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On probabilities of large
deviations

Vijay K. Rohatgi

Let {Xn} be a sequence of independent identically distributed
n
random variables and let Sn = Z Xk . The rate of convergence
k=1
e 1/r .
of probabilities P |Sn| > (nlogn) , where 2 >r > 1, is

studied.

1. Introduction
Let {Xn : n =1} denote a sequence of independent identically

distributed random variables with common distribution function F . Write
n
Sn = 2 Xk . If F %belongs to the domain of normal attraction of a
k=1

stable law V(x) with characteristic exponent o (1 < a < 2) then for

some a > 0 and some An

lim P{a'ln'l/ O _ 4 = x} = V() .
- n n
(see, for example [3, p. 181].) 1If, moreover, EX; = O then the constants

-1 -1/a -l/as

An may be taken to be zero and it follows that a n (1ogn) n + 0

in probability. Clearly
P{|Sn| > e(nlogn)l/a} > P{'Snl > e(nlogn)l/r}

—l/rS

for 0 <r <a and it follows that (nlogn) , > 0 in probability.
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The probability P{]Sn| > e(nlogn)l/r} or either of its one sided
components is called a probability of large deviation [7]. If X  Thas a
finite variance the probability P{|Sn| > e(nlogn)l/z} is called a
probability of moderate deviation (see [1], [5], [6]). We remark that we

1
do not assume that EX, < < but only that E|X1|r <o for l<pr<2.

In what follows we will assume that {Xn} is a sequence of

independent identically distributed random variables with common
distribution function F . A median for the random variable X is

denoted by med(X) and lgx is the function defined by 1lgx = logex for

£ >1, =0 otherwise. ¢ denotes a generic (positive) constant and

1<r<2,.

2. Results

Lemmas 1 and 2 are stated here for completness. For proofs we refer
to [7].

LEMMA 1. For r =1, E[X|" <® if and only
Y nr—l(logn)rP{IXI > nlogn} < « ,
LEMMA 2. Let {An} be a sequence of independent events. If

} PA_ < then
n

0
PlUA }Y=z)YPA - JPA ] PA,.
nn nn mR e 9
THEOREM. For 1 < »r < 2 the following statements are equivalent:
(a) EXy; =0, E|X1|r<°°_;

(b) } n-llognP{|Sn| > e(nlogn)l/r} <o forall € >0 ;

(c) } 7 Y1ognP{ max |s

kl > e(nlgn)l/r} <® for all € >0 ;
1<k=n
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1/r

d) } n_lP{sup 'S /(kigk) > 8} <ewo forall €>0.
ke | K

Proof. The methods of proof parallel those used in [7] and are
fairly standard.
Equivalence of (a) and (b)

It is convenient to make the proofs for symmetrized random variables
XZ , n=1, 2, ... and then use the weak symmetrization inequalities

[4, p. 245] to transfer to the required results.
Suppose that (a) holds and write Si = z; Xi . Note that

Elxilr <o . (See [4, p. 246].) Define

Xi if |X2| < e(nlgn)l/r

= 1

IA
X
IA
P

kn
0 otherwise,

_tn .
and let Sin = Zl X;n . Since

P{|5';| > E(nlsn)l/r} = nP{lXil > E(nlgn)l/r} + P{Isfml > e(nlg_n)l/r} s

and from Lemma 1, Elxi[r < o implies ZlS"P{|Xi| N e(nlgn)l/r} <o, it
Just remains to show that Zlgﬂ P{Isinl > €(nlgn)l/r} <o,

From Markov's inequality [4, p. 148] we have
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122 £{lah,| > ctragn/7)

< ¢ Y(nign) -2 /rlgnE [Xin] 2

1A

e I 2 (1gn)t2/T ) (k1gk) 2/ P{(k-1)1g(k-1) = |¥°|7 < Kigk)

(k1e%)2/TP{(k-1)18(k-1) = | |7 < kagk} § w2/T(1gn)172/7

k n=k

< e ¥ (kigk)P{(k-1)1g(k-1) = |¥°|¥ < kigk}
k

<o,

The last series converges because ElXilr <o,
Now note that E|Xl|r <o,
-1/r, _P ~1/r P 5y
EX1=0=>n Sn—>0=»(nlgn)‘ Sn—->0=med——-—l—/? + 0.
(nlogn)

It is now easy to complete the proof of (a) = (b) by a simple use of weak

symmetrization inequalities.
Next suppose that (b) holds. By the symmetrization inequalities
Z n_llgnP{Si > e(nlgn)l/r} < o where sz , as before, is the sum of the

-1/rs P
symmetrized random variables. We first show that (nign) / Sn-—> 0. If

not, there exists an €, > 0 such that either
1/r
> >
P{Snsk €, (nklgnk) } €, °r P{Snsk

infinitely many %k . For the sake of argument assume

< - eo[nklgnk)l/r} > e, for

s 1/r PR
P{Snk > eo(nklgnk) } > €, for infinitely many k and choose

"1 > 2nk . Then for each 4 , nk =g < 2nk , We have

(51e7) " < [2nklg (2nk] ]l/r < 2?7 (nklgnk) 1/r

and
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v

ofs? > e, e

i/r
i = 2l > <y bten) )

e AR ENCRENES:

v

> 9
, T2 , , -
It follows that
lgn /.8 o 1l/» T 1gl plgs o 1/r
! n P{ n > 2/r (nlgn) } =) .Z i P{ i 2/r (¢1g7) }
2 k i=n, 2
2n
€ k .
207 7 8.,
-2 & 7
k i=ny,

This contradiction shows that (nlgn)_l/rsz -+ 0 in probability. By the
degenerate convergence criterion [4, p. 317] we get

nP{Xi > E(nlgn)l/r} + 0 . Following Erdds [2] we write

n
4, =4 > e(mgn)™*} ana B, ={ ] x5 20} and see that
k k k itk J

n
P{SZ > e(nlgn)l/r} P{ U (Ak n Bk]}

k=1

v

v

”n
I pa [PB,-nPA ]

1
”PAi}E -

v

nPA .
7

Thus for § > 0 and large 7 Wwe have
1/r 1
P{Sﬁ > e(nlgn) } > (2 G)nRAi )
It follows that

> ¥ n—llgnP{Si > e(nlgn)l/r} E) lgnP{Xi > E(nlgn)l/r} .

By Lemma 1, we obtain EIXilr < ® and thus E]Xl|r < © py Corollary 2 [4,
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p. 246].
To show that EX; = 0 we only have to note that

1 s -1/r P

r - a.s.
< = —_—
EIXll ©=n"8 EX, end (nign) 5,—0.

Equivalence of (b) and (e)

The (e¢) = (b) part is trivial and the (b) = (¢) part follows from

P . - P
Lévy's inequality [4, p. 247] and the fact that (b) = (nlgn) l/rSn ~= 0 .

Equivalence of (d) and (a)

We first show that (a) and (b) = (d). Choose 1 such that

2 =n< 21'+l and again consider the symmetrized random variables Xz

and Si . We have

v
b

P{S: S e(nlgn)l/r} > {Sz N E(2i+1lg2i+l)l/r}

= Lps®. > (2 g™t /T }
2 A
2
=1 P{Ss. > e2?/7 (27“1g27’)1/r}
2 7z
2
Using once again the symmetrization inequalities, we have
i+l
-1 s 1/r 201 1gn 1/r
w >} n " 1gnP s > e{nlgn) =) 7 == P Si > e(nlgn)
7 (2
n=2
z % y 1g2"P{ss1£ > 22/re(2'”1g2‘)1/r} ,
1 2

so that
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s2
§ n P sup k

7~
n ken (kigk)™'?

1A
Q
&~
o
w
=
\
m

k
1/r > €

1A
Q
Nt ace]

Z P max
=t | lopendtl (k1gk)

> 3[2J1g2‘7)l/r} (Lévy's inequality)

1A
Q
i~

i+
oIt

=ec E jP{SZj+l > e(2j1g2j)l/r}

J=1

1A

-2/r J+1. _j+ly1l/r
i > g™/ (27T 1g2? ™)

c Z lg2j+lP{Ss
d

1A
Q

) n_llgnP{Si >e. E-h/r(nlgn)l/r}
n
<o,
It Jjust remains to use the weak symmetrization inequalities and the fact

that (men)Y/%s

n-—£+ 0 to see that (a) and (b) = (d).
Next we show that (d) = (a).

Let Ak = {leI > e(klgk)l/r} . Then the events A, are independent

k
and satisfy
U 4 c U {ISkI > %-(klgk)l/r} ,
k=m+1 k=m
so that

-~ - - € l/r
P{WU Ak} =P U {]skl > 5 (klgk) }

+1 k=m
s .
k [
= P{sup l————————- =
tem | (agk)t/Tl 2
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which > 0 as m =+ © because of the fact that the sequence

Pisup > %- is non-increasing in m and (d) holds. An

‘ S
k=m

__k
(klgk)l/r

application of the Borel zero-one criterion [4, p. 228] now shows that
(o] / (o]
) P{|Xl| > e(kigk)t r} = 7 PA, <= .
k=1 k=1

By Lemma 2 therefore

S
£

2

8
v

@«
Z n lP sup
n=2 kzn

(k1gk)t/*

v

n22 " }i {lxﬁ+k‘ > e((”+k)lg(n+k))l/r}

k=

oo

clnt ] P{IX | > e((n+k)1g(n+k>)1/r}(1-n)
k=0 nk

v

v

Lt k
e 3} P{|Xl| > e(klgk)l/r} ¥ %
k=2 n=2

v

) lng{[Xl| > e(klgk)l/r} .
k

It follows by Lemma 1 that E|Xl|P < o, From (d) we see that

n_lSn-gL§+ 0 so that we must have EX; = O . Thus (d) = (a).

This completes the proof of the theorem.
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