34 to 36 weeks’ gestation)).
At 2 years’ corrected age, children underwent measurement
of body composition with BIA and triceps and sub-scapular
skinfold thickness by one of the four assessors. Bioimpedance
was measured at 50 kHz with an ImpediMed Imp SFB7 device
(MediMark Europe Sarl). Current electrodes were placed on
the distal portion of the second metatarsal and metacarpal and
sensing electrodes at the anterior ankle and posterior wrist.
Fat mass and fat-free mass were calculated according to the
manufacturer’s formula(17).

The second cohort comprised infants born to mothers who
participated in the Healthy Mums and Babies (HUMBA) trial(18).
Women with a singleton pregnancy and BMI of ≥30 kg/m2 were
randomised to receive a dietary intervention or routine dietary
advice, and either an oral probiotic or a placebo capsule from

12 to 17 weeks of pregnancy. At 5 months of age, infants under-
went measurement of body composition by ADP and triceps,
sub-scapular and supra-iliac skinfold thickness by one of the
two assessors(18). Fat mass and fat-free mass were calculated
by ADP according to the manufacturer’s instructions using refer-
ence data of Fomon et al.(19).

The third cohort comprised participants in the DIfferent
Approaches to MOderate & late preterm Nutrition (DIAMOND)
trial, in which preterm infants born between 32 and 35 weeks’
gestation were randomised to a combination of nutrition inter-
ventions in the first 24 h after birth(20). Infants underwent
measurement of body composition at 4 months’ corrected age
using ADP and triceps, sub-scapular, supra-iliac, abdominal,
thigh and biceps skinfold thickness by one assessor.

Ethics approval was obtained from the Health and Disability
Ethics Committees of New Zealand for all three cohorts
(13/NTA/8, 14/STH/205 and 16/NTA/90). All procedures were
in accordance with the ethical standards of these committees
andwith the 1964Helsinki Declaration and its later amendments.
Written informed consent was obtained from parents or legal
guardians of all participants.

To identify equations to convert anthropometric data and
skinfold measurements to measures of body composition, we
used skinfold as a keyword to search Medline, Embase, Biosis,
Scopus and Web of Science databases. The search located 102
equations validated using different standards in different age
groups. However, only twenty equations were validated for
children younger than 5 years of age, and only nine for children
younger than 2 years.

For cohort 1, seven body composition equations validated
for pre-pubescent children based on triceps and sub-scapular
skinfold measurements were assessed, although only one of
these was validated for an age range that included 2-year-old
children(21) (Table 1).

For cohort 2, three equations for children younger than
2 years of age and requiring only triceps, sub-scapular and
supra-iliac skinfolds were assessed(22–24). For cohort 3, all seven
equations for infants younger than 1 year based on triceps, sub-
scapular, supra-iliac, biceps, thigh and abdominal skinfoldswere
assessed, of which only one was validated against dual-energy
X-ray absorptiometry for 4-month-old infants(25).

Analysis

We used Bland–Altman plots to compare agreement of
skinfold body composition equations against the reference
two-compartment method (BIA for cohort 1, ADP for cohorts
2 and 3). We also tabulated the proportion of children in the
same tertile for fat or fat-free mass calculated by each equation
and by the reference method. In order to determine if using
tertiles of site-specific skinfold thickness rather than body
composition equations would prove adequate for ranking
children within the cohort for research purposes, we also calcu-
lated the proportion of participants in the same tertile for the
reference method and (i) each skinfold site and (ii) sum of the
skinfold thickness. Data are presented as the proportion of
children in the same tertile for each skinfold or sum of skinfolds
and fat mass, as assessed by the reference method.
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Results

Data were available for 217 participants in cohort 1 at mean age
of 24·1 (SD 0·9) months, seventy-nine participants in cohort 2 at
mean age of 20·9 (SD 3·9)weeks and seventy-three participants in

cohort 3 at mean age of 16·1 (SD 1·2) weeks. In all cohorts,
boys were generally heavier and taller than girls, with larger
head circumferences, and greater fat-free mass; there were
few differences in skinfold thicknesses between the sexes. All

Table 1. Published equations potentially applicable to the three study cohorts

Equation Data required Age group Reference method

Cohorts in which
equations were

assessed

Lingwood et al.(24) Weight
Length
Sex

0–4 d ADP 2, 3

Catalano et al.(23) Supra-iliac skinfolds
Birth weight
Length

1–3 d Total body electric
conductivity

2, 3

Deierlein et al.(26) Triceps skinfolds
Sub-scapular skinfolds
Thigh skinfolds Weight
Sex
Age
Ethnicity

1–3 d ADP 3

Aris et al.(22) Sub-scapular skinfolds
Weight
Sex
Gestational age

1–3 d ADP 2, 3

Schmelzle &
Fusch(25)

Triceps skinfolds
Sub-scapular skinfolds
Supra-iliac skinfolds
Biceps skinfolds
Height

0–4months DEXA 3

Sen et al.(27) Triceps skinfolds
Biceps skinfolds
Supra-iliac skinfolds
Age
Mid-arm circumference

6–24months 2H dilution 3

Weststrate &
Deurenberg(28)

Triceps skinfolds
Sub-scapular skinfolds
Supra-iliac skinfolds
Biceps skinfolds
Sex
Age

0–18 years Body densitometry 3

Shaikh &
Mahalanabis(21)

Triceps skinfolds
Sub-scapular skinfolds
Age
Mid-arm circumference

Pre-school
children

Bioimpedance analysis
and 2H dilution

1

Wendel et al.(29) Triceps skinfolds
Sub-scapular skinfolds
Supra-iliac skinfolds
Biceps skinfolds

3–21 years DEXA 1

Ellis et al.(30); Ellis(31) Weight
Height
Age

3–18 years DEXA 1

Goran et al.(32) Triceps skinfolds
Sub-scapular skinfolds
Weight

4–10 years DEXA 1

Dezenberg et al.(33) Triceps skinfold
Weight
Sex
Ethnicity

4–10·9 years DEXA 1

Wickramasinghe
et al.(34)

Triceps skinfolds
Sub-scapular skinfolds
Sex
Age

5–15 years Total body water
2H dilution

1

Slaughter et al.(35) Triceps skinfolds
Sub-scapular skinfolds
Sex
Ethnicity

8–18 years Body density by underwater
weighing and body water
by 2H dilution

1

ADP, air displacement plethysmography; DEXA, dual-energy X-ray absorptiometry.
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cohorts were of mixed ethnicity, including Asian, Māori and
Pacific as well as European children, although the proportion
varied among cohorts (Table 2).

Bland–Altman plots were plotted for fat mass, fat-free mass
and percentage fat derived from BIA as the reference method
for cohort 1 and ADP as reference method for cohorts 2 and
3 (Figs. 1–3).

In cohort 1, the equation by Wickramasinghe et al.(34) best
predicted fat mass in girls, as there was no significant bias
(mean difference 0·04 kg; 95% CI −0·19, 0·27 kg; 95 % limits of
agreement (LOA) −2·32, 2·41 kg) (Fig. 1). However, the most
useful equation in boys was given by Dezenberg et al.(33) (mean
difference −0·04 kg; 95% CI −0·24, 0·14 kg; 95% LOA −2·11,
2·01 kg). As this equation also predicted fat mass in girls with
smaller mean difference (0·49 kg) than that by Wickramasinghe
et al.(33) in boys (1·96 kg), it could be considered as the best single
prediction equation for both sexes in this cohort. For the least use-
ful equation(35), there was significant bias and wide LOA between
calculated fat mass and fat mass measured by BIA in both sexes
(12·42 kg; 95% CI 11·85, 12·99 kg; 95 % LOA 6·61, 18·22 kg in girls
and 11·59 kg; 95 % CI 11·07, 12·11 kg; 95% LOA 6·18, 17·00 kg
in boys).

In cohort 2, the equation by Lingwood et al.(24) best predicted
fat-free mass in both sexes as there was no significant mean dif-
ference between fat-free mass calculated by this method and by
ADP, 95 % CI and 95 % LOA were narrow (mean difference
−0·25 kg, 95 % CI−0·37, −0·12 kg, 95 % LOA−1·00, 0·50 kg in
girls and mean difference −0·09 kg, 95 % CI−0·22, 0·02 kg,
95 % LOA−0·87, 0·67 kg in boys) (Fig. 2). The least useful equa-
tion in this cohort was that by Catalano et al.(23) (mean difference
0·94 kg; 95 % CI 0·82, 1·06 kg; 95 % LOA 0·21, 1·67 kg in girls and
mean difference 0·94 kg; 95 % CI 0·81, 1·06 kg; 95 % LOA 0·17,
1·71 kg in boys). The range of the 95 % LOA for this equation
was the equivalent of the mean measured fat mass in girls
(1·8 kg) and 85 % of the mean measured fat mass in boys.

In cohort 3, the equation by Lingwood et al.(24) again best
predicted fat-free mass in both sexes, since the mean difference
between measured and calculated fat-free mass was small, and
95 % LOA were narrower than for other equations (mean differ-
ence −0·09 kg, 95 % CI −0·18, 0·00 kg, 95 % LOA −0·56, 0·37 kg
in girls and mean difference −0·09 kg, 95 % CI −0·18, 0·00 kg,
95 % LOA −0·68, 0·48 kg in boys) (Fig. 3). For this cohort, the
equation by Weststrate & Deurenberg(28) was the least useful
for prediction of percentage fat, since the mean difference
was large and the 95 % LOA were wide (mean difference
−24·35 %, 95 % CI −26·78, −21·92 %, 95 % LOA −37·46,
−11·23 % in girls and mean difference −26·78 %, 95 % CI −30·15,
−23·41 %, 95 % LOA −49·22, −4·33 % in boys).

The proportion of children in the same tertile of fat or fat-free
mass calculated from each equation and measured with the
reference method ranged from 30·1 to 52·2 % in cohort 1, 51·2
to 69·2 % in cohort 2, and 18·1 to 68·1 % in cohort 3 (Table 3).

Using tertiles of absolute skinfold thickness or sum of skinfold
thickness rather than equations yielded similar results (Table 4).
For cohort 1, sub-scapular skinfold thickness had better agree-
ment with fat mass measured by BIA in both sexes than triceps
skinfold thickness (47·1 % of girls and 51·3 % of boys in the same
tertile). For cohort 2, sub-scapular skinfold thickness also had

better agreement with fat mass measured by ADP in girls, but tri-
ceps skinfold thickness had better agreement with fat mass in
boys. For cohort 3, the best agreement with fat mass was for
sub-scapular skinfold thickness in girls and sum of the skinfolds
in boys (Table 4).

Discussion

Although there is considerable interest in measurement of body
composition in young children, many of the available methods
cannot be used outside research settings. Measurement of skin-
fold thickness and estimation of whole-body fat using published
equations are frequently used as an alternative approach, as it is
inexpensive and portable. However, we found that none of the
available published skinfold thickness equations provided esti-
mates of body composition that sufficiently agreed with two-
compartment reference methods to be acceptable for research
purposes in three multi-ethnic cohorts of very young New
Zealand children.

In these three cohorts, the relevant published equations pre-
dicted body composition variably. Some overestimated, while
some underestimated themeasured fat or fat-freemass, although
only a few showed bias at higher or lower fat or fat-free mass.
However, even the best equation for each cohort was not suffi-
ciently accurate for research or clinical purposes. Although the
mean difference between calculated andmeasured fat or fat-free
mass was small, the 95 % LOA were wide: approximately twice
the mean measured fat mass of children in cohort 1, and 25 %
of the mean measured fat-free mass in cohorts 2 and 3. Other
studies in Spanish adolescents(36) and in school age Indian
children(37) have also reported wide LOA when comparing pub-
lished skinfold thickness equations with percentage fat mass
measured by dual-energy X-ray absorptiometry, suggesting that
this problem is not confined to very young children or the spe-
cific ethnicities of our cohorts. Rather, the wide LOA are likely to
limit the utility of skinfold thickness measurements in detecting
anything other than very large differences in whole-body fat
mass between groups in research settings.

Three equations(22–24) were assessed for both cohorts 2 and 3
against the same standardmethodbut performed differently in the
two cohorts. For example, the mean difference in fat mass from
the standardmethod for the equation by Lingwood et al.(24) in girls
was smaller for cohort 2 than for cohort 3, and in both sexes, the
95% LOA were wider for cohort 2 than cohort 3. Further, the
equation by Aris et al.(22) underestimated the fat mass in both
sexes for both cohorts but was biased only for cohort 3 and the
95% LOA were larger for cohort 2 than cohort 3.

These differences may in part be the result of differences in
ages of participants at the time of assessment and differences in
ethnic composition. Cohort 3 children were slightly younger
than cohort 2 (4 v. 5 months), and since all three equations were
standardised on newborns, this may have contributed to the
smaller mean differences between calculated and measured
fat or fat-free mass seen for cohort 3.

Further, the populations in which these equations were
derived were less ethnically diverse than our cohorts, which
included Māori, Pacific Island and Asian children. Most published
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Table 2. Characteristics of girls and boys in each of the three study cohorts*
(Mean values and standard deviations; medians and ranges; numbers and percentages)

Cohort 1 Cohort 2 Cohort 3

Girls (n 106) Boys (n 111)

P

Girls (n 39) Boys (n 40)

P

Girls (n 29) Boys (n 44)

PMean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Gestational age at birth
(weeks)

38·0 3·8 38·1 1·2 0·65 0·131 0·87

Median 39·5 38·9 33·0 33·0
Range 37·4–42·0 28·8–42·0 32–35 32–35

Age at time of assessment 24·2
months

1·0 24·1
months

1·0 0·31 20·5
weeks

3·6 21·2
weeks

4·3 0·44 16·2
weeks

1·6 16·1
weeks

0·8 0·81

Ethnicity (n, %)
European 37 34·9 30 27·0 0·24 7 17·9 14 35·0 <0·001 15 51·7 21 47·7 0·85
Asian 27 25·4 22 19·8 4 10·2 0 8 27·5 9 20·4
Māori 9 8·4 17 15·3 8 20·5 5 12·5 1 3·4 3 6·8
Pacific Islander 11 10·3 19 17·1 20 51·2 21 52·5 3 10·3 6 13·6
Other 22 20·7 23 20·7 0 0 2 6·8 5 11·3

Weight (kg) 13·0 2·0 13·7 2·1 0·02 7·1 0·8 8·1 1·2 <0·001 6·2 0·6 6·6 0·8 0·02
Whole-body fat mass (kg) 2·5 0·9 2·6 1·0 0·41 1·8 0·5 2·2 0·6 <0·01 1·6 0·3 1·7 0·4 0·54
Whole-body fat-free mass

(kg)
10·3 1·6 10·9 1·7 <0·01 5·3 0·5 5·9 0·8 <0·001 4·5 0·4 4·9 0·5 <0·01

Percentage fat (%) 19·6 6·1 19·4 6·6 0·75 25·1 5·8 26·8 5·1 0·16 26·5 4·2 25·5 4·9 0·37
Height/length(cm) 87·2 3·6 88·4 3·6 0·01 64·6 2·3 66·7 3·0 0·001 62·9 2·5 63·8 2·8 0·14
Head circumference (cm) 48·1 1·4 49·6 1·5 <0·001 42·4 1·6 43·3 1·5 0·008 41·2 1·2 42·0 1·3 <0·01
Skinfold thicknesses (mm)

Triceps 9·0 2·2 8·4 2·0 0·04 0·12 10·6 2·3 10·3 2·8 0·55
Median 11·5 12·5
Range 8·0–19·0 8·0–25·0

Sub-scapular 6·4 1·6 6·2 1·7 0·28 0·03 9·6 2·2 8·3 2·2 0·01
Median 8·1 10·3
Range 6·0–14·0 4·0–17·0

Supra-iliac N/A N/A 0·91 10·0 3·1 8·6 2·9 0·06
Median 14·9 13·5
Range 6·0–26·0 6·0–35·0

Biceps N/A N/A N/A N/A 8·5 1·7 8·2 2·2 0·71
Thigh N/A N/A N/A N/A 19·5 2·1 18·0 4·9 0·07
Abdominal N/A N/A N/A N/A 10·3 2·4 9·8 2·7 0·40

N/A, not available for this cohort.
* P values are for comparison between girls and boys in the same cohort.
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equations were developed in American populations comprising
white, African American and Hispanic children, but there were
few children of these ethnicities in our cohorts. Among New
Zealand children, Māori and Pacific Island children are known
tohavedifferent body compositions fromEuropean children,with
lower body fat and higher lean mass for a given BMI, whereas
Indian children have a higher fat mass(38,39). Pacific andMāori chil-
dren also have more central subcutaneous and less appendicular
fat than European children, that is, a higher sub-scapular:triceps
skinfold ratio(40). Thus, equations which are derived in different

populations do not appear to be suitable for New Zealand
populations.

Another possible reason for the lack of agreement between
calculated and measured fat or fat-free mass may be related to
the methods used to standardise the equations. Only one of
the equations used for cohort 1 was referenced to BIA, as used
in our study. However, even for this equation, the agreement
between tertiles of calculated and measured fat mass was still
poor (30·1 % of girls and 41·4 % of boys assigned to same tertile).
Similarly, among the available equations for cohorts 2 and 3, the

Fig. 1. Bland–Altman plots comparing each equation with the standard (bioelectrical impedance analysis (BIA)) for cohort 1. (a) Shaikh & Mahalanabis(16). Girls: mean
difference (MD) 0·42%; 95% limits of agreement (LOA) –12·17 , 13·02%. Boys: MD 1·06%; 95% LOA –11·57, 13·71%. (b) Wendel et al.(24). Girls: MD 14·61%; 95%
LOA 1·44 , 27·79%. Boys: MD 10·04%; 95% LOA –2·64, 22·73%. (c) Ellis et al.(25); Ellis(26). Girls: MD 3·10 kg; 95% LOA 1·23 , 4·98 kg. Boys: MD 4·60 kg; 95% LOA
2·17, 7·04 kg. (d) Goran et al.(27). Girls: MD –0·55 kg; 95% LOA –2·47 , 1·36 kg. Boys: MD –0·68 kg; 95% LOA –2·42, 1·05 kg. (e) Dezenberg et al.(28). Girls: MD 0·49 kg;
95% LOA –1·95, 2·93 kg. Boys: MD –0·04 kg; 95% LOA –2·11, 2·01 kg. (f) Wickramasinghe et al.(29). Girls: MD 0·04 kg; 95% LOA –2·32, 2·41 kg. Boys: MD –1·96 kg;
95% LOA –4·07, 0·13 kg. (g) Slaughter et al.(30). Girls: MD 12· 42 kg; 95% LOA 6·61, 18·22 kg. Boys: MD 11·59 kg; 95% LOA 6·18, 17·00 kg.
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proportion of children in the same tertiles was higher for those
referenced to ADP than for those not referenced to ADP but was
still poor (51 to 69 %).

Further, the participants of all three cohorts could be consid-
ered ‘at risk’ children. Participants of cohort 1 were born at risk of
hypoglycaemia (infants of diabetics, late preterm or low or high
birth weight), and these groups have different body composition
from infants not meeting these criteria. Small-for-gestational-
age infants have been reported to have less fat mass than
appropriate-for-gestational-age infants at 5 months’ corrected
age(41), and infants of diabetic mothers, irrespective of whether
they were macrosomic, have greater fat mass compared with
infants of non-diabetic mothers(42,43). Participants of cohort 2
were born of overweight mothers and may therefore have had
greater fat mass and lesser fat-free mass than infants born to
mothers with normal BMI(44). Participants of cohort 3 were born
moderate- to late-preterm, a group that has also been reported to
have greater fat mass than term infants once term-corrected
age is reached(45). Most published equations were validated in
healthy term infants, and the characteristics of our cohorts
may have contributed to the poor predictive value of the equa-
tions in this study. However, it is often at-risk children who are of
most interest in studies of growth and body composition, and
thus our findings are particularly relevant.

Although for most equations, sex is included as part of the
calculation, not all the equations performed the same way in
both sexes even within the same cohort. For equations in which
sex is not included as an independent factor, these differences
partly could be the result of differences in compressibility of
skinfolds in different sexes, which can affect the inter-observer
and intra-observer error(46) or differences in fat distribution

between sexes(47,48). In general, females tend to store fat in the
gluteal–femoral region (gynoid fat distribution), while males
accumulate fat in the abdominal region (android fat distribu-
tion)(48). Moreover, abdominal adipose tissue is accumulated less
in the visceral area in women than in men(47). In a study of term
and preterm Spanish infants, girls tended to store more sub-
cutaneous fat centrally than boys(49), while in pre-pubescent
American children, girls had greater extremity and gynoid fat
deposits than boys(47). Consistent with the findings in the
American cohort, we found in cohort 1 that mean triceps skinfold
thickness, thought to reflect peripheral (extremities) fat depots(50),
was larger in girls than boys. However, mean sub-scapular
skinfolds, thought to reflect central fat depots(51), was smaller in
girls than boys in cohort 2, but larger in girls in cohort 3.
Although these two cohorts were of similar age, they were of
different ethnic composition, so it is possible that this apparent
sex differences in subcutaneous fat distribution reflects at least
in part the different body composition of different ethnicities(38,39).

Since the majority of fat mass is subcutaneous in children(5),
we also explored whether, even if published equations were
not very predictive of measured body composition, we could
use tertiles of absolute skinfold thicknesses to indicate relative
adiposity within the cohort. Sub-scapular skinfolds, which are
an indicator of central fat distribution(51), had better agreement
with fat mass tertiles in both sexes in cohort 1 and for girls in
both cohorts 2 and 3. In boys in cohorts 2 and 3, triceps skinfold
and sum of skinfolds had better agreement with fat mass ter-
tiles. However, even the highest agreement, which was for
sum of skinfolds in boys of cohort 3, was only 59·0 %, sug-
gesting that this approach is also not likely to be useful in a
research setting.

Fig. 2. Bland–Altman plots comparing each equation with the standard (PEA POD) for cohort 2. (a) Lingwood et al.(19) Girls: mean difference (MD) −0·25 kg; 95% limits
of agreement (LOA) −1·00 , 0·50 kg. Boys: MD −0·09 kg; 95% LOA −0·87, 0·67 kg. (b) Catalano et al.(18) Girls: MD 0·94 kg; 95% LOA 0·21, 1·67 kg. Boys: MD 0·94 kg;
95% LOA 0·17, 1·71 kg. (c) Aris et al.(17). Girls: MD −0·14 kg; 95% LOA −0·83, 0·53 kg. Boys: MD −0·36 kg; 95% LOA −1·01, 0·47 kg.
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One of the strengths of our study was that we analysed the
data for three different cohorts, assessed at different ages, and
reflecting themulti-ethnic composition of NewZealand children.
However, one of the weaknesses of the study was that the
skinfolds were assessed at six different sites only in the third
cohort. As a result, we were not able to assess all the available
equations for the relevant age groups. Furthermore, the inter-
observer reliability of skinfold thickness measurement has been
reported to be 48–99 % for different sites(52). In our study,
skinfold thickness was measured by four assessors in the first
cohort and two assessors in the second cohort, which may have

contributed to inter-observer error in measurement and hence to
the limited agreement between measurements. However, even
in cohort 3, in which all skinfold thicknesses weremeasured by a
single assessor, neither the equations nor the absolute skinfolds
showed more than moderate agreement with measurement of
fat mass using ADP. Another possible weakness of our study
is the use of BIA as the reference method for cohort 1.
Although there is limited evidence of accuracy and reliability
of this method in very young children(53,54), it is widely used
for this purpose(55), has been validated against different
methods(56,57) and has been used as a reference method for

Fig. 3. Bland–Altman plots comparing each equation with the standard (PEA POD) for cohort 3. (a) Lingwood et al.(19) Girls: mean difference (MD) −0·09 kg; 95% limits
of agreement (LOA) −0·56 , 0·37 kg. Boys: MD −0·09 kg; 95% LOA −0·68, 0·48 kg. (b) Catalano et al.(18). Girls: MD 0·74 kg; 95% LOA 0·29, 1·20 kg. Boys: MD 0·85 kg;
95%LOA 0·30, 1·41 kg. (c) Deierlein et al.(21). Girls: MD 3·06 kg; 95%LOA 2·36, 3·76 kg. Boys: MD 3·12 kg; 95% LOA 2·37, 3·87 kg. (d) Aris et al.(17). Girls: MD−0·13 kg;
95% LOA−0·58, 0·31 kg. Boys: MD−0·17 kg; 95% LOA−0·74, 0·38 kg. (e) Schmelzle & Fusch(20). Girls: MD 1·06 kg; 95% LOA−0·24, 2·36 kg. Boys: MD 0·93 kg; 95%
LOA −0·58, 2·45 kg. (f) Sen et al.(22). Girls: MD −9·96%; 95% LOA −38·58, 18·65%. Boys: MD 19·10%; 95% LOA −5·91, 44·13%. (g) Weststrate & Deurenberg(23).
Girls: MD −24·35%; 95% LOA −37·46, −11·23%. Boys: MD −26·78%; 95% LOA −49·22, −4·33%.
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validation of some of the published equations that we
assessed(21). Thus, use of BIA rather than ADP as the reference
in cohort 1 is unlikely to impact significantly on our findings.

We conclude that none of the available published skinfold
thickness equations provides good prediction of body composi-
tion in very young multi-ethnic cohorts of New Zealand children
with different birth history and growth patterns. New equations
will need to be developed and validated for different ethnicities if
skinfold thickness is to be used for assessing body composition
in research studies in New Zealand and elsewhere around
the world.
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