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Convolution of periodic multiplicative
functions and the divisor problem
Marco Aymone, Gopal Maiti, Olivier Ramaré , and
Priyamvad Srivastav
Abstract. We study a certain class of arithmetic functions that appeared in Klurman’s classification
of ±1 multiplicative functions with bounded partial sums; c.f., Comp. Math. 153(2017), 2017, no. 8,
1622–1657. These functions are periodic and 1-pretentious. We prove that if f1 and f2 belong to
this class, then ∑n≤x( f1 ∗ f2)(n) = Ω(x1/4). This confirms a conjecture by the first author. As a
byproduct of our proof, we studied the correlation between Δ(x) and Δ(θx), where θ is a fixed real
number. We prove that there is a nontrivial correlation when θ is rational, and a decorrelation when
θ is irrational. Moreover, if θ has a finite irrationality measure, then we can make it quantitative this
decorrelation in terms of this measure.

1 Introduction

1.1 Main result and background

A question posed by Erdős in [7], known as the Erdős discrepancy problem, states that
whether for all arithmetic functions f ∶ N → {−1, 1}, we have that the discrepancy

sup
x ,d

∣ ∑
n≤x

f (nd)∣ = ∞.(1.1)

When, in addition, f is assumed to be completely multiplicative, then this reduces to
whether f has unbounded partial sums.

In 2015, Tao [17] proved that (1.1) holds for all f ∶ N → {−1, 1}, and a key point of its
proof is that it is sufficient to establish (1.1) only in the class of completely multiplicative
functions f taking values in the unit (complex) circle.

When f ∶ N → {−1, 1} is assumed to be only multiplicative, then not necessarily
f has unbounded partial sums. For example, f (n) = (−1)n+1 is multiplicative and
clearly has bounded partial sums. In this case, f (2k) = −1 for all positive integers k.
It was observed by Coons [6] that, for bounded partial sums, this rigidity on powers
of 2 is actually necessary under suitable conditions on the values that a multiplicative
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function f takes at the remaining primes. Later, in the same paper [17], Tao gave a
partial classification of multiplicative functions taking values ±1 with bounded partial
sums: They must satisfy the previous rigidity condition on powers of 2, and they must
be 1-pretentious (for more on pretentious Number Theory, we refer the reader to [8]
by Granville and Soundararajan); that is,

∑
p

1 − f (p)
p

< ∞.

Later, Klurman [12] proved that the only multiplicative functions f taking ±1 values
and with bounded partial sums are the periodic multiplicative functions with sum 0
inside each period, thus closing this problem for ±1 multiplicative functions.

Building upon the referred work of Klurman, the first author proved in [1] that
if we allow values outside the unit disk, a M-periodic multiplicative function f with
bounded partial sums such that f (M) ≠ 0 satisfies

i. For some prime q∣M, ∑∞k=0
f (qk)

qk = 0.
ii. For each pa∥M, f (pk) = f (pa) for all k ≥ a.

iii. For each gcd(p, M) = 1, f (pk) = 1, for all k ≥ 1.
Conversely, if f ∶ N → C is multiplicative and the three conditions above are satisfied,
then f has period M and has bounded partial sums. Therefore, these three conditions
above give examples of multiplicative functions with values outside the unit disk with
bounded partial sums, despite the fact that f (M) is zero or not.

Remark 1.1 It is interesting to observe that when it is assumed that ∣ f ∣ ≤ 1, the only
way to achieve condition i. is with q = 2 and f (2k) = −1 for all k ≥ 1.

Remark 1.2 What makes the difference between a multiplicative function f satisfying
i-ii-iii from a nonprincipal Dirichlet character χ is that χ neither satisfies i. nor iii.

Here, we are interested in the convolution f1 ∗ f2(n) ∶= ∑d ∣n f1(d) f2(n/d) for f1
and f2 satisfying i-ii-iii above. It was proved in [1] that

∑
n≤x

( f1 ∗ f2)(n) ≪ xα+ε ,

where α is the infimum over the exponents a > 0 such that Δ(x) ≪ xa , where Δ(x)
is the classical error term in the Dirichlet divisor problem defined by

∑
n≤x

τ(n) = x log x + (2γ − 1)x + Δ(x).

It is widely believed that α = 1/4, and many results were proven in this direction.
The best upper bound up to date is due to Huxley [9]: α ≤ 131/416 ≈ 0.315. Regarding
Ω bounds, Soundararajan [16] proved that

Δ(x) = Ω
⎛
⎝

(x log x)1/4 (log log x)3/4(24/3−1)

(log log log x)5/8
⎞
⎠

.

It was conjectured in [1] that the partial sums of f1 ∗ f2 obey a similar Ω-bound for
Δ(x); that is, ∑n≤x ( f1 ∗ f2)(n) = Ω(x 1/4). Here, we establish this conjecture.
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Convolution of periodic multiplicative functions and the divisor problem 3

Theorem 1.3 Let f1 and f2 be periodic multiplicative functions satisfying i-ii-iii above.
Then ∑n≤x ( f1 ∗ f2)(n) = Ω(x 1/4).

Example 1.4 The results from [1] give that for each prime q, there exists a unique
q-periodic multiplicative function f with bounded partial sums and such that
f (q) ≠ 0. In the case q = 2, the corresponding function is f (n) = (−1)n+1. Therefore,
in this particular case, we have that ∑n≤x ( f ∗ f )(n) = Ω(x 1/4). In particular, this
establishes the conjecture in an uncovered case by Proposition 3.1 of [1].

Remark 1.5 Another class of periodic multiplicative functions with bounded partial
sums is that of the nonprincipal Dirichlet characters. In a forthcoming work, the first
author is finishing a study where he shows a similar Ω-bound for the partial sums of
the convolution between these Dirichlet characters.

Our proof relies on two ingredients. The second one is a study of a family of
quadratic forms and is explained in Section 5. The first ingredient is a generalization
of a result of Tong [18] and proves the next theorem.

Theorem 1.6 When a and b are nonnegative integers, λ = gcd(a, b), c = a/λ and
d = b/λ, we have

lim
X→∞

1
X3/2 ∫

X

1
Δ(x/a)Δ(x/b)dx = τ(cd)

6π2
√

λcd
ζ(3/2)4

ζ(3) ∏
pk∥cd

1 − k−1
(k+1)p3/2

1 + 1/p3/2 .

Furthermore, when θ > 0 is irrational, we have

lim
X→∞

1
X3/2 ∫

X

1
Δ(x)Δ(θx)dx = 0.

1.2 The proof in the large

To prove Theorem 1.3, our starting point is the following formula from [1]: If M1 and
M2 are the periods of f1 and f2, respectively, then

∑
n≤x

( f1 ∗ f2)(n) = ∑
n∣M1 M2

( f1 ∗ f2 ∗ μ ∗ μ)(n)Δ(x/n),(1.2)

where μ is the Möbius function. Therefore, the partial sums of f1 ∗ f2 can be written
as a finite linear combination of the quantities (Δ(x/n))n . Apart from the fact
that Δ(x) = Ω(x 1/4), we cannot, at least by a direct argument, prevent a conspiracy
among the large values of (Δ(x/n))n that would yield a cancellation among a linear
combination of them.

To circumvent this, our approach is inspired by an elegant result of Tong [18]:

∫
X

1
Δ(x)2dx = (1 + o(1))

6π2

∞
∑
n=1

τ(n)2

n3/2 X3/2 .(1.3)

By (1.2), the limit

lim
X→∞

1
X3/2 ∫

X

1
∣ ∑
n≤x

( f1 ∗ f2)(n)∣
2

dx
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can be expressed as a quadratic form with matrix (ca ,b)a ,b∣M1 M2 , where ca ,b is the
correlation

ca ,b ∶= lim
X→∞

1
X3/2 ∫

X

1
Δ(x/a)Δ(x/b)dx .

As it turns out, these correlations do not vanish and are computed in Theorem 1.6.
With that in hand, the matrix correlation-term ca ,b can be expressed as

C√
gcd(a, b)

φ ( lcm(a, b)
gcd(a, b) ) ,(1.4)

for some constant C > 0 and multiplicative function φ.
This matrix entanglement is hard to analyze directly. In Section 5, we explore

sufficient conditions for a matrix of the form (1.4) to be positive definite. When this
happens, this ensures the referred Ω-bound. Thanks to the Selberg diagonalization
process, we show that when φ is completely multiplicative and satisfies other condi-
tions, then this matrix is positive definite. The main proof somehow reduces to this
case; we indeed find a way to conjugate our original matrix to reach a matrix related
to a completely multiplicative function. With standard linear algebra of Hermitian
matrices, we conclude that our matrix (ca ,b)a ,b∣M1 M2 is positive definite. We ended up
with the following result.

Theorem 1.7 Let f1 and f2 be two periodic multiplicative functions satisfying i-ii-iii
above with periods M1 and M2, respectively. Let g = f1 ∗ f2 ∗ μ ∗ μ and γ(n) the
multiplicative function defined by

γ(n) = ∏
pk∥n

1 − (k−1)
(k+1) p−3/2

1 + p−3/2 .

Then the following limit

lim
X→∞

1
X3/2 ∫

X

1
∣ ∑
n≤x

( f1 ∗ f2)(n)∣
2

dx

is positive and equals to

ζ(3/2)4

ζ(3) ∑
n ,m∣M1 M2

g(n)g(m) gcd(n, m)3/2

nm
τ ( nm

gcd(n, m)2 ) γ ( nm
gcd(n, m)2 ) .

1.3 Byproduct study

Motivated by Nyman’s reformulation of the Riemann hypothesis [15], in recent papers
[2, 3, 4] by Balazard, Duarte, and Martin, the correlation

A(θ) ∶= ∫
∞

0
{x}{θx} dx

x2

has been thoroughly studied. Here, θ > 0 is any real number and {x} stands for the
fractional part of x. Several analytic properties for the function A(θ) have been shown.
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Convolution of periodic multiplicative functions and the divisor problem 5

Motivated by this, we studied the “divisor” analogue

I(θ) = lim
X→∞

1
X3/2 ∫

X

1
Δ(x)Δ(θx)dx .

As stated in Theorem 1.6, when θ = p/q is a rational number, the limit above is
described by a positive multiplicative function depending on p and q. However,
and somewhat surprisingly, when θ is irrational, this correlation vanishes. The next
proposition establishes that this vanishing is indeed very strong, except maybe at
points θ that are well approximated by rationals.

Proposition 1.8 Let θ > 0 be an irrational number with irrationality measure η + 1;
that is, for each ε > 0, there is a constant C > 0 such that the inequality

∣n − mθ∣ ≥ C
mη+ε

is violated only for a finite number of positive integers n and m. Then, for every positive
ε, we have

∫
X

1
Δ(x)Δ(θx)dx = O(X3/2−1/(18η)+ε).

In the other cases of irrationals θ, the integral above is o(X3/2).

This shows that we have decorrelation among the values Δ(x) and Δ(θx) when
θ is irrational, and moreover, this gives that the function I(θ) is continuous at the
irrational numbers and discontinuous at the rationals. Another interesting remark is a
result due to Khintchine [11] that states that almost all irrational numbers, with respect
to (w.r.t.) Lebesgue measure, have irrationality measure equals to 2.

Therefore, this result of Khintchine allow us to state the following Corollary from
Proposition 1.8.

Corollary 1.9 For almost all irrational numbers θ w.r.t. Lebesgue measure, for all small
fixed ε > 0,

∫
X

1
Δ(x)Δ(θx)dx = O(X3/2−1/18+ε).

We mention that a similar decorrelation also has been obtained by Ivić and Zhai
in [10]. In this paper, they show decorrelation between Δ(x) and Δk(x), where Δk(x)
is the error term related to the k-fold divisor function, and k = 3 or 4.

2 Notation

2.1 Asymptotic notation

We employ both Vinogradov’s notation f ≪ g or f = O(g) whenever there exists a
constant C > 0 such that ∣ f (x)∣ ≤ C∣g(x)∣, for all x in a set of parameters. When not
specified, this set of parameters is x ∈ (a, ∞) for sufficiently large a > 0. We employ
f = o(g) when limx→a

f (x)
g(x) = 0. In this case, a can be a complex number or ±∞.

Finally, f = Ω(g) when lim supx→a
∣ f (x)∣
g(x) > 0, where a is as in the previous notation.
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2.2 Number-theoretic notation

Here, p stands for a generic prime number. We sometimes denote the least common
multiple between a, b as lcm(a, b). The greatest common divisor is denoted by
gcd(a, b). The symbol ∗ stands for Dirichlet convolution between two arithmetic
functions: ( f ∗ g)(n) = ∑d ∣n f (d)g(n/d).

3 Multiplicative auxiliaries

Our first task is to evaluate ∑n≥1 τ(cn)τ(dn)/n3/2 for coprime positive integers c
and d.

Lemma 3.1 Let c be fixed positive number and f (n) be a multiplicative function with
f (c) ≠ 0. Then n ↦ f (cn)

f (c) is multiplicative.

Proof For positive integers u, v, we have

f (u) f (v) = f (gcd(u, v)) f (lcm(u, v)).

Let u = cn, v = cm with gcd(n, m) = 1. Then f (cn) f (cm) = f (c) f (cnm). Therefore,
we obtain

f (cm)
f (c)

f (cn)
f (c) = f (cnm)

f (c) . ∎

Lemma 3.2 Let c, d be two fixed positive integers with gcd(c, d) = 1. Then

∞
∑
n=1

τ(cn)τ(dn)
ns = τ(cd) ζ(s)4

ζ(2s) ∏
pk∥cd

(1 + p−s)−1 (1 − (k−1)
(k+1) p−s) .

The quantity we compute appears in several places – for instance, in [14] by Lee and
Lee and in [5] by Borda, Munsch, and Shparlinski.

Proof Note that τ(cn)
τ(c) is a multiplicative function in the variable n by Lemma 3.1, and

so is τ(cn)τ(dn)
τ(c)τ(d) . Therefore, for R(s) > 1, we have the following Euler factorization:

∞
∑
n=1

τ(cn)τ(dn)
τ(c)τ(d)ns = ∏

p∤cd
(1 +

∞
∑
�=1

τ(p�)2

p�s ) ∏
p∣cd

(1 +
∞
∑
�=1

τ(cp�)τ(d p�)
τ(c)τ(d)p�s ) .

For ∣x∣ < 1, we know that
∞
∑
�=0

(� + 1)x� = 1
(1 − x)2 ,

∞
∑
�=0

(� + 1)2x� = (1 + x)
(1 − x)3 ,

from which we also derive that
∞
∑
�=0

�(� + 1)x� = 2x
(1 − x)3 .
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Convolution of periodic multiplicative functions and the divisor problem 7

Now,

∏
p∤cd

(1 +
∞
∑
�=1

τ(p�)2

p�s ) = ∏
p

(1 +
∞
∑
�=1

(� + 1)2

p�s ) ∏
p∣cd

(1 +
∞
∑
�=1

(� + 1)2

p�s )
−1

= ∏
p

(1 + p−s)
(1 − p−s)3 ∏

p∣cd

(1 − p−s)3

(1 + p−s)

= ζ(s)4

ζ(2s) ∏
p∣cd

(1 − p−s)3

(1 + p−s) .

If gcd(c, d) = 1,

∏
p∣cd

(1 +
∞
∑
�=1

τ(cp�)τ(d p�)
τ(c)τ(d)p�s ) = ∏

pk∥cd
(1 +

∞
∑
�=1

(k + 1 + �)(� + 1)
(k + 1)p�s )

= ∏
pk∥cd

(1 +
∞
∑
�=1

(� + 1)
p�s + 1

k + 1

∞
∑
�=1

�(� + 1)
p�s )

= ∏
pk∥cd

(1 − p−s)−3 (1 − (k−1)
(k+1) p−s) . ∎

4 Correlations of the Δ function

We continue with the proof with the following Lemma.

Lemma 4.1 Let a > 0. Then

∫ x2 cos(ax)dx = x2 sin(ax)
a

+ 2x cos(ax)
a2 − 2 sin(ax)

a3 .

Moreover, for any X > 1,

∫
X

1
x2 cos(ax)dx ≪ X2

a
, ∫

X

1
x2 sin(ax)dx ≪ X2

a
.

Proof We do integration by parts:

∫ x2 cos(ax)dx = x2 sin(ax)
a

− ∫
2x sin(ax)

a
dx .

By making the trivial bound ∣ sin(ax)∣ ≤ 1 in the right-hand side of the equation above,
we reach to the second claim of the proposed Lemma. By making integration by parts,
the last integral of the equation above gives the first claim of the Lemma. Similar
arguments give similar results for sin in place of cos. ∎

Lemma 4.2 Let a, b be positive integers, λ = gcd(a, b), c = a/λ and d = b/λ. Then

lim
X→∞

1
X3/2 ∫

X

1
Δ(x/a)Δ(x/b)dx = 1

6π2
√

λcd

∞
∑
n=1

τ(cn)τ(dn)
n3/2 .
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Proof Let N > 0 and ε > 0 be a small number that may change from line after line.
We proceed with Voronoï’s formula for Δ(x) in the following form (see [13]):

Δ(x) = x 1/4

π
√

2
∑

n≤N

τ(n)
n3/4 cos(4π

√
nx − π/4) + RN (x),

where, for every positive ε, we have

RN (x) ≪ x ε + x 1/2+ε

N 1/2 .

We select N at the end. With this formula, we have that in the range 1 ≤ x ≤ X,

Δ(x/a) = (x/a)1/4

π
√

2
∑

n≤N

τ(n)
n3/4 cos(4π

√
nx/a − π/4) + RN (x/a)

= UN (x/a) + RN (x/a)

say.
Now,

∫
X

1
Δ(x/a)Δ(x/b)dx = ∫

X

1
UN (x/a)UN (x/b)dx

+ ∫
X

1
UN (x/a)RN (x/b)dx

+ ∫
X

1
UN (x/b)RN (x/a)dx

+ ∫
X

1
RN (x/a)RN (x/b)dx

= ∫
X

1
UN (x/a)UN (x/b)dx

+ O (X1+1/4+ε + X1+3/4+ε
√

N
+ X2+ε

N
) ,

where we used the Cauchy-Schwarz inequality and (1.3) in the last equality. By making
the change of variable u = x/λ, we reach

∫
X

1
UN (x/a)UN (x/b)dx = λ ∫

X/λ

1
UN (x/c)UN (x/d)dx

= λ
2π2(cd)1/4 ∑

n ,m≤N

τ(n)τ(m)
(nm)3/4 ⋅

⋅ ∫
X/λ

1
x 1/2 cos(4π

√
nx/c − π/4) cos(4π

√
mx/d − π/4)dx

= λ
π2(cd)1/4 ∑

n ,m≤N

τ(n)τ(m)
(nm)3/4 ⋅

⋅ ∫
(X/λ)1/2

1
u2 cos(4πu

√
n/c − π/4) cos(4πu

√
m/d − π/4)du,
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Convolution of periodic multiplicative functions and the divisor problem 9

where in the last equality above we made a change of variable u =
√

x. We claim
now that the main contribution comes when n/c = m/d. Since c and d are coprime,
this implies that m = dk and n = ck. Therefore, the sum over these n and m can be
written as

λ
π2cd

∞
∑
k=1

τ(ck)τ(dk)
k3/2 ∫

(X/λ)1/2

1
u2 cos2(4πu

√
k − π/4)du + O ( X3/2+ε

√
N

) .(4.1)

We recall now that cos2(v) = 1+cos(2v)
2 ; hence, by Lemma 4.1, the integral above is

∫
X1/2/λ1/2

1
x2 cos2(4π

√
nx − π/4)dx = X3/2

6λ3/2 + O(X),(4.2)

where the big-oh term is uniform in n. Now we will show that the sum over those
n and m such that n/c ≠ m/d will be o(X3/2). With this, the proof is complete by
combining (4.1) and (4.2).

We recall the identity 2 cos(u) cos(v) = cos(u − v) + cos(u + v). Thus, for√
n/c ≠

√
m/d, by Lemma 4.1, we find that

∫
X1/2/λ1/2

1
x2 cos(4π

√
n/cx − π/4) cos(4π

√
m/dx − π/4)dx

= 1
2 ∫

X1/2/λ1/2

1
x2 cos(4π(

√
n/c −

√
m/d)x)dx

+ 1
2 ∫

X1/2/λ1/2

1
x2 sin(4π(

√
n/c +

√
m/d)x)dx

≪ X
∣
√

n/c −
√

m/d∣
+ X√

n/c +
√

m/d

≪
√

n/c +
√

m/d
∣nd − mc∣ X .

Let 1P(n) be the indicator that n has property P. We find that

∑
n ,m≤N

nd−mc≠0

τ(n)τ(m)
(nm)3/4 ∫

X/λ

1
x 1/2 cos(4π

√
nx/c − π/4) cos(4π

√
mx/d − π/4)dx

≪ XN ε ∑
n ,m≤N

nd−mc≠0

√
n/c +

√
m/d

(nm)3/4∣nd − mc∣

= XN ε ∑
n ,m≤N

nd−mc≠0

√
n/c +

√
m/d

(nm)3/4∣nd − mc∣

N max(c ,d)
∑

k=−N max(c ,d)
k≠0

1nd−mc=k .
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On calling this sum S, we readily continue with

S ≪ XN ε
N max(c ,d)

∑
k=1

1
k ∑

m≤N

√
m +

√
k

((k + mc)m)3/4

≪ XN ε (O(log N)2 + ∑
k≤N

1√
k

∑
m≤N

1
(m2 + mk)3/4 )

≪ XN ε (O(log N)2 + ∑
k≤N

1√
k

( ∑
k≤m≤N

1
m3/2 + 1

k3/4 ∑
m≤k

1
m3/4 ))

≪ XN ε(log N)2 .

Finally, by selecting N = X2, we arrive at

∫
X

1
Δ(x/a)Δ(x/b)dx = 1

6π2
√

λcd
(
∞
∑
n=1

τ(cn)τ(dn)
n3/2 ) X3/2 + O(X3/2−1/4+ε),

where the main contribution in the O-term above comes from the usage of Cauchy-
Schwarz in the beginning of the proof.

The proof is complete. ∎

Now we deviate from the main line and prove Proposition 1.8.

Proof of Proposition 1.8 By the proof of Lemma 4.2 we have that

Iθ (X) ∶= ∫
X

1
Δ(x)Δ(θx)dx

= 1
π2 ∑

n ,m≤N

τ(n)τ(m)
(nm)3/4 ∫

X1/2

1
x2 cos(4πx

√
n − π/4) cos(4πx

√
mθ − π/4)dx

+ O (X1+1/4+ε + X1+3/4+ε
√

N
+ X2+ε

N
) .

Now, by appealing to the identity 2 cos(u) cos(v) = cos(u − v) + cos(u + v), we
reach at

Iθ (X) = 1
2π2 ∑

n ,m≤N

τ(n)τ(m)
(nm)3/4 ∫

X1/2

1
x2 cos(4πx(

√
n −

√
mθ))dx

+ 1
2π2 ∑

n ,m≤N

τ(n)τ(m)
(nm)3/4 ∫

X1/2

1
x2 sin(4πx(

√
n +

√
mθ))dx

+ O (X1+1/4 + X1+3/4+ε
√

N
+ X2+ε

N
) .

We have that, by Lemma 4.1,

∑
n ,m≤N

τ(n)τ(m)
(nm)3/4 ∫

X1/2

1
x2 sin(4πx(

√
n +

√
mθ))dx

≪ XN ε ∑
n ,m≤N

1
m3/4n5/4 + n3/4m5/4
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≪ XN ε ∑
n ,m≤N

1
n3/4m5/4

≪ XN 1/4+ε .

Thus, we reach at

Iθ (X) = 1
2π2 ∑

n ,m≤N

τ(n)τ(m)
(nm)3/4 ∫

X1/2

1
x2 cos(4πx(

√
n −

√
mθ))dx

+ O (X1+1/4 + X1+3/4+ε
√

N
+ X2+ε

N
+ XN 1/4+ε) .

On calling the last sum above Sθ (X), an ,m ∶= 4π(
√

n −
√

mθ), we obtain that

Sθ (X) = X3/2 ∑
n ,m≤N

τ(n)τ(m)
(nm)3/4 Λ(an ,m

√
X),

where, by Lemma 4.1, Λ(0) ∶= 1/3 and for u ≠ 0,

Λ(u) ∶= sin(u)
u

+ 2 cos(u)
u2 − 2 sin(u)

u3 .

A careful inspection shows that Λ is continuous and for large ∣u∣, Λ(u) ≪ ∣u∣−1.
Now, for a large parameter T (to be chosen), we split

Sθ (X) = X3/2 ∑
n ,m≤N

∣an ,m
√

X∣≤T

τ(n)τ(m)
(nm)3/4 Λ(an ,m

√
X)

+ X3/2 ∑
n ,m≤N

∣an ,m
√

X∣>T

τ(n)τ(m)
(nm)3/4 Λ(an ,m

√
X).

We call the first sum in the right-hand side above diagonal contribution and the second
sum the nondiagonal contribution. We select T = X1/2−δ and N = X1/2+δ , for some
small δ > 0.

The diagonal contribution. We have that

D(X) = X3/2 ∑
n ,m≤N

∣an ,m
√

X∣≤T

τ(n)τ(m)
(nm)3/4 Λ(an ,m

√
X)(4.3)

≪ X3/2N ε ∑
m≤N

1
m3/4 ∑

n;
∣n−mθ ∣≤ 2

√
mθ

Xδ + 1
X2δ

∣Λ(an ,m
√

X)∣
n3/4 .(4.4)

The inner sum above we split accordingly 2
√

mθ
Xδ + 1

X2δ is below and above 1. In the case
that this quantity is greater or equal to 1, we have that m ≥ (4θ)−1 X2δ , and hence,
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D(X) ≪ X3/2N ε ∑
(4θ)−1 X2δ≤m≤N

1
m3/4 ∑

n;
∣n−mθ ∣≤ 2

√
mθ

Xδ + 1
X2δ

∣Λ(an ,m
√

X)∣
n3/4

≪ X3/2N ε ∑
(4θ)−1 X2δ≤m≤N

1
m3/4 ⋅ 1

m3/4

√
m

Xδ

≪ X3/2−δ N ε .

In the case that 2
√

mθ
Xδ + 1

X2δ ≤ 1, we have that m ≤ (4θ)−1 X2δ , and now the
Diophantine properties of θ come into play. If the irrationality measure of θ is η + 1,
we have that for each ε, there is a constant C > 0 such that the inequality

∣n − mθ∣ ≥ C
mη+ε

is violated only for a finite number of positive integers n and m. In our case, this
allows us to lower bound ∣an ,m

√
X∣ for all but a finite number of n and m such that

1 ≤ m ≪ X2δ and 1/2 ≤
√

n/
√

mθ ≤ 2:

∣an ,m
√

X∣ ⋅
√

n +
√

mθ
√

n +
√

mθ
=

√
X ∣n − mθ∣

√
n +

√
mθ

≥
√

X
mη+ε(

√
n +

√
mθ)

≫ X1/2−(2η+1)δ−ε .

Observe that the diagonal contribution from those exceptional n and m will be at most
O(X). With these estimates on hand and recalling that Λ(u) ≪ ∣u∣−1, we obtain

X3/2N ε ∑
m≤(4θ)−1 X2δ

1
m3/4 ∑

n;
∣n−mθ ∣≤ 2

√
mθ

Xδ + 1
X2δ

∣Λ(an ,m
√

X)∣
n3/4

≪ X3/2N ε ∑
m≤(4θ)−1 X2δ

1
m3/2 ⋅ 1

X1/2−(2η+1)δ−ε + O(X)

≪ X1+(2η+1)δ+ε .

Therefore, the diagonal contribution is at most

D(X) ≪ X1+(2η+1)δ+ε + X3/2−δ+ε .

The nondiagonal contribution. Now, we reach

X3/2 ∑
n ,m≤N

∣an ,m
√

X∣>T

τ(n)τ(m)
(nm)3/4 Λ(an ,m

√
X) ≪ X3/2N 1/2+ε

T

= X3/2+1/4+(δ+ε)/2+εδ−1/2+δ

= X1+1/4+3δ/2+ε/2+εδ .
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We choose δ = 1
3(2η+1) and obtain

Iθ (X) = O(X3/2−1/(18η)).

The proof of the first part of Proposition 1.8 is complete.
Now we assume that θ is a Liouville number (i.e., θ does not have finite irrationality

measure). We see that the nondiagonal argument does not depend on the Diophantine
properties of θ. Let η > 0 be a large fixed number, t > 0 a small number that will tend
to 0. For D(X) as in (4.3), by repeating verbatim the estimates above, we have that

D(X) ≪ X3/2 ∑
m≤(4θ)−1 X2δ

τ(m)
m3/4 ∑

n;
∣n−mθ ∣≤ 2

√
mθ

Xδ + 1
X2δ

τ(n)∣Λ(an ,m
√

X)∣
n3/4

+ O(X3/2−δ N ε).

Let ∥x∥ be the distance from x to the nearest integer. We split the sum over m above
into two sums: One over those m such that ∥mθ∥ > tm−η and the other over m such
that ∥mθ∥ ≤ tm−η .

Repeating the argument above for non-Liouville numbers, we have that the contri-
bution over those m such that ∥mθ∥ > tm−η is O(t−1 X1+δ(2η+1)). Therefore,

D(X) ≪ X3/2
∞
∑
m=1

∥mθ∥≤tm−η

1
m3/2−ε + O(t−1 X1+δ(2η+1) + X3/2−δ+ε).

Combining all these estimates, we see that

lim sup
X→∞

1
X3/2 ∣∫

X

1
Δ(x)Δ(θx)dx∣ ≪

∞
∑
m=1

∥mθ∥≤tm−η

1
m3/2−ε .

Since the upper bound above holds for all t > 0, we have that as t → 0+, the sum above
converges to 0 and thus implies that the lim sup is 0. The proof is complete. ∎

Proof of Theorem 1.6 On combining Lemma 4.2 together with Lemma 3.2, we
get the first part of Theorem 1.6. The second part is a trivial consequence of
Proposition 1.8. ∎

5 Quadratic forms auxiliaries

The main proof will lead to considering the quadratic form attached to a matrix of the
form

MS ,φ = ( 1√
gcd(a, b)

φ( lcm(a, b)
gcd(a, b) ))

a ,b∈S
,(5.1)

where S is some finite set of integers, while φ is a nonnegative multiplicative function
such that φ(pk) ≤ 1. So we stray somewhat from the main line and investigate this
situation. Our initial aim is to find conditions under which the associated quadratic
form is positive definite, but we shall finally restrict our scope. GCD-matrices have
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received quite some attention, but it seems the matrices occuring in (5.1) have not
been explored. We obtain results in two specific contexts.

Completely multiplicative case

Here is our first result.

Lemma 5.1 When φ is completely multiplicative and p1/4φ(p) ∈ (0, 1], the matrix
MS ,φ is nonnegative. When in addition we assume that p1/4φ(p) ∈ (0, 1) and S is divisor
closed, this matrix is positive definite. The determinant in that case is given by the
formula

det ( 1√
gcd(a, b)

φ( lcm(a, b)
gcd(a, b) ))

a ,b∈S
= ∏

d∈S
φ(d)2(μ ∗ ψ)(d),

where ψ is the completely multiplicative function given by ψ(p) = 1/(√pφ(p)2).

By divisor closed, we mean that every divisor of an element of S also belongs to S.

Proof We write
1√

gcd(a, b)
φ( lcm(a, b)

gcd(a, b) ) = φ(a)φ(b)ψ(gcd(a, b)),

where ψ(n) = 1/(φ(n)2√
n) is another nonnegative multiplicative function. We

introduce the auxiliary function h = μ ∗ ψ. Notice that this function is multiplicative
and nonnegative, as ψ(p) ≥ 1. We use Selberg’s diagonalization process to write

∑
a ,b∈S

1√
gcd(a, b)

φ( lcm(a, b)
gcd(a, b) )xa xb = ∑

a ,b∈S
ψ(gcd(a, b))φ(a)xa φ(b)xb

= ∑
a ,b∈S

∑
d ∣ gcd(a ,b)

h(d)φ(a)xa φ(b)xb

= ∑
d

h(d)( ∑
a∈S
d ∣a

φ(a)xa)
2

from which the nonnegativity follows readily. When φ verifies the more stringent
condition that p1/4φ(p) ∈ (0, 1), we know that both φ and h are strictly positive. Let
us define yd = ∑a∈S

d ∣a
φ(a)xa . The variable d varies in the set D of divisors of S. We

assume that S is divisor closed, so that D = S. We can readily invert the triangular
system giving the yd ’s as functions of the xa ’s into

φ(a)xa = ∑
a∣b

μ(b/a)yb .

Indeed, the fact that the mentioned system is triangular ensures that a solution y is
unique if it exists. We next verify that the proposed expression is indeed a solution by

∑
a∈S
d ∣a

φ(a)xa = ∑
a∈S
d ∣a

∑
a∣b

μ(b/a)yb = ∑
b∈S
d ∣b

yb ∑
d ∣a∣b

μ(b/a) = yd
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as the last inner sum vanishes when d ≠ b. We thus have a writing as a linear
combination of squares of independant linear forms. In a more pedestrian manner,
if our quadratic form vanishes, then all yd ’s do vanish, and hence, so do the xa ’s. ∎

Here is a corollary.

Lemma 5.2 When the set S contains solely squarefree integers, the matrix MS ,φ is
nonnegative.

Proof Simply apply Lemma 5.1 to the completely multiplicative function φ′ that has
the same values on primes as φ. ∎

Now we recall the Sylvester’s criterion.

Lemma 5.3 A hermitian complex valued matrix M = (m i , j)i , j≤K defines a positive
definite form if and only if all its principal minors det(m i , j)i , j≤k for k ≤ K are positive.

A tensor product-like situation

Lemma 5.2 is enough to solve our main problem when M1 and M2 are coprime
squarefree integers. We need to go somewhat further. Let S be a divisor closed set.
We consider the quadratic form

∑
a ,b∈S

φ( lcm(a, b)
gcd(a, b) )xa xb ,(5.2)

where the variables xa ’s are also multiplicatively split; that is,

xa = ∏
pk∥a

xpk .(5.3)

Let S(p) the subset of S made only of 1 and of prime powers. We extend S so that it
contains every products of integers from any collection of distinct S(p).1 We then find
that

∑
a ,b∈S

1√
gcd(a, b)

φ( lcm(a, b)
gcd(a, b) )xa xb = ∏

p∈S
( ∑

pk , p�∈S(p)

φ(pmax(k ,�)−min(k ,�))
pmin(k ,�)/2 xpk xp�).

(5.4)

We check this identity simply by opening the right-hand side and seeing that every
summand from the left-hand side appears one and only one time.

6 Proof of the main result

Proof By [1, Theorem 1.4], we have

S(x) = ∑
n≤x

( f1 ∗ f2)(n) = ∑
a∣M1 M2

g(a)Δ(x/a),

1This is not automatically the case, as the example S = {1, 2, 3, 5, 6, 10} shows, since 30 does not
belong to S.
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where g = f1 ∗ f2 ∗ μ ∗ μ. We infer from this formula that

∫
X

1
∣S(x)∣2dx = ∑

a ,b∣M1 M2

g(a)g(b) ∫
X

1
Δ(x/a)Δ(x/b)dx

= (1 + o(1))
6π2 X3/2 ∑

a ,b∣M1 M2

g(a)g(b) gcd(a, b)3/2

ab

∞
∑
n=1

τ ( an
gcd(a ,b)) τ ( bn

gcd(a ,b))
n3/2

by Lemma 4.2. We next use Lemma 3.2 to infer that

lim
X→∞

1
X3/2 ∫

X

1
∣S(x)∣2dx = ζ(3/2)4

6π2ζ(3) ∑
a ,b∣M1 M2

g(a)g(b) 1√
gcd(a, b)

φ( lcm(a, b)
gcd(a, b) ),

where φ is multiplicative and at prime powers:

φ(pk) = (k + 1)
pk

1
1 + p−3/2 (1 − (k − 1)

(k + 1)p3/2 )

= 1
pk(1 + p−3/2) ((k + 1) − (k − 1)p−3/2)

= 1
pk(1 + p−3/2) (k(1 − p−3/2) + (1 + p−3/2))

= kβ(p) + 1
pk ,

(6.1)

where

β(p) = 1 − p−3/2

1 + p−3/2 .

Now, we can write

1√
gcd(a, b)

φ ( lcm(a, b)
gcd(a, b) ) = 1

(ab)1/4 ( lcm(a, b)
gcd(a, b) )

1/4

φ ( lcm(a, b)
gcd(a, b) ) .

Since the terms a−1/4 and b−1/4 can be absorbed into the variables g(a) and g(b)
of the quadratic form, it is enough to consider the quantity

φ∗ ( lcm(a, b)
gcd(a, b) ) , where φ∗(n) = n1/4φ(n).

We note that, at the prime power pk , we have

φ∗(pk) = pk/4φ(pk) = kβ(p) + 1
p3k/4 .(6.2)

Due to (5.4) and the discussion before it, we now restrict to the prime power case;
that is, we look to matrices of the form

MK = (φ∗(p∣i− j∣))i , j≤K .

As we are dealing with a given prime p, we shorten β(p) in β.
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Since φ∗ is not completely multiplicative, it is not clear how to handle the matrix
MK directly. So, our aim will be to transform this into another matrix which in some
way associates with a completely multiplicative function. So, let us consider

AK = U⊺KMK UK ,

where,

UK(i , j) =
⎧⎪⎪⎨⎪⎪⎩

μ(p∣i− j∣)
p3(∣i− j∣)/4 , when i ≥ j or (i , j) = (K − 1, K),
0, otherwise.

(6.3)

Simply speaking, UK is 1 on the diagonal and −p−3/4 on all (i + 1, i) as well as
(K − 1, K). Also,

det(UK) = 1 − p−3/2 .

We now calculate the entries of the matrix AK . We have the following:
Proposition 6.1 The matrix AK above is given by

AK(i , j) = β(1 − p−3/2) ⋅
⎧⎪⎪⎨⎪⎪⎩

p−3∣i− j∣/4 , when 1 ≤ i , j ≤ K − 1 or i = j = K ,
0, otherwise. ∎

We begin with the following lemma:
Lemma 6.2 We have

φ∗(pm) − p−3/4φ∗(p∣m−1∣) = p−3m/4β, for all m ≥ 0.

Proof First, assume m ≥ 1. We have

φ∗(pm) − p−3/4φ∗(pm−1) = mβ + 1
p3m/4 − p−3/4 (m − 1)β + 1

p3(m−1)/4 = p−3m/4β.

When m = 0, we have

1 − p−3/4φ∗(p) = 1 − p−3/2(β + 1) = 1 − 2p−3/2

1 + p−3/2 = β. ∎

Now, we shall proceed with the proof of the Proposition 6.1.
Proof of Proposition 6.1 Let us first assume that 1 ≤ i , j ≤ K − 1. We have

AK(i , j) = ∑
k1 ,k2

U⊺K(i , k1)MK(k1 , k2)UK(k2 , j)

= ∑
k1−i∈{0,1}
k2− j∈{0,1}

μ(pk1−i )
p3(k1−i)/4

μ(pk2− j)
p3(k2− j)/4 φ∗(p∣k1−k2 ∣)

= (φ∗(p∣i− j∣)(1 + p−3/2) − φ∗(p∣i− j+1∣) + φ∗(p∣i− j−1∣)
p3/4 ).

(6.4)

Here, we do not have the contribution coming from UK(K − 1, K) or U⊺K(K ,
K − 1) as we have assumed i , j ≤ K − 1. This assumption is necessary because we are
considering the values k1 = i + 1 and k2 = j + 1 (both of which should remain ≤ K).
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First, let us consider the case i ≥ j. Letting i − j = m ≥ 0, (6.4) becomes

AK(i + m, i) = φ∗(pm) − p−3/4φ∗(p∣m−1∣) − p−3/4(φ∗(pm+1) − p−3/4φ∗(pm))
= p−3m/4β − p−3/4 p−3(m+1)/4β

= β(1 − p−3/2)p−3m/4 .

Similarly, for j ≥ i, we will obtain the same expression in terms of m = j − i. This
proves Proposition 6.1 for 1 ≤ i , j ≤ K − 1.

Next, we consider the case when one of i or j equals K.
Claim AK(i , K) = AK(K , j) = 0, for all 1 ≤ i , j ≤ K − 1. ∎

We revert to the first line of the expression (6.4). Letting m = K − i ≥ 1, we obtain

AK(i , K) = ∑
k1∈{i , i+1}

k2∈{K−1,K}

μ(pk1−i )
p3(k1−i)/4

μ(pK−k2 )
p3(K−k2)/4

φ∗(p∣k1−k2 ∣)

= −p−3/4φ∗(pm−1) + p−3/2φ∗(p∣m−2∣) + φ∗(pm) − p−3/4φ∗(pm−1)
= −p−3/4(φ∗(pm−1) − p−3/4φ∗(p∣m−2∣)) + φ∗(pm) − p−3/4φ∗(pm−1)
= −p−3/4 p−3(m−1)/4β + p−3m/4β = 0.

It similarly follows that AK(K , j) = 0 for 1 ≤ j ≤ K − 1, proving the claim.
Next, we see that

AK(K , K) = ∑
k1 ,k2∈{K−1,K}

μ(pK−k1 )
p3(K−k1)/4

μ(pK−k2 )
p3(K−k2)/4

φ∗(p∣k1−k2 ∣)

= 1 − p−3/4φ∗(p) − p−3/4(φ∗(p) − p−3/4)
= β − p−3/4(p−3/4β) = β(1 − p−3/2).

This completes the proof of Proposition 6.1.
Now since n ↦ n−3/4 is completely multiplicative, by the proof of Lemma 5.1, the

matrix

BK =
⎛
⎝

( lcm(a, b)
gcd(a, b) )

−3/4⎞
⎠

a ,b∈{1,. . . , pK}

is positive definite for all K. Since the entries (i , j) with 1 ≤ i , j ≤ K − 1 of AK coincide
with the ones of the matrix cBK for some positive constant c, and that the entries
(i , K) and (K , j) of AK are all zero with a single exception at the entry (K , K), by
Sylvester’s criterion (Lemma 5.3), we conclude that the matrix AK is positive definite
for all K.

Since AK = U⊺KMKUK , we have

det(AK) = det(UK)2 det(MK) = (1 − p−3/2)2 det(MK).

This proves that det(MK) > 0, and by induction over K in Lemma 5.3, MK is positive
definite for all K.

The factorization (5.4) completes the proof of Theorem 1.3.
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