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Abstract Kobayashi–Ochiai proved that the set of dominant maps from a fixed variety to a fixed variety
of general type is finite. We prove the natural extension of their finiteness theorem to Campana’s orbifold
pairs.

1. Introduction

In [KO75], Kobayashi and Ochiai proved a higher-dimensional generalization of the

finiteness theorem of De Franchis for compact Riemann surfaces. Namely, for X and Y

smooth projective varieties over C with X of general type, the set of dominant rational

maps Y X is finite. In this paper, we prove a generalization of the classical finiteness
theorem of Kobayashi–Ochiai for dominant rational maps in the setting of Campana’s

orbifold maps (Theorem 1.1). The notion of orbifold pairs (also referred to as C-pairs

[KPS22]) was introduced in [Cam04, Cam11] and has already been shown to be fruitful
in, for example, the resolution of Viehweg’s hyperbolicity conjecture [CP15].

Let k be an algebraically closed field. A variety (over k) is an integral finite type

separated scheme over k. A Q-orbifold (over k) (X,Δ) is a variety X together with a
Q-Weil divisor Δ on X such that all coefficients of Δ are in [0,1]. If Δ =

∑
i νiΔi is the
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2 F. Bartsch and A. Javanpeykar

decomposition of Δ into prime divisors, we say that m(Δi) := (1−νi)
−1 is the multiplicity

of Δi in Δ. If all multiplicities of a Q-orbifold are in Z∪{∞}, we say that (X,Δ) is a
Z-orbifold or simply an orbifold.

A Q-orbifold (X,Δ) is normal if the underlying variety X is normal. Moreover, a

Q-orbifold (X,Δ) is smooth (over k) if the underlying variety X is smooth and the support

of the orbifold divisor suppΔ is a divisor with strict normal crossings. This means that
every component of suppΔ is smooth and that étale locally around any point of X, the

divisor suppΔ is given by an equation of the form x1 · · ·xn = 0 for some n≤ dimX. (At

this point, let us note that we follow Campana and employ the term “orbifold” in the
less conventional sense of the word. Thus, a “smooth orbifold over k” does not refer

to a finite type separated smooth Deligne-Mumford algebraic stack over k with a trivial

generic stabilizer nor its coarse moduli space. What we refer to as an orbifold is nowadays
also referred to as a C-pair.)

Let (X,ΔX) be a normal Q-orbifold and (Y ,ΔY ) be a Q-orbifold such that Y is locally

factorial. In this case, we define a morphism of Q-orbifolds f : (X,ΔX)→ (Y ,ΔY ) to be

a morphism of varieties f : X → Y satisfying f(X)� suppΔY such that, for every prime
divisor E ⊆ suppΔY and every prime divisor D ⊆ suppf∗E, we have tm(D) ≥ m(E),

where t ∈Q denotes the coefficient of D in f∗E; the local factoriality of Y ensures that

E is a Cartier divisor, so that f∗E is well defined. Note that, equivalently, we can require
that t−1+νD ≥ tνE , where νD and νE are the coefficients of D in ΔX and of E in ΔY ,

respectively.

If X is a normal variety, we identify X with the orbifold (X,0). If X and Y are varieties
such that X is normal and Y is locally factorial, every morphism of varieties X → Y is

an orbifold morphism (X,0)→ (Y ,0).

A Q-orbifold (X,Δ) is proper (resp. projective) if the underlying variety X is proper

(resp. projective) over k. A smooth proper Q-orbifold (X,Δ) is of general type if KX +Δ
is a big Q-divisor, where KX denotes the canonical divisor of X. If Δ = 0, we recover

the usual notion of a smooth proper variety of general type. If the multiplicities of Δ

are all infinite, then (X,Δ) is of general type if and only if the smooth quasi-projective
variety X \Δ is of log-general type. Finally, if X is a smooth proper variety of nonnegative

Kodaira dimension, D is a strict normal crossings divisor, and m ≥ 2, then the orbifold

(X,(1− 1
m )D) is of general type if and only if X \D is of log-general type.

Theorem 1.1. If (Y ,Δ) is a smooth proper orbifold pair of general type and X is a
normal variety, then the set of separably dominant orbifold morphisms X → (Y ,Δ) is

finite.

We prove a more general result in which we consider rational maps X (Y ,Δ); see

Theorem 5.4 for a precise statement.
Theorem 1.1 (or, actually, its more precise version Theorem 5.4) generalizes Kobayashi–

Ochiai’s finiteness theorem for dominant rational maps to a projective variety of general

type in characteristic zero (take Δ to be trivial and k of characteristic zero) [KO75]. It also
implies Tsushima’s extension of Kobayashi–Ochiai’s theorem to varieties of log-general

type (take the multiplicities of Δ to be infinity and k of characteristic zero) [Tsu79].

Moreover, we also obtain the finiteness theorem of Martin-Deschamps and Menegaux for
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Kobayashi-Ochiai’s finiteness theorem for orbifold pairs of general type 3

separably dominant morphisms to a proper variety of general type (take Δ to be trivial

and k of arbitrary characteristic) [MDLM78], as well as Iwanari–Moriwaki’s extension of

Tsushima’s result to characteristic p [IM07]. Finally, we obtain a new proof of Campana’s
extension of De Franchis’s theorem for one-dimensional smooth proper orbifold pairs of

general type; see [Cam05, §3].
The theorem of Kobayashi–Ochiai can be made effective in the sense that one can give

effective upper bounds for the number of dominant maps from a fixed variety to a fixed

variety of general type; see [BD97, Hei05, NP07]. It seems reasonable to expect that one

can obtain similar effective statements in the orbifold setting.
One part of the Green–Griffiths–Lang conjecture predicts that every complex projective

hyperbolic variety is of general type. In particular, the theorem of Kobayashi–Ochiai

suggests that a similar finiteness statement for dominant maps should hold for projective

hyperbolic varieties. Such a finiteness result for projective hyperbolic varieties was, in
fact, already conjectured by Lang in the early seventies (see [Lan74]) and proven by

Noguchi [Nog92] (see also [Suz93]) in the early nineties.

We stress that, conjecturally, a complex projective variety is of general type if and only if
it is “pseudo-hyperbolic” (i.e., there is a proper closed subset Δ�X such that every entire

curve C→Xan lands in Δ). The analogous finiteness statement for dominant maps to a

pseudo-hyperbolic projective variety is currently not known. In particular, its extension
to Campana’s orbifold pairs is not known either.

As a straightforward application of Theorem 1.1, we prove the finiteness of the set

of surjective endomorphisms of an orbifold pair of general type; see Corollary 5.6 for a

precise statement.
We were first led to investigate the orbifold extension of the theorem of Kobayashi–

Ochiai in our joint work with Rousseau on rational points over number fields. We refer

the reader to [BJR, Theorem 1.1] for arithmetic applications of our orbifold extension of
Kobayashi–Ochiai’s finiteness theorem.

Our proof of Theorem 1.1 follows the general strategy of Kobayashi-Ochiai (and

Tsushima). However, these proofs crucially rely on properties of differential forms on (log-)
general type varieties (see, for example, [Tsu79, Lemma 7] for a key step in Tsushima’s

proof relying on properties of tensor powers of the sheaf of differential forms). The main

difficulty in proving Theorem 1.1 is that differentials for an orbifold pair (X,Δ) are

not well-behaved. One may even say that there is no meaningful way to define a sheaf
Ω1

(X,Δ) of orbifold differentials on X. However, in his seminal work on orbifold pairs

[Cam11, §2], Campana suggests to instead use locally free sheaves which mimick sheaves

of symmetric differentials. These sheaves are abusively denoted by SnΩp
(X,Δ) despite the

lack of existence of Ωp
(X,Δ); see Section 4 for a precise definition. The aforementioned key

step in Tsushima’s proof is then replaced by an argument involving symmetric differentials

on (X,Δ); see the proof of Proposition 5.2 for details.

1.1. Conventions

We work over an algebraically closed field k. A variety is an integral separated scheme

of finite type over k. If X and Y are varieties, we write X×Y for X×Speck Y . A point
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of a variety is a schematic point and need not be closed. If L is a line bundle, D is a
Q-divisor, and n is a natural number such that nD is a Z-divisor, we abuse notation and

write (L(D))⊗n instead of L⊗n(nD).

2. Orbifold near-maps

In this paper, we work with the more general notion of an orbifold near-map (Definition

2.4). This is a natural replacement of “rational map of varieties” in the setting of orbifold
pairs.

Definition 2.1. An open subscheme U ⊆X of a variety X is big if its complement is of

codimension at least two.

Definition 2.2. A rational map X Y of varieties is a near-map if there is a big open
U ⊆X such that U Y is a morphism.

Note that a rational map X Y is a near-map if and only if it is defined at all

codimension one points of X. For example, for every normal variety X and any proper
variety Y, every rational map X Y is a near-map.

Remark 2.3. If X and Y are varieties with X locally factorial, and f : X Y is a

near-map, we can pull back a line bundle L on Y to a line bundle L̃ on X. Indeed, while

the pullback bundle f∗L is a priori only defined on a big open of X, as X is locally
factorial, it extends uniquely to a line bundle on all of X by [Har77, Proposition II.6.5(b)

and Corollary II.6.16]. Since locally factorial schemes are normal, global sections of L also

pull back to global sections of L̃.

Definition 2.4. Let (X,ΔX) be a normal orbifold and (Y ,ΔY ) be an orbifold such that
Y is locally factorial. Then an orbifold near-map

f : (X,ΔX) (Y ,ΔY )

is a near-map f : X Y satisfying f(X)�suppΔY such that, for every prime divisor

E⊆suppΔY and every prime divisor D⊆suppf∗E, we have tm(D)≥m(E), where t ∈Q
denotes the coefficient of D in f∗E; this pullback is well defined as E is Cartier. As before,

this is equivalent to requiring t−1+νD ≥ tνE , where νD and νE are the coefficients of D

in ΔX and of E in ΔY , respectively.

Caution is advised: the composition of orbifold morphisms need not be an orbifold map.
Indeed, although the condition on the multiplicities of divisor pullbacks is stable under

composition, the image of the composition might be completely contained in the orbifold

divisor of the target. For example, consider the morphism P1 → (P1,(1/2) ·∞) given by
z 	→ z2 and the inclusion of the point ∞ into P1. While both morphisms are orbifold,

their composition is the inclusion of the point ∞ into (P1,(1/2) ·∞), which is not an

orbifold morphism. There is, however, one situation in which we can compose orbifold
morphisms. Namely, if the composition of two orbifold morphisms is dominant, then the

composition is again an orbifold morphism. Similar composition behaviour continues to

hold for orbifold near-maps.
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Lemma 2.5. Let (Y ,ΔY ) be an orbifold such that Y is locally factorial. Let X and Z be

locally factorial varieties. Let f : X (Y ,ΔY ) be an orbifold near-map, and let g : Z X

be a near-map. If the composition f ◦ g exists, is defined in codimension 1 and does not
factor over suppΔY ⊂ Y , it defines an orbifold near-map Z (Y ,ΔY ).

Proof. Let U ⊆ Z be the open subset on which the naive composition f ◦ g exists, and
let V ⊆X be the maximal open on which f is defined. Then, by assumption, U is a big

open of Z. The morphism f ◦ g : U → Y is the composition of the morphism of varieties

U → V with the orbifold morphism V → (Y ,ΔY ). As the image of the composition is

not contained in suppΔY , the composition f ◦ g : U → (Y ,ΔY ) is thus a morphism of
orbifolds. This concludes the proof.

Remark 2.6. The assumption that the composition f ◦ g exists and is defined in

codimension 1 is necessary. In fact, the weaker condition that f ◦g exists and extends to

a map defined in codimension 1 does not suffice. This was overlooked in an earlier version

of the paper. We give a counterexample. Let Y be the blowup of P2 in one point p ∈ Y ,
and let E ⊂ Y be the exceptional divisor. The inverse of the blowup defines an orbifold

near-map f : P2 (Y ,(1/2) ·E), as the pullback of E along this map is trivial. Now,

if C ⊂ P2 is any smooth curve passing through the blown up point p, the composition
C → P2 (Y ,(1/2) ·E) is not defined at p. This map extends to a morphism of varieties

C → Y . However, this composition is no longer an orbifold morphism, as the pullback of

the divisor E to C is given by [p], which does not have the required multiplicity.

We note the following special case of Lemma 2.5.

Corollary 2.7. Let X be a smooth variety, and let (Y ,ΔY ) be a smooth proper orbifold.

Let Z ⊂X be a locally closed smooth subvariety, and let f : X (Y ,ΔY ) be a dominant
orbifold near-map. If f |Z exists, is defined in codimension one and is still dominant, then

it defines an orbifold near-map f |Z : Z (Y ,ΔY ).

In Section 4 and in the proof of Theorem 1.1, it will be convenient to use the following

notion of products for orbifold pairs.

Definition 2.8. If (X,ΔX) and (Y ,ΔY ) are two orbifolds, then we define the product
orbifold by

(X,ΔX)× (Y ,ΔY ) := (X×Y ,ΔX ×Y +X×ΔY ).

If X and Y are locally factorial, the product of orbifolds defined above satisfies the

universal property of a product. More specifically, for any orbifold (T,ΔT ) and for any
two orbifold morphisms

φX : (T,ΔT )→ (X,ΔX), φY : (T,ΔT )→ (Y ,ΔY ),

there is a unique orbifold morphism φ : (T,ΔT ) → (X,ΔX)× (Y ,ΔY ) such that φX =
πX ◦ φ and φY = πY ◦ φ. Indeed, it is clear that there is a morphism φ : (T,ΔT )→X×Y ,

and we just have to check that this is indeed an orbifold morphism after equipping

X×Y with its orbifold structure. First note that the set of closed points t ∈ T satisfying

https://doi.org/10.1017/S1474748024000094 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000094


6 F. Bartsch and A. Javanpeykar

φX(t) /∈ suppΔX is a nonempty, hence dense, open subset of T. Of course, the same

holds for the condition φY (t) /∈ suppΔY , so there is a closed point t ∈ T satisfying both

conditions. Thus, the image of φ is not contained in supp(ΔX ×Y +X ×ΔY ). Now let
E ⊆ supp(ΔX × Y +X ×ΔY ) be a prime divisor. Without loss of generality, we may

assume that E =EX ×Y for some prime divisor EX ⊆X. Now let D ⊆ suppφ∗
XEX be a

prime divisor, and let r be its coefficient in φ∗
XEX . Since we know that φX is an orbifold

morphism, we have rm(D)≥m(EX). Now note that φ∗E = φ∗
XEX , so that r is also the

coefficient of D in φ∗E. Furthermore, we have m(EX) = m(E). Thus, rm(D) ≥ m(E),

and φ is an orbifold morphism, as desired.

3. Families of maps

In this section, we consider families of maps and prove that certain conditions on the maps

are either open or closed. More precisely, we show in Lemma 3.1 that a morphism landing

in a closed subscheme is a closed condition, in Lemma 3.6 that a rational function being
dominant is an open condition, and in Lemma 3.9 that the pullback of a fixed differential

form having no poles outside some fixed divisor is a closed condition.

Lemma 3.1. Let S be a scheme. Let X → S be a flat morphism whose geometric fibres
are reduced. Let Y and T be S-schemes, and let F : X×S T → Y be an S-morphism. Then,

for every closed subscheme Z ⊂ Y , the set of t in T such that Ft : X×S {t} → Y factors

over Z is closed in T.

Proof. Let T1 ⊂ T be the set of t in T such that Ft factors over Z. We consider T1 =

�t∈T1
Specκ(t) as an S -scheme. To show that T1 is closed in T, it suffices to show that T1 =

T1. We endow T1 ⊂T with the reduced closed subscheme structure. The natural morphism
T1 ⊂ T1 is dominant. Since X → S is flat, the basechange X ×S T1 → X ×S T1 is (also)

dominant. Since X×S T1 → Y factors set-theoretically through Z and X×S T1 →X×S T1

is dominant, we see that the restriction of F to X ×S T1 (also) factors set-theoretically
through Z. However, for any t ∈ T1, the scheme X×S Specκ(t) is geometrically reduced

over κ(t). In particular, Ft factors (scheme-theoretically) through Z, as required.

Definition 3.2. A rational map X Y of varieties over k is separably dominant if it is
dominant and k(Y )⊂ k(X) is separable.

Lemma 3.3. Let f : X → Y be a morphism of smooth varieties. Then the following are

equivalent:

(a) The morphism f is separably dominant.

(b) There is a closed point x ∈X such that dfx : TxX → Tf(x)Y is surjective.

(c) There is a closed point x ∈X such that f is smooth at x.

Proof. Assume (a) holds. Let Z ⊆ X be the locus of points where the rank of dfx
is less than dimY . Since K(Y ) ⊂ K(X) is a separable field extension, the arguments

used to prove [Har77, Lemma III.10.5] and [Har77, Proposition III.10.6] show that the

dimension of f(Z) is less than dimY . Thus, since f is dominant, this implies that Z 
=X.
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In particular, there is a closed point x ∈X such that the rank of dfx is equal to dimY .
Since Y is smooth, this shows that (b) holds.

Assume (b) holds. Then [Har77, Proposition III.10.4] shows that (c) holds.

Now assume that (c) holds. There is an open neighborhood U ⊆X of x such that f |U
is smooth. Smooth maps are flat, and flat maps of varieties are open. Hence, f(U) is a

nonempty open of Y. Thus, f is dominant. In particular, f maps the generic point of X

to the generic point of Y. The smoothness of f |U also implies that f is smooth at the

generic point of X. Since generically smooth morphisms are separable, we see that (a)
holds. This concludes the proof.

Lemma 3.4. Let X and Y be varieties of the same dimension. Assume that X is smooth.
Let f : X → Y be a morphism. Then the following are equivalent:

(a) The morphism f is separably dominant.

(b) There is a closed point x ∈X such that dfx : TxX → Tf(x)Y is an isomorphism.

Proof. Assume (a) holds. Let U ⊆ Y be the locus of smooth points of Y. Then U is a

dense open of Y, and the restriction of f : f−1(U)→ U is still separably dominant. Thus,
we may assume that Y is smooth. In particular, by Lemma 3.3, there is a closed point x

in X such that dfx : TxX →Tf(x)Y is surjective. Since X and Y are smooth of the same

dimension, it follows that dfx is an isomorphism.

Assume (b) holds. Then, the point f(x) is a regular point of Y. We can thus replace Y
by an open neighborhood of f(x) and replace X by the preimage of that. The assumption

on the dimensions continues to hold, so we may assume that Y is smooth. Consequently,

by Lemma 3.3, the morphism f is separably dominant.

Definition 3.5. If X, Y and T are varieties, we say that a rational map f : X×T Y

is a relative rational map (over T) if the maximal open subset U ⊆X×T on which f is

defined has nonempty intersection with every closed fiber Xt :=X×{t}. In other words,
it is a family of rational maps ft : X Y parametrized by the variety T.

Lemma 3.6. Let X and Y be varieties of the same dimension, and let T be any variety.

Let F : X×T Y be a relative rational map. Then the locus of t∈T such that Ft : X Y
is separably dominant is open in T.

Proof. Replacing X by an alteration if necessary, we may assume that X is smooth [dJ96,

Theorem 4.1]. Let U ⊆ X ×T be the maximal open subset on which F is defined. The
map F then induces a morphism of T -schemes G : U → Y ×T .

We claim that if (x,t)∈U is any closed point, the differential dG(x,t) is an isomorphism if

and only if the differential of the rational map Ft : X Y is an isomorphism at x∈X. To
see this, note that the tangent spaces of X×T and Y ×T are the products of the tangent

spaces of the factors. Furthermore, the component of dG(x,t) which maps TtT →TF (x,t)X

is the zero map, and the component which maps TtT → TtT is just the identity. Lastly,
the component of dG(x,t) mapping TxX → TFt(x)Y is just dFt. This implies the claim.

Let t ∈ T be a closed point. By Lemma 3.4, Ft is separably dominant if and only if

there is a closed point x ∈X such that the differential dFt,x is an isomorphism. By the
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previous claim, this happens if and only if there is a closed point x ∈X such that dG(x,t)

is an isomorphism.

Let V ⊆ U be the set of all points at which the differential of G is an isomorphism.

The set V is open in U, and hence open in X×T . The map X×T → T is flat, and hence
open. Thus, the projection of V to T is an open subset of T. By the previous paragraph,

this is exactly the set of t ∈ T for which Ft is separably dominant, so we are done.

Remark 3.7. The locus of (separably) dominant maps is not necessarily closed in T
in any characteristic; this seems to have been overlooked in [IM07, Proposition 6.1]. We

give two examples. First, in any characteristic, consider the map P1×P1 P1 given by

(x,t) 	→ xt. Its indeterminacy locus consists of the two points (0,∞) and (∞,0), so that
this is indeed a relative rational map. If we fix any value t ∈ P1 \ {0,∞}, the resulting

rational map P1 P1 is an isomorphism, and thus separably dominant. For t ∈ {0,∞},
the resulting map is constant. Thus, the locus where the map is separably dominant is
P1 \{0,∞}⊆ P1; this is open but not closed. Next, we give an example pointed out by the

referee when k has characteristic two. Namely, let C be the zero locus of x2−yz in P2
k. Note

that C is a strange curve [Har77, Theorem IV.3.9]. For q ∈ P2(k), let πq : P2 \{q} → P1

be the projection away from the point q. Let F : C×P2 P1 be the rational map defined
by F (c,q) = πq(c). Note that, for every q ∈ P2, the rational map F (−,q) : C P1 extends

to a surjective morphism. This morphism has the following properties.

(i) For q ∈ C(k), the morphism F (−,q) has degree one, and is thus an isomorphism

from C to P1.

(ii) For q ∈ P2(k) \ (C ∪{(1 : 0 : 0)}), the surjective morphism F (−,q) is separable of
degree two.

(iii) For q = (1 : 0 : 0), the surjective morphism F (−,q) is not separable.
Thus, T = P2 parametrizes dominant maps from C to P1, but only over the non-closed

open subset P2 \{(1 : 0 : 0)} are the maps separable.

The following statement is a purely algebraic result which we will use in the proof of

Lemma 3.9 below. Recall that if M is an R-module, and f ∈R is an element, the element

f is called M -regular if the morphism M →M , m 	→ fm is injective. In the special case

that M = S is an R-algebra, this is equivalent to f being a nonzerodivisor in S. If S is
additionally assumed to be reduced and noetherian, this in turn is equivalent to asking

that V(f) ⊆ SpecS has codimension ≥ 1 (where the empty set is considered to have

codimension ∞).

Lemma 3.8. Let R be a noetherian ring, let S be a noetherian R-algebra and let f ∈ S.

Let M be a finitely generated S-module. Assume that M is flat over R, and assume that

for every maximal ideal m⊆ S, the element f is M/(m∩R)M -regular. Then f is M-regular
and M/fM is flat over R.

Proof. See [Mat80, §20F Corollary 1].

The following lemma and proof are essentially due to Tsushima [Tsu79, Lemma 5].

Before starting the proof, we briefly discuss extending relative rational maps. Let G : X×
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Kobayashi-Ochiai’s finiteness theorem for orbifold pairs of general type 9

T Y be a relative rational map with X, T normal varieties, and Y a proper variety.
Then, by properness of Y and normality of X × T , the rational map G : X × T Y

extends to a morphism U → Y on a maximal open set U ⊆ X ×T with complement of

codimension at least 2. However, for any given closed point t ∈ T , it might still happen
that Ut := U ∩Xt ⊆X has a complement of codimension 1. While the restriction of G to

Ut will extend to a rational map X Y defined in codimension 1, this extension will in

general not be compatible with G : X×T Y .

Lemma 3.9. Let X and Y be smooth projective varieties of the same dimension n, and

let T be a variety. Let G : X×T Y be a relative rational map over T. Let DX be an
effective divisor on X, and let DY be a divisor on Y. Let m≥ 0. Let ω ∈ Γ(Y ,ω⊗m

Y (DY )).

Assume that for every closed point t ∈ T , the rational map Gt : X Y is separably

dominant. Then, the set Tω of t∈ T such that G∗
tω lies in Γ(X,ω⊗m

X (DX)) is closed in T.

Proof. The case ω = 0 is clear, so suppose ω 
= 0. By replacing T with an alteration if

necessary, we may assume that T is smooth.
Consider the pullback form G∗ω, and note that it defines a rational section of the

vector bundle (Ωn
X×T )

⊗m. For any closed point t∈ T , we pullback G∗ω along the inclusion

ιt : X :=X×{t} ⊆X×T to get the form ι∗tG
∗ω =G∗

tω. Let E and F be the divisors of
zeroes and poles of G∗ω, respectively. For t in T, we define Et :=E∩Xt and Ft := F ∩Xt.

Since Gt is separably dominant and ω 
= 0, we have that, for every t in T, Et and Ft are

(possibly trivial) effective divisors in Xt. Note that whenever Gt is defined in codimension
one, we have that Et (resp. Ft) is the divisor of zeroes (resp. poles) of G∗

tω. However, if

Gt is not defined at all points of codimension 1, it may happen that Et and Ft are strictly

bigger than the divisor of zeroes and poles, respectively.

We now prove the result by induction on dim(T ). The case dim(T ) = 0 is clear. Consider
the set S of all t in T such that dim(Et∩Ft) =n−1. By semicontinuity of fiber dimension,

S is closed in T (since dim(Et ∩Ft) > n− 1 cannot occur). The condition t ∈ S implies

that Gt cannot be defined in codimension 1. Otherwise, the form G∗
tω would have to have

both a pole and a zero along the codimension 1 subset Et ∩Ft, which is absurd. Since

G is defined at all points of codimension 1, we see dim(S) < dim(T ). By the inductive

hypothesis, it follows that Sω = S∩Tω is closed.
We now show that F → T is flat using Lemma 3.8. First, note that it is locally cut out

by the vanishing of a single equation given by the denominator of G∗ω. Furthermore, the

morphism X×T → T is flat and, for every closed point t in T, the scheme-theoretic fiber

Ft of F → T is a divisor of Xt. Thus, we conclude that F → T is flat by Lemma 3.8.
In particular, there is a morphism T →Hilb(X) representing the family (Ft)t∈T , where

Hilb(X) is the Hilbert scheme of X over k. Now, as there are only finitely many effective

divisors with the property of being ≤DX , the set of such divisors form a (finite) closed
subscheme of Hilb(X). It follows that Ft ≤DX is a closed condition on t.

For t in T, the condition Ft ≤ DX implies that G∗
tω ∈ Γ(X,ω⊗m

X (DX)). Moreover,

outside the set S (defined above), the condition G∗
tω ∈ Γ(X,ω⊗m

X (DX)) is equivalent to
Ft ≤DX . Thus, a point t ∈ T lies in Tω if and only if we have t ∈ S∩Tω or Ft ≤DX . As

S ∩Tω is closed in T and the set of t in T with Ft ≤DX is closed in T, this concludes

the proof.
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4. Symmetric differentials on orbifolds

In this section, we collect some statements regarding the sheaf of symmetric differentials
on an orbifold. We start by recalling their definition, first given by Campana in [Cam11,

Section 2.5].

Definition 4.1. Let (X,Δ) be a smooth orbifold. Let n,p ≥ 0 be natural numbers.
The sheaf of symmetric differentials, written SnΩp

(X,Δ), is the locally free subsheaf of

SymnΩp
X(log�Δ�) which is étale-locally generated by the following elements:

x�k/m�
n⊗

i=1

dxJi

xJi

.

Here, the following notation was used:

• x1,...,xdim(X) are a set of local coordinates which exhibit Δ in normal crossing
form.

• The Ji are subsets of {1,..., dim(X)} of size p.
• dxJi

:=
∧

j∈Ji
dxj and xJi

:=
∏

j∈Ji
xj

• k is a tuple of dim(X) integers, where the j -th entry counts the number of
occurrences of j in the Ji.

• m is a tuple of dim(X) integers, where the j -th entry is the multiplicity of the
coordinate xj in Δ.

• x�k/m� :=
∏dim(X)

j=1 x
�kj/mj�
j

Definition 4.2. Let (X,ΔX) be a normal orbifold. Choose a big open U ⊆X such that

U is smooth and ΔU := ΔX ∩U has strict normal crossings. We define SnΩp
(X,ΔX) :=

ι∗S
nΩp

(U,ΔU ), where ι : U →X is the inclusion.

For smooth proper varieties X without any orbifold structure, the sheaves SnΩp
(X,0)

defined this way coincide with the usual symmetric powers of the module of differentials
SymnΩp

X . More generally, if (X,Δ) is an orbifold where all multiplicities in Δ are equal

to 1 or ∞, the sheaves SnΩp
(X,Δ) defined above coincide with the symmetric powers of the

module of log differentials SymnΩp
X(logΔ). However, in general, the sheaves SnΩp

(X,Δ)

are not the symmetric powers of any coherent sheaf (so that calling them symmetric
differentials is a significant abuse of language). The main use of SnΩp for us comes from

the fact that these sheaves behave nicely when they are pulled back by orbifold morphisms.

Lemma 4.3. If f : (X,ΔX)→ (Y ,ΔY ) is a morphism of smooth orbifolds and n,p ≥ 0,
then pullback of differential forms induces a morphism f∗SnΩp

(Y ,ΔY ) → SnΩp
(X,ΔX).

Proof. Campana shows this when k = C using computations in the analytic topology;

see [Cam11, Proposition 2.11]. His arguments adapt to positive characteristic, as we show

now.
We have a morphism of sheaves

f∗SymnΩp
Y (log�ΔY �)→ SymnΩp

X(supp(ΔX +f∗ΔY )).
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As f∗SnΩp
(Y ,ΔY ) (resp. S

nΩp
(X,ΔX)) is a subsheaf of the source (resp. the target) of this

morphism, we may argue étale-locally around a fixed point η. As the sheaves involved

are locally free, we may and do assume that η ∈X is of codimension 1 (except for in the

trivial situation in which X is zero-dimensional).
Locally around η, the sheaf f∗SnΩp

(Y ,ΔY ) is generated by the pullbacks of the local

generators of SnΩp
(Y ,ΔY ) around f(η) (see Definition 4.1). Let ω ∈ SnΩp

(Y ,ΔY ) be such a

generator. Let Ỹ → Y be a connected étale neighborhood of f(η) such that

(i) Ỹ is an étale open of Ad with d= dimY ,

(ii) ΔY is in normal crossing form (i.e., ΔY is given by the pullback of x1 ·. . . ·x� = 0
in Ad for some 	≥ 0),

(iii) f(η) specializes to the origin of Ad, and

(iv) ω has the form described in Definition 4.1.

There is a connected étale neighborhood X̃ → X of η such that f |
˜X factors over Ỹ

and such that ΔX is in normal crossings form. Since the induced morphism f : (X̃,X̃×X

ΔX)→ (Ỹ ,Ỹ ×Y ΔY ) is (still) orbifold, we may replace (X,ΔX) by (X̃,X̃ ×X ΔX) and
(Y ,ΔY ) by (Ỹ ,Ỹ ×Y ΔY ).

As Y is an étale open of Ad, we obtain a mapX→Ad given by d maps f1,...,fd : X→A1.

For i = 1, . . . ,d, we let mi denote the multiplicity of the (pullback of the) prime divisor
{yi = 0} in ΔY . Since f(X) is not contained in ΔY , we know that whenever mi > 1,

the function fi is not identically zero. Viewing fi as an element of the DVR OX,η, we

decompose it as fi = tνigi with t a uniformizer and gi(η) 
= 0. Since f is an orbifold

morphism, for any i with νi 
= 0, we have νi ≥ �mi/mη�, where mη is the multiplicity of
the divisor η in ΔX .

Let J ⊆ {1,...,d} be a p-element subset, and consider the rational p-form dyJ/yJ on Y.

If none of the functions fi with i ∈ J vanish along η, the pullback f∗(dyJ/yJ ) has no pole
at η. If such an i ∈ J exists, then f∗(dyJ/yJ) has a pole of order at most 1. Since we can

always write f∗(dyJ/yJ) = (dt/t)∧u+v, where u is a (p−1)-form with no pole at η and

v a p-form with no pole at η, the pullback of ω is given by

f∗ω =
d∏

i=1

(fi)
�ki/mi�

n⊗
α=1

(
(
dt

t
∧uα)+vα

)
.

Here, as before, uα and vα are forms with no pole at η. We can write the tensor product
of sums as a sum of tensor products. When doing this, the order at η of each summand

occuring in such a rewriting is at least(
d∑

i=1

⌈
ki
mi

⌉
νi

)
−kt,

where kt counts the number of ((dt/t)∧uα)-factors occuring in that summand (as opposed

to vα-factors). Note that kt ≤
∑

ki, where the sum runs over those i for which νi ≥ 0.

Using our estimate νi ≥ �mi/mη� from before, we obtain that the order at η of each
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summand is at least ⎛⎜⎝ d∑
i=1
νi �=0

⌈
ki
mη

⌉⎞⎟⎠−kt ≥−kt+

⌈
kt
mη

⌉
,

so the pole at η is at most of the order we allow for elements of SnΩp
(X,ΔX). Hence,

f∗ω ∈ SnΩp
(X,ΔX), which concludes the proof.

If X is a smooth variety of dimension n, the sheaf S1Ωn
(X,0) is just the canonical sheaf

ωX . Thus, one might guess that for a smooth orbifold (X,Δ), the sheaf S1Ωn
(X,Δ) should

correspond to a line bundle related to the Q-divisorKX+Δ. Of course, naively formulated

like this, this guess does not really make sense, since KX +Δ is not a Z-divisor and hence

does not correspond to any line bundle. However, as we show now, the intuition can be
saved. (Recall our convention that, for L a line bundle, D a Q-divisor, and n a natural

number such that nD is a Z-divisor, we write (L(D))⊗n instead of L⊗n(nD).)

Lemma 4.4. Let (X,Δ) be a smooth orbifold of dimension n, and let N be a natural
number such that NΔ is a Z-divisor. Then SNΩn

(X,Δ)
∼= ωX(Δ)⊗N := ω⊗N

X (NΔ).

Proof. For the sheaf of log-differentials, we have Ωn
X(log�Δ�) = ωX(�Δ�) (see [Iit82,

§11.1]). It follows that SymN Ωn
X(log�Δ�) = SymN ωX(�Δ�). Since symmetric powers of

line bundles agree with tensor powers, it follows that SymN ωX(�Δ�)=ωX(�Δ�)⊗N . Thus,
SNΩn

(X,Δ) is by construction a locally free subsheaf of ωX(�Δ�)⊗N . More precisely, we

see that locally around a point p ∈X, it is the subsheaf generated by the single element

x
N/m1

1 ...xN/mn
n

N⊗
l=1

dx1∧dx2...∧dxn

x1x2...xn
,

where x1,...,xn are a set of normal crossing coordinates for Δ, and mi denotes the
multiplicity of the coordinate xi in the orbifold divisor. The subsheaf generated by this

element is equal to ωX(Δ)⊗N in some neighborhood of p. The claim follows since p was

arbitrary.

Corollary 4.5. Let f : (X,ΔX) (Y ,ΔY ) be a near-map of orbifolds with n := dimX =

dimY . Assume that X is smooth and that (Y ,ΔY ) is smooth. Let N be a natural number
such that NΔX and NΔY are Z-divisors. Then there is an induced pullback morphism

f∗ωY (ΔY )
⊗N → ωX(ΔX)⊗N of locally free sheaves on X.

Proof. By Lemma 4.4, we have ωY (ΔY )
⊗N = SNΩn

(Y ,ΔY ). Similarly, as n = dimX =

dimY , we have ωX(ΔX)⊗N = SNΩn
(X,ΔX), as this equality holds over a big open and both

sides are line bundles. By Lemma 4.3, we get a morphism f∗SNΩn
(Y ,ΔY ) → SNΩn

(U,ΔX∩U)

of sheaves on U, where U ⊆ X denotes the intersection of the domain of definition of f
with the snc locus of (X,ΔX). Since U ⊆X is a big open, by Remark 2.3, the line bundle

f∗ωY (ΔY )
⊗N on U extends to a line bundle on X. Furthermore, as the morphism of

locally free sheaves extends as well by Hartogs, this concludes the proof.
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If X and T are smooth varieties, and πX : X×T →X and πT : X×T → T denote the
canonical projections, we get a direct sum composition for the Kähler differentials:

Ω1
X×T

∼= π∗
XΩ1

X ⊕π∗
TΩ

1
T .

Passing to exterior powers, and noting that taking exterior powers commutes with taking

pullbacks, we retain such a direct sum decomposition, although it gets slightly more
involved:

Ωm
X×T

∼=
m⊕
i=0

π∗
XΩi

X ⊗π∗
TΩ

m−i
T .

Lastly, if A and B are modules over any commutative ring, we have the following direct

sum decomposition for the symmetric powers:

Symn(A⊕B)∼=
n⊕

i=0

(SymiA⊗Symn−iB).

By combining the two previous lines, we obtain that Symnπ∗
XΩm

X is a direct summand of

SymnΩm
X×T . Hence, we get an idempotent endomorphism of SymnΩm

X×T which projects
an element into that summand. Furthermore, if t ∈ T is any closed point and ιt : X =

X×{t}⊆X×T is the inclusion, then the pullback map ι∗t Sym
nΩm

X×T → SymnΩm
X factors

over that projection. We now prove the analogous result for orbifolds (see Definition 2.8
for the notion of a product of orbifold pairs).

Lemma 4.6. Let (X,ΔX) and (T,ΔT ) be normal orbifolds. Let πX denote the canonical

projection X×T →X. Then for all natural numbers N and m, the sheaf π∗
XSNΩm

(X,ΔX)

is a direct summand of SNΩm
(X,ΔX)×(T,ΔT ).

Proof. First assume that the result is true in the case of the smooth orbifolds. LetXo ⊆X

and T o ⊆ T denote the snc loci, and note that these are big opens. Then, since forming the

pushforward commutes with forming direct sums, we see that ι(Xo×T o)∗π
∗
XoSNΩm

(Xo,ΔXo )

is a direct summand of SNΩm
(X,ΔX)×(T,ΔT ). Since ι(Xo×T o)∗π

∗
Xo = π∗

XιXo∗ for locally free

sheaves, the desired result follows.
By the above, we may assume that (X,ΔX) and (T,ΔT ) are smooth. Assume first that

ΔX and ΔT are Z-divisors (i.e., that all multiplicities are either 1 or ∞). In this case,

we have SNΩm
(X,ΔX) = SymN Ωm

X(logΔX). The latter is a genuine symmetric power of an

exterior power of Ω1
X(logΔX). Notice that the decomposition

Ω1
X×T (log(ΔX ×T +X×ΔT )) = π∗

XΩ1
X(logΔX)⊕π∗

TΩ
1
T (logΔT )

is still valid. Thus, the discussion of the previous paragraph applies, proving the result in

this case.

Finally, we treat the general case in which ΔX and ΔT are not Z-divisors. By definition,
the sheaf SNΩn

(X,ΔX) is a subsheaf of

SymN Ωm
X(log�ΔX�),
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and, similarly, the sheaf SNΩm
(X,ΔX)×(T,ΔT ) is a subsheaf of

SymN Ωm
X×T (log�ΔX ×T +X×ΔT �).

By the previous paragraph, we know that the morphism

π∗
X SymN Ωm

X(log�ΔX�)→ SymN Ωm
X×T (log�ΔX ×T +X×ΔT �)

is injective and has a retract. Since the projection map πX is orbifold, it follows from

Lemma 4.3 that the above injection sends the subsheaf π∗
XSNΩm

(X,ΔX) to the subsheaf

SNΩm
(X,ΔX)×(T,ΔT ). To prove the claim, it thus suffices to show that the retraction also

respects these subsheaves. This can be checked locally, and it suffices to consider the

generators. This can be done very explicitly.
Indeed, let (x,t) ∈ X × T be any closed point, let dx1,...,dxn be local coordinates

for X around x which exhibit ΔX in normal crossings form, and let dt1,...,dtr be

local coordinates for T around t which exhibit ΔT in normal crossings form. Then
dx1,...,dxn,dt1,...,dtr are local coordinates for X × T exhibiting its orbifold divisor in

normal crossings form. Let ω be a local generator of SNΩm
(X,ΔX)×(T,ΔT ) around (x,t). If

ω contains any factors containing a dti, the pullback ι∗tω will be identically zero. Thus, it

remains to consider the case where the only differentials appearing in ω are products of
dxi terms. Pulling back such a generator of SNΩm

(X,ΔX)×(T,ΔT ) along ιt yields a (formally

identical) generator of SNΩm
(X,ΔX). This finishes the proof.

Lemma 4.7. Let (X,ΔX) be a normal orbifold, and let (T,ΔT ) be a smooth orbifold.

For a closed point t ∈ T \ΔT , write ιt : X = X ×{t} ⊆ X × T . Then, for any natural

numbers m and N, the pullback map ι∗tS
NΩm

(X,ΔX)×(T,ΔT ) → SNΩm
(X,ΔX) factors over the

projection to ι∗tπ
∗
XSNΩm

(X,ΔX).

Proof. We first show that the pullback map considered in the statement is well defined.

To do so, let Xo ⊆ X be the snc locus of (X,ΔX), and note that Xo is a big open of
X. The morphism ιt : X →X×T induces an orbifold morphism Xo →Xo×T (i.e., ιt is

orbifold over the snc locus). In particular, by Lemma 4.3, there is an induced morphism

ι∗tS
NΩm

(Xo,ΔXo )×(T,ΔT ) → SNΩm
(Xo,ΔXo ). Since the sheaves involved are reflexive, this

pullback map extends to a pullback map ι∗tS
NΩm

(X,ΔX)×(T,ΔT ) → SNΩm
(X,ΔX).

To see that the pullback map factors as claimed, note that πX ◦ ιt = idX is the identity
morphism, so that, in fact, ι∗tπ

∗
XSNΩm

(X,ΔX) = SNΩm
(X,ΔX). This concludes the proof.

5. Kobayashi–Ochiai’s theorem for orbifold pairs

In this section, we prove the finiteness theorem for dominant maps into a smooth orbifold
of general type (Y ,ΔY ). The first step of the proof is to show that given a dominant

morphism f : (X,ΔX) → (Y ,ΔY ), we can recover f from its induced map on global

sections of the canonical bundles ωY (ΔY )
⊗N (Y )→ ωX(ΔX)⊗N (X) for sufficiently large

N, where N only depends on (X,ΔX) and (Y ,ΔY ) but not on f. This allows us to shift

the focus from studying dominant morphisms to studying linear maps ωY (ΔY )
⊗N (Y )→

ωX(ΔX)⊗N (X) satisfying certain conditions.
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To state the next lemma, we introduce some terminology. We call a line bundle very big
if the rational map to projective space induced by its global sections is birational onto its

image. Note that every big line bundle has a tensor power which is very big. Of course, a

very ample line bundle is very big. Also, if V is a vector space, the projective space P(V )
parametrizes subspaces of codimension 1.

Lemma 5.1. Let X and Y be projective varieties. Assume that X is locally factorial. Let

LX and LY be line bundles on X and Y, respectively. Assume that LX is very big and
that LY is very ample. Consider the following set:

S = {(f,φ) | f : X Y dominant and φ : f∗LY →LX injective}.

If (f,φ) and (g,ψ) have the same image under the composed map of sets

S →Hom(LY (Y ),LX(X))\{0}→ {rational maps from P(LX(X)) to P(LY (Y ))},

then f = g.

Proof. Before starting the proof, we note that the set S is well defined by Remark 2.3.

Let (f,φ) and (g,ψ) be elements of S which induce the same rational map

γ : P(LX(X)) P(LY (Y )).

By our assumptions on the line bundles, the space P(LX(X)) contains a birational

copy X of X and P(LY (Y )) contains Y. The following square commutes whenever the

compositions are defined:

X Y

P(LX(X)) P(LY (Y )).
γ

Here, the upper horizontal arrow can be either f or g. Note that the indeterminacy locus

of γ is a linear subspace and that X is not contained in any proper linear subspace of

P(LX(X)). Hence, γ is defined on some open of X, and the commutativity of the diagram

above implies that γ sends X to Y. So we get a rational map X Y . The composition
X X Y is equal to both f and g whenever it is defined, showing that f = g on a

dense open subset. As Y is separated, this implies that f = g everywhere.

We now have all the prerequisite results needed for our proof of the announced theorem.
We follow the general proof strategy of [Tsu79].

Proposition 5.2. Let (X,ΔX) and (Y ,ΔY ) be proper orbifolds. Assume that X is smooth

and that (Y ,ΔY ) is smooth and of general type. If dimX = dimY , then there are only
finitely many separably dominant near-maps (X,ΔX) (Y ,ΔY ).

Proof. If there are no separably dominant near-maps from (X,ΔX) to (Y ,ΔY ), then
we are done. Otherwise, let f : (X,ΔX) (Y ,ΔY ) be a separably dominant near-map.

By Corollary 4.5, for N ∈ N sufficiently divisible, we get an induced morphism of line

bundles f∗(ωY (ΔY ))
⊗N → ωX(ΔX)⊗N . Since f is separably dominant, the morphism of
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line bundles f∗(ωY (ΔY ))
⊗N → ωX(ΔX)⊗N is non-zero, and hence injective. This implies

that ωX(ΔX)⊗N is a big line bundle. Increasing N if necessary, we can thus assume that

all of the following hold:

• ωX(ΔX)⊗N and ωY (ΔY )
⊗N are well-defined line bundles.

• The line bundle ωX(ΔX)⊗N is very big.
• There is an effective divisor C ⊆ Y such that (ωY (ΔY )

⊗N )(−C) is very ample.

We fix the integer N and the effective divisor C ⊆ Y from the last bullet point. We
define VX := Γ(X,ωX(ΔX)⊗N ) and VY := Γ(Y ,ωY (ΔY )

⊗N (−C)). Note that we obtain a

closed immersion ιY : Y → P(VY ) and a rational map ιX : X P(VX) which is birational

onto its scheme-theoretic image X. For every dominant near-map f, we get an induced
vector space morphism f∗ : VY → VX . By Lemma 5.1, we can recover f from f∗ and even

from P(f∗). Thus, we are led to studying linear maps VY → VX .

Let H := Hom(VY ,VX)∨, with ∨ denoting the dual. Composition of functions is a

canonical bilinear map V ∨
X ×Hom(VY ,VX)→ V ∨

Y , and after identifying Hom(VY ,VX) with
its double dual, we get a bilinear morphism V ∨

X ×H∨ → V ∨
Y . It induces a relative (over

P(H)) rational map F : P(VX)×P(H) P(VY ). For every closed point h ∈ P(H), we

denote by Fh the rational map P(VX) = P(VX)×{h} P(VY ).
To prove the proposition, we are first going to construct a “small” locally closed subset

H3 of P(H) such that the set of separably dominant near-maps (still) injects into H3 via

f 	→ P(f∗).
Let H1 ⊆ P(H) be the subset for which Fh maps X ⊆ P(VX) to Y ⊆ P(VY ). To see

that this is a meaningful condition, note that the indeterminacy locus of Fh is a linear

subspace and that X ⊆ P(VX) is contained in no proper linear subspace. Let ηX be the

generic point of the scheme X. Since H1 is the set of h in P(H) such that the morphism

{ηX}×P(H)→ P(VY )

factors over Y, it follows from Lemma 3.1 that it is closed in P(H).

Note that we obtain a relative rational map X×H1 Y . Let H2 ⊂H1 be the subset

of elements of H1 for which the induced rational map X Y is separably dominant. By
Lemma 3.6, the set H2 is open in H1.

Let H3 ⊂ H2 be the subset of rational maps g : X Y such that, for every global

section ω of ωY (ΔY )
⊗N , the pullback (g ◦ ιX)∗ω is a global section of ωX(ΔX)⊗N . By

applying Lemma 3.9 to every single ω and taking the intersection over all closed sets
obtained this way, we see that H3 is closed in H2. Hence, H3 is locally closed in P(H),

and we give it the reduced scheme structure.

If f : (X,ΔX) (Y ,ΔY ) is a separably dominant orbifold near-map, then the induced
map P(f∗) lies in H3. As we mentioned before, by Lemma 5.1, different separably

dominant orbifold near-maps induce different elements of H3. Therefore, to prove the

proposition, it suffices to show that H3 is finite. To do so, let H4 be an irreducible
component of H3, so that H4 is a quasi-projective variety. Since H3 is quasi-projective,

it has only finitely many irreducible components. Therefore, to conclude the proof, it

suffices to show that H4 is a point.
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Let H4 be the closure of H4 in P(H), and note that H4 is a projective variety. Since
H1 is closed in P(H), we see that H4 is contained in H1. In particular, we can interpret

every closed point of H4 as a (possibly non-dominant) rational map X Y . Let H̃4 be

a smooth projective variety, and let H̃4 → H4 be an alteration such that the preimage

of H4 \H4 in H̃4 is a strict normal crossings divisor DH (this exists by [dJ96, Theorem

4.1]). We let G : X × H̃4 Y be the relative rational map induced by the above map
X×H1 Y .

By Lemma 4.6, the sheaf SNΩn
(X,ΔX)×(˜H4,DH)

has π∗
XSNΩn

(X,ΔX) as a direct summand.

We denote by

π : SNΩn
(X,ΔX)×(˜H4,DH)

→ π∗
XSNΩn

(X,ΔX)

the projection. We now define the morphism Ψ: H̃4 → Hom(VY ,VX) = H∨ by Ψ(h) =

[ω 	→ ι∗hπ(G
∗ω)], where ιh : X → X × H̃4 is the inclusion map x 	→ (x,h). We now show

that Ψ is a well-defined morphism of varieties.

To do so, fix a closed point h ∈ H̃4 and ω ∈ VY . Then ω ∈ Γ(Y ,ωY (ΔY )
⊗N ). We

now analyze the possible poles the pulled back form G∗ω on X × H̃4 can have. First,

we note that all occurring poles of G∗ω are logarithmic, as ω has only logarithmic

poles. Furthermore, on the open X × (H̃4 \DH) (which lies over X ×H3), the form

G∗ω can only have poles along �ΔX�× H̃4, and these poles have orders bounded by the

coefficients of NΔX by definition of H3. It follows that G∗ω defines a global section of

SNΩn
(X,ΔX)×(˜H4,DH)

. Consequently, π(G∗ω) is a global section of π∗
XSNΩn

(X,ΔX). Global

sections of π∗
XSNΩn

(X,ΔX) only have poles along subsets of �ΔX�× H̃4, with these poles
being logarithmic and of order bounded by the coefficients of NΔX . In particular, they

can be pulled back along ιh, and then give global sections of SNΩn
(X,ΔX) = ωX(ΔX)⊗N .

In particular, we have ι∗hπ(G
∗ω) ∈ VX , as required.

On the open subset H̃4\DH , which consists of the elements lying overH4, the morphism

Ψ has the simpler description Ψ(h) = ι∗hG
∗ω. The two descriptions agree by Lemma 4.7.

As elements of H4 represent dominant rational maps X Y , we could even slightly abuse

notation and write Ψ(h) = h∗ω.

Let h1 and h2 be elements of H̃4 lying over H4 such that Ψ(h1) = Ψ(h2). Since

Ψ(h1) : VY → VX is the injective map ω 	→ (G◦ιh1
)∗ω and Ψ(h2) : VY → VX is the injective

map ω 	→ (G ◦ ιh2
)∗ω, it follows from Lemma 5.1 that the dominant near-maps G ◦ ιh1

and G◦ ιh2
are equal. This implies that h1 and h2 lie over the same element of H4 (via

the alteration H̃4 →H4).

However, since H̃4 is a projective variety and H∨ is affine, the morphism Ψ is constant.
Since Ψ separates elements lying over distinct points of H4 (see previous paragraph), we

conclude that H4 is a singleton. This concludes the proof.

As we show now, we may drop the properness and smoothness assumptions on X.

Corollary 5.3. Let (X,ΔX) and (Y ,ΔY ) be normal orbifolds with (Y ,ΔY ) a smooth

proper orbifold of general type. If dimX = dimY , then there are only finitely many

separably dominant near-maps (X,ΔX) (Y ,ΔY ).
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Proof. Let U ⊆X \ suppΔX be a smooth open subset. Let V → U be an alteration with

a smooth compactification V ⊆ V (see [dJ96, Theorem 4.1]). Shrinking U if necessary,

we may assume that V → U is quasi-finite and dominant. Then, by Lemma 2.5, the set
of separably dominant near-maps (X,ΔX) (Y ,ΔY ) injects into the set of separably

dominant near-maps V (Y ,ΔY ). Shrinking V if necessary, we may assume that the

boundary V \V is a (reduced) divisor D ⊂ V . Then, the set of separably dominant near-
maps V (Y ,ΔY ) equals the set of separably dominant near-maps (V ,D) (Y ,ΔY ).

The latter is finite by Proposition 5.2.

Corollary 5.3 implies that the statement of Theorem 1.1 holds, under the additional

assumption that dimX = dimY . To prove Theorem 1.1, we use a cutting argument.

Theorem 5.4. Let (X,ΔX) and (Y ,ΔY ) be normal orbifolds with (Y ,ΔY ) smooth, proper
and of general type. Then there are only finitely many separably dominant near-maps

(X,ΔX) (Y ,ΔY ).

Proof. We may assume that the base field k is uncountable. As before, we may replace

(X,ΔX) by a dense open subset of X \suppΔX , so we may assume that X is smooth and
quasi-projective and that ΔX is empty.

We argue by contradiction. Assume that (fi : X (Y ,ΔY ))i∈N is an infinite sequence of

pairwise distinct separably dominant near-maps. If dim(X)> dim(Y ), we will construct
an (dim(X)−1)-dimensional subvariety Z ⊂X which still admits infinitely many pairwise

distinct separably dominant orbifold near-maps to (Y ,ΔY ). By iterating this process, we

obtain a contradiction to Corollary 5.3. As the case dim(Y ) = 0 is trivial, we may assume
dim(X)≥ 2.

Let X ⊆ Pn be an immersion, and let Z ⊂X be a very general hyperplane section. Then

Z is a smooth variety. Since Z is not contained in the indeterminacy locus of any fi, all

of the fi induce rational maps fi|Z : Z Y . Moreover, being very general, Z does not
contain any irreducible component of the indeterminacy locus of any fi. This implies that

all fi|Z : Z Y are defined in codimension 1. For fixed i,j, the locus where fi and fj
are equal is contained in a proper closed subset of X, so that fi and fj are distinct after
restricting to a generic hyperplane section. Thus, the near-maps (fi|Z)i∈N are pairwise

distinct. By the implication (a) =⇒ (b) of Lemma 3.3, for every i ∈ N, there is a point

x ∈ X such that dfi,x : TxX → Tfi(x)Y is surjective. As this is an open condition on x,
we see that the map on tangent spaces is surjective at a general point of X. Moreover, if

V ⊂TxX is a generic subspace of codimension 1, the composed map V →Tfi(x)Y will still

be surjective, as dimTxX = dimX > dimY = dimTfi(x)Y . Consequently, we see that the

restricted maps fi|Z : Z Y still have a surjective differential map at some point. Hence,
they are separably dominant by the implication (b) =⇒ (a) of Lemma 3.3. By Corollary

2.7, the separably dominant near-maps fi|Z : Z (Y ,ΔY ) are orbifold near-maps. This

concludes the proof.

Remark 5.5. Theorem 5.4 also holds if we allow (X,ΔX) and (Y ,ΔY ) to be Q-orbifolds

(but still requiring (Y ,ΔY ) to be smooth, proper and of general type). Indeed, as before,

we immediately reduce to the case that X is a smooth variety. Writing ΔY =
∑

(1− 1
mi

)Di,
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we can define Δ̃Y =
∑

(1− 1
�mi� )D. Then every morphismX → (Y ,ΔY ) is also a morphism

X → (Y ,Δ̃Y ); hence, we are reduced to the case of Z-orbifolds.

As a straightforward application of our result, we can show that every surjective

endomorphism of a general type orbifold is an automorphism.

Corollary 5.6. If (X,Δ) is a smooth proper orbifold pair of general type, then every

separably dominant morphism (X,Δ)→ (X,Δ) is an automorphism of finite order, and

the group of automorphisms of (X,Δ) is finite.

Proof. Let f : (X,Δ)→ (X,Δ) be a separably dominant orbifold morphism. Let fn be

the n-fold composition of f. Since every fn is a separably dominant orbifold morphism, by

the finiteness of the set of separably dominant orbifold morphisms (X,Δ)→ (X,Δ), there
are distinct positive integers m and n with m> n such that fm = fn. As f is dominant,

it follows that fm−n = idX , so that f is an automorphism of finite order. The finiteness

of the automorphism group follows immediately from Proposition 5.2.

Let (X,Δ) be a smooth proper orbifold pair of general type. We do not know whether

every separably dominant orbifold near-map f : (X,Δ) (X,Δ) is birational and has

finite order (in the group of birational self-maps of X ). Indeed, it is not clear to us
whether the iterates f i = f ◦. . . ◦f of f are orbifold near-maps.
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