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We use identification robust tests to show that difference (Dif), level (Lev), and non-
linear (NL) moment conditions, as proposed by Arellano and Bond (1991, Review of
Economic Studies 58, 277–297), Ahn and Schmidt (1995, Journal of Econometrics
68, 5–27), Arellano and Bover (1995, Journal of Econometrics 68, 29–51), and Blun-
dell and Bond (1998, Journal of Econometrics 87, 115–143) for the linear dynamic
panel data model, do not separately identify the autoregressive parameter when its
true value is close to one and the variance of the initial observations is large. We
prove that combinations of these moment conditions, however, do so when there are
more than three time series observations. This identification then solely results from
a set of, so-called, robust moment conditions. These robust moments are spanned by
the combined Dif, Lev, and NL moment conditions and only depend on differenced
data. We show that, when only the robust moments contain identifying information
on the autoregressive parameter, the discriminatory power of the Kleibergen (2005,
Econometrica 73, 1103–1124) Lagrange multiplier (KLM) test using the combined
moments is identical to the largest rejection frequencies that can be obtained from
solely using the robust moments. This shows that the KLM test implicitly uses the
robust moments when only they contain information on the autoregressive parameter.

1. INTRODUCTION

It is common to estimate the parameters of linear dynamic panel data models
using the generalized method of moments (GMM; Hansen, 1982). The moment
conditions for the linear dynamic panel data model either analyze it in first
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690 MAURICE J.G. BUN AND FRANK KLEIBERGEN

differences using lagged levels of the series as instruments, in levels using lagged
first differences as instruments or using a product of levels and first differences.
We refer to the first set of moment conditions as Dif(ference) moment conditions
(see Arellano and Bond, 1991), the second set as Lev(el) moment conditions
(see Arellano and Bover, 1995; Blundell and Bond, 1998), and the third set as
N(on-)L(inear) moment conditions (see Ahn and Schmidt, 1995).

The Dif, Lev, and NL moment conditions can be used separately to identify the
parameters of dynamic panel data models. To exhaust all information, however,
two particular combinations of Dif, Lev, and NL moment conditions have been pro-
posed. We refer to the combined Dif and Lev moment conditions as the Sys(tem)
moment conditions and the combination of the Dif and NL moment conditions as
the A(hn–)S(chmidt) moment conditions.1 The Sys moment conditions exhaust all
information on the autoregressive parameter that is present under mean stationarity
(see Arellano and Bover, 1995; Blundell and Bond, 1998). The AS moment
conditions exhaust all information while not assuming mean stationarity (see Ahn
and Schmidt, 1995).

We analyze the identification of the autoregressive parameter by the various
sets of moment conditions for a range of true values including the case of highly
persistent panel data. All moment conditions involve first differences of the
series to remove individual specific effects. The first difference operator removes
information in the time series at the unit root value of the autoregressive parameter.
It is well known that the Dif moment conditions, therefore, do not identify the
autoregressive parameter when its true value is (close to) one, since lagged levels
are then weak predictors of first differences. This has led to the development of
the NL and Lev, and hence AS and Sys, moment conditions which were originally
considered to identify the autoregressive parameter when the panel data are highly
persistent.

To show the identification issues at specific values of the autoregressive parame-
ter, we use identification robust tests, i.e., the GMM–A(nderson–)R(ubin) statistic
of Anderson and Rubin (1949) and Stock and Wright (2000), and the K(leibergen)
L(agrange) M(ultiplier) statistic of Kleibergen (2005). At values of the parameters
where identification issues occur, the rejection frequency of these tests provenly
coincides with the significance level, so the identification issues are relatively
easy to detect by inspecting the power curves. Using power curves of the KLM
test, we show that Dif, Lev, and NL moment conditions separately do not identify
the autoregressive parameter for persistent values of it when paired with a large
variance of the initial observations. The same holds for the Sys moment conditions
with three times series observations. The power curves further show that Sys and
AS moment conditions generally identify the autoregressive parameter when the
number of time series observations exceeds 3.

We formally prove these identification results using an asymptotic sampling
scheme in which we jointly let the variance of the initial observations and the

1Note that in a combination of all three sets of moments conditions, the NL moment conditions are redundant.
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number of cross section observations go to infinity. For a range of relative
convergence rates of the variance of the initial observations compared to the cross
section sample size, the Dif, Lev, and NL sample moments and their derivatives
diverge. Both the population moment and the Jacobian identification condition are
then ill defined, which implies that the autoregressive parameter is not separately
identified by the Dif, NL, or Lev moment conditions. These results confirm and
extend earlier findings in Madsen (2003), Bond, Nauges, and Windmeijer (2005),
Hahn, Hausman, and Kuersteiner (2007), Kruiniger (2009), and Phillips (2018).

Using our asymptotic sampling scheme, we also prove that AS and Sys moment
conditions identify the autoregressive parameter irrespective of the variance of the
initial observation when the number of time series observations exceeds 3. When
the variance of the initial observations is large, the identification results from a set
of, so-called, robust sample moments that are a combination of the Dif, Lev, and
NL sample moments (other than AS and Sys) and only depend on differenced data.
These robust sample moments are spanned by the Sys sample moments and also by
the AS sample moments. They identify the autoregressive parameter irrespective
of the variance of the initial observation and including the case of highly persistent
data. They are a subset of the moment conditions in Kruiniger (2002), which are
derived under the additional assumption of time series homoskedasticity.

Despite these positive identification results for the Sys and AS moments,
the large sample distributions of corresponding one-step and two-step GMM
estimators are known to be nonstandard when the variance of the initial observation
is large and the autoregressive parameter is close to one. This makes it hard to
infer if and how standard GMM inference using the original AS or Sys sample
moments exploits the information contained in the robust sample moments that
they encompass. The nonstandard limiting behavior results, since the identification
of the autoregressive parameter is then of, so-called, second order, since the
Jacobian of the robust sample moments is rank deficient, but the Hessian is not
(see, e.g., Dovonon and Renault, 2013; Dovonon and Hall, 2018; Dovonon, Hall,
and Kleibergen, 2020). It explains the large biases of the one-step and two-step
GMM estimators and the size distortions of their corresponding t-statistics when
the series are persistent (see, e.g., Madsen, 2003; Bond et al., 2005; Bond and
Windmeijer, 2005; Hahn et al., 2007; Kruiniger, 2009; Bun and Windmeijer, 2010;
Dhaene and Jochmans, 2016). Because of the second-order identification, GMM
estimators based on the robust sample moments also have nonstandard asymptotic
distributions when the data are persistent (see Dovonon et al., 2020).

We therefore analyze how identification robust test statistics exploit the identi-
fying information in the robust sample moments. We prove that the identification
robust KLM test procedure based on either AS or Sys sample moments exploits
all the identifying information contained in the robust sample moments. We do
so by first determining the (infeasible) optimal weighted average of the robust
sample moments that maximizes the discriminatory power of a GMM-AR test of
the autoregressive parameter in settings where only the robust sample moments
contain identifying information. Next, we determine the discriminatory power of
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692 MAURICE J.G. BUN AND FRANK KLEIBERGEN

KLM tests, based on AS or Sys moment conditions, under such settings and prove
that it equals that of the GMM-AR test using the optimal weighted average of the
robust sample moments. KLM tests using AS or Sys moment conditions thus resort
to just using the robust sample moments when only the latter contain information
on the autoregressive parameter. It is therefore not necessary to explicitly use
the robust sample moments, which provide identification under mild conditions,
since they are implicitly used in the KLM test based on either AS or Sys sample
moments.

The paper is organized as follows. Section 2 introduces the linear dynamic
panel data model and the different moment conditions we use to identify its
parameters. It also discusses identification robust statistics, specifically the KLM
test, that we use to illustrate the identification issues that occur at persistent values
of the autoregressive parameter. In Section 3, we use a representation theorem,
akin to the cointegration representation theorem (see Engle and Granger, 1987;
Johansen, 1991) to pin down the identification properties of the different moment
conditions. This theorem also allows us to obtain the robust sample moments. In
Section 4, we define the GMM-AR test that uses the (infeasible) optimal weighted
average of the robust sample moments and derive the large sample distribution
of the KLM test using AS or Sys moment conditions under settings where only
the robust sample moments contain information on the autoregressive parameter.
The fifth (final) section concludes. Proofs of theorems and definitions of sample
moments are provided in the Appendix. We use the following notation throughout
the paper: vec(A) stands for the (column) vectorization of the k × n matrix A,

vec(A) = (a′
1 . . . a′

n)
′, for A = (a1 . . . an),PA = A(A′A)−1A′ is a projection on the

columns of the full-rank matrix A, and MA = IN −PA is a projection on the space
orthogonal to A. Convergence in probability is denoted by “→

p
”, convergence in

distribution by “→
d

”, and “=
a

” means asymptotically equivalent.

2. IDENTIFICATION ROBUST GMM INFERENCE FOR DYNAMIC
PANEL DATA MODELS

In this section, we briefly describe the dynamic panel data model and the different
sets of moment conditions. Thereafter, we discuss identification robust GMM
inference including the construction of confidence intervals. Finally, we illustrate
the identification issues that occur when using the different moment conditions for
dynamic panel data models, by computing power curves based on the identification
robust KLM statistic.

2.1. Model and Moment Conditions

We analyze the first-order autoregressive linear dynamic panel data model

yit = ci + θyit−1 +uit, i = 1, . . . ,N,t = 2, . . . ,T, (1)
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ROBUST INFERENCE FOR MOMENTS BASED ANALYSIS 693

with T the number of time periods and N the number of cross section observations.
We assume that the initial observation yi1 is observed and that the vector of
observations (yi1, . . . ,yiT) for individual i is independently distributed across the N
individuals. We will later on make further assumptions on the initial observations to
properly define the process in (1). For expository purposes, we analyze the simple
dynamic panel data model in (1), which can be extended with additional lags of
yit and explanatory variables.2 Estimation of the parameter θ by means of least
squares leads to an inconsistent estimator in samples with a finite value of T and
large N (see, e.g., Nickell, 1981). We therefore estimate it using GMM. We obtain
the GMM moment conditions from the unconditional moment assumptions:

E[uit] = 0, t = 2, . . . ,T,

E[uituis] = 0, s �= t;s,t = 2, . . . ,T,

E[uitci] = 0, t = 2, . . . ,T,

E[uityi1] = 0, t = 2, . . . ,T .

(2)

Under these assumptions, the moments of the T(T − 1) interactions of �yit and
yit :

E[�yityij], j = 1, . . . ,T,t = 2, . . . ,T (3)

can be used to construct functions which identify the parameter of interest θ . We
do not use products of �yit to identify θ , since we would need further assumptions,
i.e., homoskedasticity or initial condition assumptions (see, e.g., Han and Phillips,
2010).

Two different sets of moment conditions, which are functions of the moments
in (3), are commonly used to identify θ :

1. Dif moment conditions:

E[yij(�yit − θ�yit−1)] = 0, j = 1, . . . ,t −2;t = 3, . . . ,T, (4)

as proposed by, e.g., Anderson and Hsiao (1981) and Arellano and Bond (1991).
The Dif moment conditions solely result from the conditions in (2).

2. Lev moment conditions:

E[�yit−1(yit − θyit−1)] = 0, t = 3, . . . ,T, (5)

as proposed by Arellano and Bover (1995; see also Blundell and Bond, 1998).
In addition to the conditions in (2), the Lev moment conditions use

E [�yitci] = 0, (6)

which implies that the original data in levels have constant correlation over time
with the individual-specific effects. The Lev moment conditions (5) hold under

2The extension to other explanatory variables would depend on the nature of these. For some settings, such an
extension would be trivial, but for others not so.
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694 MAURICE J.G. BUN AND FRANK KLEIBERGEN

the following conditions regarding the initial observations yi1 (i = 1, . . . ,N) :

yi1 = μi +ui1, (7)

μi = ci/(1− θ), (8)

E[ui1] = 0,
E[ui1ci] = 0,

E[ui1uit] = 0, t > 1.
(9)

The specification of the initial observations in (7)–(9) is often referred to
as mean stationarity. In our analysis, we maintain the assumption of mean
stationarity.

The Dif and Lev moments can be used separately or jointly to identify θ . When
we use the moment conditions in (4) and (5) jointly, we refer to them as Sys
moment conditions3 (see Arellano and Bover, 1995; Blundell and Bond, 1998).
Another set of NL moment conditions, which just like the Dif moments only use
the conditions in (2), results from Ahn and Schmidt (1995):

E[(yit − θyit−1)(�yit−1 − θ�yit−2)] = 0, t = 4, . . . ,T . (10)

The NL moments can be used separately or jointly with the Dif moments to identify
θ . When we use the moment conditions in (4) and (10) jointly, we refer to them as
AS moment conditions.

Ahn and Schmidt (1995) show that their AS moment conditions exhaust the
information on θ in the moment conditions (2) and are therefore complete. Mean
stationarity adds one moment condition (6) to the moment conditions in (2). Hence,
the complete set of moment conditions under (2) and (6) equals the AS moment
conditions and (6). Upon rewriting, we can show that these combined moment
conditions are identical to the Sys moment conditions, so they are complete under
(2) and (6).

2.2. Identification Robust GMM Tests

In GMM, we consider a k-dimensional vector of moment conditions (see Hansen,
1982):

E[fi(θ0)] = 0, i = 1, . . . ,N, (11)

where fi(θ) is a k-dimensional (continuous and continuously differentiable) func-
tion of the observed data for individual i and the unknown parameter vector θ

whose functional expression is identical for all individuals. There is a unique true
value of the p-dimensional vector θ where the moment conditions are satisfied,

3We could extend the Lev moment conditions to 1
2 (T − 1)(T − 2) sample moments by including additional

interactions of �yit−j and yit − θyit−1, for j = 2, . . . ,t − 2. It can be shown, however, that all conditions on top of
those in (5) can be constructed as linear combinations of the Dif conditions in (4) and the Lev conditions in (5).
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ROBUST INFERENCE FOR MOMENTS BASED ANALYSIS 695

which we denote by θ0, and k is at least as large as p. We only analyze the first-
order autoregressive panel data model, so p = 1 for our setting. The population
moments in (11) are estimated using the sample moments,

fN(θ) = 1
N

∑N
i=1 fi(θ). (12)

The k × p dimensional matrix qN(θ) contains the derivative of fN(θ) with respect
to θ :

qN(θ) = ∂
∂θ ′ fN(θ) = 1

N

∑N
i=1 qi(θ), (13)

with qi(θ) = ∂
∂θ ′ fi(θ). Specifications of the sample moment functions fN(θ) and

qN(θ) for the Dif, Lev, Sys, NL, and AS moment conditions are provided in the
Appendix.

Statistical inference based on the two-step GMM estimator is known to be of
poor quality in the case of weak identification, which leads to an inconsistent
estimator with nonstandard behavior of its corresponding t-statistic (see, e.g.,
Phillips, 1989; Staiger and Stock, 1997; Stock and Wright, 2000). The nonstandard
limiting behavior of one-step and two-step GMM estimators for dynamic panel
data models in the case of weak identification has been documented in, e.g.,
Madsen (2003), Kruiniger (2009), and Phillips (2018).

In this study, we therefore use identification robust GMM statistics to overcome
the aforementioned problems. The main advantage of identification robust statis-
tics is that, unlike conventional two-step GMM statistics, their limiting distribu-
tions are unaffected by the identification strength. Define θ∗ as the hypothesized
value under the null hypothesis. A particularly simple to compute identification
robust GMM statistic to test H0 : θ = θ∗ is the GMM extension of the AR statistic
(see Anderson and Rubin, 1949; Stock and Wright, 2000):

GMM-AR(θ∗) = NfN(θ∗)′V̂ff (θ
∗)−1fN(θ∗), (14)

with V̂ff (θ) the Eicker–White covariance matrix estimator:

V̂ff (θ) = 1
N

N∑
i=1

(fi(θ)− fN(θ))(fi(θ)− fN(θ))′. (15)

The GMM-AR statistic equals the continuous updating objective function
(Hansen, Heaton, and Yaron, 1996) evaluated in θ∗. A possible drawback of the
GMM-AR statistic is its lower power in the case of overidentified models. The
KLM statistic of Kleibergen (2005) partly overcomes this. The KLM statistic is a
quadratic form of the score of the GMM-AR statistic with respect to θ :

KLM(θ∗) = NfN(θ∗)′V̂ff (θ
∗)−1D̂N(θ∗)

[
D̂N(θ∗)′V̂ff (θ

∗)−1D̂N(θ∗)
]−1

D̂N(θ∗)′V̂ff (θ
∗)−1fN(θ∗), (16)
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696 MAURICE J.G. BUN AND FRANK KLEIBERGEN

with D̂N(θ) a k ×p dimensional matrix,

vec(D̂N(θ)) = vec(qN(θ))− V̂qf (θ)V̂ff (θ)−1fN(θ), (17)

and

V̂qf (θ) = 1
N

N∑
i=1

(vec[qi(θ)−qN(θ)])(fi(θ)− fN(θ))′. (18)

The limiting distributions of the identification robust GMM-AR and KLM statis-
tics apply under less restrictive assumptions than those of the traditional test
statistics based on two-step GMM. The GMM-KLM and GMM-AR statistics
converge under H0 to χ2(p) and χ2(k) distributed random variables even when
the Jacobian, J(θ0) = E(qi(θ0)), does not have a full-rank value (see Stock and
Wright, 2000; Kleibergen, 2005; Newey and Windmeijer, 2009). Other identi-
fication robust statistics for GMM are proposed in Kleibergen (2005), Andrews
(2016), and Andrews and Mikusheva (2016), which all provide extensions of the
conditional likelihood ratio statistic of Moreira (2003) to GMM. The conditional
likelihood ratio statistic is optimal for the homoskedastic linear instrumental
variables regression model with one included endogenous variable (see Andrews,
Moreira, and Stock, 2006). None of its extensions to GMM has, however, shown
to be optimal for our setting of the dynamic linear panel autoregression, so we just
use the easier to implement GMM-AR and KLM statistics.4

The identification robust tests can be inverted to obtain corresponding identifi-
cation robust confidence sets. The 100×(1−α)% confidence set for θ (denoted by
CSθ (α) below) consists of all values of θ∗ for which the respective identification
robust test does not reject using its 100×α% asymptotic critical value:

CSθ (α) = {θ∗ : IRT(θ∗) ≤ CDFIRT(α)}, (19)

with IRT(θ∗) the identification robust statistic evaluated at θ∗ and CDFIRT(α) the
(1−α)×100th percentile of the limiting distribution of IRT(θ0).

The identification robust tests are not quadratic functions of θ∗, so they cannot
directly be inverted to obtain the confidence set.5 The confidence sets resulting
from them do, therefore, not have the usual expression of an estimator plus or
minus a multiple of the standard error. Instead, we have to specify a p-dimensional
grid of values of θ∗ and compute the identification robust statistic for every value
of θ∗ on the grid to determine if it is less than the appropriate critical value, so θ∗
is part of the confidence set.

Specifically, the confidence set in (19) can have three distinct shapes:

4Andrews et al. (2006) establish the optimality of the likelihood ratio test for the i.i.d. linear instrumental variable
regression model using the Neymann–Pearson lemma. We cannot do so here, since the identification of θ depends on
other nuisance parameters besides the Jacobian, like the initial observations, so it is not obvious how optimality can
be established.
5An exception is the GMM-AR statistic in the homoskedastic linear instrumental variable regression model (see
Dufour and Taamouti, 2005).
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1. Bounded and convex: there is a closed compact set of values of θ∗ for which
the identification robust test statistic does not exceed the critical value.

2. Unbounded: this occurs either when there are no values of θ∗ for which
the identification robust test statistic exceeds the critical value (unbounded
and convex), or when there are bounded sets of values of θ∗ for which the
identification robust test statistic exceeds the critical value (unbounded and
disjoint).

3. Empty: the identification robust test statistic exceeds the critical value for all
values of θ∗.

Bounded and convex confidence sets occur when the parameters of interest are
well identified. Unbounded confidence sets are indicative of weak identification,
so if we then test H0 : θ = θ∗ at a very large, possibly infinite, value of θ∗ using an
identification robust test at, say, the 5% significance level, it does not necessarily
reject. For such instances, we thus often do not reject the hypothesis of an infinite
value of θ , so we obtain an unbounded 95% confidence set. In Dufour (1997, Thms.
3.3 and 3.6), it is shown that any size correct procedure used to test parameters
which can be nonidentified must have a positive probability of producing an
unbounded 95% confidence set. Conversely, also any test procedure, like the Wald
t test, which cannot generate an unbounded 95% confidence set, cannot be a size
correct test procedure when the tested parameter can be nonidentified. Empty
confidence sets occur when the model is misspecified, so there is no value of θ

for which the moment condition holds. Since the GMM-AR statistic tests whether
all moment conditions hold, it also tests misspecification. It can therefore result
in empty confidence sets, but the KLM test cannot, since it is equal to zero at the
continuous updating estimator of Hansen et al. (1996), which is the minimizer of
the GMM-AR statistic.

The identification robust statistics conduct tests on the full parameter vector
θ . Valid (1 − α) × 100% confidence sets for the individual elements of θ then
result by projecting the joint p-dimensional (1 − α) × 100% confidence set for
θ on the p different axes. These projection-based confidence sets are size cor-
rect, so they contain the true value of θ with a probability which is at least
(1 − α) × 100% irrespective of the strength of identification. Projection-based
confidence sets can face computational issues when p is rather large given the large
number of points on the p-dimensional grid for which the statistic then has to be
computed.

Confidence sets for the individual elements of θ can also be obtained by
plugging in an estimator for the remaining elements of θ after which the (condi-
tional) limiting distribution can be sharpened using the usual degrees of freedom
correction of the χ2 limiting distributions. The resulting confidence sets only
have correct coverage when these remaining parameters are well identified (see
Kleibergen, 2005). Just in some isolated cases, for example, when using the GMM-
AR statistic in the homoskedastic linear instrumental variables regression model
or in the linear factor model for determining risk premia in finance, can we prove
that these confidence sets are valid without requiring the partialled out parameters
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698 MAURICE J.G. BUN AND FRANK KLEIBERGEN

to be well identified (see Guggenberger et al., 2012; Guggenberger, Kleibergen,
and Mavroeidis, 2019; Kleibergen (2021); Kleibergen, Kong, and Zhan (2020);
Kleibergen and Zhan (2020)).

2.3. Using Identification Robust Tests to Highlight Identification
Issues

Identification robust GMM tests are size correct irrespective of the identification
strength. Therefore, their rejection frequencies can be used in a straightforward
manner to illustrate the identification issues at particular values of the autoregres-
sive parameter in the dynamic panel data model. The conventional t test based on
the two-step GMM estimator is not suitable for this purpose, as it is size distorted
in the case of weak identification and, hence, rejection frequencies would not equal
the significance level.

To illustrate the identification issues for the different moment conditions, we
compute the rejection frequencies of 5% significance KLM tests of H0 : θ = 0.5
for a range of (true data generating) values θ0. We do so by simulating data from
the panel autoregressive model in (1) with three or four time series observations,
so T = 3 or 4, and 250 individuals, so N = 250. The individual specific effects ci

and idiosyncratic errors uit are independently generated from N(0,σ 2
c ) and N(0,1)

distributions, respectively. We vary the value of σ 2
c to show the sensitivity of the

identification of θ using the panel moment conditions to the variance of the initial
observations. We assume mean stationarity, so (7)–(9) hold.

We consider four KLM tests based on Dif, Lev, Sys, and AS moment conditions,
which have been calculated according to equation (16) using θ∗ = 0.5. Figures 1
and 2 show the rejection frequencies of KLM tests of H0 : θ = 0.5 with 5% signifi-
cance for four values of σ 2

c and a range of true values θ0. Figure 1 does so for three
times series observations, while Figure 2 covers four time series observations. The
simulation experiment is designed such that the variance of the initial observations
becomes very large when θ0 gets close to one and σ 2

c exceeds zero.
Figures 1a and 2a show that the rejection frequencies of the KLM test with Dif

moment conditions for θ0 close to one converges to the significance level of 5%.
It is well known that the Jacobian of the Dif moment conditions is zero when θ0

equals one, so they then do not identify θ . The KLM test is identification robust,
which explains why the rejection frequency equals the significance level both at
the hypothesized value of θ∗ = 0.5 and when θ0 is close to 1 for all values of σ 2

c .
The latter results, since the Dif moment conditions do then not identify θ ; hence,
the KLM test has no discriminating power, so the power of the KLM test equals
the significance level.

Figures 1b and 2b show the rejection frequencies of 5% significance tests of
H0 : θ = 0.5 using the KLM test with Lev moment conditions. Interestingly, these
figures show that the Lev moment conditions only identify θ when the true value
θ0 is close to one when σ 2

c = 0. Nonzero values of σ 2
c correspond with a large

variance of the initial observations when θ0 is close to one and Figures 1b and
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Figure 1. Rejection frequencies of KLM test of H0 : θ = 0.5 with 5% significance using different
moment conditions for T = 3,N = 250, and σ 2

c = 0 (dashed), 0.5 (solid), 1 (dash-dotted), and 2 (dotted).

2b show that the Lev moment conditions do not identify θ in this case. This
contradicts the common perception that the Lev moment conditions generally
identify θ irrespective of the setting of nuisance parameters, like, the variance of
the initial observations.

Figures 1c and 2c show the rejection frequencies of 5% significance tests of
H0 : θ = 0.5 using the KLM test with Sys moment conditions. Surprisingly, these
figures show that the Sys moment conditions do not identify θ when θ0 is close to
one and σ 2

c > 0 when T = 3, but do so when T = 4.
Figure 2d shows the rejection frequencies of 5% significance tests of H0 : θ = 0.5

using the KLM test with AS moment conditions. These rejection frequencies show
that the AS moment conditions, which are not defined for T = 3, identify θ when
its true value is close to one and the variance of the initial observations is very
large. Interestingly, the rejection frequencies of KLM tests of H0 using the Sys
and AS moment conditions are very close when θ0 is near one when paired with
large variances of the initial observations.
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Figure 2. Rejection frequencies of KLM test of H0 : θ = 0.5 with 5% significance using different
moment conditions for T = 4, N = 250, and σ 2

c = 0 (dashed), 0.5 (solid), 1 (dash-dotted), and 2 (dotted).

Summarizing, Figures 1 and 2 illustrate a few stylized facts that concern the
identification of θ for the data generating process (DGP) used in the simulation
experiment:

1. Dif moment conditions do not identify θ when θ0 is close to one for general T.
2. Lev moment conditions do not identify θ when θ0 is close to one for large

variances of the initial observations for general T.
3. Sys moment conditions do not identify θ when θ0 is close to one for large

variances of the initial observations when T = 3.
4. Sys and AS moment conditions identify θ when θ0 is close to one for large

variances of the initial observations when T exceeds 3.
5. The rejection frequencies of KLM tests of H0 using AS and Sys moment

conditions when θ0 is close to one and the variance of the initial observations
is large are almost identical.

Except for the first stylized fact, a theory backing them up is lacking, so
we aim to provide one in the sections ahead. In doing so, we show that all
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information regarding θ, when its true value is close to one and the variance of
the initial observations is large, is contained in a set of, so-called, robust moment
conditions which are a combination of either the AS or Sys moment conditions.
We furthermore show that the KLM test based on the original AS or Sys moment
conditions, as reported in Figures 1 and 2, makes optimal use of these robust
sample moments when only they contain information on θ .

Alongside the identification issues we can infer from the rejection frequencies
in Figures 1 and 2, they are also indicative of the different kind of confidence
sets that can result from the identification robust tests as discussed previously. For
example, the low rejection frequencies occurring for θ0 around one, that result
from the identification issues, show that the 95% confidence sets for θ are then
typically very wide, possibly unbounded, when θ0 has such a value paired with a
large variance of the initial observations. To visualize this further, Figure 3 contains
the (one minus the) p-value plots of KLM tests using AS, Dif, Lev, and Sys moment
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Figure 3. One minus p-value plots of KLM tests using different moments conditions: Sys (solid),
AS (dotted), Lev (dashed), and Dif (dash-dot) for θ0 = 0.95 and N = 250.
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conditions for four datasets using the same DGPs as in Figures 1 and 2 with
N = 250 and θ0 = 0.95.6 The DGPs used for the four figures differ over the
values of T and σ 2

c . The intersections of the depicted p-value plots with the line at
0.95 indicate the 95% confidence sets of KLM tests with the respective moment
condition.

In Figure 3a,c, σ 2
c = 0, so identification issues only occur at θ0 close to one when

using the Dif moment conditions. Since θ0 is 0.95, this explains why the p-value
plots of the KLM test with the Dif moments conditions do not cross the line at 0.95
in Figure 3a,c, so the resulting 95% confidence sets are very wide. The p-value
plots in Figure 3a,c of KLM tests with Sys and Lev moment conditions show that
they lead to bounded 95% confidence sets, since these moment conditions have no
identification issues when T = 3 and σ 2

c = 0.
In Figure 3b, where T = 3 and σ 2

c = 0.5, none of the p-value plots crosses the line
at 0.95, so 95% confidence sets that result from KLM tests with Dif, Lev, and Sys
moment conditions are all very wide and possibly unbounded. This is indicative of
the identification issues when T = 3 and σ 2

c = 0.5 for true values of θ close to one.
In Figure 3d, where T = 4 and σ 2

c = 0.5, KLM tests with Sys and AS moment
conditions both result in finite 95% confidence sets, while the KLM test with Dif
and Lev moment conditions leads to very wide possibly unbounded confidence
sets. Hence, Sys and AS moment conditions have no identification issues, while
Dif and Lev moment conditions do. The AS moment conditions are quadratic
functions of θ , which explains the somewhat unusual shape of their p-value plots
in Figure 3c,d.

3. IDENTIFICATION FROM DIFFERENT MOMENT CONDITIONS

Stylized Facts 1–4 illustrated by Figures 1–3 show the identification issues
that occur for the autoregressive parameter θ when the variance of the initial
observations is large and θ0, i.e., the true value in the DGP, is close to one. To pin
these identification issues down precisely, we use an asymptotic sampling scheme
which consists of joint drifting sequences for the autoregressive parameter and the
variance of the initial observation. We indicate this dependence on the sample size
N by θ0,N and hN(θ0,N) = 1√

var(yi1)
, respectively. The true value of θ, previously

denoted by θ0, is from now on, therefore, denoted by θ0,N . Assumptions 1 and 2
group the different requirements needed to obtain our results.

Assumption 1. a. The drifting sequences of the autoregressive parameter and
variance of the initial observations are such that:

limN→∞ θ0,N = 1,
limN→∞ hN(θ0,N) = d1,

(20)

6We note that the Figure 3a–d shows (one minus) the p-value for one realized dataset and does not show the simulated
empirical distribution function of the test under the null hypothesis, which is sometimes also referred to as a p-value
plot (see Davidson and MacKinnon, 2002).
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with d1 a finite, possibly zero constant.
b. The initial observations satisfy the mean stationarity conditions in (7)–(9).
c. The joint limit behavior of the variance of ui1 and (1− θ0,N) is such that

limN→∞(1− θ0,N)σ 2
1,N = d2, (21)

with σ 2
1,N = var(ui1), d2 a finite, possibly zero constant, and (1 − θ0,N)

1
2 ui1 is a

random variable with finite fourth-order moments.
d. The variance of the product of the initial observation yi1 and the disturbances

uit is such that

var(uityi1) = σ 2
t var(yi1), t = 2, . . . ,T, (22)

with σ 2
t = var(uit), t = 2, . . . ,T .

e. The errors ui1/σ1,N , ui2, . . . ,uiT and ci, i = 1, . . . ,N, are independently
distributed within individuals and over the different individuals and have mean-
zero, finite variance, and finite fourth-order moments and satisfy the conditions
in (2).

Assumption 1(a) concerns the joint limit behavior of the variance of the initial
observations and θ0,N . By the definition of μi in (8) and Assumption 1(a), μi is
also drifting with the sample size, since it is a function of θ0,N , and so are yi1

and σ 2
1,N . Assumption 1(b) specifies that the initial observations follow the mean

stationarity assumption, which is necessary for the Lev and Sys moment conditions
to hold. Assumption 1(c)–(e) is mainly technical assumptions, which is needed to
obtain our theoretical results. Assumption 1(c) sets an upper bound on the rate at
which the variance of ui1 can diverge. It implies that the variance of ui1 is at most
proportional to (1−θ0,N)−1 (so covariance stationarity is allowed for). Assumption
1(d) holds under independence of uit and yi1, but it can also hold under less stringent
conditions. In the sequel, we analyze the identification of θ when the variance of
the initial observations gets large compared to that of the subsequent disturbances.
Assumption 1(d) enables such settings. Assumption 1(e) is a technical assumption,
which is needed to use a central limit theorem.

Assumption 1(a) allows the variance of the initial observations to be large jointly
with a large value for the autoregressive parameter. When d1 in (20) equals zero, the
rate at which hN(θ0,N) goes to zero, or the variance of the initial observation goes
to infinity, is key to the identification of θ from the sample moment conditions. We
therefore put down two alternative assumptions regarding the joint convergence of
the sample size and the variance of the initial observations under which there is
identification or identification is problematic for specific moment conditions.

Assumption 2. a. d1 = 0 and the drifting sequence of the variance of the initial
observation is such that:

hN(θ0,N)
√

N →
N→∞ 0. (23)
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b. d1 �= 0 or the drifting sequence of the variance of the initial observation is such
that:

hN(θ0,N)
√

N →
N→∞ ∞. (24)

Identification generically holds under Assumption 2(b) but can become prob-
lematic under Assumption 2(a) and then depends on the particular moment
condition and number of time series observations as we show later on. In the
intermediate case where hN(θ0,N)

√
N converges to a finite, but nonzero constant,

we are in a case similar to that discussed in the weak instrument literature where
the sample Jacobian converges to a random variable which leads to inconsistent
estimators with nonstandard behavior of their corresponding t-statistics. Because
of the practical similarities with Assumption 2(a), however, we do not separately
discuss it.

Since any assumption about the convergence rates of the sample size and
the variance of the initial observations is to a large extent arbitrary, also the
identification of θ by these conditions is arbitrary for DGPs for which the true
value of θ is close to one and the variance of the initial observations is infinite
when the true value of θ equals one. Some plausible DGPs, all of which accord
with mean stationarity (7)–(9), for the initial observations belong to this category:

DGP 1. σ 2
c =var(ci), σ 2

1,N = σ 2
1 , h(θ0,N)−2 = σ 2

c /(1 − θ0,N)2 + σ 2
1 , so when

θ0,N →
N→∞ 1, (1− θ0,N)−1h(θ0,N) →

N→∞ σ−1
c .

DGP 2. σ 2
c =var(ci), σ 2

1,N = σ 2

1−θ2
0,N

, σ 2 = var(uit), t = 2, . . . ,T , h(θ0,N)−2 = σ 2
c /(1−

θ0,N)2 + σ 2/(1 − θ2
0,N), so when θ0,N →

N→∞ 1, (1 − θ0,N)−1h(θ0,N) →
N→∞

σ−1
c .

DGP 3. σ 2
μ =var(μi), σ 2

1,N = σ 2

1−θ2
0,N

, σ 2 = var(uit), t = 2, . . . ,T , h(θ0,N)−2 = σ 2
μ +

σ 2/(1− θ2
0,N), so when θ0,N →

N→∞ 1, (1− θ2
0,N)−

1
2 h(θ0,N) →

N→∞ σ−1.

DGP 4. σ 2
μ =var(μi), σ 2

1,N = σ 2 1−θ
2(g+1)
0,N

1−θ2
0,N

, σ 2 = var(uit), t = 2, . . . ,T, h(θ0,N)−2 =

σ 2
μ +σ 2 1−θ

2(g+1)
0,N

1−θ2
0,N

, so when θ0,N →
N→∞ 1,

(
1−θ2

0,N

1−θ
2(g+1)
0,N

)− 1
2

h(θ0,N) →
N→∞ σ−1.

DGP 5. σ 2
c =var(ci), σ 2

1,N = σ 2 1−θ
2(g+1)
0,N

1−θ2
0,N

, σ 2 = var(uit), t = 2, . . . ,T , h(θ0,N)−2 =

σ 2
c /(1 − θ0,N)2 + σ 2 1−θ

2(g+1)
0,N

1−θ2
0,N

, so when θ0,N →
N→∞ 1,

(
1− θ0,N

)−1

h(θ0,N) →
N→∞ σ−1

c .

DGPs 4 and 5 characterize an autoregressive process of order one that has started
g periods in the past, while the initial observations that result from DGP 2 and 3

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026646662100027X
Downloaded from https://www.cambridge.org/core. IP address: 18.118.186.168, on 20 Sep 2024 at 10:20:21, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026646662100027X
https://www.cambridge.org/core


ROBUST INFERENCE FOR MOMENTS BASED ANALYSIS 705

result from an autoregressive process that has started an infinite number of periods
in the past. DGPs 2 and 3 are also used by Blundell and Bond (1998), and Arellano
and Bover (1995) use DGP 2, but these studies keep the variance of the initial
observations fixed.

For DGPs 1–5 to imply Assumption 2(a), the limiting sequence θ0,N has to be
such that:

DGP 1,2,5 : (1− θ0,N)
√

N →
N→∞ 0 for which it is sufficient that

θ0,N = 1− e

N
1
2 (1+ε)

,

DGP 3 : (1− θ2
0,N)N →

N→∞ 0 for which it is sufficient that

θ0,N = 1− e
N1+ε ,

DGP 4 : N
g →

N→∞,g→∞ 0,

(25)

with e a constant and ε some real number larger than zero. In the case of DGP
4, (25) implies that the process has been running longer than the sample size N.
Kruiniger (2009) uses the above specification of DGP 3 with ε = 0 and DGP 4 with
N/g converging to a constant to construct local to unity asymptotic approximations
of the distributions of two-step GMM estimators that use the Dif, Lev, or Sys
moment conditions.

We do not confine ourselves to a specific DGP for the initial observations, so we
obtain results that apply more generally. While the (non) identification conditions
for identifying θ that result from the above DGPs might be (in)plausible, it is the
arbitrariness of them which is problematic. In addition, the identification condition
might hold, but it can still lead to large size distortions of Wald test statistics, like,
the t test.

To analyze the identification of θ by the different moment conditions for a
general number of time periods T, we start out with a representation theorem. For
the different moment conditions, it states the behavior of the sample moments and
their derivatives under Assumptions 1 and 2(a).

THEOREM 1 (Representation theorem). Under Assumptions 1 and 2(a), we can
characterize the large sample behavior of the Dif, Lev, NL, AS, and Sys sample
moments for T time series observations and their derivatives by:(

f j
N(θ)

qj
N(θ)

)
=
(

Aj
f (θ)

Aj
q(θ)

)[
1

hN(θ0,N)
√

N

(
ψ −hN(θ0,N)σ1,N ιT−1ψc

)− ιT−1d2

]

+
(

μ
j
f (θ,σ̄

2)

μ
j
q(θ,σ̄

2)

)
+op(1), (26)

with j = Dif , Lev, NL, AS, Sys. The specifications of the kj-dimensional sample

moments f j
N(θ) and derivatives qj

N(θ) are given in the Appendix. Furthermore,
Aj

f (θ), Aj
q(θ), μj

f (θ,σ̄
2), and μ

j
q(θ,σ̄

2) are constant kj ×(T −1), kj ×(T −1), kj ×1,
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and kj ×1 dimensional matrices, σ̄ 2 = (σ 2
2 . . . σ 2

T ),

hN (θ0,N )√
N

∑N
i=1

⎛
⎜⎝

yi1ui2
...

yi1uiT

⎞
⎟⎠→

d
ψ,

1√
N

∑N
i=1

ui1
σ1,N

ci →
d

ψc,

(27)

so ψ is a (T − 1)-dimensional normal random vector, ψ ∼ N(0,diag(σ 2
2 . . . σ 2

T )),
ψc ∼ N(0,var(ci)) and independent from ψ , and ιT−1 is a (T − 1)-dimensional
vector of ones. The specifications of Aj

f (θ), Aj
q(θ),μ

j
f (θ,σ̄

2), and μ
j
q(θ,σ̄

2) for
values of T equal to 3–5 are all stated in the Appendix.

Proof. See the Appendix. �

The representation theorem in Theorem 1 is reminiscent of the cointegration
representation theorem (see, e.g., Engle and Granger, 1987 and Johansen, 1991).
Identical to that representation theorem, Theorem 1 shows that the behavior of the
moment series changes over different directions.

Theorem 1 implies that the sample moment and its derivative diverge in the

direction of
(Aj

f (θ)

Aj
q(θ)

)
, since the latter components get multiplied by 1

h(θ0,N )
√

N
, which

under Assumption 2(a) goes off to infinity when the sample size increases. The
only identifying information for θ then results from that part of the sample moment
which does not depend on ψ . Since ψ only affects the part of the sample moments
spanned by Aj

f (θ), the sample moments are independent of ψ in the direction of

the maximal nondegenerate space spanned by vectors orthogonal to Aj
f (θ) to which

we refer as the orthogonal complement of Aj
f (θ). We construct the orthogonal

complement, which we denote by Aj
f (θ)⊥, as the full-rank matrix projecting on

the orthogonal complement of the range space of Aj
f (θ). It consists of the minimal

set of vectors spanning the null space of the columns of Aj
f (θ). In the case the

null space has dimension zero, a full-rank specification of Aj
f (θ)⊥ cannot be

constructed.
When we premultiply the sample moments by the orthogonal complement of

Aj
f (θ), we obtain

Aj
f (θ)′⊥f j

N(θ) = Aj
f (θ)′⊥μ

j
f (θ,σ̄

2)+op(1). (28)

Compared with expression (26) in Theorem 1, the elements multiplied by Aj
f (θ)

have dropped out, since Aj
f (θ)′⊥Aj

f (θ) ≡ 0. The right-hand side of (28) now contains
all the remaining identifying elements of the original moment conditions. From
expression (28), it is seen that identification results only when (1) Aj

f (θ)⊥ is a full-

rank matrix; and (2) Aj
f (θ)′⊥μ

j
f (θ,σ̄

2) �= 0, for all θ �= θ0,N .
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For an illustrative example of Theorem 1, consider the large sample behavior,
for T = 3 of the Lev sample moment, 1

N

∑N
i=1 �yi2(yi3 − θyi2), and its derivative,

− 1
N

∑N
i=1 yi2�yi2, when θ0,N converges to one according to (20) and mean station-

arity (8)–(9) applies. The Lev moment condition has been proposed by Arellano
and Bover (1995) and Blundell and Bond (1998) to overcome the identification
problems of the Dif moment condition near the unit root. Under Assumption 1,
the relevant elements for the large sample behavior are:

f Lev
N (θ) = 1

N

N∑
i=1

�yi2(yi3 − θyi2)

= (1− θ)

{
1
N

N∑
i=1

u2
i2 + 1

N

N∑
i=1

ui2yi1 + 1
N

N∑
i=1

(θ0,N −1)ui1yi1

}
+op(1),

qLev
N (θ) = − 1

N

N∑
i=1

yi2�yi2

= − 1
N

N∑
i=1

u2
i2 − 1

N

N∑
i=1

ui2yi1

− 1
N

N∑
i=1

(1− θ0,N)ui1yi1 +op(1) (29)

(see the proof of Theorem 1 in the Appendix for a derivation). The op(1) remainder
terms contain all elements in (29) that cannot dominate the large sample behavior
when θ0,N goes to one according to the drifting parameter sequences defined in
Assumption 1. The components explicitly specified in (29) either have a nonzero
mean or depend on the initial observations yi1. Under Assumption 1, we have that

hN(θ0,N) 1√
N

∑N
i=1 ui2yi1 →

d
ψ2,

1√
N

∑N
i=1

ui1
σ1,N

ci →
d

ψc, (30)

which is proved in Lemma 1 in the Appendix and where ψ2 and ψc are independent
normal random variables with mean zero and variance σ 2

2 and σ 2
c , σ 2

c = var(ci). It
explains why 1

N

∑N
i=1 ui2yi1 and 1

N

∑N
i=1(θ0,N − 1)ui1yi1 = 1

N

∑N
i=1(θ0,N − 1)u2

i1 +
1
N

∑N
i=1 ui1ci explicitly appear in (29). When d1 in (20) equals zero, the rate at

which hN(θ0,N) goes to zero, or the variance of the initial observation goes to
infinity, determines the behavior of the sample moments in (29). For example,
when d1 = 0 and these sequences are as in Assumption 2(b), it holds that

1
N

∑N
i=1 yi2�yi2 →

p
σ 2

2 −d2. (31)

Although Assumption 1 does not fully pin down d2, which value depends on the
particular DGP for the initial observations, it is clear that the probability limit of
the sample Jacobian typically differs from zero. Hence, the Lev moment condition
seems to identify θ irrespective of its true value (see Arellano and Bover, 1995;
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708 MAURICE J.G. BUN AND FRANK KLEIBERGEN

Blundell and Bond, 1998). There is a caveat though, since, under Assumption 2(a),
Theorem 1 shows that:

f Lev
N (θ) = 1

hN(θ0,N)
√

N

hN(θ0,N)√
N

N∑
i=1

�yi2(yi3 − θyi2)

= (1− θ)

{
1

hN(θ0,N)
√

N
(ψ2 −hN(θ0,N)σ1,Nψc)+ (σ 2

2 −d2)

}
+op(1),

qLev
N (θ) = − 1

hN(θ0,N)
√

N

hN(θ0,N)√
N

N∑
i=1

yi2�yi2,

= − 1

hN(θ0,N)
√

N
(ψ2 −hN(θ0,N)σ1,Nψc)− (σ 2

2 −d2)+op(1), (32)

which implies that the sample moments of the Lev population moment and
Jacobian diverge when the sample size increases. The Lev sample moment then
no longer identifies θ , since the components that would identify θ in the Jaco-
bian identification condition, i.e., 1

N

∑N
i=1 u2

i2, gets dominated by the component
1
N

∑N
i=1 ui2yi1 and possibly 1

N

∑N
i=1(1− θ0,N)ui1yi1.

We next discuss what Theorem 1 implies for the different sets of moment
conditions discussed previously and their respective orthogonal complements of
Af (θ).

Dif and Lev conditions.

When T = 3 or 4, the specifications of μ
j
f (θ,σ̄

2), Aj
f (θ), and Aj

f (θ)⊥ for the Dif
and Lev moment conditions, which are stated in the proof of Theorem 1 in the
Appendix, are:

Dif: T = 3 μ
Dif
f (θ,σ̄ 2) = 0,ADif

f (θ) = (−θ 1),ADif
f (θ)⊥ = (1 θ),

T = 4 μ
Dif
f (θ,σ̄ 2) =

⎛
⎝ 0

0
0

⎞
⎠, ADif

f (θ) =
⎛
⎝ −θ 1 0

0 −θ 1
0 −θ 1

⎞
⎠,

ADif
f (θ)⊥ =

⎛
⎝ 0

−1
1

⎞
⎠ .

Lev : T = 3 μLev
f (θ,σ̄ 2) = (1− θ)

(
σ 2

2
0

)
,ALev

f (θ) = (1− θ 0),ALev
f (θ)⊥

does not exist,
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T = 4 μLev
f (θ,σ̄ 2) = (1− θ)

⎛
⎝ σ 2

2
σ 2

3
0

⎞
⎠,ALev

f (θ) =
(

1− θ 0 0
0 1− θ 0

)
,

ALev
f (θ)⊥ does not exist.

(33)

The expressions of ALev
f (θ) are all such that we cannot specify a nonzero matrix

ALev
f (θ)⊥ such that ALev

f (θ)′⊥ALev
f (θ) = 0. This remains so when T exceeds 4 (see

the Appendix). Hence, ALev
f (θ)⊥ does not exist (as a nonzero matrix). Regard-

ing the Dif moments, when T > 3, the rank of the orthogonal complement of
ADif

f (θ), ADif
f (θ)⊥, is larger than zero. However, since μ

Dif
f (θ,σ̄ 2) equals zero for

any value of T, ADif
f (θ)′⊥μ

Dif
f (θ,σ̄ 2) = 0, so the Dif moment conditions do not

identify θ . Summarizing, we have:

Dif : μ
Dif
f (θ,σ̄ 2) is vector of all zeros. No identification when T ≥ 3.

Lev : ALev
f (θ)⊥ does not exist. No identification when T ≥ 3.

(34)

NL condition.

The NL moment condition is not defined for T = 3. When T = 4, the expressions
of μ

j
f (θ,σ̄

2), Aj
f (θ), and Aj

f (θ)⊥ read

NL: μNL
f (θ,σ̄ 2) = (1− θ)

(
σ 2

3 − θσ 2
2

)
,ANL

f (θ) = ( θ(θ −1) 1− θ 0
)
,

ANL
f (θ)⊥ does not exist.

(35)

Since the orthogonal complement does not exist, the NL moment condition does
not identify θ . The expression of ANL

f (θ) for a larger number of time series
observations (see the Appendix) is also such that the orthogonal complement
ANL

f (θ)⊥ also does not exist. Hence, for larger values of T, the NL moment
conditions also do not identify θ .

AS and Sys conditions.

The expressions of μ
j
f (θ,σ̄

2), Aj
f (θ), and Aj

f (θ)⊥ when T = 3 and 4 for the AS and
Sys moment conditions result from stacking those of the Dif and NL and Dif and
Lev moment conditions, respectively:
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710 MAURICE J.G. BUN AND FRANK KLEIBERGEN

AS : T = 4 μAS
f (θ,σ̄ 2) =

⎛
⎜⎜⎝

0
0
0

(1− θ)
(
σ 2

3 − θσ 2
2

)
⎞
⎟⎟⎠,

AAS
f (θ) =

⎛
⎜⎜⎝

−θ 1 0
0 −θ 1
0 −θ 1

θ(θ −1) 1− θ 0

⎞
⎟⎟⎠,

AAS
f (θ)⊥ =

⎛
⎜⎜⎝

θ −1 0
0 −1
0 1
1 0

⎞
⎟⎟⎠ .

Sys : T = 3 μ
Sys
f (θ,σ̄ 2) = (1− θ)

(
0
σ 2

2

)
,ASys

f (θ) =
( −θ 1

1− θ 0

)
,

ASys
f (θ)⊥ does not exist.

Sys : T = 4 μ
Sys
f (θ,σ̄ 2) = (1− θ)

⎛
⎜⎜⎜⎜⎝

0
0
0
σ 2

2
σ 2

3

⎞
⎟⎟⎟⎟⎠,ASys

f (θ) =

⎛
⎜⎜⎜⎜⎝

−θ 1 0
0 −θ 1
0 −θ 1

1− θ 0 0
0 1− θ 0

⎞
⎟⎟⎟⎟⎠,

ASys
f (θ)⊥ =

⎛
⎜⎜⎜⎜⎝

θ −1 0
0 −1
0 1

−θ 0
1 0

⎞
⎟⎟⎟⎟⎠ .

(36)

When T = 3, ASys
f (θ) is a full-rank square matrix, so its orthogonal complement

does not exist. It implies that the Sys moment conditions do not identify θ

when T = 3. When T = 4, the orthogonal complement of Aj
f (θ), Aj

f (θ)⊥, has
rank larger than zero for both AS and Sys moments. Furthermore, the spec-
ification of μ

j
f (θ,σ̄

2) for the AS and Sys moment conditions in (36) is such

that Aj
f (θ)′⊥μ

j
f (θ,σ̄

2) �= 0, for all θ �= θ0,N , while it is not difficult to see that

limN→∞ Aj
f (θ0,N)′⊥μ

j
f (θ0,N,σ̄ 2) = 0 which just reflects that the moment conditions

hold at the true value. This implies that although the AS and Sys sample moments
diverge in the direction of Aj

f (θ), so that part cannot be used to identify θ, the
AS and Sys sample moments identify θ by their part which is spanned by the
orthogonal complement of Aj

f (θ). The expressions of μ
j
f (θ,σ̄

2) and Aj
f (θ) in the

proof of Theorem 1 in the Appendix show that this argument extends to all values
of T larger than 3.

Our preceding analysis is summarized by Corollary 1.
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COROLLARY 1 (Identification of θ ). Under Assumptions 1 and 2(a), θ is
identified by the AS and Sys moment conditions when T exceeds 3. Furthermore,
θ is not identified by the Dif, Lev, and NL moment conditions separately for any
value of T and the Sys moment conditions when T equals 3.

Corollary 1 proves Stylized Facts 1–4 from Section 3, which are illustrated by
Figures 1 and 2. It also shows that the identification from the Lev moment condition
remains problematic for larger values of T, but the Sys and AS moment conditions
generally identify θ for values of T larger than 3.

Regarding the NL moments, we find that they are not robust to all settings of
nuisance parameters like the variance of the initial observations. Alvarez and Arel-
lano (2004) and Kruiniger (2013) have shown that, when the data, including the
initial observation, have finite second moments and the autoregressive parameter
equals one, θ is identified by the NL and, hence, the AS moment conditions if
and only if T ≥ 4. Furthermore, if T ≥ 4, θ is only locally identified when the
unconditional variances of the errors change at a constant rate of growth between
t = 2 and t = T − 1 and only second-order but globally identified when the
unconditional variances between t = 2 and t = T − 1 are equal. Unlike Alvarez
and Arellano (2004) and Kruiniger (2013), our limiting sequence for the variance
of the initial observations allows for unbounded values. Theorem 1 then shows
that identification by the NL moment conditions is lost when its convergence rate
accords with (23). The intuition is that the NL moment conditions are a product of
levels and first differences, so they are unlikely to identify the parameters in limit
sequences where the variance of the initial observations increases faster than the
sample size.

Theorem 1 can be used to construct the nonstandard limiting behavior of
one-step and two-step GMM estimators that result from the different moment
conditions. These are similar to the nonstandard results in, e.g., Madsen (2003)
and Kruiniger (2009), so we, for reasons of brevity, refrain from stating them.

Robust sample moments

Theorem 1 shows that the identification of θ when the variance of the initial
observations is large results from the part of the (AS or Sys) moment conditions
that lies in the direction of Aj

f (θ)⊥. Expressions of the orthogonal complements of

Aj
f (θ) for T = 4 and 5 for the AS and Sys moment conditions are stated in (36).

They can be specified (see the Appendix) as

Aj
f (θ)⊥ = (Gj

f,T(θ)
...Gj

2,T), (37)

where T indicates the number of time periods and Gj
2,T is such that Gj′

2,Tμ
j
f (θ,σ̄

2) =
0, for all θ . Furthermore, Gj

f,T(θ) is the only part of Aj
f (θ)⊥ that depends on θ . The

orthogonal complements are then such that the resulting, what we refer to as, robust
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moment conditions are quadratic in θ :

gj
f,T(θ) = Af (θ)

j′
⊥f j

N(θ) = aθ2 +bθ +d, (38)

where the expressions for a, b, and d are constructed in the Appendix:

T=4:

Sys: a = 1
N

∑N
i=1

(
(�yi2)2

0

)
, b = − 1

N

∑N
i=1

(
(yi3−yi1)2

�yi2�yi3

)
,d = 1

N

∑N
i=1

(
(yi4−yi1)�yi3

�yi2�yi4

)
.

AS: a = 1
N

∑N
i=1

(
(yi3−yi1)�yi2

0

)
, b = − 1

N

∑N
i=1

(
(yi3−yi1)�yi3+(yi4−yi1)�yi2

�yi2�yi3

)
,

d = 1
N

∑N
i=1

(
(yi4−yi1)�yi3

�yi2�yi4

)
.

T=5:

Sys: a = 1
N

∑N
i=1

⎛
⎜⎜⎜⎜⎝

(�yi2)
2

(yi3 − yi1)�yi3

(�yi3)
2

0
0

⎞
⎟⎟⎟⎟⎠, b =− 1

N

∑N
i=1

⎛
⎜⎜⎜⎜⎝

(yi3 − yi1)
2

(yi4 − yi1)(yi4 − yi2)

(yi4 − yi2)
2

�yi2�yi4

�yi3�yi4

⎞
⎟⎟⎟⎟⎠,

d = 1
N

∑N
i=1

⎛
⎜⎜⎜⎜⎝

(yi4 − yi1)�yi3

(yi5 − yi1)�yi4

(yi5 − yi2)�yi4

�yi2�yi5

�yi3�yi5

⎞
⎟⎟⎟⎟⎠ .

AS: a = 1
N

∑N
i=1

⎛
⎜⎜⎜⎜⎝

(yi3 − yi1)�yi2

(yi4 − yi1)�yi3

(yi4 − yi2)�yi3

0
0

⎞
⎟⎟⎟⎟⎠,

b = − 1
N

∑N
i=1

⎛
⎜⎜⎜⎜⎝

(yi4 − yi1)�yi2 + (yi3 − yi1)�yi3

(yi4 − yi1)�yi4 + (yi5 − yi1)�yi3

(yi4 − yi2)�yi4 + (yi5 − yi2)�yi3

�yi2�yi4

�yi3�yi4

⎞
⎟⎟⎟⎟⎠,

d = 1
N

∑N
i=1

⎛
⎜⎜⎜⎜⎝

(yi4 − yi1)�yi3

(yi5 − yi1)�yi4

(yi5 − yi2)�yi4

�yi2�yi5

�yi3�yi5

⎞
⎟⎟⎟⎟⎠,

and similar specifications of a, b, and d result for larger values of T.
It is interesting to see that these robust moments only depend on differences

of the data, so the initial observations get differenced out. This explains why
these moments are robust to the variance of the initial observations. When the
autoregressive parameter equals one and in the case of i.i.d. normal errors and
time series homoskedasticity, Ahn and Thomas (2006) and Kruiniger (2013)
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show that the maximum likelihood estimator of Hsiao, Pesaran, and Tahmiscioglu
(2002) and the random effects estimator of Anderson and Hsiao (1982) have
the same limiting distributions. These results show that, similar to our findings,
moment conditions involving levels of the data are redundant in this setting, and
only moment conditions using differences of the data, like our robust moment
conditions, are informative.

Large individual effect variance.

So far, we have focused on highly persistent panel data resulting from a large
autoregressive parameter. However, the representation theorem for the moment
conditions and their derivatives in Theorem 1 applies to any setting where the
variance of the initial observations gets large. The expression of the initial
observation in (7) shows that its variance becomes large when either the variance
of the initial disturbance term, ui1, or the individual specific effect, μi, becomes
large. Theorem 1 focuses on a large variance that results from the autoregressive
parameter converging to one. Theorem 1 does, however, extend to the case where
jointly with the sample size, the individual specific effect variance becomes large
in such a manner that Assumption 2(a) holds. This drifting sequence applies to any
value of the autoregressive parameter, so the resulting identification issues are then
no longer confined to the unit root value. Hence, they also apply to the cases with
only moderate autoregressive dynamics, but a large variance of the unobserved
heterogeneity. The robust moments in (38) also apply to this case. Kruiniger
(2002) extensively analyzes the setting of a large variance of the individual specific
effects. He shows that only moment conditions based on differences of the data
yield a consistent estimator, so moment conditions involving levels are redundant.
He also constructs the set of optimal moment conditions assuming time series
homoskedasticity. Our robust moments (38) extend his set of optimal moment
conditions, since they remain valid under a large variance of the individual specific
effect and also allow for time series heteroskedasticity.

4. KLM TEST AND ROBUST SAMPLE MOMENTS

Theorem 1 establishes identification results for the AS and Sys moment conditions,
which are based on the robust sample moments. It is not clear, however, how an
identification robust test procedure makes use of it. In this section, we show that
the KLM test based on the original AS or Sys moment conditions just uses the
robust sample moments when only the latter contain identifying information on
the autoregressive parameter. We show that, under large variances of the initial
observation and when the true value of θ is close to one, the KLM test based on
either the AS or Sys moment conditions exploits the identifying information from
the robust moment conditions in an optimal manner. For practical purposes, this
implies that we do not have to explicitly use the robust sample moments, since
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they are implicitly used when conducting a KLM test using AS or Sys moment
conditions.

We obtain the above result in four steps. First, we characterize the limit
behavior of the robust sample moments. Second, we use it to determine asymptotic
sequences for the true and hypothesized values, so the power properties of the
corresponding identification robust test statistics when using the robust moments
are not trivial and stay informative. Third, we construct the largest (infeasible)
discriminatory power that can be obtained from combining the robust moments.
Finally, we show that it coincides with the rejection frequency of KLM tests
using either AS or Sys moment conditions. Summarizing, the KLM test based on
original AS or Sys moment conditions implicitly resorts to using the robust sample
moments in an optimal manner when only these contain information on θ .

4.1. Large Sample Behavior of Robust Sample Moments

To construct the limiting behavior of the robust sample moments for settings
where only they contain information on θ, we first state the probability limits
of the quantities a, b, and d in (38) under Assumption 1. The components that
comprise the robust sample moments do not depend on the variance of the initial
observations, so they are not affected by Assumption 2. Since we analyze the
behavior when the true value θ0,N is converging to one, we specify this convergence
behavior of θ0,N , so it is dominated by the random components present in the limit

behavior of a, b, and d which are of order Op(N− 1
2 ). This then implies that θ0,N

converges rather rapidly to one with a convergence rate that is faster than N− 1
2 .

Hence, θ0,N is considered to be in the close neighborhood of one.

THEOREM 2. Under Assumption 1, the limit behavior of the different compo-
nents of gj

f,T(θ), j = AS, Sys, for θ0,N = 1+ l
Nτ with l a fixed constant, l < 0, and

τ > 1
2 , is characterized by:

T = 4 : a =
(

σ 2
2

0

)
+Op(N

− 1
2 ), b = −

(
σ 2

2 +σ 2
3

0

)
+Op(N

− 1
2 ),d =

(
σ 2

3

0

)
+Op(N

− 1
2 ).

T = 5 : a =

⎛
⎜⎜⎜⎜⎜⎝

σ 2
2

σ 2
3

σ 2
3

0
0

⎞
⎟⎟⎟⎟⎟⎠+Op(N− 1

2 ), b =

⎛
⎜⎜⎜⎜⎜⎝

σ 2
2 +σ 2

3

σ 2
3 +σ 2

4

σ 2
3 +σ 2

4

0
0

⎞
⎟⎟⎟⎟⎟⎠+Op(N− 1

2 ),

d =

⎛
⎜⎜⎜⎜⎜⎝

σ 2
3

σ 2
4

σ 2
4

0
0

⎞
⎟⎟⎟⎟⎟⎠+Op(N− 1

2 ).
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Proof. See the Appendix. �

Although AS and Sys robust moments are different, Theorem 2 implies that
under Assumption 1, the probability limits of a, b, and d are identical. Furthermore,
Theorem 2 implies that the Jacobian of the robust moment equation (38) is of full
column rank when σ 2

t �= σ 2 for at least one value of t = 2, . . . ,T . This fulfills one of
the sufficient conditions for standard asymptotic theory for GMM inference based
on the robust sample moments, which, since the other sufficient conditions can be
shown to hold as well, applies for these settings.

4.2. Asymptotic Sequence for the Hypothesized Value

We want to compare tests of H0 : θ = θ∗ using the robust sample moments to
KLM tests of H0 using the original AS and Sys moments for settings where the
identification can be problematic, which occurred for true values of θ close to
one and large variances of the initial observations. Because we want to analyze
local asymptotic power while the true value θ0,N is converging to one according
to θ0,N = 1 + l

Nτ , we also consider a local to unity drifting sequence for the
hypothesized value θ∗, which we denote by θ(e) with e < 0 the localizing
parameter. Although less common in asymptotic power analysis, the advantage
of a drifting hypothesized value is that our results hold for a range of hypothesized
values.

The asymptotic sequence θ(e) is such that the behavior of the identification
robust tests is not diverging and informative about θ , when the true value θ0,N

is converging to one. Theorem 3 establishes the particular rate at which θ(e)
converges to one which makes these conditions hold. Note that there is a slight
abuse of notation, as, from now on, we suppress the superscript j in gj

f,T(θ(e)), j =
AS, Sys, which is inconsequential for the results to follow.

THEOREM 3. Under Assumption 1, θ0,N = 1+ l
Nτ with l a fixed constant, l < 0,

and τ > 1
2 , the robust moments

√
Ngf,T(θ(e)) are informative about θ and converge

to a bounded in probability, nondegenerate random variable under the following
local to unity drifting sequence θ(e):

1. θ(e) = 1+ e
4√N

in the case of σ 2
t = σ 2, t = 2, . . . T,

2. θ(e) = 1+ e√
N

when σ 2
t �= σ 2, for at least one value of t, t = 2, . . . T −1,

with e < 0 a finite constant.

Proof. See the Appendix. �

The quartic root convergence rate in Theorem 3.1 results, since the Jacobian
of the robust moment equation (38) is then equal to zero, but the Hessian is
not. It is thus a setting of so-called second-order identification with first-order
underidentification. Estimators then generally have quartic root convergence rates
(see, e.g., Dovonon and Renault, 2013; Dovonon and Hall, 2018; Dovonon et al.,
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2020). A quartic root convergence rate for estimators in dynamic panel data models
is also found by Ahn and Thomas (2006) and Kruiniger (2013).

The quartic root convergence rate for the robust sample moments results from
specifying θ(e) = 1 + e

N1/4 and σ 2
t = σ 2, t = 2, . . . T . All elements of the robust

sample moments which are linear in e then cancel out in the limit. We are then
left with a quadratic term in e and components that converge at the rate 1√

N
. A

quartic root convergence rate makes all these components of the same order of
magnitude. Theorem 3 shows that error variances which are constant over time,
σ 2

t = σ 2, t = 2, . . . T, lead to this slow convergence rate.

4.3. Largest Rejection Frequencies of Robust Sample Moments

To show that the KLM test of H0 using AS and Sys moment conditions just
uses the robust sample moments when only these contain information on θ , we
use the largest rejection frequencies that result in such instances from the robust
sample moments. To obtain these largest rejection frequencies, we first consider
the GMM-AR test of Hp : θ(e) = 1+ e

4√N
using the robust sample moments, which

is specified as:

GMM-AR(θ(e)) = Ngf,T(θ(e))′V̂gg(θ(e))−1gf,T(θ(e)), (39)

with gf,T(θ(e)) the moments in (38) evaluated at θ(e) = 1+ e
4√N

and V̂gg(θ(e)) the

(Eicker–White) covariance matrix estimator of the covariance matrix of gf,T(θ(e)).
For T = 4 and 5:7

T = 4 : gAS
f,T=4(θ(e)) =

(
1 −θ(e)
0 1

)
gSys

f,T=4(θ(e)),

T = 5 : gAS
f,T=5(θ(e))

=

⎛
⎜⎜⎜⎜⎝

1 −θ(e)/(1− θ(e)) θ(e)/(1− θ(e)) 0 0
0 1 0 0 −θ(e)
0 0 1 0 −θ(e)
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠gSys

f,T=5(θ(e)),

so GMM-AR(θ(e)) is equivalent for the AS and Sys moment conditions, since the
invertible matrix by which gSys

f,T(θ(e)) has to be premultiplied to obtain gAS
f,T(θ(e))

cancels out in GMM-AR(θ(e)). This result can be extended to larger values of T .

THEOREM 4. Under Assumption 1, θ0,N = 1+ l
Nτ with l a fixed constant, l < 0,

and τ > 1
2, σ 2

t = σ 2, t = 2, . . . ,T, the large sample distribution of the GMM-AR
statistic (39) for testing Hp : θ(e) = 1+ e

4√N
, in a sample of size N is characterized

7We thank an anonymous referee for showing this.
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by

χ2(δ(N),pmax), (40)

with δ(N) = (eσ)4
(
ιp
0

)′
(B(N)′VabdB(N))−1

(
ιp
0

)
, p the number of columns Gf,T(θ),

so when T = 4, p = 1, and when T = 5, p = 3, and pmax the number of elements of
gf,T(θ(e)), so, when T = 4, pmax = 2, while pmax = 5, for T = 5,

B(N) = (ι3 ⊗ Ipmax)+ e
4√N

[
(2+ e

4√N
)(e1,3 ⊗ Ipmax)+ (e2,3 ⊗ Ipmax)

]
, (41)

Vabd the covariance matrix of a, b, and d, Ipmax the pmax ×pmax dimensional identity
matrix, e1,3 and e2,3 the first and second 3 × 1 dimensional unity vectors, and
χ2(δ,pmax) a noncentral χ2 distribution with noncentrality parameter δ and pmax

degrees of freedom.

Proof. See the Appendix. �

The expression of the large sample distribution in Theorem 4 depends on the
sample size. Given the quartic root convergence rate, convergence to the limiting
distribution is very slow, so it is important for the accuracy of the approximation of
the finite sample distribution to incorporate higher-order components. The proof of
Theorem 4 in the Appendix, therefore, from the outset considers all higher-order
components of gf,T(θ(e)) in order to construct a large sample approximation of
the distribution of GMM-AR(θ(e)).

To obtain the maximal rejection frequencies using the robust sample moments,
we use a (infeasible) weighted average of the moment equations in gf,T(θ(e))
where the weights are chosen such that the noncentrality parameter equals the
one of the noncentral χ2 limiting distribution of the GMM-AR statistic while the
degrees of freedom is equal to one (i.e., the number of elements of θ ). This value
of the noncentrality parameter is also the maximal one that can be obtained using
a weighted average of the robust sample moments.

THEOREM 5. Under Assumption 1, θ0,N = 1+ l
Nτ with l a fixed constant, l < 0,

and τ > 1
2 , σ 2

t = σ 2, t = 2, . . . T, an optimal (infeasible) GMM-AR test of Hp :
θ(e) = 1+ e

4√N
that uses a weighted average of the robust sample moments can be

constructed that has approximately a

χ2(δ(N),1), (42)

distribution in large samples of size N.

Proof. See the Appendix. �

The GMM-AR statistics in Theorems 4 and 5 both have noncentral χ2 distribu-
tions with the same noncentrality parameter, so the one with the smallest number
of degrees of freedom, i.e., the statistic in Theorem 5, has the largest power.
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Figure 4. Rejection frequencies of GMM-AR tests of Hp : θ(e) = 1 + e
4√N

using weighted robust
sample moments. Notes: 5% significance level, true value of θ is 0.99, N = 2,000, Sys & T = 4
(dashed), AS & T = 4 (dotted), Sys & T = 5 (solid), and AS & T = 5 (dash-dotted).

Figure 4 illustrates Theorem 5 and shows the maximal rejection frequencies
based on combining the robust sample moments based on either AS or Sys moment
condition in a GMM-AR test8 for T = 4 and 5. It uses DGP 1 from Section 3 with
a true value of θ which is very close to one (0.99) and a large value of σ 2

c (10)
compared to σ 2 (one), which amplifies the variance of the initial conditions. The
DGP thus satisfies mean stationarity (7)–(9) and also time series homoskedasticity,
i.e., σ 2

t = σ 2, for t = 2, . . . ,T . We use N = 2,000, a relatively large value and
test for a wide range of values for θ , which together with N provides a mapping
to the constant e (= 4

√
N(θ − 1)) in Figure 4 (horizontal axis). The usual power

curve, as shown earlier in Figures 1 and 2, reports the rejection frequencies of
tests of the hypothesized parameter value as a function of the parameter value
used in the DGP where the data are simulated from. Figure 4, however, reports
for a fixed parameter value equal to one in the DGP used to simulate the data, the
rejection frequencies as a function of a varying localizing parameter e, and, hence,
autoregressive parameter θ(e), under the tested null hypothesis. The rejection
frequencies in Figure 4, thus, report those observed at one for a range of the
usual power curves where the tested parameter values correspond with those on
the horizontal axes in Figure 4.

Because of the equivalence of the GMM-AR test for the AS and Sys robust
moments, the rejection frequencies are identical for the AS- and Sys-based robust

8We use the covariance matrix estimator for each simulated dataset to compute the GMM-AR statistics.
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sample moments and only differ over T. Any remaining differences in Figure 4 are
due to sampling noise.

4.4. Large Sample Behavior of the KLM Test

Finally, we construct the large sample distribution of KLM tests of Hp : θ(e) =
1+ e

4√N
using AS and Sys moment conditions when θ0,N accords with the drifting

sequences in Assumptions 1 and 2(a), so only the robust sample moments contain
information on θ .

THEOREM 6. Under Assumptions 1 and 2(a), θ0,N = 1 + l
Nτ with l a fixed

constant, l < 0, and τ > 1
2 , σ 2

t = σ 2, t = 2, . . . T, the large sample distribution
of the KLM statistic using the AS or Sys moments for testing the hypothesis
Hp : θ(e) = 1+ e

4√N
is characterized by

KLM(θ(e)) ∼ χ2(δ(N),1), (43)

with δ(N) defined in Theorem 4.

Proof. See the Appendix. �

Under Assumptions 1 and 2(a), Theorem 1 implies that the GMM sample
moments diverge in one direction and converge in another one. Identical to tests
for cointegration, Theorem 6 shows that the diverging parts of the GMM sample
moments cancel out in the large sample distribution of the KLM test, so it only
contains elements from the converging part of the GMM sample moments. The
proof of the large sample distribution of the KLM test is, therefore, rather elaborate,
since this has to be shown for each of the different components of the KLM test.

Theorem 6 shows that the large sample distribution of the KLM test using
AS or Sys moment conditions when only the robust sample moments contain
information on θ is identical to the limiting distribution of the GMM-AR test
that optimally combines the robust sample moments for these settings. It proves
that KLM tests using the AS and Sys moment conditions then only use the robust
sample moments. It is similar to what happens in cointegration where, since the
cointegrating vector and stochastic trends operate orthogonally, a likelihood ratio
test on the cointegration vector also does not depend on the stochastic trends (see,
e.g., Johansen, 1991).

Theorem 6 is illustrated by Figure 5a,b, which shows the rejection frequencies
of 5% significance tests using a KLM test of Hp : θ(e) = 1+ e

4√N
with AS and Sys

moment conditions when T equals 4 (Figure 5a), and 5 (Figure 5b), respectively.
It uses the same DGP as for Figure 4. In addition, identical to Figure 4, the
rejection frequencies in Figure 5 report the rejection frequencies when using a
fixed parameter value in the DGP where we simulate the data from, as a function
of a varying parameter value under the tested hypothesis.
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Figure 5. Rejection frequencies of KLM tests of Hp : θ(e) = 1 + e
4√N

using AS (dashed) and
Sys (dash-dotted) and GMM-AR tests using (infeasible) optimal weighted average of robust sample
moments (solid line). Notes: 5% significance level, true value of θ is 0.99, and N = 2,000.

Figure 5 shows, for both T = 4 and T = 5, that the rejection frequencies that
result from using the KLM test with either AS or Sys moment conditions are
equal to the largest rejection frequencies, that can be obtained with the robust
moments when only they contain information on θ . It illustrates that the robust
sample moments are (implicitly) used when you conduct KLM tests with AS or
Sys moment conditions. Hence, in practice, one can just use AS or Sys moment
conditions in the construction of the KLM test, i.e., there is no need to switch to
the robust sample moments.

Figure 5 also provides a visual proof of Stylized Fact 5 from Section 3, i.e.,
rejection frequencies for the KLM test using AS or Sys moment conditions are
almost identical when the true value of θ is close to one and for large variances of
the initial observations, and that it is not specific for the tested values used there
but holds generally for different tested values of θ .

5. CONCLUSIONS

We have analyzed GMM inference for dynamic panel data models involving highly
persistent panel data. We show that the Dif, Lev, and NL moment conditions
separately do not identify the parameters in dynamic panel data models for a
general number of time periods. This results from the divergence of the initial
observations for some plausible DGP involving highly persistent panel data. When
there are more than three time periods, the AS and Sys moment conditions,
however, do lead to identification. The identification based on the AS and Sys
moment conditions for the problematic cases of divergent initial observations
results from so-called robust sample moments. They are combinations of either
the AS or Sys sample moments and do not depend on the initial observations.
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Despite the positive identification results for AS and Sys moment conditions,
conventional inference based on two-step GMM estimators is not valid, since
these estimators have nonstandard limiting distributions near the unit root. Similar
results hold for two-step GMM estimators based on our robust sample moments.
We have, therefore, analyzed the large sample properties of identification robust
GMM test procedures. These test statistics are size correct, easy to implement,
and have been used in a variety of models analyzed using GMM. We show that
the identification robust KLM statistic based on the AS and Sys sample moments
implicitly resorts to using the robust sample moments when only the latter contain
identifying information.

Based on the theoretical analysis and numerical results, a number of remarks
can be made regarding the implementation of GMM inference for applied linear
dynamic panel data analysis. First, statistical inference, i.e., hypothesis testing
and confidence intervals, should be based on identification robust tests, like the
KLM or GMM-AR test. The nonstandard limiting behavior of the two-step GMM
coefficient estimator makes the use of conventional GMM inference hazardous in
applied research when there are identification issues. Second, one should always
use either AS or Sys moment conditions, since these deliver identification under
more general conditions when T > 3. An advantage of the AS moments is that
they are valid under less restrictive assumptions than the Sys moments. Third,
when mean stationarity applies, the Sys moments are preferred. Although AS
and Sys moments contain the same amount of identifying information when θ

is close to one and the variance of the initial observations is large, in practice, the
opposite may well be the case if one is not close to the unit root (or if time series
heteroskedasticity is present). This is shown, for example, by our simulated KLM
power curves in Section 2. Fourth, the original AS or Sys moments should be used
in an identification robust GMM test statistic and not the implied robust sample
moments. Although only the latter preserve identification when the variance of the
initial observations is large, we have shown that the identification robust KLM test
based on the AS or Sys moments implicitly uses the robust sample moments.

Finally, for expository purposes, we have only analyzed the first-order autore-
gressive panel data model. The extension to panel data models with multiple
endogenous regressors, e.g., dynamic models with additional endogenous regres-
sors, is an important area for future research.

APPENDICES

A. Specification of GMM Sample Moments and Proofs

Specification of sample moment functions. For the Dif moment conditions in (4),

kDif equals 1
2 (T −2)(T −1) while f Dif

i (θ) and qDif
i (θ) read

f Dif
i (θ) = ZDif

i ϕ
Dif
i (θ),
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qDif
i (θ) = −ZDif

i �y−1,i,

with ϕ
Dif
i (θ) = (�yi3 − θ�yi2 . . .�yiT − θ�yiT−1)′, �y−1,i = (�yi2 . . .�yiT−1)′ and

ZDif
i =

⎛
⎜⎜⎜⎜⎜⎜⎝

yi1 0. . . 0 0

0
. . . 0

0 0. . . 0

⎛
⎜⎝

yi1
...

yiT−2

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

:
1

2
(T −1)(T −2)× (T −2).

For the Lev moment conditions in (5), kLev equals T −2 while the sample moment functions
are

f Lev
i (θ) = ZLev

i ϕLev
i (θ),

qLev
i (θ) = −ZLev

i y−1,i,

with ϕLev
i (θ) = (yi3 − θyi2 . . . yiT − θyiT−1)′, y−1,i = (yi2 . . . yiT−1)′, and

ZLev
i =

⎛
⎜⎝

�yi2 0. . . 0 0

0
. . . 0

0 0. . . 0 �yiT−1

⎞
⎟⎠ : (T −2)× (T −2).

For the NL moment conditions in (10), kNL equals T −3 while the sample moment functions
can be specified as

f NL
i (θ) =ZNL

i (θ)ϕNL
i (θ),

qNL
i (θ) =

(
∂

∂θ
ZNL

i (θ)

)
ϕNL

i (θ)+ZNL
i (θ)

(
∂

∂θ
ϕNL

i (θ)

)
,

with ϕNL
i (θ) = ((yi4 − θyi3). . . (yiT − θyiT−1))′ and

ZNL
i (θ) =

⎛
⎜⎝

(�yi3 − θ�yi2) 0. . . 0 0

0
. . . 0

0 0. . . 0 (�yiT−1 − θ�yiT−2)

⎞
⎟⎠ : (T −3)× (T −3).

The sample moments for the AS moment conditions result by just stacking the appropriate
sample moments stated above, so kAS equals 1

2 (T −1)(T −2)+T −3. In a similar manner,

the Sys sample moments result, so kSys equals 1
2 (T +1)(T −2).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026646662100027X
Downloaded from https://www.cambridge.org/core. IP address: 18.118.186.168, on 20 Sep 2024 at 10:20:21, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026646662100027X
https://www.cambridge.org/core


ROBUST INFERENCE FOR MOMENTS BASED ANALYSIS 723

LEMMA 1. We state some intermediate results, which involve the different terms in the
sample moments and their derivatives. Assumption 1 implies the following:

i. 1
N
∑N

i=1(θ0,N −1)yi1ui1 = −d2 − σ1,N√
N

ψc +op(1),

ii. 1
N
∑N

i=1(1− θ0,N)ui1uit →
p

0, t > 1,

iii. 1
N
∑N

i=1 u2
it →

p
σ 2

t , t > 1,

iv. 1
N
∑N

i=1 �yit�yit →
p

σ 2
t , t > 1,

v. 1
N
∑N

i=1 �yit�yis →
p

0, t,s > 1,t �= s.

vi. hN (θ0,N )√
N

∑N
i=1

⎛
⎜⎝

yi1ui2
...

yi1uiT

⎞
⎟⎠→

d
ψ,

with ψ = (ψ2 . . . ψT )′ ∼ N(0,diag (σ 2
2 , . . . ,σ 2

T )) independent from ψc ∼ N(0,σ 2
c ),

σ 2
c =var(ci).

Proof of Lemma 1. i. Under mean stationarity, we have:

1
N

N∑
i=1

(θ0,N −1)yi1ui1 = 1
N

N∑
i=1

(θ0,N −1)u2
i1 + 1

N

N∑
i=1

(θ0,N −1)ui1μi.

Assumption 1(c) implies that (1 − θ0,N)
1
2 ui1 is a random variable with finite fourth

moments, so a law of large numbers applies:

1
N

N∑
i=1

(θ0,N −1)u2
i1 →

p
−d2.

Since ci = (1− θ0,N)μi, we can specify:

1
N

N∑
i=1

(θ0,N −1)ui1μi = − 1
N

N∑
i=1

ui1ci = −σ1,N√
N

1√
N

N∑
i=1

ui1

σ1,N
ci,

because

1√
N

N∑
i=1

ui1

σ1,N
ci →

d
ψc,

with ψc independent of ψj, j = 2, . . . ,T , as ci is independent from uij, j = 2, . . . ,T . Upon
combining, we obtain:

1
N

N∑
i=1

(θ0,N −1)yi1μi = −d2 − σ1,N√
N

ψc +op(1).
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ii. Since uit are independently distributed, t = 1, . . . ,T, and (1 − θ0,N)
1
2 ui1 is a random

variable with finite fourth moments, a law of large numbers applies:

1
N

N∑
i=1

(1− θ0,N)ui1uit →
p

0, t > 1.

iii. Finite fourth moments of uit imply that a law of large numbers applies:

1
N

N∑
i=1

u2
it →

p
σ 2

t , t > 1.

iv. Mean stationarity implies �yi2 = ui2 + (θ0,N −1
)

ui1, so

1
N

N∑
i=1

�yi2�yi2 = 1
N

N∑
i=1

u2
i2 + (θ0,N −1

) 1
N

N∑
i=1

(
θ0,N −1

)
u2

i1 + 2

N

N∑
i=1

(
θ0,N −1

)
ui1ui2.

Because 1
N
∑N

i=1(1− θ0,N)u2
i1 →

p
d2 and (1− θ0,N) →

N→∞ 0, we have

(
θ0,N −1

) 1
N

N∑
i=1

(
θ0,N −1

)
u2

i1 →
p

0,

which shows that
(
θ0,N −1

) 1
N
∑N

i=1
(
θ0,N −1

)
u2

i1 = op(1). Furthermore, since both(
θ0,N −1

) 1
2 ui1 and ui2 have finite fourth moments and are independent, 2

N
∑N

i=1
(
θ0,N −1

)
ui1ui2 = op(1), which implies that

1
N

N∑
i=1

�yi2�yi2 = 1
N

N∑
i=1

u2
i2 +op(1).

Finally, we have E
(

u2
i2

)
= σ 2

2 and finite fourth moments; hence,

1
N

N∑
i=1

�y2
i2 →

p
σ 2

2 .

Along the same lines as the above, this can be shown to hold for other values of t as well.
v. Similar to the above, when substituting for �yi2 and �yi3, we have

1
N

N∑
i=1

�yi2�yi3 = 1
N

N∑
i=1

ui2ui3 + (θ0,N −1
) 1

N

N∑
i=1

u2
i2 + θ0,N

(
θ0,N −1

) 1
N

N∑
i=1

ui1ui2

+ (θ0,N −1) 1
N

N∑
i=1

ui1ui3 + (θ0,N −1)2 1
N

N∑
i=1

ui1ui2

+ θ0,N(θ0,N −1)2 1
N

N∑
i=1

u2
i1.
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Similar derivations as before show that 1
N
∑N

i=1 θ0,N
(
θ0,N −1

)2 u2
i1 →

p
0, 1

N
∑N

i=1(θ0,N −
1)2ui1ui2 →

p
0, 1

N
∑N

i=1(θ0,N − 1)ui1ui3 →
p

0, 1
N
∑N

i=1 θ0,N
(
θ0,N −1

)
ui1ui2 →

p
0,

1
N
∑N

i=1(θ0,N − 1)u2
i2 →

p
0, 1

N
∑N

i=1 ui2ui3 →
p

0, so all these terms are op(1) and have

probability limit 0, implying that

1
N

N∑
i=1

�yi2�yi3 →
p

0.

Along similar lines, this can be proved to extend to the first differences at other time periods.
vi. Since hN(θ0,N)−2 = var(yi1), the random variable hN(θ0,N)yi1 has variance

equal to one. Since yi1 and uit, t > 1, are independent, because of Assumption 1(e),
E(hN(θ0,N)yi1uit) = 0. Furthermore, Assumption 1(d) implies that Var

(
hN(θ0,N)yi1uit

)=
σ 2

t , which is finite. A central limit theorem therefore applies:

hN (θ0,N )√
N

N∑
i=1

⎛
⎜⎝

yi1ui2
...

yi1uiT

⎞
⎟⎠= 1√

N

N∑
i=1

⎛
⎜⎝

hN(θ0,N)yi1ui2
...

hN(θ0,N)yi1uiT

⎞
⎟⎠→

d
ψ,

with ψ = (ψy1iui2 . . . ψy1iuiT )′ a (T − 1)-dimensional, mean-zero normal random vector.
Assumption 1(e) states that ui1/σ1,N, ui2 . . . ,uiT , and ci are independently distributed
within individuals and over the different individuals. It implies that ui1ci and yi1uit are
uncorrelated. Since ψ and ψc are the limits of the scaled sums of yi1uit and ui1ci, they are
uncorrelated normal random variables and therefore independent. As a result of this, the
T ×T covariance matrix of ψ and ψc is diagonal:

V
( ψ
ψc)(

ψ
ψc)

= var(ψ,ψc) =
(

Vψψ Vψψc
Vψcψ Vψcψc

)

= E

⎡
⎢⎢⎢⎢⎣ lim

N→∞
1
N

N∑
i=1

⎛
⎜⎜⎜⎝

hN(θ0,N)yi1ui2
...

hN(θ0,N)yi1uiT
ui1
σ1,N

ci

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

hN(θ0,N)yi1ui2
...

hN(θ0,N)yi1uiT
ui1
σ1,N

ci

⎞
⎟⎟⎟⎠

′⎤⎥⎥⎥⎥⎦

= E

⎡
⎢⎢⎢⎢⎣ lim

N→∞

⎛
⎜⎜⎜⎝

hN(θ0,N)yi1ui2
...

hN(θ0,N)yi1uiT
ui1
σ1,N

ci

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

hN(θ0,N)yi1ui2
...

hN(θ0,N)yi1uiT
ui1
σ1,N

ci

⎞
⎟⎟⎟⎠

′⎤⎥⎥⎥⎥⎦
= diag(σ 2

2 . . . σ 2
T σ 2

c ).

�

Proof of Theorem 1. T = 3. Under mean stationarity, we have

�yi2 = ui2 + (θ0,N −1
)

ui1,

�yi3 = ui3 + (θ0,N −1
)

ui2 + θ0,N
(
θ0,N −1

)
ui1.
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Substituting these expressions, we can specify the Dif sample moment and its derivative as

f Dif
N (θ) = 1

N

N∑
i=1

(yi1�yi3 − θyi1�yi2)

= 1
N

N∑
i=1

yi1ui3 + (θ0,N −1− θ
) 1

N

N∑
i=1

yi1ui2 + (θ0,N − θ)
1

N

N∑
i=1

(θ0,N −1)yi1ui1,

qDif
N (θ) = − 1

N

N∑
i=1

yi1�yi2

= − 1
N

N∑
i=1

yi1ui2 − 1
N

N∑
i=1

(θ0,N −1)yi1ui1.

Combining convergence results stated in Lemma 1, the large sample behavior of the Dif
sample moment and derivative can thus be characterized by

f Dif
N (θ) = 1

hN(θ0,N)
√

N

[
(ψ3 − θψ2)− (1− θ)hN(θ0,N)σ1,Nψc

]− (1− θ)d2 +op (1),

qDif
N (θ) = − 1

hN(θ0,N)
√

N

[
ψ2 −hN(θ0,N)σ1,Nψc

]+d2 +op (1),

where we note that hN(θ0,N)σ1,N ≤ 1, since var(yi1) ≥ var(ui1), from which it is readily
seen that

ADif
f (θ) = ( −θ 1

)
,μ

Dif
f (θ,σ̄ 2) = 0,

ADif
q (θ) = ( −1 0

)
,μ

Dif
q (θ,σ̄ 2) = 0.

Regarding the Lev moment, using

yi2 = �yi2 + yi1,

yi3 = �yi3 +�yi2 + yi1,

we have

f Lev
N (θ) = 1

N

N∑
i=1

(yi3 − θyi2)�yi2

= 1
N

N∑
i=1

(�yi3 + (1− θ)�yi2)�yi2 + (1− θ) 1
N

N∑
i=1

yi1�yi2.

Exploiting mean stationarity and substituting for �yi2 and �yi3, we write

(1− θ) 1
N

N∑
i=1

yi1�yi2 = (1− θ)
1

N

N∑
i=1

yi1ui2 + (1− θ)
(
θ0,N −1

) 1
N

N∑
i=1

yi1ui1,
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and using Lemma 1, we have

1
N

N∑
i=1

(�yi3 + (1− θ)�yi2)�yi2 = (1− θ) 1
N

N∑
i=1

u2
i2 +op (1) .

Regarding the Lev derivative, we have

qLev
N (θ) = − 1

N

N∑
i=1

yi2�yi2

= − 1
N

N∑
i=1

�yi2�yi2 − 1
N

N∑
i=1

yi1�yi2,

where

1
N

N∑
i=1

yi1�yi2 = 1
N

N∑
i=1

yi1ui2 + (θ0,N −1
) 1

N

N∑
i=1

yi1ui1,

and

1
N

N∑
i=1

�yi2�yi2 = 1
N

N∑
i=1

u2
i2 +op (1) .

Therefore, we can write the Lev moment condition and derivative as

f Lev
N (θ) = (1− θ)

⎧⎨
⎩ 1

N

N∑
i=1

u2
i2 + 1

N

N∑
i=1

yi1ui2 + 1
N

N∑
i=1

(θ0,N −1)yi1ui1

⎫⎬
⎭+op(1).

qLev
N (θ) =− 1

N

N∑
i=1

u2
i2 − 1

N

N∑
i=1

yi1ui2 − 1
N

N∑
i=1

(θ0,N −1)yi1ui1 +op(1).

Combining this and other convergence results from Lemma 1, the large sample behavior of
the Lev sample moment and derivative can thus be characterized by

f Lev
N (θ) = (1− θ)

{
1

hN(θ0,N)
√

N

[
ψ2 −hN(θ0,N)σ1,Nψc

]+(σ 2
2 −d2

)}
+op (1),

qLev
N (θ) = − 1

hN(θ0,N)
√

N

[
ψ2 −hN(θ0,N)σ1,Nψc

]−(σ 2
2 −d2

)
+op (1),

so this implies that

ALev
f (θ) = (1− θ 0),μLev

f (θ,σ̄ 2) = (1− θ)σ 2
2 ,

ALev
q (θ) = (−1 0),μLev

q (θ,σ̄ 2) = −σ 2
2 .

From this last result, it is not difficult to see that, under Assumption 2(b), we have

1
N

N∑
i=1

yi2�yi2 →
p

σ 2
2 −d2.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S026646662100027X
Downloaded from https://www.cambridge.org/core. IP address: 18.118.186.168, on 20 Sep 2024 at 10:20:21, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S026646662100027X
https://www.cambridge.org/core


728 MAURICE J.G. BUN AND FRANK KLEIBERGEN

The reason for this is that Assumption 2(b) amounts to hN(θ0,N)
√

N =
√

N√
var(yi1)

→
N→∞

∞, and, since var(yi1) ≥var(ui1), it implies that σ 2
1,N/N →

N→∞ 0. Finally, the Sys sample

moment and derivative simply result from stacking the Dif and Lev sample moments and
derivatives:

f Sys
N (θ) = 1

N

N∑
i=1

(
yi1�yi3 − θyi1�yi2
yi3�yi2 − θyi2�yi2

)
,

qSys
N (θ) = − 1

N

N∑
i=1

(
yi1�yi2
yi2�yi2

)
.

Combining earlier convergence results, the large sample behavior of the Sys sample moment
and derivative can thus be characterized by

f Sys
N (θ) =

( −θ 1
1− θ 0

)[
1

hN(θ0,N)
√

N

{(
ψ2
ψ3

)
−hN(θ0,N)σ1,Nψcι2

}
− ι2d2

]

+ (1− θ)

(
0
σ 2

2

)
+op(1),

qSys
N (θ) = −

(
1 0
1 0

)[
1

hN(θ0,N)
√

N

{(
ψ2
ψ3

)
−hN(θ0,N)σ1,Nψcι2

}
− ι2d2

]

−
(

0
σ 2

2

)
+op(1),

from which it is readily seen that

ASys
f (θ) =

( −θ 1
1− θ 0

)
,μ

Sys
f (θ,σ̄ 2) = (1− θ)

(
0
σ 2

2

)
,

ASys
q (θ) =

( −1 0
−1 0

)
,μ

Sys
q (θ,σ̄ 2) =

(
0

−σ 2
2

)
.

T = 4. Under mean stationarity, we have

�yi2 = ui2 + (θ0,N −1
)

ui1,

�yi3 = ui3 + (θ0,N −1
)

ui2 + θ0,N
(
θ0,N −1

)
ui1,

�yi4 = ui4 + (θ0,N −1
)

ui3 + θ0,N
(
θ0,N −1

)
ui2 + θ2

0,N
(
θ0,N −1

)
ui1.

Substituting these expressions and yi2 = �yi2 +yi1, we can specify the Dif sample moments
and their derivatives as

f Dif
N (θ) = 1

N

N∑
i=1

⎛
⎝ yi1�yi3 − θyi1�yi2

yi1�yi4 − θyi1�yi3
yi2�yi4 − θyi2�yi3

⎞
⎠

=
⎛
⎝ θ0,N −1− θ 1 0(

θ0,N − θ
)
(θ0,N −1) θ0,N −1− θ 1(

θ0,N − θ
)
(θ0,N −1) θ0,N −1− θ 1

⎞
⎠ 1

N

N∑
i=1

⎛
⎝ yi1ui2

yi1ui3
yi1ui4

⎞
⎠
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+ (θ0,N − θ)(θ0,N −1)

⎛
⎝ 1

θ0,N
θ0,N

⎞
⎠ 1

N

N∑
i=1

yi1ui1

+ 1
N

N∑
i=1

⎛
⎝ 0

0
�yi2(�yi4 − θ�yi3)

⎞
⎠,

qDif
N (θ) = − 1

N

N∑
i=1

⎛
⎝ yi1�yi2

yi1�yi3

yi2�yi3

⎞
⎠

= −
⎛
⎝ 1 0 0

θ0,N −1 1 0
θ0,N −1 1 0

⎞
⎠ 1

N

N∑
i=1

⎛
⎝ yi1ui2

yi1ui3

yi1ui4

⎞
⎠− (θ0,N −1)

⎛
⎝ 1

θ0,N

θ0,N

⎞
⎠ 1

N

N∑
i=1

yi1ui1

− 1
N

N∑
i=1

⎛
⎝ 0

0
�yi2�yi3

⎞
⎠ .

The limit behavior of the first two terms in each expression has been established before.
Furthermore, Lemma 1 shows that the last term in each expression is op(1). Therefore, the
large Dif sample moment and derivative can be expressed as:

f Dif
N (θ) =

⎛
⎝ −θ 1 0

0 −θ 1
0 −θ 1

⎞
⎠
⎡
⎣ 1

hN(θ0,N)
√

N

⎧⎨
⎩
⎛
⎝ ψ2

ψ3
ψ4

⎞
⎠−hN(θ0,N)σ1,Nψcι3

⎫⎬
⎭− ι3d2

⎤
⎦

+op(1),

qDif
N (θ) = −

⎛
⎝ 1 0 0

0 1 0
0 1 0

⎞
⎠
⎡
⎣ 1

hN(θ0,N)
√

N

⎧⎨
⎩
⎛
⎝ ψ2

ψ3
ψ4

⎞
⎠−hN(θ0,N)σ1,Nψcι3

⎫⎬
⎭− ι3d2

⎤
⎦

+op(1),

from which it is readily seen that

ADif
f (θ) =

⎛
⎝ −θ 1 0

0 −θ 1
0 −θ 1

⎞
⎠,μ

Dif
f (θ,σ̄ 2) =

⎛
⎝ 0

0
0

⎞
⎠,

ADif
q (θ) = −

⎛
⎝ 1 0 0

0 1 0
0 1 0

⎞
⎠,μ

Dif
q (θ,σ̄ 2) =

⎛
⎝ 0

0
0

⎞
⎠ .

After some algebra, we can specify the Lev sample moments and their derivatives as

f Lev
N (θ) = 1

N

N∑
i=1

(
yi3�yi2 − θyi2�yi2
yi4�yi3 − θyi3�yi3

)

= 1
N

N∑
i=1

(
1− θ 0 0

(1− θ)(θ0,N −1) 1− θ 0

)⎛⎝ yi1ui2
yi1ui3
yi1ui4

⎞
⎠
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+ (1− θ)(θ0,N −1)

(
1

θ0,N

)
1
N

N∑
i=1

yi1ui1

+ (1− θ) 1
N

N∑
i=1

(
�yi2�yi2
�yi3�yi3

)
+ 1

N

N∑
i=1

(
�yi3�yi2

(�yi4 + (1− θ)�yi2)�yi3

)
,

qLev
N (θ) = − 1

N

N∑
i=1

(
yi2�yi2
yi3�yi3

)

= − 1
N

N∑
i=1

(
1 0 0

θ0,N −1 1 0

)⎛⎝ yi1ui2
yi1ui3
yi1ui4

⎞
⎠− (θ0,N −1)

(
1

θ0,N

)
1
N

N∑
i=1

yi1ui1

− 1
N

N∑
i=1

(
�yi2�yi2
�yi3�yi3

)
− 1

N

N∑
i=1

(
0

�yi2�yi3

)
.

Using Lemma 1, the large sample behavior of these expressions is equal to:

f Lev
N (θ) =

(
1− θ 0 0

0 1− θ 0

)

×
⎡
⎣ 1

hN(θ0,N)
√

N

⎧⎨
⎩
⎛
⎝ ψ2

ψ3
ψ4

⎞
⎠−hN(θ0,N)σ1,Nψcι2

⎫⎬
⎭− ι2d2

⎤
⎦

+ (1− θ)

(
σ 2

2
σ 2

3

)
+op(1),

qLev
N (θ) = −

(
1 0 0
0 1 0

)⎡⎣ 1

hN(θ0,N)
√

N

⎧⎨
⎩
⎛
⎝ ψ2

ψ3
ψ4

⎞
⎠−hN(θ0,N)σ1,Nψcι2

⎫⎬
⎭− ι2d2

⎤
⎦

−
(

σ 2
2

σ 2
3

)
+op(1),

so this implies that

ALev
f (θ) =

(
1− θ 0 0

0 1− θ 0

)
,μLev

f (θ,σ̄ 2) = (1− θ)

(
σ 2

2

σ 2
3

)
,

ALev
q (θ) = −

(
1 0 0
0 1 0

)
,μLev

q (θ,σ̄ 2) = −
(

σ 2
2

σ 2
3

)
.

We can specify the NL sample moment and its derivative as

f NL
N (θ) = 1

N

N∑
i=1

(yi4 − θyi3)(�yi3 − θ�yi2)

= 1
N

N∑
i=1

(
(1− θ)(θ0,N − θ −1) (1− θ) 0

)⎛⎝ yi1ui2
yi1ui3
yi1ui4

⎞
⎠
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+ 1
N

N∑
i=1

(θ0,N −1)(θ0,N − θ)(1− θ)yi1ui1

+ (1− θ) 1
N

N∑
i=1

(�yi3�yi3 − θ�yi2�yi2)

+ 1
N

N∑
i=1

((�yi4 + (1− θ)�yi2)�yi3 − (�yi4 + (1− θ)�yi3)θ�yi2),

qNL
N (θ) = − 1

N

N∑
i=1

(
θ0,N −2θ −1 0

)⎛⎝ yi1ui2
yi1ui3
yi1ui4

⎞
⎠

+ 1
N

N∑
i=1

(θ0,N −1)(1+ θ0,N −2θ)yi1ui1

− 1
N

N∑
i=1

(�yi3�yi3 + (1−2θ)�yi2�yi2)

− 1
N

N∑
i=1

(�yi2�yi3 + (�yi4 + (1−2θ)�yi3)�yi2) .

Using Lemma 1, the large sample behavior of these expressions is equal to:

f NL
N (θ) = 1

N

N∑
i=1

(
θ(θ −1) 1− θ 0

)

×
⎡
⎣ 1

hN(θ0,N)
√

N

⎧⎨
⎩
⎛
⎝ ψ2

ψ3
ψ4

⎞
⎠−hN(θ0,N)σ1,Nψcι2

⎫⎬
⎭− ι2d2

⎤
⎦

+ (1− θ)
(
σ 2

3 − θσ 2
2

)
+op(1),

qNL
N (θ) = − 1

N

N∑
i=1

(
1−2θ 1 0

)

×
⎡
⎣ 1

hN(θ0,N)
√

N

⎧⎨
⎩
⎛
⎝ ψ2

ψ3
ψ4

⎞
⎠−hN(θ0,N)σ1,Nψcι2

⎫⎬
⎭− ι2d2

⎤
⎦

−σ 2
3 − (1−2θ)σ 2

2 +op(1),

so this implies that:

ANL
f (θ) = ( θ(θ −1) 1− θ 0

)
, μNL

f (θ,σ̄ 2) = (1− θ)
(
σ 2

3 − θσ 2
2

)
,

ANL
q (θ) = ( 2θ −1 −1 0

)
, μNL

q (θ,σ̄ 2) = (2θ −1)σ 2
2 −σ 2

3 .
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Finally, regarding AS and Sys moment conditions, we simply have

ASys
f (θ) =

⎛
⎝ ADif

f (θ)

ALev
f (θ)

...0

⎞
⎠, μ

Sys
f (θ,σ̄ 2) =

⎛
⎝ μ

Dif
f (θ,σ̄ 2)

μLev
f (θ,σ̄ 2)

⎞
⎠,

ASys
q (θ) =

⎛
⎝ ADif

q (θ)

ALev
q (θ)

...0

⎞
⎠, μ

Sys
q (θ,σ̄ 2) =

⎛
⎝ μ

Dif
q (θ,σ̄ 2)

μLev
q (θ,σ̄ 2)

⎞
⎠ .

AAS
f (θ) =

⎛
⎝ ADif

f (θ)

ANL
f (θ)

...0

⎞
⎠, μAS

f (θ,σ̄ 2) =
⎛
⎝ μ

Dif
f (θ,σ̄ 2)

μNL
f (θ,σ̄ 2)

⎞
⎠,

AAS
q (θ) =

⎛
⎝ ADif

q (θ)

ANL
q (θ)

...0

⎞
⎠, μAS

q (θ,σ̄ 2) =
⎛
⎝ μ

Dif
q (θ,σ̄ 2)

μNL
q (θ,σ̄ 2)

⎞
⎠ .

T = 5. Using similar calculations, we obtain:

ADif
f (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−θ 1 0 0
0 −θ 1 0
0 −θ 1 0
0 0 −θ 1
0 0 −θ 1
0 0 −θ 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, μ
Dif
f (θ,σ̄ 2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

ALev
f (θ) =

⎛
⎝ 1− θ 0 0 0

0 1− θ 0 0
0 0 1− θ 0

⎞
⎠, μLev

f (θ,σ̄ 2) = (1− θ)

⎛
⎜⎜⎝

σ 2
2

σ 2
3

σ 2
4

⎞
⎟⎟⎠,

ANL
f (θ) =

(
θ(θ −1) 1− θ 0 0

0 θ(θ −1) 1− θ 0

)
, μNL

f (θ,σ̄ 2) = (1− θ)

(
σ 2

3 − θσ 2
2

σ 2
4 − θσ 2

3

)
.

�

General T. Along the lines of the above derivations, it is also possible to construct the

expressions of Aj
f (θ),Aj

q(θ), μ
j
f (θ,σ̄

2), and μ
j
q(θ,σ̄ 2) for larger values of T which we, for

reasons of brevity, refrain from.

Orthogonal complements of AAS
f (θ) and ASys

f (θ) for T = 4 and 5 and the
specification of the robust sample moments. We specify the orthogonal complements
as in (37), which we repeat here for convenience:

Aj
f (θ)⊥ = (Gj

f,T (θ)
...Gj

2,T ),

where T indicates the number of time periods and Gj
2,T is such that Gj′

2,Tμ
j
f (θ,σ̄

2) = 0.
This notation is used in the proofs of subsequent theorems.
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T = 4. From the expressions of Aj
f (θ) and μ

j
f (θ,σ̄

2) in (36), Gj
f,T=4(θ) and Gj

2,T=4, for
j = AS, Sys, result as:

GAS
f,T=4(θ) =

⎛
⎜⎜⎝

−(1− θ)

0
0
1

⎞
⎟⎟⎠, GAS

2,T=4 =

⎛
⎜⎜⎝

0
−1
1
0

⎞
⎟⎟⎠,

GSys
f,T=4(θ) =

⎛
⎜⎜⎜⎜⎝

−(1− θ)

0
0

−θ

1

⎞
⎟⎟⎟⎟⎠, GSys

2,T=4 =

⎛
⎜⎜⎜⎜⎝

0
−1
1
0
0

⎞
⎟⎟⎟⎟⎠ .

From these expressions and (36), it is easily seen that

AAS
f (θ)′⊥μAS

f (θ,σ̄ 2) =
(

(1− θ)
(
σ 2

3 − θσ 2
2

)
0

)
,

ASys
f (θ)′⊥μ

Sys
f (θ,σ̄ 2) =

(
σ 2

3 − θσ 2
2

0

)
,

from which follows that Aj
f (θ)′⊥μ

j
f (θ,σ̄

2) �= 0, for all θ �= θ0,N , j = AS, Sys.

T = 5. The expressions for Aj
f (θ), μ

j
f (θ,σ̄

2), Gj
f,T=5(θ), and Gj

2,T=5, for j = AS, Sys,
are:

AAS
f (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−θ 1 0 0
0 −θ 1 0
0 −θ 1 0
0 0 −θ 1
0 0 −θ 1
0 0 −θ 1

θ(θ −1) 1− θ 0 0
0 θ(θ −1) 1− θ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, μAS
f (θ,σ̄ 2) = (1− θ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

σ 2
3 − θσ 2

2

σ 2
4 − θσ 2

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

GAS
f ,T=5(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(1− θ) 0 0
0 −(1− θ) 0
0 0 −(1− θ)

0 0 0
0 0 0
0 0 0
1 0 0
0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, GAS
2,T=5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0

−1 0
1 −1
0 1
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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734 MAURICE J.G. BUN AND FRANK KLEIBERGEN

ASys
f (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−θ 1 0 0
0 −θ 1 0
0 −θ 1 0
0 0 −θ 1
0 0 −θ 1
0 0 −θ 1

1− θ 0 0 0
0 1− θ 0 0
0 0 1− θ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, μ
Sys
f (θ,σ̄ 2) = (1− θ)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
σ 2

2
σ 2

3
σ 2

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

GSys
f,T=5(θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(1− θ) 0 0
0 −(1− θ) 0
0 0 −(1− θ)

0 0 0
0 0 0
0 0 0

−θ 0 0
1 −θ −θ

0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, GSys
2,T=5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0

−1 0
1 −1
0 1
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Straightforward algebra shows that Aj
f (θ)′⊥μ

j
f (θ,σ̄

2) �= 0, for all θ �= θ0,N , j = AS, Sys.
The robust sample moments are defined as

gj
f,T (θ) = Af (θ)

j′
⊥f j

N(θ),

with Af (θ)
j
⊥ = (Gj

f,T (θ)
... Gj

2,T ). For the Sys moment conditions, Gj
f,T (θ) is a linear

function of θ and Gj
2,T does not depend on θ . Since f j

N(θ) is linear in θ as well for the Sys

sample moments, the part of gj
f,T (θ) resulting from Gj

f,T (θ)′f j
N(θ) is quadratic in θ , while

the part that results from Gj′
2,T f j

N(θ) is linear in θ . Given the specification of Gj
f,T (θ), Gj

2,T ,

and f j
N(θ), it is then straightforward to compute the specification of a, b, and d.

For the AS moment conditions, Gj
f,T (θ) is a linear function of θ , and Gj

2,T does not

depend on θ . For the AS sample moments, f j
N(θ) is quadratic in θ , but the part of gj

f,T (θ)

resulting from Gj
f,T (θ)′f j

N(θ) is not of third order in θ as expected but just a quadratic

function of θ . The part of gj
f,T (θ) that results from Gj′

2,T f j
N(θ) is linear in θ . Given the

specification of Gj
f,T (θ), Gj

2,T , and f j
N(θ), it is then again straightforward to compute the

specification of a, b, and d.

Proof of Theorem 2. Under mean stationarity, we can write

�yi2 = (θ0,N −1)ui1 +ui2,

�yi3 = θ0,N(θ0,N −1)ui1 + (θ0,N −1)ui2 +ui3,

�yi4 = θ2
0,N(θ0,N −1)ui1 + θ0,N(θ0,N −1)ui2 + (θ0,N −1)ui3 +ui4,

�yi5 = θ3
0,N(θ0,N −1)ui1 + θ2

0,N(θ0,N −1)ui2 + θ0,N(θ0,N −1)ui3
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+ (θ0,N −1)ui4 +ui5,

yi3 − yi1 = (1+ θ0,N)(θ0,N −1)ui1 + θ0,Nui2 +ui3,

yi4 − yi1 = (1+ θ0,N + θ2
0,N)(θ0,N −1)ui1 + θ2

0,Nui2 + θ0,Nui3 +ui4,

yi4 − yi2 = (θ0,N + θ2
0,N)(θ0,N −1)ui1 + (θ2

0,N −1)ui2 + θ0,Nui3 +ui4,

yi5 − yi1 = (1+ θ0,N + θ2
0,N + θ3

0,N)(θ0,N −1)ui1 + θ3
0,Nui2 + θ2

0,Nui3 + θ0,Nui4 +ui5,

yi5 − yi2 = (θ0,N + θ2
0,N + θ3

0,N)(θ0,N −1)ui1 + (θ3
0,N −1)ui2 + θ2

0,Nui3 + θ0,Nui4 +ui5.

�

The robust sample moments consist of products of the above expressions. To obtain the
probability limits in Theorem 2 of the elements comprising the robust sample moments, we
use that

1
N

N∑
i=1

(θ0,N −1)u2
it →

p
0,

1
N

N∑
i=1

(θ0,N −1)uituis →
p

0,

for all s and t, t > 1, t �= s, which is implied by Assumption 1. Therefore, the a, b, and d
components of the robust sample moments simplify to:

T = 4, Sys:.

a = 1
N

N∑
i=1

(
(�yi2)2

0

)
= 1

N

N∑
i=1

(
(θ0,N −1)2u2

i1 +u2
i2

0

)
+Op(N−1/2),

b = − 1
N

N∑
i=1

(
(yi3 − yi1)2

�yi2�yi3

)

= − 1
N

N∑
i=1

(
((1+ θ0,N)2(θ0,N −1)2u2

i1 + θ2
0,Nu2

i2 +u2
i3

θ0,N(θ0,N −1)2u2
i1 + (θ0,N −1)u2

i2

)
+Op(N−1/2),

d = 1
N

N∑
i=1

(
(yi4 − yi1)�yi3

�yi2�yi4

)

= 1
N

N∑
i=1

(
θ0,N(1+ θ0 + θ2

0,N)(θ0,N −1)2u2
i1 + θ2

0,N(θ0,N −1)u2
i2 + θ0,Nu2

i3

θ2
0,N(θ0,N −1)2u2

i1 + θ0,N(θ0,N −1)u2
i2

)

+Op(N−1/2),

where the Op(N−1/2) remainder terms result from the interaction terms between the

different errors, like 1
N
∑N

i=1 ui2ui3, which converge at rate N− 1
2 , since their correlation

equals zero.
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Using next that, because of Assumption 1(c), 1
N
∑N

i=1(1 − θ0,N)2u2
i1 →

p
0, and θ0,N =

1+ l
Nτ , with l a fixed constant, l < 0, we have that

a =
(

σ 2
2

0

)
+Op(N−1/2),

b =−
( (1+2 l

Nτ + l2

N2τ

)
σ 2

2 +σ 2
3

l
Nτ σ 2

2

)
+Op(N−1/2),

d =
( ( l

Nτ +2 l2

N2τ + l3

N3τ

)2
σ 2

2 + (1+ l
Nτ )σ 2

3

( l
Nτ + l2

N2τ )σ 2
2

)
+Op(N−1/2),

so, if τ > 1
2 ,

a = (σ 2
2
0

)+Op(N−1/2),

b = −(σ 2
2 +σ 2

3
0

)+Op(N−1/2),

d = (σ 2
3
0

)+Op(N−1/2).

T = 4, AS:.

a = 1
N

N∑
i=1

(
(yi3 − yi1)�yi2

0

)

= 1
N

N∑
i=1

(
(1+ θ0,N)(1− θ0,N)2u2

i1 + θ0,Nu2
i2

0

)
+Op(N−1/2),

b = − 1
N

N∑
i=1

(
(yi3 − yi1)�yi3 + (yi4 − yi1)�yi2

�yi2�yi3

)

= − 1
N

N∑
i=1

(
(1− θ0,N)2[(1+2θ0,N(1+ θ0,N)]u2

i,1 + (2θ2
0,N − θ0,N)u2

i,2 +u2
i,3

θ0,N(θ0,N −1)2u2
i1 + (θ0,N −1)u2

i2

)

+Op(N−1/2),

d = 1
N

N∑
i=1

(
(yi4 − yi1)�yi3

�yi2�yi4

)

= 1
N

N∑
i=1

(
θ0,N(1+ θ0 + θ2

0,N)(θ0,N −1)2u2
i1 + θ2

0,N(θ0,N −1)u2
i2 + θ0,Nu2

i3

θ2
0,N(θ0,N −1)2u2

i1 + θ0,N(θ0,N −1)u2
i2

)

+Op(N−1/2),

so also,
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a = (σ 2
2
0

)+Op(N−1/2),

b = −(σ 2
2 +σ 2

3
0

)+Op(N−1/2),

d = (σ 2
3
0

)+Op(N−1/2).

We use similar calculations for T = 5 to obtain that:

T = 5, Sys:.

a = 1
N

N∑
i=1

⎛
⎜⎜⎜⎜⎝

(�yi2)2

(yi3 − yi1)�yi3
(�yi3)2

0
0

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
2

σ 2
3

σ 2
3
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+Op(N− 1
2 ),

b = − 1
N

N∑
i=1

⎛
⎜⎜⎜⎜⎝

(yi3 − yi1)2

(yi4 − yi1)(yi4 − yi2)

(yi4 − yi2)2

�yi2�yi4
�yi3�yi4

⎞
⎟⎟⎟⎟⎠= −

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
2 +σ 2

3

σ 2
3 +σ 2

4

σ 2
3 +σ 2

4
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+Op(N− 1
2 ),

d = 1
N

N∑
i=1

⎛
⎜⎜⎜⎜⎝

(yi4 − yi1)�yi3
(yi5 − yi1)�yi4
(yi5 − yi2)�yi4

�yi2�yi5
�yi3�yi5

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

σ 2
3

σ 2
4

σ 2
4
0
0

⎞
⎟⎟⎟⎟⎠+Op(N− 1

2 ).

T = 5, AS:.

a = 1
N

N∑
i=1

⎛
⎜⎜⎜⎜⎝

(yi3 − yi1)�yi2
(yi4 − yi1)�yi3
(yi4 − yi2)�yi3

0
0

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

σ 2
2

σ 2
3

σ 2
3
0
0

⎞
⎟⎟⎟⎟⎟⎠+Op(N− 1

2 ),

b = − 1
N

N∑
i=1

⎛
⎜⎜⎜⎜⎝

(yi4 − yi1)�yi2 + (yi3 − yi1)�yi3
(yi4 − yi1)�yi4 + (yi5 − yi1)�yi3
(yi4 − yi2)�yi4 + (yi5 − yi2)�yi3

�yi2�yi4
�yi3�yi4

⎞
⎟⎟⎟⎟⎠= −

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
2 +σ 2

3

σ 2
3 +σ 2

4

σ 2
3 +σ 2

4
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+Op(N− 1
2 ),

d = 1
N

N∑
i=1

⎛
⎜⎜⎜⎜⎝

(yi4 − yi1)�yi3
(yi5 − yi1)�yi4
(yi5 − yi2)�yi4

�yi2�yi5
�yi3�yi5

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

σ 2
3

σ 2
4

σ 2
4
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+Op(N− 1
2 ).
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Proof of Theorem 3. The proof of Theorem 3 establishes the probability limits of a, b,
and d, for θ0,N = 1 + l

Nτ , l < 0, and τ > 1
2 . Denoting these probability limits by, ap, bp,

and dp, the large sample behavior of a, b, and d is characterized by, for θ0,N = 1+ l
Nτ with

τ > 1
2 :

√
N(a−ap) →

d
εa,

√
N(b−bp) →

d
εb,

√
N(d −dp) →

d
εd,

with (εa, εb, εd) jointly normal, mean-zero random variables, which follows straightfor-
wardly from an appropriate central limit theorem applied to the highest-order remainder
terms in the proof of Theorem 2, which are all sample averages over i.i.d. mean-zero random
variables. We want to determine the appropriate rate for ξ in gf,T (θ(e)), so we can analyze

its behavior in a neighborhood of the true value θ0,N = 1+ l
Nτ , l < 0, with τ > 1

2 while N
goes to infinity, with

θ(e) = 1+ e
Nξ .

Substituting θ(e) and the above large sample characterizations of a, b, and d in (38), we can
write:

gf,T (θ(e)) = (1+ e
Nξ )2(ap + εa√

N
)+ (1+ e

Nξ )(bp + εb√
N

)+dp + εd√
N

+op(N−1/2).

To determine ξ , we impose two conditions: (1)
√

Ngf,T (θ(e)) converges to a nondegenerate
bounded random variable of order Op(1); and (2) gf,T (θ(e)) is informative about the value

of e when N gets large. We discriminate between two different cases for σ 2
t :

1. For σ 2
t = σ 2, t = 2, . . . ,T :

gf,T (θ(e))

= (1+ e

Nξ
)2(ap + εa√

N
)+ (1+ e

Nξ
)(bp + εb√

N
)+dp + εd√

N
+op(N

−1/2)

= ap +bp +dp + 1√
N

(εa + εb + εd)+
( e

Nξ

)2
ap

+ e

Nξ
(bp +2ap)+ e

Nξ
√

N
(εb +2εa)+ e2

N2ξ N1/2 εa +op(N
−1/2),

since ap +bp +dp = 0 and bp +2ap = 0, we distinguish three settings:

ξ < 1/4 :

gf,T (θ(e)) = e2

N2ξ
ap +op(N

−2ξ ),

ξ = 1/4 :

gf ,T (θ(e)) = 1√
N

(εa + εb + εd + e2ap)+ e√
N 4

√
N

(εb +2εa)+ e2εa

N
+op(N

−1/2)

= 1√
N

(εa + εb + εd + e2ap)+op(N
−1/2),

ξ > 1/4 :

gf,T (θ(e)) = 1√
N

(εa + εb + εd)+op(N
−1/2).
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This shows that the appropriate rate corresponds with ξ = 1/4. For a smaller value
of ξ ,

√
Ngf,T (θ(e)) diverges. For a larger value,

√
Ngf,T (θ(e)) converges to a mean-

zero normal random variable unaffected by the choice of e. Although, in this case,√
Ngf,T (θ(e)) is not informative about e, we do not need to worry about e, because

standard asymptotics apply.
2. When σ 2

t �= σ 2
s , for at least one t �= s, ap + bp + dp = 0 but bp + 2ap �= 0, we can

establish along the lines of the above that the appropriate rate corresponds with ξ =
1/2 :

gf,T (θ(e))

= (1+ e√
N

)2(ap + εa√
N

)+ (1+ e√
N

)(bp + εb√
N

)+dp + εd√
N

+op(N
−1/2)

= ap +bp +dp + 1√
N

(εa + εb + εd + e(bp +ap))

+ e

N
(2εa + εb + eE(a))+ e2εa

N
√

N
+op(N

−1/2)

= 1√
N

(εa + εb + εd + e(bp +2ap))+ e

N
(2εa + εb + eap)+ e2εa

N
√

N
+op(N

−1/2)

= 1√
N

(εa + εb + εd + e(bp +2ap))+op(N
−1/2).

�

Proof of Theorem 4. Denote with gf,T (θ(e)) the moments in (38) evaluated at θ(e) =
1 + e

4√N
. When σ 2

t = σ 2 and substituting the large sample characterization of a, b, and

d,
√

Ngf,T (θ(e)) can be expressed as:

√
Ngf,T (θ(e)) = e2ap + εa(1+ 2e

4√N
+ e2

√
N

)+ εb(1+ e
4√N

)+ εd +op(1).

Define

φ(N) = e2ap + εa

(
1+ 2e

4√N
+ e2

√
N

)
+ εb

(
1+ e

4√N

)
+ εd .

Since (εa, εb, εd) are jointly normal distributed,

φ(N) ∼ N(e2ap, B(N)′VabdB(N))

with

B(N) = (ι3 ⊗ Ipmax)+ e
4√N

[
(2+ e

4√N
)(e1,3 ⊗ Ipmax)+ (e2,3 ⊗ Ipmax)

]
,

and Vabd the covariance matrix of (ε′
a

... ε′
b

... ε′
d)′, ι3 a 3×1 dimensional vector of ones, Ipmax

the pmax ×pmax dimensional identity matrix, pmax equals the number of elements of a, and
e1,3 and e2,3 the first and second 3×1 dimensional unity vectors.

Hence,
√

Ngf,T (θ(e)) = φ(N)+op(1),
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740 MAURICE J.G. BUN AND FRANK KLEIBERGEN

so in a sample of size N,
√

Ngf,T (θ(e)) is normally distributed up to an op(1) term. While
some of the components in φ(N) are essentially also op(1), it is important to incorporate
them for an accurate approximation of the distribution of

√
Ngf,T (θ(e)) for a given sample

of size N, since the low-order components, of order N−1/4, converge very slowly to zero.
The individual moments gf,n(θ(e)) in the sample average gf,T (θ(e)) = 1

N
∑N

n=1
gf,n(θ(e)) can be specified as:

gf,n(θ(e)) = (1+ e
4√N

)2an + (1+ e
4√N

)bn +dn

= (1+ e
4√N

)2[ap + εan ]+ (1+ e
4√N

)[bp + εbn ]+ [dp + εdn ]

= (ap +bp +dp)+ e
4√N

(2ap +bp)+ e2
√

N
ap

+ εan + εbn + εdn + e
4√N

(2εan + εbn)+ e2
√

N
εan

= e2
√

N
ap + εan + εbn + εdn + e

4√N
(2εan + εbn )+ e2

√
N

εan,

with a = 1
N
∑N

n=1 an, b = 1
N
∑N

n=1 bn, d = 1
N
∑N

n=1 dn, εan = an −ap, εbn = bn −bp, and
εdn = dn −dp, so taking gf,n(θ(e)) in deviation from its sample average gf,T (θ(e)) results
in

gf,n(θ(e))−gf,T (θ(e)) = εan − εa + εbn − εb + εdn − εd

+ e
4√N

(2(εan − εa)+ εbn − εb)+ e2
√

N
(εan − εa)+op(N−1/2).

From the above, it then straightforwardly follows that

V̂gg(e) = 1
N

N∑
i=1

(
gf,n(θ(e))−gf,T (θ(e))

)(
gf,n(θ(e))−gf,T (θ(e))

)′
= B(N)′VabdB(N)+op(1),

so the distribution of the GMM-AR statistic testing Hp for a sample of size N is characterized
by

χ2(δ(N),pmax)+op(1),

with δ(N) = e4a′
p
[
B(N)′VabdB(N)

]−1 ap. �

Proof of Theorem 5. When we instead of the full vector gf,T (θ(e)) use a linear com-
bination of it, say w′gf,T (θ(e)) with w an orthonormal pmax ×1 vector, the approximating
distribution of the GMM-AR statistic for testing Hp : θ(e) = 1+ e

4√N
that uses w′gf,T (θ(e))

as the moment vector reads

χ2(e4(w′ap)′
[
w′B(N)′VabdB(N)w

]−1
(w′ap),1).
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The optimal combination w is the one that leads to the largest value of the noncentrality
parameter. The noncentrality parameter can be specified as

e4(w′ap)′
[
w′B(N)′VabdB(N)w

]−1
(w′ap) = e4 (w′ap)

2

w′B(N)′VabdB(N)w .

The maximal value of
(w′ap)

2

w′B(N)′VabdB(N)w results from the largest root of the generalized
eigenvalue problem∣∣∣λB(N)′VabdB(N)−apa′

p

∣∣∣= 0,

and the optimal value of w equals the eigenvector associated with the largest root. Since ap
is only a vector, just one root of the generalized eigenvalue problem is nonzero, so it is also
the largest one. This root results from using

w = (B(N)′VabdB(N))−1ap,

and the largest root then equals

λmax = a′
p(B(N)′VabdB(N))−1ap,

so the maximal value of the noncentrality parameter is

δ(N) = e4a′
p(B(N)′VabdB(N))−1ap = (eσ)4

(
ιp

0

)′
(B(N)′VabdB(N))−1

(
ιp

0

)
,

since ap = σ 2(ιp
0

)
with ιp a p×1 dimensional vector of ones and p the number of columns

of Gf,T (θ). �

Proof of Theorem 6. Before we start out to prove Theorem 6, we first state an addendum
to Theorem 1, which incorporates some higher-order components of order Op(N−1/2) that
are needed for some of the intermediate results. �

Addendum to Theorem 1: Theorem 1* (Representation theorem). Under Assump-
tions 1 and 2(a), we can characterize the large sample behavior of the Dif, Lev, NL, AS, and
Sys sample moments and their derivatives by:(

f j
N(θ)

qj
N(θ)

)
=
(

Aj
f (θ)

Aj
q(θ)

)[
1

hN(θ0,N)
√

N
(ψ −hN(θ0,N)σ1,nιT−1ψc)+ ιT−1d2

]

+
(

μ
j
f (θ,σ̄

2)

μ
j
q(θ,σ̄ 2)

)
+ 1√

N

(
Bj

f (θ)

Bj
q(θ)

)
ψuu +op(N−1/2),

with j = Dif , Lev, NL, AS, Sys, and Bj
f (θ), Bj

q(θ) : kj ×mj and kj ×mj, kj ×1 dimensional
matrices, and ψuu is a mean-zero, finite variance, normal random vector that is possibly
dependent on ψ .

Proof of large sample distribution KLM statistic. For the construction of the large
sample distribution of the KLM statistic under Assumptions 1 and 2(a), we use that the part

of the sample moments spanned by Aj
f (θ(e)) and the part spanned by Aj

f (θ(e))⊥ converge
at different rates. We use the normalized large sample behavior of each of these parts to
construct it. This amounts to premultiplying the sample moments in the expression of the
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742 MAURICE J.G. BUN AND FRANK KLEIBERGEN

KLM statistic by (Aj
f (θ(e))

...Aj
f (θ(e))⊥) to which it is invariant if (Aj

f (θ(e))
...Aj

f (θ(e))⊥) is

invertible. The specification of Aj
f (θ(e))⊥ as equal to (Gj

f,T (θ(e))
... Gj

2,T ) (see (37)) is such

that (Aj
f (θ(e))

... Aj
f (θ(e))⊥) is invertible for the Sys moment conditions but not for the AS

moment conditions both when T = 4 and 5, since Aj
f (θ(e)) does not have full column rank.

To have an invertible specification of (Aj
f (θ(e))

... Aj
f (θ(e))⊥), we use that we can specify

Aj
f (θ(e)) for the AS moments as:

T = 4 : AAS
f (θ) =

⎛
⎜⎜⎝

−θ 1 0
0 −θ 1
0 −θ 1

θ(θ −1) 1− θ 0

⎞
⎟⎟⎠

= AAS
f,T=4(θ)1AAS

f,T=4(θ)2,

T = 5 : AAS
f (θ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−θ 1 0 0
0 −θ 1 0
0 −θ 1 0
0 0 −θ 1
0 0 −θ 1
0 0 −θ 1

θ(θ −1) 1− θ 0 0
0 θ(θ −1) 1− θ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= AAS
f,T=5(θ)1AAS

f,T=5(θ)2,

where

T = 4 : AAS
f,T=4(θ)1 =

⎛
⎜⎜⎝

−θ 0
0 1
0 1

θ(θ −1) 0

⎞
⎟⎟⎠,

AAS
f,T=4(θ)2,

(
1 −θ−1 0
0 −θ 1

)
,

T = 5 : AAS
f,T=5(θ)1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−θ 1 0
0 −θ 0
0 −θ 0
0 0 1
0 0 1
0 0 1

θ(θ −1) 1− θ 0
0 θ(θ −1) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

AAS
f,T=5(θ)2 =

⎛
⎝ 1 0 −θ−2 0

0 1 −θ−1 0
0 0 −θ 1

⎞
⎠,
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so unlike AAS
f (θ), AAS

f (θ)1 has full column rank. For the Sys moments, for which ASys
f (θ)

has full column rank, we use ASys
f (θ)1 = ASys

f (θ). The matrix (Aj
f (θ(e))1

... Aj
f (θ(e))⊥) is

now invertible for both j = AS, Sys, so we use it to construct the large sample behavior of
the KLM statistic to test Hp : θ(e) = 1 + e

4√N
while the true value of θ is drifting to one

in line with Assumption 2(a). We separately construct the behavior of the following four
components:

1.
√

NV̂ff (θ(e))−1fN(θ(e)),
2. qN(θ(e)),
3. V̂θ f (θ(e)),
4. D̂N(θ(e)),

which provide the building blocks for the large sample distribution of the KLM statistic.
For each of these components, we determine their limit behavior when multiplied by

(hN(θ0,N)Af (θ(e))1
... Af (e)⊥) for the last three components and its inverse for the first

one. Taken all together, this implies that (hN(θ0,N)Af (θ(e))1
... Af (e)⊥) cancels out of the

overall expression of the KLM statistic.
1. To determine the limit behavior of

√
NV̂ff (θ(e))−1fN(θ(e)), we disentangle the

components with different convergence rates which we do by premultiplying it by

(hN(θ0,N)Af (θ(e))1
... Af (e)⊥)−1 :

(hN(θ0,N)Af (θ(e))1
...Af (e)⊥)−1√

NV̂ff (θ(e))−1fN(θ(e))

=
[
(hN(θ0,N)Af (θ(e))1

...Af (e)⊥)′V̂ff (e)(hN(θ0,N)Af (e)1
...Af (e)⊥)

]−1

×
[√

N(hN(θ0,N)Af (e)1
...Af (e)⊥)′fN(e)

]
.

We next determine the large sample behavior of the different components under Assump-
tions 1 and 2(a). Our specification of Af (θ(e))⊥ is such that:

√
NAf (θ(e))′⊥fN(θ(e)) = √

Ngf,T (θ(e)),

so using the large sample behavior of
√

Ngf,T (θ(e)) stated in the proof of Theorem 4, we

have that the large sample behavior of
√

NAf (θ(e))′⊥fN(θ(e)) for a (large) sample of size
N results as:

√
NAf (θ(e))′⊥fN(θ(e)) =

⎡
⎣e2σ 2(ιp

0

)+B(N)′
⎛
⎝ εa

εb
εd

⎞
⎠
⎤
⎦+op(1).

The large sample behavior of
√

NhN(θ0,N)Af (θ(e))′1fN(θ(e)) results from Theorem 1 (the

representation theorem) and accords with, since by Assumption 2(a)
√

NhN(θ0,N) → 0,

√
NhN(θ0,N)Af (θ(e))′1fN(θ(e)) = Af (θ(e))′1Af (θ(e))ψ̄ +op(1),
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where ψ̄ = ψ −hN(θ0,N)σ1,nιT−1ψc, so upon combining:[√
N(hN(θ0,N)Af (θ(e))1

...Af (θ(e))⊥)′fN(θ(e))

]

=

⎡
⎢⎢⎣

Af (θ(e))′1Af (θ(e))ψ̄

e2σ 2(ιp
0

)+B(N)′
⎛
⎝ εa

εb
εd

⎞
⎠
⎤
⎥⎥⎦+op(1).

We next focus on the components of [(hN(θ0,N)Af (θ(e))1
...Af (e)⊥)′V̂ff (e)(hN(θ0,N)

Af (e)1
...Af (e)⊥)]. Since gf,T (θ(e)) does not depend on the initial observations yi1, the

(normalized) covariance of Af (θ(e))′1fN(θ(e)) and Af (θ(e))′⊥fN(θ(e)) equals zero:

hN(θ0,N)Af (θ(e))′1V̂ff (θ(e))Af (θ(e))⊥ = op(1).

Under Assumption 2(a), also:

hN(θ0,N)2Af (θ(e))′1V̂ff (θ(e))Af (θ(e))1 = Af (θ(e))′1Af (θ(e))�Af (θ(e))′Af (θ(e))1 +op(1),

Af (θ(e))′⊥V̂ff (e)Af (θ(e))⊥ = B(N)′VabdB(N)+op(1),

where

� =var

(
lim

N→∞ ψ̄

)

= diag(σ̄ 2)+
[

lim
N→∞

(
hN(θ0,N)2σ 2

1,n

)]
ιT−1ι′T−1var(ci),

so

(hN(θ0,N)Af (θ(e))1
...Af (θ(e))⊥)′V̂ff (θ(e))(hN(θ0,N)Af (θ(e))1

...Af (θ(e))⊥)

=
(

Af (θ(e))′1Af (θ(e))�Af (θ(e))′Af (θ(e))1 0
0 B(N)′VabdB(N)

)
+op(1).

Because hN(θ0,N)Af (θ(e))′1fN(θ(e)) and Af (θ(e))′⊥fN(θ(e)) are uncorrelated under
Assumption 2(a),[

(hN(θ0,N)Af (θ(e))1
...Af (θ(e))⊥)′V̂ff (θ(e))(hN(θ0,N)Af (θ(e))1

...Af (θ(e))⊥)

]

convergences to a block diagonal matrix, so we obtain the large sample behavior

of
√

N((hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′V̂ff (θ(e))(hN(θ0,N)Af (θ(e))1

...Af (θ(e))⊥))−1

(hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′fN(θ(e)) :

√
N((hN(θ0,N)Af (θ(e))1

... Af (θ(e))⊥)′V̂ff (θ(e))(hN(θ0,N)Af (θ(e))1
...Af (θ(e))⊥))−1

× (hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′fN(θ(e))
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=

⎛
⎜⎜⎝
[
Af (θ(e))′1Af (θ(e))�Af (θ(e))′Af (θ(e))1

]−1 Af (θ(e))′1Af (θ(e))ψ̄

(
B(N)′VabdB(N)

)−1

⎛
⎝e2σ 2(ιp

0

)+B(N)′
⎛
⎝ εa

εb
εd

⎞
⎠
⎞
⎠

⎞
⎟⎟⎠+op(1).

2. To obtain the large sample behavior of qN(θ(e)) under Assumptions 1 and 2(a), we
characterize the behavior of the different components of

(hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′qN(θ(e)),

for which we use the representation of qN(θ(e)) in Theorem 1 (and Theorem 1∗).
Under DGPs according with Assumptions 1 and 2(a),

√
NhN(θ0,N)Af (θ(e))′1qN(θ(e))

is characterized by
√

NhN(θ0,N)Af (θ(e))′1qN(θ(e))

= Af (θ(e))′1
[
Aq(θ(e))ψ̄ +hN(θ0,N)

√
N(μq(θ(e),σ̄ 2)

−Aq(θ(e))ιT−1d2
]+op(1),

which converges to

Af (θ(e))′1Aq(θ(e))ψ̄,

since under Assumption 2(a),
√

NhN(θ0,N)(μq(θ(e),σ̄ 2)−Aq(θ(e)))ιT−1d2 → 0,

which results from Assumption 1(b) and hN(θ0,N)
√

N → 0.
Regarding Af (θ(e))′⊥qN(θ(e)), we distinguish between the AS and Sys moment condi-

tions. For the Sys moment conditions,

4√NAf (θ(e))′⊥qN(θ(e))

= 4√N

(
Gf,T (θ(e))′qN(θ(e))

G′
2,T qN(θ(e))

)

= −
(

eσ 2ιp
0

)
+ 1

4√N

(
1

hN (θ0,N )
Gf (θ(e))′Aq(θ(e))ψ̄ + εaq

εbq

)
+op(N−1/4),

for which we used the representation for qN(θ(e)) that results from Theorem 1* in the
Appendix which includes Bq(θ)ψuu, since, for the Sys moment conditions, G′

2,T Aq(θ(e)) =
0, G′

2,Tμ(θ(e),σ̄ 2) = 0, Gf,T (θ(e))′Aq(θ(e))ιT−1 = 0, Gf,T (θ(e))′μ(θ(e),σ̄ 2) =
− e

4√N
σ 2ιp, andεaq = Gf (θ(e))′Bq(θ(e))ψuu and εbq = G′

2,T Bq(θ(e))ψuu are mean-zero

normal random variables that capture the remaining random parts.
For the AS moment conditions,

4√NAf (θ(e))′⊥qN(θ(e))

= −
(

e(2σ 2 −d2)ιp
0

)
+ 1

4√N

(
1

hN (θ0,N )
Gf (θ(e))′Aq(θ(e))ψ̄ + εaq

εbq

)
+op(N−1/4),
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since, for the AS moment conditions, G′
2,T Aq(θ(e)) = 0, G′

2,Tμ(θ(e),σ̄ 2) = 0, Gf,T (θ(e))′
Aq(θ(e))ιT−1 = e

4√N
ιp, Gf (θ(e))′μ(θ(e),σ̄ 2) = − 2e

4√N
σ 2ιp, and εaq = Gf (θ(e))′

Bq(θ(e))ψcu and εbq = G′
2,T Bq(θ(e))ψcu are mean-zero normal random variables that

capture the remaining random parts.
Overall, the large sample behavior of Af (θ(e))′⊥qN(θ(e)) for both the AS and Sys

moment conditions reads:

4√NAf (θ(e))′⊥qN(θ(e)) =
[
−
(

ēιp
0

)
+ 1

4√N

(
1

hN (θ0,N )
Gf (θ(e))′Aq(θ(e))ψ̄ + εaq

εbq

)]

+op(N−1/4),

where for

Sys : ē = eσ 2,

AS : = e
[
2σ 2 −d2

]
.

Combining our results for the two components,

(
√

NhN(θ0,N)Af (θ(e))1
... 4√NAf (θ(e))⊥)′qN(θ(e))

= (
√

NhN(θ0,N)Af (θ(e))1
... 4√N(Gf,T (θ(e))

...G2,T ) )′qN(θ(e))

=
⎛
⎝ Af (θ(e))′1Aq( 1

hN (θ0,N )
4√N

Gf (θ(e))′Aq

0

)
⎞
⎠ ψ̄ +

⎛
⎜⎝

0(−ēιp+ 1
4√N

εaq

1
4√N

εbq

)
⎞
⎟⎠+op(N−1/4),

where it is again important to incorporate the higher-order components. We can also specify
the above convergence as:

√
N(hN(θ0,N)Af (θ(e))1

...Af (θ(e))⊥)′qN(θ(e))

=
⎛
⎝ Af (θ(e))′1Aq( 1

hN (θ0,N )
Gf (θ(e))′Aq

0

)
⎞
⎠ ψ̄ +

(
0(− 4√Nēιp+εaq

εbq

)
)

+op(1).

3. We next determine the behavior of V̂θ f (θ(e)) :

(hN(θ0,N)Af (θ(e))1
...Af (θ(e))⊥)′V̂θ f (θ(e))(hN(θ0,N)Af (θ(e))1

...Af (θ(e))⊥)

=
⎛
⎝ Af (θ(e))′1Aq( 1

hN (θ0,N )
Gf (θ(e))′Aq

0

)
⎞
⎠�

⎛
⎝ Af (θ(e))′1Af (θ(e))

0
0

⎞
⎠

′

+
(

0 0

0
(Vaq,abdB(N)

Vbq,abdB(N)

) )+op(1),
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with Vaq,abd , Vaq,abd the covariances between εaq and (ε′
a

... ε′
b

... ε′
d)′ and εbq and

(ε′
a

... ε′
b

... ε′
d)′, respectively, which results directly from the specifications in Theorem 1

(and 1* in the Appendix) and those above.

Combining with the large sample behavior of
√

N((hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′

V̂ff (θ(e)) (hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥))−1(hN(θ0,N)Af (θ(e))1

... Af (θ(e))⊥)′fN(θ(e)),
we have:

√
N(hN(θ0,N)Af (θ(e))1

...Af (θ(e))⊥)′V̂θ f (θ(e))V̂ff (θ(e))−1fN(θ(e))

= √
N(hN(θ0,N)Af (θ(e))1

... Af (θ(e))⊥)′V̂θ f (θ(e))(hN(θ0,N)Af (θ(e))1
...Af (θ(e))⊥)

× ((hN(θ0,N)Af (θ(e))1
...Af (θ(e))⊥)′V̂ff (θ(e))(hN(θ0,N)Af (θ(e))1

...Af (θ(e))⊥))−1

× (hN(θ0,N)Af (θ(e))1
...Af (θ(e))⊥)′fN(θ(e))

=
⎛
⎝ Af (θ(e))′1Aq( 1

hN (θ0,N )
Gf (θ(e))′Aq

0

)
⎞
⎠ ψ̄ +

(
0(Vaq,abdB(N)

Vbq,abdB(N)

) )

× (B(N)′VabdB(N)
)−1

⎛
⎝e2σ 2

(
ιp

0

)
+B(N)′

⎛
⎝ εa

εb
εd

⎞
⎠
⎞
⎠+op(1).

4. For the large sample behavior of D̂N(θ(e)), we next combine the behaviors of
√

N(hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′qN(θ(e)) constructed under 2 and

√
N(hN(θ0,N)

Af (θ(e))1
... Af (θ(e))⊥)′V̂θ f (θ(e))V̂ff (θ(e))−1fN(θ(e)), which is constructed under 3.Upon

combining them, the large sample behavior of 4√N(hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′D̂N

(θ(e)) results as

4√N(hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′D̂N(θ(e))

= 1
4√N

{[√
N(hN(θ0,N)Af (θ(e))1

... Af (θ(e))⊥)′qN(θ(e))

−√
N(hN(θ0,N)Af (θ(e))1

... Af (θ(e))⊥)′V̂θ f (θ(e))V̂ff (θ(e))−1fN(θ(e))

]

= 1
4√N

⎧⎨
⎩
⎛
⎝ Af (θ(e))′1Aq( 1

hN (θ0,N )
Gf (θ(e))′Aq

0

)
⎞
⎠ ψ̄ +

(
0(− 4√Nēιp+εaq

εbq

)
)

−
⎛
⎝ Af (θ(e))′1Aq( 1

hN (θ0,N )
Gf (θ(e))′Aq

0

)
⎞
⎠ ψ̄ −

(
0(Vaq,abdB(N)

Vbq,abdB(N)

) )
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× (B(N)′VabdB(N)
)−1

⎛
⎝e2σ 2

(
ιp

0

)
+B(N)′

⎛
⎝ εa

εb
εd

⎞
⎠
⎞
⎠
⎫⎬
⎭+op(1),

=
(

0
−(ιp0)ē

)
+ 1

4√N

(
0
ν

)
+op(N−1/4)

= −
(

0(ιp
0

) ) ē+op(1),

where we have rescaled, since all the higher-order terms have dropped out, and which shows
that the additional components in Theorem 1∗ compared to Theorem 1 do not affect the limit
behavior of D̂N(θ(e)) up to order N−1/4. The specification of ν is:

ν = −
((

Vaq,abdB(N)

Vbq,abdB(N)

))(
B(N)′VabdB(N)

)−1
(

ιp

0

)
e2σ 2

×
⎡
⎣( εaq

εbq

)
−
(

Vaq,abdB(N)

Vbq,abdB(N)

)(
B(N)′VabdB(N)

)−1 B(N)′
⎛
⎝ εa

εb
εd

⎞
⎠
⎤
⎦,

which is independent of the limit behavior of
√

Ngf,T (θ(e)).

We obtain the limit behavior of
√

ND̂N(θ(e))′V̂ff (θ(e))−1DN(θ(e)) from:
√

ND̂N(θ(e))′V̂ff (θ(e))−1D̂N(θ(e))

=
[

4√N(hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′D̂N(θ(e))

]′

× ((hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′V̂ff (θ(e))(hN(θ0,N)Af (θ(e))1

... Af (θ(e))⊥))−1

×
[

4√N(hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′D̂N(θ(e))

]

=
[(

ιp

0

)
ē+ 1

4√N
ν

]′ (
B(N)′VabdB(N)

)−1
[(

ιp

0

)
ē+ 1

4√N
ν

]
+op(1)

= ē2
(

ιp

0

)′ (
B(N)′VabdB(N)

)−1
(

ιp

0

)
+op(1)

and

N
3
4 D̂N(θ(e))′V̂ff (θ(e))−1fN(θ(e))

=
[

4√N(hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′D̂N(θ(e))

]′

× ((hN(θ0,N)Af (θ(e))1
... Af (θ(e))⊥)′V̂ff (θ(e))(hN(θ0,N)Af (θ(e))1

... Af (θ(e))⊥))−1

×√
N

[
(hN(θ0,N)Af (θ(e))1

... Af (θ(e))⊥)′fN(θ(e))

]

=
[(

B(N)′VabdB(N)
)− 1

2 ′
[(

ιp

0

)
ē+ 1

4√N
ν

]]′
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× (B(N)′VabdB(N)
)− 1

2

⎛
⎝e2σ 2

(
ιp

0

)
+B(N)′

⎛
⎝ εa

εb
εd

⎞
⎠
⎞
⎠+op(1)

= ē

(
ιp

0

)′ (
B(N)′VabdB(N)

)−1

⎛
⎝e2σ 2

(
ιp

0

)
+B(N)′

⎛
⎝ εa

εb
εd

⎞
⎠
⎞
⎠+op(1).

Upon combining the behavior of the above two components, we obtain the large sample
behavior of the KLM statistic to test Hp : θ(e) = 1 + e

4√N
under Assumptions 1 and 2(a),

which can for samples of (large) size N be specified as:

KLM(θ(e))

= NfN(θ(e))′V̂ff (θ(e))−1D̂N(θ(e))
[
D̂N(θ(e))′V̂ff (θ(e))−1D̂N(θ(e))

]−1

× D̂N(θ(e))′V̂ff (θ(e))−1fN(θ(e))

=
[
N

3
4 D̂N(θ(e))′V̂ff (θ(e))−1fN(θ(e))

]′ [√
ND̂N(θ(e))′V̂ff (θ(e))−1D̂N(θ(e))

]−1

[
N

3
4 D̂N(θ(e))′V̂ff (θ(e))−1fN(θ(e))

]

=
⎛
⎝e2σ 2

(
ιp

0

)
+B(N)′

⎛
⎝ εa

εb
εd

⎞
⎠
⎞
⎠

′ (
B(N)′VabdB(N)

)−1
(

ιp

0

)
ē

×
[

ē2
(

ιp

0

)′ (
B(N)′VabdB(N)

)−1
(

ιp

0

)]−1

× ē

(
ιp

0

)′ (
B(N)′VabdB(N)

)−1

⎛
⎝e2σ 2

(
ιp

0

)
+B(N)′

⎛
⎝ εa

εb
εd

⎞
⎠
⎞
⎠

= [κ +η]′ [κ +η]+op(1)

∼ χ2(δ(N),1)+op(1),

where ē cancels out, since it is a scalar, κ =
((ιp

0

)′ (
B(N)′VabdB(N)

)−1 (ιp
0

)) 1
2 e2σ 2, η =

((ιp
0

)′ (
B(N)′VabdB(N)

)−1 (ιp
0

))− 1
2 (ιp

0

)′ (
B(N)′VabdB(N)

)−1 B(N)′
⎛
⎝ εa

εb
εd

⎞
⎠ ∼ N(0,1),

and

δ(N) =(eσ)4
(

ιp

0

)′
(B(N)′VabdB(N))−1

(
ιp

0

)

on the right-hand side of the above specification depends on N, which is important to obtain
an accurate approximation because of the quartic root convergence rates.
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