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Vicenţiu D Rădulescu
Faculty of Applied Mathematics, AGH University of Kraków, al.
Mickiewicza 30, 30-059 Kraków, Poland and
Faculty of Electrical Engineering and Communication, Brno University
of Technology, Technická 3058/10, Brno, Dolj 61600, Czech Republic and
Department of Mathematics, University of Craiova, 200585 Craiova,
Southern Moravia, Romania and
Simion Stoilow Institute of Mathematics of the Romanian Academy,
010702 Bucharest, Romania and
School of Mathematics, Zhejiang Normal University, No. 688, Yingbin
Avenue, Jinhua, 321004 Zhejiang, China (radulescu@inf.ucv.ro)

Jing Chen
School of Mathematics and Computing Sciences, Hunan University of
Science and Technology, Taoyuan Road, Yuhu District, Xiangtan,
411201 Hunan, PR China (cjhnust@hnust.edu.cn)

Dongdong Qin
School of Mathematics and Statistics, HNP-LAMA, Central South
University, No. 932, Lushan South Road, Yuelu District, Changsha,
410083 Hunan, PR China (qindd132@163.com) (Corresponding author)

(Received 31 October 2023; accepted 6 August 2024)

In the present paper, we consider the following fractional double phase problem with
nonlocal reaction:{
(−∆)spu + (−∆)squ + V (εx)(|u|p−2u + |u|q−2u) =

(
1

|x|µ ∗ F (u)
)
f(u) in RN ,

u ∈ W s,p(RN ) ∩W s,q(RN ), u > 0 in RN ,

}

where ε is a positive parameter, 0 < s < 1, 2 6 p < q < min{2p,N/s}, 0 < µ < sp,
(−∆)st (t ∈ {p, q}) is the fractional t-Laplace operator, the reaction term f : R 7→ R is
continuous, and the potential V ∈ C(RN ,R) satisfying a local condition. Using a
variational approach and topological tools (the non-standard C 1-Nehari manifold
analysis and the abstract category theory), multiplicity of positive solutions and
concentration properties for the above problem are established. Our results extend
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and complement some previous contributions related to double phase variational
integrals.
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1. Introduction

1.1. Features of the paper and historical comments

In this paper, we are concerned with the study of concentration and multiplicity
properties of solutions for a class of fractional double phase problems with Choquard
nonlinearity. The features of this paper are the following:

(i) the presence of several nonlocal operators with different growth, which
generates a double phase associated energy;

(ii) the analysis developed in this paper is concerned with the combined effects
of a nonstandard fractional operator with unbalanced growth and a nonlocal
Choquard term;

(iii) the potential describing the absorption term satisfies a local condition and
no information on the behaviour of the potential at infinity is imposed;

(iv) the main concentration property creates a bridge between the global
maximum point of the solution and the global minimum of the potential;

(v) since the nonlinearity is only assumed to be continuous, one cannot apply
the standard C 1-Nehari manifold arguments due to the lack of differentiability of
the associated Nehari manifold;

(vi) our analysis combines the nonlocal nature of the fractional (p, q)-operator
and of the Choquard nonlinearity with the local perturbation in the absorption
term.

The problem studied in this paper combines both the above-mentioned features.
More exactly, we are interested in concentration phenomena associated with a
nonlinear Choquard problem driven by fractional Laplace operators with differ-
ent power. This integro-differential operator appears in several relevant models of
applied sciences. We only recall that the fractional power of the Laplace opera-
tor is the infinitesimal generator of the Lévy stable diffusion process and arises in
anomalous diffusion in plasma, population dynamics, geophysical fluid dynamics,
flame propagation, chemical reactions in liquids, and American options in finance.
Moreover, fractional Sobolev spaces have been well known since the beginning
of the last century, especially within the framework of harmonic analysis. The
starting point in the study of fractional problems is attributed to the pioneering
papers of Caffarelli et al. [20–22]. For a comprehensive introduction to the study of
fractional equations and the use of variational methods in the treatment of these
problems, we refer to the monographs by Di Nezza, Palatucci, and Valdinoci [27]
and Molica Bisci, Rădulescu, and Servadei [45]. Therefore, the nonlocal operators
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are becoming increasingly popular in applied sciences, theoretical research, and
real-world applications.

Since the content of this paper is at interplay between ‘double phase problems’
and ‘Choquard problems’, we now recall some pioneering achievements in these
fields.

We start with a short description on the development of double phase problems.
To the best of our knowledge, the first contributions to this field are due to the
study by Ball [13, 14], in relationship with problems in nonlinear elasticity and
composite materials. Let Ω ⊂ RN be a bounded domain with a smooth boundary.
If u : Ω → RN is the displacement and if Du is the N ×N matrix of the deformation
gradient, then the total energy can be represented by an integral of the type

I(u) =

∫
Ω

f(x,Du(x))dx, (1.1)

where the energy function f = f(x, ξ) : Ω×RN×N → R is quasiconvex with respect
to ξ, see the study by Morrey [47]. A simple example considered by Ball is given
by functions f of the type

f(ξ) = g(ξ) + h(det ξ),

where det ξ is the determinant of the N ×N matrix ξ and g, h are non-negative
convex functions, which satisfy the growth conditions

g(ξ) > c1 |ξ|p; lim
t→+∞

h(t) = +∞,

where c1 is a positive constant and 1 < p < N . The condition p 6 N is necessary
to study the existence of equilibrium solutions with cavities, that is, minima of the
variational integral (1.1) that are discontinuous at one point where a cavity forms; in
fact, every u with finite energy belongs to the Sobolev space W 1,p(Ω,RN ), and thus
it is a continuous function if p>N. In accordance with these problems arising in
nonlinear elasticity, Marcellini [41, 42] considered continuous functions f = f(x, u)
with unbalanced growth that satisfy

c1 |u|p 6 |f(x, u)| 6 c2 (1 + |u|q) for all (x, u) ∈ Ω × R,

where c1, c2 are positive constants and 1 6 p 6 q. Recently, a great deal of
works have enriched the mathematical analysis of nonlinear models with unbal-
anced growth; we refer to the works of Bahrouni, Rădulescu, and Repovš [12];
Crespo-Blanco, Gaśınski, Harjulehto; and Winkert [23]; Liu and Papageorgiou [40];
and Papageorgiou, Pude lko, Rădulescu [49]. In addition, an overview of recent devel-
opments on the regularity of nonlocal double problems can be found in Byun, Ok,
and Kyeong [19] and De Filippis and Palatucci [25].

In the pioneering works of Fröhlich [30] and Pekar [50], the following Choquard
equation was introduced,

−∆u+ u =

(
1

|x|
∗ |u|2

)
u in R3, (1.2)

https://doi.org/10.1017/prm.2024.84 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.84


4 Y. Zhang, V. Rădulescu, J. Chen and D. Qin

which models quantum polaron and corresponds to the study of the free electrons in
ionic lattices interacting with phonons associated with deformations of the lattices
or with the polarization created on the medium. Choquard also used it to study
steady states of the one component plasma approximation in the Hartree–Fock
theory describing an electron trapped in its own hole [37]. Equation (1.2) is also
called the Schrödinger–Newton equation which combines the Schrödinger equation
of quantum physics with nonrelativistic Newtonian gravity. Such a model can also
be deduced from the Einstein–Klein–Gordon and Einstein–Dirac systems related
to boson stars and the collapse of galaxy fluctuations of scalar field dark matter;
we bring the reader’s attention to Elgart and Schlein [29], Jones [36], Lions [39],
Penrose [51, 56], and Schunck and Mielke [54].

In conclusion, based on the historical research background of the fractional dou-
ble problem and the Choquard problem and the related theoretical foundation,
focusing on the characteristics of such problems and the combined effects produced
by their combination, we will apply analytical, topological, and variational meth-
ods and develop some new techniques to devote ourselves to the study of new
phenomena of nonlocal double problems with nonlocal reaction terms, when the
potential V satisfies a general local condition and the nonlinearity f possesses only
the continuity property.

1.2. Statement of the problem and main result

In this paper, we focus on the existence, multiplicity, and concentration behaviour
of positive solutions for the nonlinear fractional (p, q)-Choquard problem:{

(−∆)spu+ (−∆)squ+ V (εx)(|u|p−2u+ |u|q−2u) =
(

1
|x|µ ∗ F (u)

)
f(u) in RN ,

u ∈ W s,p(RN ) ∩W s,q(RN ), u > 0 in RN ,

}
(1.3)

where ε is a positive parameter, 0 < s < 1, 2 6 p < q < min{2p,N/s}, 0 < µ < sp,
(−∆)st (t ∈ {p, q}) is the fractional t-Laplace operator, V : RN 7→ R and f : R 7→
R are continuous functions, F is the primitive function of f, and ∗ denotes the
convolution product.

In the local setting corresponding to s → 1− (up to normalization), the double
phase problem (1.3) is motivated by numerous models arising in mathematical
physics. For instance, we can refer to the following Born–Infeld equation [16] that
appears in electromagnetism:

−div

(
Du

(1 − 2|Du|2)1/2

)
= h(u) in Ω.

Indeed, by the Taylor formula, we have

(1− x)−1/2 = 1 +
x

2
+

3

2 · 22 x
2 +

5!!

3! · 23 x
3 + · · ·+ (2n− 3)!!

(n− 1)!2n−1
xn−1 + · · · for |x| < 1.

Taking x = 2|Du|2 and adopting the first-order approximation, we get a partic-
ular case of the problem (1.3) for p = 2 and q = 4. Furthermore, the n-th order
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approximation problem is driven by the multi-phase differential operator

−∆u− ∆4u− 3

2
∆6u− · · · − (2n− 3)!!

(n− 1)!
∆2nu.

Finally, we also refer to the following fourth-order relativistic operator:

u 7→ div

(
|∇u|2

(1 − |∇u|4)3/4
∇u
)
,

which describes large classes of phenomena arising in relativistic quantum mechan-
ics. Clearly, we can use the Taylor formula to conclude that the fourth-order
relativistic operator can be approximated by the following double phase operator:

u 7→ ∆4u+
3

4
∆8u.

The purpose of this paper is to study a class of fractional unbalanced double
phase problems in which the nonlocal term appears also in the nonlinear part.
Problem (1.3) is closely related to the analysis of nonlinear problems and station-
ary waves for models arising in mathematical physics, such as phase transitions,
anomalous diffusion, composite materials, image processing, fractional quantum
mechanics in the study of particles on stochastic fields, fractional superdiffusion,
and fractional white-noise limit, see the study by Pucci and Saldi [52]. For more
details, we refer interested readers to the preliminary introduction of this topic in
[27, 45]. From the point of view of physics, in the semi-classical sense (namely, as
ε → 0), it is of great significance to study the existence and shape of the stand-
ing wave solutions of problem (1.3), which can be used to describe the transition
relationship between quantum mechanics and classical mechanics. From a mathe-
matical point of view, in the framework of this semi-classical state, we can obtain
more dynamic behaviour information, such as concentration, convergence, decay,
bifurcation, and other properties.

Note that, if p = q = 2, after rescaling, problem (1.3) reduces to the following
nonlinear fractional Choquard equation:

ε2s(−∆)su+ V (x)u = εµ−N

(
1

|x|µ
∗ F (u)

)
f(u) in RN . (1.4)

When ε= 1, F (u) = |u|p, and f(u) = |u|p−2u, d’Avenia, Siciliano and Squassina
[24] dealt with the regularity, existence and non-existence, symmetry, and decay
properties of solutions to problem (1.4). Under assumption that the potential V
has a local minimum, Ambrosio [9] established the multiplicity and concentration
of positive solutions to problem (1.4) via the penalization technique and Ljusternik-
Schnirelmann theory.

When p = q 6= 2, after rescaling, problem (1.3) boils down to the following
nonlinear fractional Choquard problem:{

εsp(−∆)spu+ V (x)|u|p−2u = εµ−N
(

1
|x|µ ∗ F (u)

)
f(u) in RN ,

u ∈W s,p(RN ), u > 0 in RN .

}
(1.5)
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In [7], Ambrosio investigated the existence, multiplicity, and concentration of pos-
itive solutions for the fractional Choquard problem (1.5) by assuming that the
potential V : RN 7→ R fulfills the following condition due to the study by
Rabinowitz [53]:

(V ) V∞ = lim inf |x|→+∞ V (x) > infx∈RN V (x).

These solutions concentrate at global minimum points of V under the global
hypothesis (V ). In the local sense s = 1, problem (1.5) becomes the following quasi-
linear Choquard problem with the p-Laplace operator{

−εp∆pu+ V (x)|u|p−2u = εµ−N
(

1
|x|µ ∗ F (u)

)
f(u) in RN ,

u ∈W 1,p(RN ), u > 0 in RN ,

}
(1.6)

for which several existence, multiplicity, and concentration results of positive solu-
tions have been studied by different authors, under suitable assumptions on the
potential function V and the reaction f ; see, for instance, Alves and Yang [3–5].
On the other hand, if s = 1 and 1 < p < q < N , after rescaling, problem (1.3)
reduces to the following (p, q)-Laplace problem:

{
−εp∆pu− εq∆qu+ V (x)(|u|p−2u+ |u|q−2u) = εµ−N

(
1

|x|µ ∗ F (u)
)
f(u) in RN ,

u ∈ W 1,p(RN ) ∩W 1,p(RN ), u > 0 in RN .

}
(1.7)

Very recently, by assuming that the potential V and the nonlinear reaction f satisfy
the following conditions:

(V ) V ∈ C(RN ,R) and +∞ > V∞ = lim inf |x|→+∞ V (x) > infx∈RN V (x) > 0;

(f ) f ∈ C1(R,R),

Zhang, Zhang, and Rădulescu studied the multiplicity and concentration behav-
ior of positive solutions to problem (1.7) in [60].

For related concentration and multiplicity properties of solutions, we refer to the
recent paper by Alves and de Morais Filho [2]; Alves, Ambrosio, and Isernia [1];
Ambrosio [8]; Ambrosio, Isernia, and Rădulescu [10]; Ambrosio and Rădulescu [11];
Del Pino and Felmer [26]; Gao, Tang, and Chen [31]; Gu and Tang [32]; Ji and
Rădulescu [34, 35]; Moroz and Van Schaftingen [46]; Zhang and Zhang [61]; Zhang,
Zhang, and Rădulescu [59]; and Zhang, Tang, and Rădulescu [62]. We also cite the
study by Mingione and Rădulescu [44] for an overview of recent results concerning
elliptic variational problems with nonstandard growth and nonuniform ellipticity.

Inspired by the above works, in this paper, we are interested in studying the
multiplicity and concentration behaviour as ε → 0 of positive solutions for prob-
lem (1.3), when we suppose a local condition on the potential V, and the nonlinear
term f is only assumed to be continuous (without C 1 differentiability). Precisely,
we first impose that V is a continuous map satisfying the following assumptions:
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(V 1) there exists V0 > 0 such that V0 := infx∈RN V (x);

(V 2) there exists an open bounded domain Λ ⊂ RN such that

V0 < min
∂Λ

V and M := {x ∈ Λ : V (x) = V0} 6= ∅.

Next, we assume that f is a merely continuous function that verifies the following
conditions:

(f 1) limt→0
|f(t)|
|t|p−1 = 0;

(f 2) there exists ν ∈ (q, q∗s (2 − µ/N)/2) such that

lim
|t|→+∞

|f(t)|
|t|ν−1

= 0,

where q∗s = Nq/(N − sq);

(f 3) 0 < pF (t) := p
∫ t

0
f(τ)dτ 6 f(t)t for all t > 0;

(f 4) the map t 7→ f(t)

tq−1 is increasing for all t > 0.

Remark 1.1. We would like to point out that, since the hypotheses on V and
f are different from [7, 53, 59–61], our arguments are totally distinct with them
and improve the previous results for the singularly perturbed fractional problem
with nonlocal Choquard reaction, in the sense that we establish multiplicity results
and concentration behaviour for the fractional (p, q)-problems involving continuous
nonlinearity and by imposing a local condition on the potential V. Compared with
the local case s =1, we point out that our result improves theorem 1.2 in [60]. In
addition, we believe that the ideas contained here can be used in other cases to
study problems driven by more general operators, under local conditions on the
potential V and without the differentiability of the nonlinearity f.

In order to look for positive solutions of problem (1.3), we may assume that
f(t) = 0 for all t 6 0.

Recall that if A is a closed subset of a topological space Y, then we use catY (A)
to denote the Ljusternik–Schnirelmann category of A in Y, that is, the smallest
number of closed and contractible sets in Y which cover A. For more details, we
refer to the study by Willem [57].

Our main result in this paper establishes the following concentration and
multiplicity properties.

Theorem 1.2 Let 0 < µ < sp. Assume that the nonlinearity f fulfils (f1)–(f4) with
ν < (N −µ)q/(N − sq) and the potential V verifies hypotheses (V1)–(V2). Then for
all δ > 0 such that Mδ :=

{
x ∈ RN : dist (x,M) 6 δ

}
⊂ Λ, there exists εδ > 0 such

that, for any ε ∈ (0, εδ) problem (1.3) has at least catMδ
(M) positive solutions.

Moreover, if uε denotes one of these solutions and xε ∈ RN is the global maximum
point of uε, then limε→0 V (εxε) = V0.

The proof of theorem 1.2 is based on topological and variational methods and
refined analytic techniques. Let us now take the next steps to outline our strategies
and methods for proving theorem 1.2:
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(1) concerning our variational approach: because there is no information on the
behaviour of V at infinity, as in [26], we first modify in a convenient way the
nonlinear reaction outside the set Λ, and then we will study an auxiliary problem.
The main characteristic of the corresponding modified energy functional is that
it verifies all the conditions of the mountain pass theorem [6]. Finally, we prove
that, for ε> 0 sufficiently small, the solutions of the auxiliary problem are indeed
solutions of the original one;

(2) topological techniques: in order to get multiple solutions of the auxiliary
problem, we will use the generalized Neahri manifold method and some well-known
topological techniques proposed by Benci and Cerami in [15] based on accurate
comparisons between the category of some sub-level sets of the modified functional
and the category of the set M. Note that the nonlinearity is only continuous, and we
stress that standard C 1-Nehari manifold arguments as in [60] cannot be employed
in our setting due to the lack of differentiability of the associated Nehari manifold.
To this end, we take inspiration by some ideas developed in [55] and make use of
some abstract critical point results obtained in [55] to overcome this obstacle;

(3) the combination effects of nonlocality and nonhomogeneous: the lack of homo-
geneity caused by fractional (p, q)-Laplacian operator, together with the appearance
of nonlocal Choquard reaction term, makes our analysis more refined and interest-
ing than the above works and also brings some new difficulties to our analysis. In
particular, we need to develop a suitable Moser iteration scheme to obtain L∞-
estimates and absorb some ideas from [11, 62] to build on the Hölder regularity
results under this work.

Throughout this paper, C, C 0, C 1, C 2, ... denote positive constants whose exact
values are inessential and can change from line to line, and the same C, C 0, C 1,
C 2, ... may represent different constants; Bρ(y) denotes the open ball centred at
y ∈ RN with radius ρ> 0, and Bc

ρ(y) denotes the complement of Bρ(y) in RN . In
particular, Bρ and Bc

ρ denote Bρ(0) and Bc
ρ(0), respectively.

2. Auxiliary results

2.1. Notations

Let u : RN 7→ R. For 0 < s < 1 and p> 1, we define the fractional Sobolev space

W s,p(RN ) :=

{
u : |u|pp :=

∫
RN

|u|pdx < +∞, [u]ps,p

:=

∫
RN

∫
RN

|u(x) − u(y)|p

|x− y|N+sp
dxdy < +∞

}
equipped with the natural norm

‖u‖Ws,p(RN ) :=
(
[u]ps,p + |u|pp

) 1
p .

For all u, v ∈W s,p(RN ), we define

〈u, v〉s,p :=

∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))

|x− y|N+sp
dxdy.
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We now recall some fundamental embeddings. Let s ∈ (0, 1) and p ∈ (1,+∞)
such that N > sp. Then for any r ∈ [p, p∗s] there exists a constant such that Cr > 0
such that

|u|r 6 Cr‖u‖Ws,p(RN ) (2.1)

for all u ∈W s,p(RN ). Moreover, W s,p(RN ) is compactly embedded in Lr
loc(RN ) for

any r ∈ [1, p∗s).
In order to treat the nonlinear fractional (p, q)-Choquard problem, we use the

following space:

X = W s,p(RN ) ∩W s,q(RN )

endowed with the norm

‖u‖X := ‖u‖Ws,p(RN ) + ‖u‖Ws,q(RN ).

Additionally, since W s,r(RN ) (1 < r < +∞) is a separable reflexive Banach space,
then X is also a separable reflexive Banach space.

2.2. The penalized problem

In order to overcome the lack of compactness of problem (1.3), we shall adapt the
penalization method introduced by del Pino and Felmer [26] to deal with the non-
linear fractional (p, q)-Choquard problem. Furthermore, without loss of generality,
we can assume that

0 ∈ Λ and V (0) = V0.

So, we need to find a constant K > 0 (which is determined later, see lemma 2.6)

and take a unique number a > 0 such that f(a) =
V0
K

(
ap−1 + aq−1

)
.

Now, we define

f̃(t) =

 f(t), if t 6 a,
V0
K

(
tp−1 + tq−1

)
, if t > a

and

g(x, t) =

 χΛ(x)f(t) + (1 − χΛ(x))f̃(t), if t > 0,

0, if t 6 0,

where χΩ is the characteristic function on Ω ⊂ RN .
We can easily observe that g is a Carathéodory function and fulfills the following

properties:

(g1) limt→0+
g(x,t)

tp−1 = 0 uniformly for all x ∈ RN ;
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(g2) g(x, t) 6 f(t) for all x ∈ RN and t > 0;

(g3)i 0 < pG(x, t) := p
∫ t

0
g(x, τ)dτ 6 g(x, t)t for all x ∈ Λ and t > 0;

(g3)ii 0 < pG(x, t) 6 g(x, t)t 6 V0
K (tp + tq) for all x ∈ Λc and t > 0;

(g4) the maps t 7→ g(x,t)

t
q
2−1

and t 7→ G(x,t)

t
q
2

are both increasing for all x ∈ RN

and t > 0.

Remark 2.1. We shall consider the following penalized problem:{
(−∆)spu+ (−∆)squ+ V (εx)(|u|p−2u+ |u|q−2u) =

(
1

|x|µ ∗G(εx, u)
)
g(εx, u),

u ∈ X, u > 0

}
(2.2)

in RN . If uε is a solution of problem (2.2) such that uε(x) 6 a for all x ∈ Λc
ε, where

Λε :=
{
x ∈ RN : εx ∈ Λ

}
, then g(εx, uε) = f(uε), G(εx, uε) = F (εx, uε). So, uε is

also a solution of problem (1.3).

For any ε > 0, we define the space

Xε :=

{
u ∈ X :

∫
RN

V (εx) (|u|p + |u|q) dx < +∞
}

equipped with the norm

‖u‖Xε := ‖u‖Vε,p + ‖u‖Vε,q,

where ‖u‖tVε,t := [u]ts,t +
∫
RN V (εx)|u|tdx for t ∈ {p, q}.

From now on, we focus on the critical points of the Euler–Lagrange functional
Jε : Xε 7→ R defined by

Jε(u) :=
1

p
‖u‖pVε,p +

1

q
‖u‖qVε,q −

1

2

∫
RN

(
1

|x|µ
∗G(εx, u)

)
G(εx, u)dx

for all u ∈ Xε. By a standard argument, we can infer that Jε ∈ C1(Xε,R) and its
derivative is given by

〈J ′
ε(u), v〉 = 〈u, v〉s,p + 〈u, v〉s,q +

∫
RN

V (εx)
(
|u|p−2u+ |u|q−2u

)
vdx

−
∫
RN

(
1

|x|µ
∗G(εx, u)

)
g(εx, u)vdx for all u, v ∈ Xε.

Let us define the Nehari manifold associated with problem (2.2), that is,

Nε := {u ∈ Xε \ {0} : 〈J ′
ε(u), u〉 = 0} .

We use X+
ε to denote the open set defined by

X+
ε :=

{
u ∈ Xε : |supp (u+)| > 0

}
,
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and we introduce the set S+
ε := Sε ∩X+

ε , where Sε := {u ∈ Xε : ‖u‖Xε = 1}. We
first observe that S+

ε is an incomplete C1,1-manifold of codimension one. So, for all
u ∈ S+

ε we have Xε = Tu(S+
ε )
⊕

Ru, where

Tu(S
+
ε ) :=

{
v ∈ Xε : 〈u, v〉s,p + 〈u, v〉s,q +

∫
RN

V (εx)
(
|u|p−2u+ |u|q−2u

)
vdx = 0

}
.

Due to the fact that f is only continuous, the following result is crucial to bypass
the non-differentiability of Nε.

Lemma 2.2. Assume that (f1)–(f4) and (V1)–(V2) are fulfilled. Then the following
properties hold true:

(a) for all u ∈ X+
ε , there exists a unique tu > 0 such that tuu ∈ Nε.

Furthermore, m̂ε(u) = tuu is the unique maximum of `u(t) := Jε(tu);
(b) there exists τ > 0 independent of u such that tu > τ for all u ∈ S+

ε .Moreover,
for each compact set W ⊂ S+

ε , there exists a constant CW > 0 such that
tu 6 CW for all u ∈ W;

(c) the mapping m̂ε : X+
ε 7→ Nε is continuous and mε := m̂ε|S+

ε
is a

homeomorphism between S+
ε and Nε, and the inverse of mε is given by

m−1
ε (u) := u/‖u‖Xε ;

(d) cε := infu∈Nε Jε(u) > %0 > 0 and Jε is bounded below Nε, where ϱ0 is
independent of ε, K, and a;

(e) let 0 < µ < sp and ν < (N − µ)q/(N − sq). If there exists a sequence
{un}n∈N ⊂ S+

ε such that dist (un, ∂S
+
ε ) → 0 as n→ ∞, then ‖mε(un)‖Xε →

+∞ and Jε(mε(un)) → +∞ as n→ ∞.

Proof. (a) For each u ∈ X+
ε and t > 0, `u(0) = 0. From theorem 4.3 of Lieb and

Loss [38], (g2), (f1)–(f2), (2.1), and hypothesis (V1) we can deduce that there exists
some constant C > 0 such that

`u(t) >
1

2q−1q
‖u‖qXε

tq − C‖u‖2pXε
t2p for 0 < t <

1

‖u‖Xε

.

Due to 2p > q, we see that `u(t) > 0 for t > 0 sufficiently small. Using (g3)i and
(g3)ii, we can find a constant

Cu =
1

2

∫
RN

(
1

|x|µ
∗G(εx, u)

)
G(εx, u)dx > 0

such that

`u(t) 6
1

p

(
‖u‖pXε

+ ‖u‖qXε

)
tq − Cut

2p

for all t > 1. Applying 2p > q again, we know that `u(t) < 0 for t > 1 large enough.
Hence, maxt>0 `u(t) is attained at some tu > 0 verifying `′u(tu) = 0 and tuu ∈ Nε.
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We point out that

tu ∈ Nε ⇐⇒ ‖u‖qVε,q =

∫
RN

∫
RN

G(εy, tu(y))

t
q
2 |x− y|µ

g(εx, tu(x))

t
q
2−1

u(x)dxdy − tp−q‖u‖pVε,p.

(2.3)

According to q > p and (g4), we conclude that the right-hand side in (2.3) is an
increasing function with respect to t > 0. Therefore, the uniqueness of tu is now
obvious.

(b) For any u ∈ S+
ε , in view of lemma 2.2-(a), there exists tu > 0 such that

tpu‖u‖
p
Vε,p

+ tqu‖u‖
q
Vε,q

=

∫
RN

(
1

|x|µ
∗G(εx, tuu)

)
g(εx, tuu)tuudx.

By theorem 4.3 of Lieb and Loss [38], together with (g2), (f1), (f2), (2.1), and
hypothesis (V1), we can infer that for any σ> 0, there exists some constant Cσ > 0
such that for all u ∈ S+

ε ,

tpu‖u‖
p
Vε,p

+ tqu‖u‖
q
Vε,q

6 σt2pu ‖u‖2pVε,p + Cσt
2ν
u ‖u‖2νVε,q.

Assume that tu 6 1. Choosing σ = 1
2 , we have

Ctqu 6
1

2
tqu

(
‖u‖qVε,p + ‖u‖qVε,q

)
for some constant C > 0

6
1

2
tpu‖u‖

p
Vε,p

+ tqu‖u‖
q
Vε,q

(since q > p, tu 6 1 and 1 = ‖u‖Xε > ‖u‖Vε,p)

6 C1/2t
2ν
u (since 1 = ‖u‖Xε > ‖u‖Vε,q),

⇒ tu > τ for some constant τ > 0 (since ν > q), where τ is independent of u.

Assume that tu > 1. Taking σ= 1 and applying 1 = ‖u‖Xε > ‖u‖Vε,p, we get

Ctpu 6 tpu

(
‖u‖qVε,p + ‖u‖qVε,q

)
for some constant C > 0

6 tpu‖u‖
p
Vε,p

+ tqu‖u‖
q
Vε,q

(since q > p and 1 = ‖u‖Xε > ‖u‖Vε,p)

6 (1 + C1)t2νu (since q > p, tu > 1 and 1 = ‖u‖Xε > ‖u‖Vε,p, ‖u‖Vε,q),

⇒ tu > τ for some constant τ > 0 (since ν > q), where τ is independent of u.

So, there exists τ > 0 independent of u such that tu > τ for all u ∈ S+
ε .

Let W ⊂ S+
ε be a compact set. Arguing by contradiction, we may assume that

there exists a sequence {un}n∈N ⊂ W such that 1 6 tn := tun → +∞ as n → ∞.
Since W is a compact set, there is u ∈ W such that un → u in Xε as n → ∞. As
in the proof of lemma 2.2-(a), together with Fatou’s Lemma, we can see that

Jε(tnun) → −∞ as n→ ∞. (2.4)
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In addition, for any fixed ϕ ∈ Nε, we have 〈J ′
ε(ϕ), ϕ〉 = 0. Combining (g3)i with

(g3)ii, we have

Jε(ϕ) = Jε(ϕ) − 1

2p
〈J ′

ε(ϕ), ϕ〉

>

(
1

q
− 1

2p

)(
‖ϕ‖pVε,p + ‖ϕ‖qVε,q

)
.

Taking ϕn = tnun ∈ Nε in the above inequality, we get

Jε(tnun) >

(
1

q
− 1

2p

)(
tpn‖un‖

p
Vε,p

+ tqn‖un‖
q
Vε,q

)
>

(
1

q
− 1

2p

)(
tpn‖un‖

q
Vε,p

+ tqn‖un‖
q
Vε,q

)
(since q > p, tn > 1 and 1 = ‖un‖Xε > ‖un‖Vε,p)

> Ctpn for some constant C > 0,

⇒ −∞ > +∞ (see (2.4) and use the assumption tn → +∞ as n→ ∞).

This is a contradiction.
(c) As in lemma 2.2-(a), we can define the maps m̂ε : X+

ε 7→ Nε and
mε : S+

ε 7→ Nε by

m̂ε(u) = tuu and mε = m̂ε|S+
ε
. (2.5)

Firstly, we note that m̂ε, mε, and m−1
ε are well-defined. Indeed, using lemma

2.2 (a), for any fixed u ∈ X+
ε it follows that there exists a unique m̂ε(u) ∈ Nε.

In addition, if u ∈ Nε, and so u ∈ X+
ε . Otherwise, we obtain |supp (u+)| = 0.

The above equality, hypothesis (V1), the definition of g yield that u = 0. This is
impossible since u 6= 0. Thus, the inverse of mε is given by m−1

ε (u) = u
‖u‖Xε

∈ S+
ε

for all u ∈ Nε. Consequently, m−1
ε is well-defined and continuous. On the other

hand, for all u ∈ S+
ε , we can deduce that

m−1
ε (mε(u)) = m−1

ε (tuu) =
tuu

‖tuu‖Xε

=
u

‖u‖Xε

= u.

This yields that mε is bijection.
Next, we show that m̂ε is a continuous map. To this end, let {un, u}n∈N ⊂ X+

ε

such that un → u in Xε as n → ∞. On account of the fact that m̂ε(tu) = m̂ε(u)
for all t > 0, we can assume that ‖un‖Xε = ‖u‖Xε = 1 for all n ∈ N. According to
lemma 2.2 (b), we know that there exists tn := tun → t0 > 0 as n → ∞ such that
tnun ∈ Nε, then we have

tpn‖un‖
p
Vε,p

+ tqn‖un‖
q
Vε,q

=

∫
RN

(
1

|x|µ
∗G(εx, tnun)

)
g(εx, tnun)tnundx.
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14 Y. Zhang, V. Rădulescu, J. Chen and D. Qin

In the above relation, we pass to the limit as n→ ∞. Then,

tp0‖u‖
p
Vε,p

+ tq0‖u‖
q
Vε,q

=

∫
RN

(
1

|x|µ
∗G(εx, t0u)

)
g(εx, t0u)t0udx.

This implies that t0u ∈ Nε. From lemma 2.2 (a), we know that tu = t0. Hence, it
follows that m̂ε(un) → m̂ε(u) in X+

ε as n → ∞. Thus, m̂ε and mε are continuous
mappings.

(d) For ε> 0, 0 < t < 1, and u ∈ S+
ε , using theorem 4.3 of Lieb and Loss [38],

(g2), (f1)–(f2), (2.1), and hypothesis (V1) again, we can conclude that there exists
C > 0 such that

Jε(tu) >
1

2q−1q
tq − Ct2p.

Thus, we can find %0 > 0 such that Jε(tu) > %0 for 0 < t < 1 sufficiently small
(since 2p > q > 0), where ϱ0 is independent of ε, K, and a. In addition, by lemma
2.2 (a), (b), and (c), we observe (see the study by Szulkin and Weth [55]) that

cε = inf
u∈Nε

Jε(u) = inf
u∈X+

ε

max
t>0

Jε(tu) = inf
u∈S+

ε

max
t>0

Jε(tu).

So, Jε(u)|Nε > %0.
(e) Let {un}n∈N ⊂ S+

ε be a sequence such that dist (un, ∂S
+
ε ) → 0 as n → ∞.

For any ϕ ∈ ∂S+
ε and n ∈ N, then we obtain |u+n | 6 |un − ϕ| a.e. in Λε. Hence,

from (V1) and Sobolev embedding, for any r ∈ [p, q∗s ] and n ∈ N, it follows that

|u+n |Lr(Λε) 6 inf
ϕ∈∂S+

ε

|un − ϕ|Lr(Λε) 6 Cr inf
ϕ∈∂S+

ε

‖un − ϕ‖Xε .

Taking into account ‖un‖Xε = 1 and using hypothesis (V1), we have

‖un‖pWs,p(RN )
+ ‖un‖qWs,q(RN )

6
1

min {V0, 1}

(
‖un‖pVε,p + ‖un‖qVε,q

)
6

1

min {V0, 1}
(
‖un‖pXε

+ ‖un‖qXε

)
6

2

V0
+ 2.

Note that 0 < µ < sp and ν < (N − µ)q/(N − sq). Then, for all t > 0, we can
deduce from lemma 2.6, (V1), (g3)ii, (g2), and (f1)–(f2) that∫

RN

(
1

|x|µ
∗G(εx, tun)

)
G(εx, tun)dx

=
K

2

∫
Λc
ε

G(εx, tun)dx+
K

2

∫
Λε

G(εx, tun)dx

6
V0
2p

∫
Λc
ε

(tp|un|p + tq|un|q) dx+
K

2

∫
Λε

F (tu+n )dx
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6
tp

2p

∫
RN

V (εx)|un|pdx+
tq

2p

∫
RN

V (εx)|un|qdx+ C1t
p

∫
Λε

(u+n )pdx

+ C2t
ν

∫
Λε

(u+n )νdx

6
tp

2p

∫
RN

V (εx)|un|pdx+
tq

2p

∫
RN

V (εx)|un|qdx+ Ĉpt
pdist (un, ∂S

+
ε )p

+ Ĉνt
νdist (un, ∂S

+
ε )ν ,

where C 1, C 2, Ĉp, and Ĉν are some positive constants. So, we have∫
RN

(
1

|x|µ
∗G(εx, tun)

)
G(εx, tun)dx

6
tp

2p

∫
RN

V (εx)|un|pdx+
tq

2p

∫
RN

V (εx)|un|qdx+ on(1), (2.6)

as n→ ∞. Moreover, for any t > 1, we infer that

tp

p
‖un‖pVε,p

+
tq

q
‖un‖qVε,q

− tp

2p

∫
RN

V (εx)|un|pdx− tq

2p

∫
RN

V (εx)|un|qdx

=
tp

p
[un]

p
s,p +

1

2p
tp
∫
RN

V (εx)|un|pdx+
tq

q
[un]

q
s,q +

(
1

q
− 1

2p

)
tq
∫
RN

V (εx)|un|qdx

>
1

2p
tp‖un‖pVε,p

+

(
1

q
− 1

2p

)
tq‖un‖qVε,q

(since 2p > q)

>
1

2p
tp‖un‖qVε,p

+

(
1

q
− 1

2p

)
tq‖un‖qVε,q

(due to q > p and 1 = ‖un‖Xε
> ‖un‖Vε,p)

>
1

2q−1

(
1

q
− 1

2p

)
tp (since 2p > q > p > 1, t > 1). (2.7)

Recalling that the definition of mε and invoking relations (2.6) and (2.7), for all
t > 1, we can deduce that

lim inf
n→∞

Jε(mε(un)) > lim inf
n→∞

Jε(tun) >
1

2q−1

(
1

q
− 1

2p

)
tp.

The above inequality combined with the definition of Jε and the arbitrariness of
t > 1 means that

lim inf
n→∞

(
1

p
‖mε(un)‖pVε,p +

1

q
‖mε(un)‖qVε,q

)
> lim inf

n→∞
Jε(mε(un)) = +∞,

and so ‖mε(un)‖Xε → +∞ as n→ ∞. This proof is now complete. �

Now, we introduce the functionals

ψ̂ε : X+
ε 7→ R and ψε : S+

ε 7→ R

defined by ψ̂ε(u) := Jε(m̂ε(u)) for any u ∈ X+
ε and ψε := ψ̂ε|S+

ε
.
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Using lemma 2.2 and corollary 2.3 in the study by Szulkin and Weth [55], we
deduce that the following result holds true.

Lemma 2.3. Assume that (f1)–(f4) and (V1)–(V2) are satisfied. Then,

(a) ψ̂ε ∈ C1(X+
ε ,R) and 〈ψ̂′

ε(u), v〉 =
‖m̂ε(u)‖Xε

‖u‖Xε
〈J ′

ε(m̂ε(u)), v〉 for all u ∈ X+
ε ,

all v ∈ Xε;
(b) ψε ∈ C1(S+

ε ,R) and 〈ψ′
ε(u), v〉 = ‖mε(u)‖Xε〈J ′

ε(mε(u)), v〉 for all u ∈ S+
ε ,

all v ∈ Tu(S+
ε );

(c) if {un}n∈N is a Palais–Smale sequence for the functional ψε, then
{mε(un)}n∈N is a Palais–Smale sequence for the functional Jε. If
{un}n∈N ⊂ Nε is bounded Palais–Smale sequence for the functional Jε, then,
{m−1

ε (un)}n∈N ⊂ S+
ε is a Palais–Smale sequence for ψε;

(d) u ∈ S+
ε is a critical point of the functional ψε if and only if mε(u) ∈ Nε

is a critical point of the functional Jε. Moreover, the corresponding critical
values coincide and

inf
u∈S+

ε

ψε(u) = inf
u∈Nε

Jε(u) = cε.

Lemma 2.4. The modified functional Jε admits a Palais–Smale sequence
{un}n∈N ⊂ Xε at the level cε, that is, Jε(un) → cε in R and J ′

ε(un) → 0 in
Xε

∗ as n → ∞, where cε is given in lemma 2.2. Furthermore, there exists some
constant ϑ> 0 (independent of ε, K, and a) such that cε < ϑ for all ε sufficiently
small.

Proof. In view of lemma 2.2, we only need to verify that Jε possesses a mountain
pass geometry, that is, the functional Jε satisfies the following properties:

(i) there exist some constants ρ1 > 0 and δ1 > 0 such that Jε(u) > δ1 for
‖u‖Xε = ρ1;

(ii) there exists an element e ∈ Xε with ‖e‖Xε > ρ1 such that Jε(e) < 0.

(i) Arguing as in the proof of lemma 2.2 (a), we find some constants C > 0 and
C ′ > 0 such that

Jε(u) > C‖u‖qXε
− C ′‖u‖2pXε

for ‖u‖Xε = ρ1 ∈ (0, 1). So, using 2p > q, we obtain (i) if we take ρ1 small enough.
(ii) We choose a suitable function ϕ ∈ C∞

0 (RN ) such that ϕ > 0, ϕ 6≡ 0, and
supp (ϕ) ⊂ Λ. Then, for all ε sufficiently small, it is obvious that G(εx, ϕ) = F (ϕ)
for all x ∈ RN . Hence, with arguments as in the proof of lemma 2.2 (a), there exist
two constants

Cϕ =
1

2

∫
RN

(
1

|x|µ
∗ F (ϕ)

)
F (ϕ)dx > 0

and C > 0 such that

Jε(tϕ) 6 Ctq − Cϕt
2p
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for all t > 1. Hence, (ii) holds true for e = tϕ and for some t > 1 sufficiently large.
According to the mountain pass theorem without the Palais–Smale condition (see

the study by Brezis and Nirenberg [18]), we establish the existence of a Palais–Smale
sequence {un}n∈N ⊂ Xε at the level cε. We recall that supp (ϕ) ⊂ Λ, and then we
can infer that there exists a constant ϑ> 0 such that cε < ϑ for all ε small enough,
where ϑ is independent of ε, K, and a. This completes the proof of the lemma. �

Lemma 2.5. Assume that {un}n∈N ⊂ Xε is the Palais–Smale sequence of Jε at the
level c 6 ϑ, where ε> 0 small enough. Then, for ε> 0 small enough, the sequence
{un}n∈N ⊂ Xε is bounded and

‖un‖pWs,p(RN )
+ ‖un‖qWs,q(RN )

6 2

(
1

V0
+ 1

)
pq(ϑ+ 1)

2p− q
for all n ∈ N large enough.

Proof. According to (g3)i,ii and using hypothesis (V1), for any ε> 0 small enough,
we deduce that

ϑ+ on(1)‖un‖Xε > c+ on(1)‖un‖Xε

> Jε(un) − 1

2p
〈J ′

ε(un), un〉

>

(
1

q
− 1

2p

)(
‖un‖pVε,p + ‖un‖qVε,q

)
+

1

2p

∫
RN

(
1

|x|µ
∗G(εx, un)

)
(g(εx, un)un − pG(εx, un)) dx

> min {V0, 1}
(

1

q
− 1

2p

)(
‖un‖pWs,p(RN )

+ ‖un‖qWs,q(RN )

)
.

(2.8)

So, for ε> 0 small enough, we deduce that the sequence {un}n∈N ⊂ Xε is bounded
and

‖un‖pWs,p(RN )
+ ‖un‖qWs,q(RN )

6 2

(
1

V0
+ 1

)
pq(ϑ+ 1)

2p− q

for all n ∈ N large enough. �

According to (2.8), we now define the following set:

B :=

{
u ∈ Xε : ‖u‖p

Ws,p(RN )
+ ‖u‖q

Ws,q(RN )
6 2

(
1

V0
+ 1

)(
(ϑ+ 1)pq

2p− q
+ 1

)}
,

where ϑ is given in lemma 2.4. Using the above notation, we can show the following
estimate.

Lemma 2.6. Assume that (f1)–(f4) hold true, 0 < µ < sp, and ν < (N−µ)q/(N−
sq), then there is a constant K> 0 such that

sup
u∈B

∣∣∣∣ 1

|x|µ
∗G(εx, u)

∣∣∣∣
L∞(RN )

<
K

2
for all ε > 0.
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Proof. Firstly, (g2) and (f1)–(f2) imply that there exists a constant C > 0 (which
is independent of ε) such that

|G(εx, t)| 6 |F (t)| 6 C(|t|p + |t|ν) for all t ∈ R and for all ε > 0. (2.9)

Therefore,∣∣∣∣ 1

|x|µ
∗G(εx, u)

∣∣∣∣ 6 ∣∣∣∣ 1

|x|µ
∗ F (u)

∣∣∣∣
6
∫
|x−y|61

|F (u(y))|
|x− y|µ

dy +

∫
|x−y|>1

|F (u(y))|
|x− y|µ

dy

6 C

∫
|x−y|61

|u(y)|p + |u(y)|ν

|x− y|µ
dy

+ C

∫
RN

(|u(y)|p + |u(y)|ν) dy (see (2.9))

6 C

∫
|x−y|61

|u(y)|p + |u(y)|ν

|x− y|µ
dy

+ C (see (2.1) and use the definition of B)

for some constant C > 0 (which is independent of x ∈ RN and ε> 0).
Let us choose

t1 ∈
(

N

N − µ
,

N

N − sp

]
and t2 ∈

(
N

N − µ
,

Nq

(N − sq)ν

]
,

since 0 < µ < sp and ν < (N−µ)q/(N−sq). Then, combining the Hölder inequality,
(2.1), and the definition of B, we can easily see that∫

|x−y|61

|u(y)|p + |u(y)|ν

|x− y|µ
dy 6 C for all x ∈ RN .

for some constant C > 0 (which is independent of x ∈ RN and ε> 0). So, from the
above information, we complete the proof of this lemma. �

Now, we show that the modified functional Jε satisfies the Palais–Smale
condition.

Lemma 2.7. Let 0 < µ < sp and ν < (N − µ)q/(N − sq). Then, for all ε> 0
sufficiently small, the modified functional Jε satisfies the Palais–Smale condition
with c 6 ϑ.

Proof. For all ε> 0 sufficiently small, let {un}n∈N ⊂ Xε be a Palais–Smale sequence
of the functional Jε at the level c. From lemma 2.5, we know that {un}n∈N ⊂ Xε is
bounded for all ε> 0 small enough. So, passing to a subsequence, we may assume
that there exists some u ∈ Xε such that un

w−→ u in Xε, un(x) → u(x) a.e. in RN

and un → u in Lr
loc(RN ) for all r ∈ [1, q∗s ) as n → ∞. We first assert that the

following property is fulfilled.
Claim 1: The following properties hold up to a subsequence:
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(a) limn→∞
∫
RN

(
1

|x|µ ∗ (G(εx, un) −G(εx, u))
)
g(εx, u)ϕdx = 0 for all ϕ ∈

C∞
0 (RN );

(b) limn→∞
∫
RN

(
1

|x|µ ∗G(εx, un)
)

(g(εx, un) − g(εx, u))ϕdx = 0 for all ϕ ∈
C∞

0 (RN );
(c) we have

lim
n→∞

∫
RN

(
1

|x|µ
∗G(εx, un)

)
g(εx, un)ϕdx

=

∫
RN

(
1

|x|µ
∗G(εx, u)

)
g(εx, u)ϕdx for all ϕ ∈ C∞

0 (RN ).

(a) Note that∫
RN

|G(εx, un)|
2N

2N−µ dx 6
∫
RN

∣∣C (|un|p + |un|ν
)∣∣ 2N

2N−µ dx (see (2.9))

6 C

∫
RN

(
|un|

2Np
2N−µ + |un|

2Nν
2N−µ

)
dx

6 C
(
‖un‖2Np/(2N−µ)

Xε
+ ‖un‖2Nν/(2N−µ)

Xε

)
(see (2.1))

6 C (due to the boundedness of the sequence {un}n∈N ⊂ Xε).

On the other hand, since un(x) → u(x) a.e. in RN as n→ ∞, we obtain

G(εx, un) → G(εx, u) a.e. in RN as n→ ∞.

From proposition 5.4.7 in the study by Willem [58], it follows that

G(ε·, un)
w−→ G(ε·, u) in L

2N
2N−µ (RN ) as n→ ∞. (2.10)

Let us define

H(w) :=

∫
RN

(
1

|x|µ
∗ w(x)

)
g(εx, u)ϕdx for all w ∈ L

2N
2N−µ (RN ).

Then, it follows from theorem 4.3 of [38], (g2), (f1)–(f2), Hölder’s inequality, (2.1),
and u ∈ Xε that H is linear bounded functional. Combining this with (2.10), we
derive that (a) holds true.

(b) Using the boundedness of the sequence {un}n∈N ⊂ Xε, together with theorem
4.3 in the study by Lieb and Loss [38], (g2), (f1)–(f2), and (2.1), we see that

G(ε·, un) is also bounded in L
2N

2N−µ (RN ). Then, applying the boundedness of the
sequence {un}n∈N ⊂ Xε again and combining with the compact embeddings and
Dominated Convergence Theorem, we deduce that (b) is also true.

(c) This result is a consequence of (a) and (b).
Next, we consider the following sequence:

bn(x, y) :=
|un(x) − un(y)|p−2(un(x) − un(y))

|x− y|
N+sp

p′
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and we also introduce the following function

b(x, y) :=
|u(x) − u(y)|p−2(u(x) − u(y))

|x− y|
N+sp

p′
,

where p′ = p
p−1 . Then, {bn}n∈N ⊂ Lp′(R2N ) is bounded and bn(x, y) → b(x, y) a.e.

in R2N as n→ ∞. Then, we deduce from proposition 5.4.7 in the study by Willem
[58] that

bn
w−→ b in Lp′(R2N ) as n→ ∞. (2.11)

On the other hand, for all ϕ ∈ C∞
0 (RN ), we see that

ϕ(x) − ϕ(y)

|x− y|
N+sp

p

∈ Lp(R2N ).

From this and (2.11), we have

lim
n→∞

∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ϕ(x) − ϕ(y))

|x− y|N+sp
dxdy

=

∫
RN

∫
RN

|u(x) − u(y)|p−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x− y|N+sp
dxdy.

In a similar fashion, we also have

lim
n→∞

∫
RN

∫
RN

|un(x) − un(y)|q−2(un(x) − un(y))(ϕ(x) − ϕ(y))

|x− y|N+sq
dxdy

=

∫
RN

∫
RN

|u(x) − u(y)|q−2(u(x) − u(y))(ϕ(x) − ϕ(y))

|x− y|N+sq
dxdy.

Finally, it is easy to check that

lim
n→∞

∫
RN

V (εx, un)|un|p−2unϕdx =

∫
RN

V (εx, u)|u|p−2uϕdx,

lim
n→∞

∫
RN

V (εx, un)|un|q−2unϕdx =

∫
RN

V (εx, u)|u|q−2uϕdx.

From the above information, together with the fact that 〈J ′
ε(un), ϕ〉 → 0 as n→ ∞,

it follows that 〈J ′
ε(u), ϕ〉 = 0 for all ϕ ∈ C∞

0 (RN ). Using the density of C∞
0 (RN )

in Xε, we know that u is a critical point of the functional Jε. Consequently,
〈J ′

ε(u), u〉 = 0.
In order to show that the Palais–Smale sequence satisfies the Palais–Smale

condition, we need to establish the following property.
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Claim 2: We have

lim sup
n→∞

∫
Bc

R

(∫
RN

(
|un(x)− un(y)|p

|x− y|N+sp
+

|un(x)− un(y)|q

|x− y|N+sq

)
dy + V (εx) (|un|p + |un|q)

)
dx

→ 0 as R → +∞.

We first observe that, for all ε> 0 small enough, there exists n0 ∈ N such that

sup
n>n0

∣∣∣∣ 1

|x|µ
∗G(εx, un)

∣∣∣∣
L∞(RN )

<
K

2
.

For any R> 0, let ηR ∈ C∞(RN ) be such that 0 6 ηR 6 1, ηR = 0 in BR
2

,

ηR = 1 in Bc
R, and |∇ηR| 6 C/R for some constant C > 0 (which is independent

of R). Taking into account the boundedness of the sequence {ηRun}n∈N ⊂ Xε, we
see that 〈J ′

ε(un), ηRun〉 → 0 as n→ ∞. It follows that

∫
RN

∫
RN

|un(x) − un(y)|pηR(x)

|x− y|N+sp
dxdy +

∫
RN

∫
RN

|un(x) − un(y)|qηR(x)

|x− y|N+sq
dxdy

+

∫
RN

V (εx) (|un|p + |un|q) ηRdx

= on(1) −
∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x− y|N+sp
dxdy

−
∫
RN

∫
RN

|un(x) − un(y)|q−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x− y|N+sq
dxdy

+

∫
RN

(
1

|x|µ
∗G(εx, un)

)
g(εx, un)unηRdx.

Fix ε> 0 small enough. Let R> 0 sufficiently large such that Λε ⊂ BR
2

. Using

the definitions of ηR and K, together with (g3)ii, for n > n0 large enough, we have

∫
RN

∫
RN

|un(x) − un(y)|pηR(x)

|x− y|N+sp
dxdy +

∫
RN

∫
RN

|un(x) − un(y)|qηR(x)

|x− y|N+sq
dxdy

+
1

2

∫
RN

V (εx) (|un|p + |un|q) ηRdx

6 on(1) −
∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x− y|N+sp
dxdy

−
∫
RN

∫
RN

|un(x) − un(y)|q−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x− y|N+sq
dxdy.

(2.12)
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From the Hölder inequality and the boundedness of the sequence {un}n∈N ⊂ Xε,
it follows that∣∣∣∣∫

RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x− y|N+sp
dxdy

∣∣∣∣
6 C

(∫
RN

∫
RN

|ηR(x) − ηR(y)|p|un(x)|p

|x− y|N+sp
dxdy

) 1
p

(for some constant C > 0).

(2.13)

In addition, by the definition of ηR, polar coordinates, and the boundedness of
the sequence {un}n∈N ⊂ Xε, we have∫

RN

∫
RN

|ηR(x) − ηR(y)|p|un(x)|p

|x− y|N+sp
dxdy

6
∫
RN

∫
|x−y|>R

|ηR(x) − ηR(y)|p|un(x)|p

|x− y|N+sp
dxdy

+

∫
RN

∫
|x−y|6R

|ηR(x) − ηR(y)|p|un(x)|p

|x− y|N+sp
dxdy

6 C

∫
RN

∫
|z|>R

|un(x)|p

|z|N+sp
dxdz +

C

Rp

∫
RN

∫
|z|6R

|un(x)|p

|z|N+sp−p
dxdz

6
C

Rsp

∫
RN

|un|pdx+
C

Rp
R−sp+p

∫
RN

|un|pdx

6
C

Rsp
. (2.14)

Using (2.13) and (2.14), we see that∣∣∣∣∫
RN

∫
RN

|un(x) − un(y)|p−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x− y|N+sp
dxdy

∣∣∣∣ 6 C

Rs
.

(2.15)

Also, we have∣∣∣∣∫
RN

∫
RN

|un(x) − un(y)|q−2(un(x) − un(y))(ηR(x) − ηR(y))un(y)

|x− y|N+sq
dxdy

∣∣∣∣ 6 C

Rs
.

(2.16)

So, we deduce from (2.12), (2.15), and (2.16) that Claim 2 holds true.
Using Claim 2 and applying the locally compact embedding Xε ↪→ Lp

loc(RN ), we
can derive that un → u in Lp(RN ) as n → ∞. In addition, we deduce from the
interpolation inequality that un → u in Lr(RN ) as n→ ∞ for all r ∈ [p, q∗s ). Then,
from theorem 4.3 in the study by Lieb–Loss [38], (g2), (f1)–(f2), the Dominated
Convergence Theorem, and the boundedness of the sequence {un}n∈N ⊂ Xε, it
follows that
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lim
n→∞

∫
RN

(
1

|x|µ
∗G(εx, un)

)
g(εx, un)undx =

∫
RN

(
1

|x|µ
∗G(εx, u)

)
g(εx, u)udx.

(2.17)

Also, we have

〈J ′
ε(un), un〉 = on(1) as n→ ∞,

⇒ ‖un‖pVε,p
+ ‖un‖qVε,q

=

∫
RN

(
1

|x|µ
∗G(εx, un)

)
g(εx, un)undx+ on(1) as n→ ∞

and

〈J ′
ε(u), u〉 = 0,

⇒ ‖u‖pVε,p + ‖u‖qVε,q =

∫
RN

(
1

|x|µ
∗G(εx, u)

)
g(εx, u)udx.

Hence, the above fact and (2.17) imply that

‖un‖pVε,p + ‖un‖qVε,q = ‖u‖pVε,p + ‖u‖qVε,q + on(1) as n→ ∞.

Furthermore, according to lemma 2.10 (a), (b), we see that

‖un − u‖pVε,p = ‖un‖pVε,p − ‖u‖pVε,p + on(1)

and

‖un − u‖qVε,q = ‖un‖qVε,q − ‖u‖qVε,q + on(1),

as n→ ∞. Thus, we conclude that

‖un − u‖pVε,p + ‖un − u‖qVε,q = on(1).

This fact means that ‖un − u‖Xε → 0 as n → ∞. Now, we complete the proof of
the lemma. �

Lemma 2.8. Let 0 < µ < sp and ν < (N − µ)q/(N − sq). Assume that (f1)–(f4)
and (V1)–(V2) are fulfilled, then for all ε> 0 small enough, problem (2.2) possesses
a non-negative solution uε ∈ Xε.

Proof. Using lemmas 2.4 and 2.7, we can employ the Mountain Pass Theorem to
infer that for all ε> 0 sufficiently small, there exists uε ∈ Xε such that J ′

ε(uε) =
0 and Jε(uε) = cε. Furthermore, choosing u−ε := min{uε, 0} and recalling that
g(ε·, t) = 0 for all t 6 0 and 〈J ′

ε(uε), u
−
ε 〉 = 0, we can infer that

‖u−ε ‖
p
Vε,p

+ ‖u−ε ‖
q
Vε,q

6 0,

⇒ u−ε = 0,

⇒ uε > 0 and uε 6≡ 0.

This ends the proof of the lemma. �
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Corollary 2.9. Let 0 < µ < sp and ν < (N − µ)q/(N − sq). Then, for all ε> 0
sufficiently small, the functional ψε satisfies the Palais–Smale condition at the level
c 6 ϑ on S+

ε .

Proof. Let {un}n∈N ⊂ S+
ε be a Palais–Samle sequence for the functional ψε at the

level c, that is,

ψε(un) → c in R and ψ′
ε(un) → 0 in Tun(S+

ε )∗ as n→ ∞.

Using lemma 2.3 (c), we see that {mε(un)}n∈N ⊂ Xε is also a Palais–Samle sequence
for the functional Jε at the level c. Therefore, we can deduce from lemma 2.7
that the functional Jε verifies the Palais–Smale condition. Hence, passing to a
subsequence, we can find some u ∈ S+

ε such that mε(un) → mε(u) in Xε as n →
∞. Combining this fact with lemma 2.2 (c), we conclude that un → u in S+

ε as
n→ ∞. �

We end this section by showing the following result:

Lemma 2.10. Let {un}n∈N ⊂ Xε be a sequence such that un
w−→ u in Xε, and let

At : R 7→ R defined by At(τ) = |τ |t−2τ (t ∈ {p, q}). Setting wn = un − u, then for
all ε > 0 and n ∈ N large enough, we have

(a)
(
[un]ps,p + [un]qs,q

)
−
(
[wn]ps,p + [wn]qs,q

)
−
(
[u]ps,p + [u]qs,q

)
= on(1);

(b)
(∣∣V (ε·)1/pun

∣∣p
p

+
∣∣V (ε·)1/qun

∣∣q
q

)
−

(∣∣V (ε·)1/pwn

∣∣p
p

+
∣∣V (ε·)1/qwn

∣∣q
q

)
−(∣∣V (ε·)1/pu

∣∣p
p

+
∣∣V (ε·)1/qu

∣∣q
q

)
= on(1);

(c) |Ap(un) −Ap(wn) −Ap(u)|
p

p−1
p

p−1
+ |Aq(un) −Aq(wn) −Aq(u)|

q
q−1
q

q−1
= on(1);

(d)
∫
RN
∫
RN

∣∣∣∣∣Ap(un(x)−un(y))

|x−y|
N+sp

p/(p−1)

− Ap(wn(x)−wn(y))

|x−y|
N+sp

p/(p−1)

− Ap(u(x)−u(y))

|x−y|
N+sp

p/(p−1)

∣∣∣∣∣
p

p−1

dxdy

+
∫
RN
∫
RN

∣∣∣∣∣Aq(un(x)−un(y))

|x−y|
N+sq

q/(q−1)

− Aq(wn(x)−wn(y))

|x−y|
N+sq

q/(q−1)

− Aq(u(x)−u(y))

|x−y|
N+sq

q/(q−1)

∣∣∣∣∣
q

q−1

dxdy

= on(1);

(e)
∫
RN

(
1

|x|µ ∗ F (un)
)
F (un)dx −

∫
RN

(
1

|x|µ ∗ F (wn)
)
F (wn)dx −∫

RN

(
1

|x|µ ∗ F (u)
)
F (u)dx = on(1)

and for any ϕ ∈ Xε with ‖ϕ‖Xε 6 1, it holds

(f)
∫
RN

(
1

|x|µ ∗ F (un)
)
f(un)ϕdx −

∫
RN

(
1

|x|µ ∗ F (wn)
)
f(wn)ϕdx −∫

RN

(
1

|x|µ ∗ F (u)
)
f(u)ϕdx = on(1).

Proof. We first point out that the proofs of (a) and (b) follow from the Brezis–Lieb
Lemma (see [17]). Moreover, arguing as in the proof lemma 3.2 of Mercuri and
Willem [43], we see that (c) holds true.
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Next, we give the details of the proofs of (d), (e), and (f) for the convenience of
readers.

(d) Case 1: 2 6 t ∈ {p, q}.
We deduce from the Mean Value Theorem, the Young inequality, and t > 2 that

for any fixed σ> 0, there exists Cσ > 0 such that∣∣∣|a+ b|t−2(a+ b) − |a|t−2
a
∣∣∣ 6 σ|a|t−1 + Cσ|b|t−1 for all a, b ∈ R. (2.18)

In (2.18), we take

a =
wn(x) − wn(y)

|x− y|
N+st

t

and b =
u(x) − u(y)

|x− y|
N+st

t

,

and we have∣∣∣∣∣At(un(x) − un(y))

|x− y|
N+st
t/(t−1)

− At(wn(x) − wn(y))

|x− y|
N+st
t/(t−1)

∣∣∣∣∣ 6 σ
|wn(x) − wn(y)|t−1

|x− y|
N+st
t/(t−1)

+ Cσ
|u(x) − u(y)|t−1

|x− y|
N+st
t/(t−1)

.

Now, we introduce the mapping H1
σ,n : R2N 7→ R+ given by

H1
σ,n(x, y) := max

{∣∣∣∣∣∣At(un(x) − un(y))

|x− y|
N+st
t/(t−1)

− At(wn(x) − wn(y))

|x− y|
N+st
t/(t−1)

− At(u(x) − u(y))

|x− y|
N+st
t/(t−1)

∣∣∣∣∣∣
− σ

|wn(x) − wn(y)|t−1

|x− y|
N+st
t/(t−1)

, 0

}
.

Then, H1
σ,n(x, y) → 0 a.e. in R2N as n→ ∞ and

0 6 H1
σ,n(x, y) 6 C

|u(x) − u(y)|t−1

|x− y|
N+st
t/(t−1)

∈ L
t

t−1 (R2N )

for some constant C > 0. Hence, from the Dominated Convergence Theorem, we
obtain ∫

RN

∫
RN

∣∣H1
σ,n

∣∣ t
t−1 dxdy → 0 in R as n→ ∞.
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In addition, according to the definition of H1
σ,n, we have

∣∣∣∣∣∣At(un(x) − un(y))

|x− y|
N+st

(t/(t−1))

− At(wn(x) − wn(y))

|x− y|
N+st

(t/(t−1))

− At(u(x) − u(y))

|x− y|
N+st

(t/(t−1))

∣∣∣∣∣∣
t

t−1

6 C

(
σ

t
t−1

|wn(x) − wn(y)|t

|x− y|N+st
+ (H1

σ,n(x, y))
t

t−1

)
for some constant C > 0. This implies that

∫
RN

∫
RN

∣∣∣∣∣∣At(un(x) − un(y))

|x− y|
N+st
t/(t−1)

− At(wn(x) − wn(y))

|x− y|
N+st
t/(t−1)

− At(u(x) − u(y))

|x− y|
N+st
t/(t−1)

∣∣∣∣∣∣
t

t−1

dxdy

= on(1)

holds true for n ∈ N large enough.

Case 2: 1 < t < 2.
Invoking lemma 3.1 in the study by Mercuri and Willem [43] and applying the

Dominated Convergence Theorem, for n ∈ N large enough, we obtain that

∫
RN

∫
RN

∣∣∣∣∣∣At(un(x) − un(y))

|x− y|
N+st
t/(t−1)

− At(wn(x) − wn(y))

|x− y|
N+st
t/(t−1)

− At(u(x) − u(y))

|x− y|
N+st
t/(t−1)

∣∣∣∣∣∣
t

t−1

dxdy

= on(1)

holds true.
Now, combining Case 1 and Case 2, we complete the proof of (d).
(e) Using the Mean Value Theorem, hypotheses (f1)–(f2), and Young’s inequal-

ity, we can infer that for any σ> 0, there exists Cσ > 0 such that

|F (un) − F (wn) − F (u)|
2N

2N−µ 6 σ

(
|un|

2Np
2N−µ + |un|

2Nν
2N−µ

)
+ Cσ

(
|u|

2Np
2N−µ + |u|

2Nν
2N−µ

)
.

Define the following mapping:

H2
σ,n := max

{
|F (un) − F (wn) − F (u)|

2N
2N−µ − σ

(
|un|

2Np
2N−µ + |un|

2Nν
2N−µ

)
, 0

}
.

Then, arguing as in the proof of lemma 2.10 (d) and using the boundedness of the
sequence {un}n∈N ⊂ Xε, for n ∈ N sufficiently large, we can derive that∫

RN
|F (un) − F (wn) − F (u)|

2N
2N−µ dx = on(1). (2.19)
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On the other hand, we can deduce from theorem 4.3 in the study by Lieb and Loss
[38] that

∫
RN

∣∣∣∣ 1

|x|µ
∗ (F (un) − F (wn) − F (u))

∣∣∣∣ 2Nµ dx = on(1) (2.20)

for n ∈ N large enough.
We note that∫

RN

(
1

|x|µ
∗ F (un)

)
F (un)dx−

∫
RN

(
1

|x|µ
∗ F (wn)

)
F (wn)dx

=

∫
RN

(
1

|x|µ
∗ (F (un) − F (wn))

)
(F (un) − F (wn)) dx

+ 2

∫
RN

(
1

|x|µ
∗ (F (un) − F (wn))

)
F (wn)dx.

Using the above equality and taking into account that F (wn)
w−→ 0 in L

2N
2N−µ (RN )

as n→ ∞, together with (2.19)–(2.20), we can show that (e) holds true.
(f) We first prove that

sup
‖ϕ‖Xε61

∫
RN

|(f(un) − f(wn) − f(u))ϕ|
2N

2N−µ dx = on(1) (2.21)

for n ∈ N large enough.
For any fixed 0 < σ < 1, we deduce from hypothesis (f1) that there exists

0 < λ0 := λ0(σ) < 1 such that

f(t) 6 σ|t|p−1 for all |t| 6 2λ0. (2.22)

In addition, by hypothesis (f2), we can find λ1 := λ1(σ) > 2 such that

|f(t)| 6 σ|t|ν−1 for all |t| > λ1 − 1. (2.23)

Next, by the continuity of f, there is a positive constant γ := γ(σ) < λ0 such
that

|f(t1) − f(t2)| 6 λp−1
0 σ for all |t1 − t2| 6 γ, |t1|, |t2| 6 λ1 + 1. (2.24)

Additionally, combining (f1) and (f2), we can conclude that there exists C(σ) > 0
such that

f(t) 6 C(σ)|t|p−1 + σ|t|ν−1 for all t ∈ R. (2.25)

We now estimate the following term:∫
RN \BR

|(f(un) − f(wn) − f(u))ϕ|
2N

2N−µ dx.
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Since u ∈ Xε, together with (2.25), the Hölder inequality (2.1), and (V1), we know
that there exists R = R(σ) > 0 such that

∫
RN \BR

|f(u)ϕ|
2N

2N−µ dx

6 C

(∫
RN \BR

|u|
2N(p−1)
2N−µ |ϕ|

2N
2N−µ dx+

∫
RN \BR

|u|
2N(ν−1)
2N−µ |ϕ|

2N
2N−µ dx

)

6 C

(∫
RN \BR

|u|
2Np
2N−µ dx

)p−1
p

+

(∫
RN \BR

|u|
2Nν
2N−µ

)ν−1
ν

 ‖ϕ‖
2N

2N−µ
Xε

6 Cσ‖ϕ‖
2N

2N−µ
Xε

(2.26)

for some constant C > 0.
Let us define

D1
un :=

{
x ∈ RN \BR : |un(x)| 6 λ0

}
.

According to (2.22), the Hölder inequality, (2.1), (V1), and the boundedness of the
sequence {un}n∈N ⊂ Xε, we have

∫
D1
un∩|u|6γ

|(f(un) − f(wn))ϕ|
2N

2N−µ dx

6
∫
D1
un∩|u|6γ

(
σ|un|p−1 + σ|wn|p−1

) 2N
2N−µ |ϕ|

2N
2N−µ dx

6 Cσ‖ϕ‖
2N

2N−µ
Xε

(2.27)

for some constant C > 0.
Set

D2
un :=

{
x ∈ RN \BR : |un(x)| > λ1

}
.

Arguing as in (2.27), together with (2.23), we can obtain

∫
D2
un∩|u|6γ

|(f(un) − f(wn))ϕ|
2N

2N−µ dx 6 Cσ‖ϕ‖
2N

2N−µ
Xε

. (2.28)

for some positive constant C > 0.
Now, we introduce the following set:

D3
un :=

{
x ∈ RN \BR : λ0 6 |un(x)| 6 λ1

}
.
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It is easy to check that |D3
un | < +∞, since un ∈ Xε. So, from (2.24), it follows

that

∫
D3
un∩|u|6γ

|(f(un) − f(wn))ϕ|
2N

2N−µ dx 6 Cσ‖ϕ‖
2N

2N−µ
Xε

(2.29)

for some constant C > 0.
Thus, we deduce from (2.27)–(2.29) that

∫
(RN \BR)∩|u|6γ

|(f(un) − f(wn))ϕ|
2N

2N−µ dx 6 Cσ‖ϕ‖
2N

2N−µ
Xε

for all n ∈ N.

(2.30)

Thanks to u ∈ Xε, we have |(RN \BR)∩{|u| > γ}| → 0 as R→ ∞. Using (2.25)
again, we deduce that there exists R := R(σ) > 0 such that

∫
(RN\BR)∩|u|>γ

|(f(un)− f(wn))ϕ|
2N

2N−µ dx

6
∫
(RN\BR)∩|u|>γ

(
σ
(
|un|ν−1 + |wn|ν−1) |ϕ|+ C(σ)

(
|un|p−1 + |wn|p−1) |ϕ|) 2N

2N−µ dx

6 Cσ‖ϕ‖
2N

2N−µ

Xε
+ C

∫
(RN\BR)∩|u|>γ

(
C(σ)

(
|un|p−1 + |wn|p−1) |ϕ|) 2N

2N−µ dx

6 Cσ‖ϕ‖
2N

2N−µ

Xε
+ (2C(σ))

2N
2N−µ

∫
(RN\BR)∩|u|>γ

(
|un|

2N(p−1)
2N−µ + |wn|

2N(p−1)
2N−µ

)
|ϕ|

2N
2N−µ dx

6 Cσ‖ϕ‖
2N

2N−µ

Xε
+ C(C(σ))

2N
2N−µ

(∫
(RN\BR)∩|u|>γ

|ϕ|
2Np

2N−µ dx

) 1
p

6 Cσ‖ϕ‖
2N

2N−µ

Xε
+ C(C(σ))

2N
2N−µ ‖ϕ‖

2N
2N−µ

Xε
|(RN \BR) ∩ {|u| > γ}|

2sp−µ
p(2N−µ)

6 Cσ‖ϕ‖
2N

2N−µ

Xε
,

where C is a positive constant. Combining this inequality with (2.26) and (2.30),
we deduce that there is a constant C > 0 such that for all n ∈ N,

∫
RN \BR

|(f(un) − f(wn) − f(u))ϕ|
2N

2N−µ dx 6 Cσ‖ϕ‖
2N

2N−µ
Xε

. (2.31)

Recalling that un
w−→ u in Xε as n → ∞ and passing to a subsequence (still

denoted by {un}n∈N), we can assume that un → u strongly in L
2Np
2N−µ (BR) (since

0 < µ < 2sp) and there is a function d ∈ L
2Np
2N−µ (BR) such that |un(x)|, |u(x)| 6

d(x) a.e. x ∈ BR.
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For n ∈ N large enough, we have

∫
BR

|f(wn)ϕ|
2N

2N−µ dx 6
∫
BR

(
C(σ)|wn)|p−1 + σ|wn|ν−1

) 2N
2N−µ |ϕ|

2N
2N−µ dx

6 Cσ‖ϕ‖
2N

2N−µ
Xε

+ (2C(σ))
2N

2N−µ

(∫
BR

|wn|
2Np
2N−µ

)p−1
p

|ϕ|
2N

2N−µ
2Np
2N−p

6 Cσ‖ϕ‖
2N

2N−µ
Xε

, (2.32)

where C > 0 is some constant.
Set D4

un := {x ∈ BR : |un(x) − u(x)| > 1}. So, we get

∫
D4
un

|(f(un) − f(u))ϕ|
2N

2N−µ dx

6
∫
D4
un

(
C(σ)(|un|p−1 + |u|p−1) + σ(|un|ν−1 + |u|ν−1)

) 2N
2N−µ |ϕ|

2N
2N−µ dx

6 Cσ‖ϕ‖
2N

2N−µ
Xε

+ C(2C(σ))
2N

2N−µ

(∫
D4
un

d
2Np
2N−µ dx

)p−1
p

‖ϕ‖
2N

2N−µ
Xε

,

where C > 0 is some constant. We observe that |D4
un | → 0 in R as n → ∞, and

then we can deduce that there exists some constant C > 0 such that

∫
D4
un

|(f(un) − f(u))ϕ|
2N

2N−µ dx 6 Cσ‖ϕ‖
2N

2N−µ
Xε

, (2.33)

provided that n ∈ N is sufficiently large.
In addition, from u ∈ Xε, it follows that

∣∣{x ∈ RN : |u(x)| > L
}∣∣→ 0 in RN as L→ +∞.

Using the above fact and invoking (2.25) again, we can infer that there exists
L := L(σ) > 0 such that

∫
(BR\D4

un
)∩

{
x∈RN :|u(x)|>L

} |(f(un)− f(u))ϕ|
2N

2N−µ dx

6
∫
(BR\D4

un
)∩

{
x∈RN :|u(x)|>L

} ∣∣(C(σ)(|un|p−1 + |u|p−1) + σ(|un|ν−1 + |u|ν−1)
)
ϕ
∣∣ 2N
2N−µ dx

6 Cσ‖ϕ‖
2N

2N−µ

Xε
+ C(C(σ))

2N
2N−µ ‖ϕ‖

2N
2N−µ

Xε

∣∣∣(BR \D4
un

) ∩
{
x ∈ RN : |u(x)| > L

}∣∣∣ 2sp−µ
p(2N−µ)

6 Cσ‖ϕ‖
2N

2N−µ

Xε
, (2.34)
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where C > 0 is a constant. Additionally, we can deduce from the Dominated
Convergence Theorem that∫

(BR\D4
un )∩

{
x∈RN :|u(x)|6L

} |f(un) − f(u)|
2Np

(2N−µ)(p−1) dx = on(1)

for n ∈ N large enough.
It follows that∫

(BR\D4
un )∩

{
x∈RN :|u(x)|6L

} |(f(un) − f(u))ϕ|
2N

2N−µ dx 6 Cσ‖ϕ‖
2N

2N−µ
Xε

(2.35)

for some constant C > 0.
Hence, we deduce from (2.32), (2.33), (2.34), and (2.35) that there exists some

constant C > 0 such that∫
BR

|(f(un) − f(wn) − f(u))ϕ|
2N

2N−µ dx 6 Cσ‖ϕ‖
2N

2N−µ
Xε

(2.36)

for large enough n ∈ N.
Putting together (2.31) and (2.36), we conclude that (2.21) holds true.

On account of the fact that 1
|x|µ ∗ F (u) ∈ L

2N
µ (RN ), for any 0 < σ < 1, there

exists R1 := R1(σ) > 0 such that

∫
RN \BR1

∣∣∣∣ 1

|x|µ
∗ F (u)

∣∣∣∣ 2Nµ dx


µ
2N

< σ.

Using the above all information and by a straightforward computation, for n ∈ N
large enough, we can conclude that∣∣∣∣∫

RN

(
1

|x|µ
∗ F (u)

)
f(wn)ϕdx

∣∣∣∣
6
∫
BR1

∣∣∣∣( 1

|x|µ
∗ F (u)

)
f(wn)ϕ

∣∣∣∣ dx+

∫
RN \BR1

∣∣∣∣( 1

|x|µ
∗ F (u)

)
f(wn)ϕ

∣∣∣∣ dx
6 Cu

(∫
BR1

|f(wn)ϕ|
2N

2N−µ dx

)2N−µ
2N

+

∫
RN \BR1

∣∣∣∣ 1

|x|µ
∗ F (u)

∣∣∣∣ 2Nµ dx


µ
2N (∫

RN
|f(wn)ϕ|

2N
2N−µ dx

) 2N−µ
2N

6 Cσ‖ϕ‖Xε , (2.37)

where Cu and C are positive constants.
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Next, we prove the following relation:∣∣∣∣∫
RN

(
1

|x|µ
∗ F (wn)

)
f(u)ϕdx

∣∣∣∣ 6 Cσ‖ϕ‖Xε (2.38)

for n ∈ N sufficiently large.
Indeed, it is easy to check that, for any σ ∈ (0, 1) and some R2 := R(σ) > 0,

there exists some constant C > 0 such that∫
BR2

|F (wn)|

(∫
BR2

|f(u(x))ϕ(x)|
|x− y|µ

dx

)
dy 6 Cσ‖ϕ‖Xε , (2.39)

∫
RN

|F (wn)|

(∫
RN \BR2

|f(u(x))ϕ(x)|
|x− y|µ

dx

)
dy 6 Cσ‖ϕ‖Xε (2.41)

for n ∈ N large enough.
To prove (2.38), now we need to estimate the following part:

Φn :=

∫
RN \BR2

|F (wn)|

(∫
BR2

|f(u(x))ϕ(x)|
|x− y|µ

dx

)
dy.

To this end, we divide this into two parts for discussion.
(∗) If f(u(x))ϕ(x) = 0 a.e. on BR2

, so, we have

Φn 6 Cσ‖ϕ‖Xε for all σ > 0 and for some constant C > 0.

(∗∗) If |
{
x ∈ BR2

: f(u(x))ϕ(x) 6= 0
}
| > 0, that is,∫

BR2

|f(u)ϕ|
6N

6N−µ dx > 0.

In addition, we can easily derive that∫
BR2

|f(u)ϕ|
6N

6N−µ dx 6 C‖ϕ‖
6N

6N−µ
Xε

|BR2
|

2µ
6N−µ for some constant C > 0.

Let us define

dσ :=


|f(u)ϕ|

L
6N

6N−µ (BR2
)

σ‖ϕ‖Xε


3
µ

and R̂2 := R2 + σ− 3
µ |BR2

|
6

6N−µC
6N−µ
2Nµ .

In the case (∗∗), we can apply the above relations, theorem 4.3 in the study by
Lieb and Loss [38], the Sobolev continuous embedding and the local compactness
Sobolev embedding to infer that, for n ∈ N sufficiently large,
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Φn =

∫
BR2

|f(u)ϕ|

(∫
RN \BR2

|F (wn(y))|
|x− y|µ

dy

)
dx

=

∫
BR2

|f(u)ϕ|

(∫
RN \BR2+dσ

|F (wn(y))|
|x− y|µ

dy

)
dx

+

∫
BR2

|f(u)ϕ|

(∫
BR2+dσ \BR2

|F (wn(y))|
|x− y|µ

dy

)
dx

6 C
σ‖ϕ‖Xε

|f(u)ϕ|
L

6N
6N−µ (BR2

)

∫
BR2

|f(u)ϕ|

(∫
RN \BR2+dσ

|F (wn(y))|
|x− y|2µ/3

dy

)
dx

+

∫
BR2

|f(u)ϕ|

(∫
BR2+dσ \BR2

|F (wn(y))|
|x− y|µ

dy

)
dx

6 C
σ‖ϕ‖Xε

|f(u)ϕ|
L

6N
6N−µ (BR2

)

∫
BR2

|f(u)ϕ|
(∫

RN

|F (wn(y))|
|x− y|2µ/3

dy

)
dx

+

∫
BR2

|f(u)ϕ|

(∫
BR2+dσ \BR2

|F (wn(y))|
|x− y|µ

dy

)
dx

6 C
σ‖ϕ‖Xε

|f(u)ϕ|
L

6N
6N−µ (BR2

)

|f(u)ϕ|
L

6N
6N−µ (BR2

)

+

∫
BR2

|f(u)ϕ|

∫
B
R̂2

\BR2

|F (wn(y))|
|x− y|µ

dy

 dx

6 Cσ‖ϕ‖Xε +

∫
BR2

|f(u)ϕ|

∫
B
R̂2

\BR2

|F (wn(y))|
|x− y|µ

dy

 dx

6 Cσ‖ϕ‖Xε . (2.42)

Thus, relations (2.39), (2.41), and (2.42) and (∗) imply that (2.38) holds true.
Finally, we point out that

∫
RN

(
1

|x|µ
∗ F (un)

)
f(un)ϕdx−

∫
RN

(
1

|x|µ
∗ F (wn)

)
f(wn)ϕdx

=

∫
RN

(
1

|x|µ
∗ (F (un) − F (wn))

)
(f(un) − f(wn))ϕdx

+

∫
RN

(
1

|x|µ
∗ (F (un) − F (wn))

)
f(wn)ϕdx

+

∫
RN

(
1

|x|µ
∗ F (wn)

)
(f(un) − f(wn))ϕdx.
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Then, the above equality combined with (2.19), (2.20), (2.21), (2.37), and (2.38);
theorem 4.3 in the study by Lieb and Loss [38]; the Hölder inequality; the bound-
edness of the sequence {un}n∈N ⊂ Xε; and the fact that ‖ϕ‖Xε 6 1 yields that (f)
is true. This proof is now complete. �

3. The limit problem

To the best of our knowledge, there is no result about the nonlinear fractional (p, q)-
Choquard problem. That is why we need to consider the following limit problem
associated with problem (1.3):{

(−∆)spu+ (−∆)squ+ V0(|u|p−2u+ |u|q−2u) =
(

1
|x|µ ∗ F (u)

)
f(u) in RN ,

u ∈W s,p(RN ) ∩W s,q(RN ), u > 0 in RN .

}
(3.1)

It is worth pointing out that we denote by XV0
the space Xε when ε= 0. For

all u ∈ XV0
, we introduce the corresponding energy functional associated with

problem (3.1) defined by

IV0(u) :=
1

p
[u]ps,p +

1

q
[u]qs,q + V0

(
1

p
|u|pp +

1

q
|u|qq
)
− 1

2

∫
RN

(
1

|x|µ
∗ F (u)

)
F (u)dx.

It is obvious that the functional IV0 is well-defined and belongs to C 1, with its
differential given by

〈I ′V0(u), v〉 = 〈u, v〉s,p + 〈u, v〉s,q +

∫
RN

V0
(
|u|p−2u+ |u|q−2u

)
vdx

−
∫
RN

(
1

|x|µ
∗ F (u)

)
f(u)vdx,

for all u, v ∈ XV0
. So, it is easy to check that all the solutions of problem (3.1)

correspond to critical points of the functional IV0 .
Next, we denote by MV0

the Nehari manifold associated with the functional IV0 ,
that is,

MV0
:=
{
u ∈ XV0

\ {0} : 〈I ′V0(u), u〉 = 0
}
.

Moreover, we define cV0 := infu∈MV0
IV0(u).

Now, we define the following sets:

X+
V0

:=
{
u ∈ XV0

: |supp (u+)| > 0
}

and S+
V0

= SV0
∩X+

V0
,

where SV0
is the unit sphere of XV0

. We point out that S+
V0

is also an incom-

plete C1,1-manifold of codimension one and contained in X+
V0

. Hence, XV0
=

Tu(S+
V0

)
⊕

Ru for each u ∈ S+
V0

, where
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Tu(S+
V0

) :=

{
v ∈ XV0

: 〈u, v〉s,p + 〈u, v〉s,q +

∫
RN

V0
(
|u|p−2u+ |u|q−2u

)
vdx = 0

}
.

With arguments as in the proof of lemma 2.2, we can deduce that the following
property holds true.

Lemma 3.1. Assume that (f1)–(f4) and (V1) are fulfilled, then we have the
following properties:

(a) for all u ∈ X+
V0
, there exists a unique tu > 0 such that tuu ∈ MV0

.

Furthermore, m̂V0
(u) = tuu is the unique maximum of IV0(tu);

(b) there exists τ > 0 independent of u such that tu > τ for all u ∈ S+
V0
.

Moreover, for each compact set W ⊂ S+
V0
, there exists a constant CW > 0

such that tu 6 CW for all u ∈ W;
(c) the mapping m̂V0

: X+
V0

7→ MV0
is continuous, mV0

:= m̂V0
|
S+
V0

is a

homeomorphism between S+
V0

and MV0
, and the inverse of mV0

is given

by m−1
V0

(u) := u/‖u‖XV0
;

(d) cV0 := infu∈MV0
IV0(u) > 0, and IV0 is bounded below on MV0

by some

positive constant;
(e) let 0 < µ < sp and ν < (N − µ)q/(N − sq). If there exists a

sequence {un}n∈N ⊂ S+
V0

such that dist (un, ∂S
+
ε ) → 0 as n → ∞, then

‖mV0
(un)‖XV0

→ +∞ and Jε(mε(un)) → +∞ as n→ ∞;

(f) IV0 is coercive on MV0
.

Now, let us define the mappings

ψ̂V0
: X+

V0
7→ R and ψV0

: S+
V0

7→ R

by ψ̂V0
(u) := IV0(m̂V0

(u)) for all u ∈ X+
V0

and ψV0
:= ψ̂V0

|
S+
V0

.

Lemma 3.2. Assume that (f1)–(f4) and (V1) hold true. Then,

(a) ψ̂V0
∈ C1(X+

V0
,R) and 〈ψ̂′

V0
(u), v〉 =

‖m̂V0
(u)‖XV0

‖u‖XV0

〈I ′V0(m̂V0
(u)), v〉 for all

u ∈ X+
V0
, all v ∈ XV0

;

(b) ψV0
∈ C1(S+

V0
,R) and 〈ψ′

V0
(u), v〉 = ‖mV0

(u)‖XV0
〈I ′V0(mV0

(u)), v〉 for all

u ∈ S+
V0
, all v ∈ Tu(S+

V0
);

(c) if {un}n∈N is a Palais–Smale sequence for ψV0
, then {mV0

(un)}n∈N is
a Palais–Smale sequence for IV0 . If {un}n∈N ⊂ MV0

is a bounded

Palais–Smale sequence for IV0 , then {m−1
V0

(un)}n∈N ⊂ S+
V0

is a Palais–Smale

sequence for ψV0
;
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(d) u ∈ S+
V0

is a critical point of ψV0
if and only if mV0

(u) ∈ MV0
is a critical

point of IV0 . Moreover, the corresponding critical values coincide and

inf
u∈S+

V0

ψV0
(u) = inf

u∈MV0

IV0(u) = cV0 .

Remark 3.3. The following variational characterization for cV0 is fulfilled:

cV0 = inf
u∈MV0

IV0(u) = inf
u∈X+

V0

max
t>0

IV0(tu) = inf
u∈S+

V0

max
t>0

IV0(tu).

Lemma 3.4. Assume that {un}n∈N ⊂ XV0
is a Palais–Smale sequence of the func-

tional IV0 at the level cV0 . Then, the sequence {un}n∈N ⊂ XV0
is bounded, and

there exist a sequence {yn}n∈N ⊂ RN and some constants R, α> 0 such that

lim inf
n→∞

∫
BR(yn)

|un|qdx > α.

Proof. Arguing as in lemma 2.5, it is obvious to see that {un}n∈N ⊂ XV0
is bounded.

Now, arguing by contradiction, suppose that for any R> 0, the following relation

lim
n→∞

sup
y∈RN

∫
BR(y)

|un|qdx = 0

holds true. Then, using lemma 2.2 in the study by Alves, Ambrosio, and Isernia
[1], we know that for all r ∈ (p, q∗s ),

un → 0 in Lr(RN ) as n→ ∞. (3.2)

So, we deduce from theorem 4.3 in the study by Lieb and Loss [38], hypotheses
(f1)–(f2), the boundedness of the sequence {un}n∈N ⊂ XV0

, and (3.2) that

lim
n→∞

∫
RN

(
1

|x|µ
∗ F (un)

)
f(un)undx = 0.

Moreover, by the boundedness of the sequence {un}n∈N ⊂ XV0
, we see that

〈I ′V0(un), un〉 = on(1) as n→ ∞, that is,

[un]ps,p + [un]qs,q + V0
(
|un|pp + |un|qq

)
=

∫
RN

(
1

|x|µ
∗ F (un)

)
f(un)undx+ on(1) as n→ ∞.

This implies that ‖un‖XV0
= on(1) as n → ∞. We get a contradiction since

IV0(un) → cV0 > 0 in R as n→ ∞. The proof is now complete. �

Theorem 3.5 Problem (3.1) has a positive ground state solution.
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Proof. We deduce from a variant of the Mountain Pass Theorem without the
Palais–Smale condition that there is a Palais–Smale sequence {un}n∈N ⊂ XV0

of
the functional IV0 at the level cV0 . As in the proof of lemma 2.5, we can conclude
that the sequence {un}n∈N ⊂ XV0

is bounded. Then, we are able to deduce from

lemma 3.4 that there exist a sequence {yn}n∈N ⊂ RN and some constants R, α> 0

lim inf
n→∞

∫
BR(yn)

|un|qdx > α.

Set vn(x) := un(x+ yn). Then, we have∫
BR(0)

|vn|qdx >
α

2
.

It is easy to check that IV0(vn) → cV0 in R and I ′V0(vn) → 0 in XV0
∗ as n → ∞.

Clearly, the sequence {vn}n∈N ⊂ XV0
is also bounded. Thus, we may suppose that

there exists 0 6= v ∈ XV0
such that vn

w−→ v (up to a subsequence) in XV0
as

n → ∞. Moreover, arguing as in lemma 2.7, we have I ′V0(v) = 0. Due to v 6= 0, we

can derive that v ∈ MV0
, and so IV0(v) > cV0 . On the other hand, from hypothesis

(f3) and Fatou’s Lemma, we deduce that

IV0(v) = IV0(v) − 1

q
〈I ′V0(v), v〉 6 lim inf

n→∞

(
IV0(vn) − 1

q
〈I ′V0(vn), vn〉

)
= cV0 .

So, we obtain IV0(v) = cV0 .
We can also show that this ground state solution v is positive. Set v− :=

min {v, 0}, and then v− ∈ XV0
. Recalling that f(t) = 0 for t 6 0 and using

〈I ′V0(v), v−〉 = 0, we obtain

‖v−‖pV0,p + ‖v−‖qV0,q 6 0.

This leads to v− = 0, and so v > 0 on RN . Thus, v > 0 and v 6≡ 0. Similar to the
proof of lemma 6.1, we see that v ∈ L∞(RN ). In addition, from corollary 2.1 in
the study by Ambrosio and Rădulescu [11], it follows that v ∈ Cσ(RN ) for some
σ ∈ (0, 1). Now, it follows from the proof of theorem 1.1 (ii) in the study by Jarohs
[33] that v > 0 on RN . This ends the proof. �

Next, we introduce a compactness result for the autonomous problem, which will
be very useful in the sequel.

Lemma 3.6. Let 0 < µ < sp and ν < (N − µ)q/(N − sq). Assume that
{un}n∈N ⊂ MV0

is a sequence satisfying IV0(un) → cV0 in R as n → ∞, then
the sequence {un(· + yn)}n∈N ⊂ XV0

possesses a convergent subsequence for some

sequence {yn}n∈N ⊂ RN .

Proof. On account of the fact that {un}n∈N ⊂ MV0
and IV0(un) → cV0 in R as

n→ ∞, lemma 3.1 (c), lemma 3.2 (d), and the definition of cV0 imply that

wn := m−1
V0

(un) ∈ S+
V0

for all n ∈ N
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and

ψV0
(wn) = IV0(un) → cV0 = inf

w∈S+
V0

ψV0
(w) in R as n→ ∞.

Now, we introduce the following map:

I(u) =

 ψV0
(u) if u ∈ S+

V0
,

+∞ if u ∈ ∂S+
V0
.

It is worth pointing out the following essential facts:

(i) (S+
V0
, δV0), where δV0(u, v) = ‖u− v‖XV0

, is a complete metric space;

(ii) I ∈ C(S+
V0
,R ∪ {+∞}), by lemma 3.1 (e);

(iii) I is bounded below, by lemma 3.2 (d).

We deduce from the Ekeland variational principle (see the study by Ekeland [28])
that there exists a Palais–Smale sequence {ŵn}n∈N ⊂ S+

V0
of the functional ψV0

at

the level cV0 such that ‖ŵn − wn‖XV0
= on(1) as n → ∞, that is, ψV0

(ŵn) → cV0

in R and ψ′
V0

(ŵn) → 0 in Tŵn(S+
V0

)
∗

as n → ∞. Therefore, from lemma 3.2 (c),

it follows that the sequence
{
mV0

(ŵn)
}
n∈N ⊂ MV0

is the Palais–Smale sequence
of the functional IV0 at the level cV0 . Then, we can conclude that the sequence{
mV0

(ŵn)
}
n∈N ⊂ XV0

is the bounded Palais–Smale sequence at the level cV0 . Now,

let vn := mV0
(ŵn). According to theorem 3.5, we see that there exist a sequence

{yn}n∈N ⊂ RN and 0 6= v̂ ∈ XV0
such that

v̂n(·) := vn(· + yn)
w−→ v̂ in XV0

as n→ ∞,

IV0(v̂n) = cV0 + on(1), I ′V0(v̂n) = on(1) as n→ ∞,

IV0(v̂) = cV0 , I
′
V0

(v̂) = 0.

(3.3)

Set ṽn := v̂n − v̂. Applying lemma 2.10, the Hölder inequality, and (3.3), we can
deduce that

IV0(ṽn) = on(1) and I ′V0(ṽn) = on(1) as n→ ∞.

Consequently, ṽn → 0 in XV0
as n → ∞, that is, v̂n → v̂ in XV0

as n → ∞. From
lemma 3.1 (c) and (3.3), we infer that un(· + yn) → v̂ ∈ MV0

as n → ∞. So, we
now complete the proof. �

4. The barycenter map

Next, we need to establish a relationship between the topology of M and the number
of positive solutions for problem (2.2). To this end, we first choose δ > 0 such that

Mδ :=
{
x ∈ RN : dist (x,M) 6 δ

}
⊂ Λ (4.1)
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and take η ∈ C∞([0,+∞), [0, 1]) non-increasing satisfying η(t) = 1 for t ∈ (0, δ/2),
η(t) = 0 for t ∈ [δ,+∞), and |η′(t)| 6 C for some constant C > 0.

Let ω be a positive ground state solution to the autonomous problem (3.1). For
any y ∈M , we define the following function:

Ψε,y(x) := η(|εx− y|)ω
(
εx− y

ε

)
with the unique number tε > 0 satisfying

max
t>0

Jε(tΨε,y) = Jε(tεΨε,y),

and let us consider the mapping Φε : M 7→ Nε defined by

Φε(y) := tεΨε,y.

Lemma 4.1. The mapping Φε verifies the following property:

lim
ε→0

Jε(Φε(y)) = cV0 uniformly in y ∈M.

Proof. Arguing by contradiction, we may assume that there exist δ0 > 0, {yn}n∈N ⊂
M , and εn → 0 in R as n→ ∞ such that∣∣Jεn(Φεn(yn)) − cV0

∣∣ > δ0. (4.2)

We first note that for each n ∈ N and for all z ∈ B δ
εn

, εnz ∈ Bδ, and hence

εnz + yn ∈ Bδ(yn) ⊂Mδ ⊂ Λ.
Applying the change of variable z = (εnx − yn)/εn and recalling that G =F in

Λ and η(t) = 0 for t > δ, we have

Jεn(Φεn(yn)) =
tpεn
p

‖Ψεn,yn‖
p
Vεn,p +

tqεn
q

‖Ψεn,yn‖
q
Vεn,q

− 1

2

∫
RN

(
1

|x|µ
∗G(εnx, tεnΨεn,yn)

)
G(εnx, tεnΨεn,yn)dx

=
tpεn
p

(
[η(|εn · |)ω]ps,p +

∫
RN

V (εnz + yn)(η(|εnz|)ω(z))pdz

)
+
tqεn
q

(
[η(|εn · |)ω]qs,q +

∫
RN

V (εnz + yn)(η(|εnz|)ω(z))qdz

)
− 1

2

∫
RN

(
1

|z|µ
∗ F (tεnη(|εnz|)ω(z))

)
F (tεnη(|εnz|)ω(z))dz. (4.3)

Next, we prove that the sequence {tεn}n∈N ⊂ R verifies tεn → 1 in R as n→ ∞.
Using the definition of tεn , we see that tεnΨεn,yn ∈ Nεn , that is,
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tp−q
εn ‖Ψεn,yn‖

p
Vεn,p + ‖Ψεn,yn‖

q
Vεn,q

=

∫
RN

(
1

|x|µ
∗ F (tεnΨεn,yn)

)
f(tεnΨεn,yn)Ψεn,yn

tq−1
εn

dx

(on account of the fact that g = f, G = F on Λ)

=

∫
RN

(
1

|z|µ
∗ F (tεnη(|εnz|)ω(z))

)
f(tεnη(|εnz|)ω(z))η(|εnz|)ω(z)

tq−1
εn

dz. (4.4)

Taking into account η(|x|) = 1 for x ∈ B δ
2

and B δ
2

⊂ B δ
εn

for n ∈ N large

enough, we deduce from (4.4) that

tp−q
εn ‖Ψεn,yn‖

p
Vεn,p + ‖Ψεn,yn‖

q
Vεn,q >

∫
Bδ

2

∫
Bδ

2

F (tεnω(x))f(tεnω(z))ω(z)

tq−1
εn |z − x|µ

dxdz.

On the other hand, ω is a continuous and positive function in RN , so there exists
z̄ ∈ RN such that

ω(z̄) = min
z∈B δ

2

ω(z) > 0.

Thus, we deduce from hypothesis (f4) that

tp−q
εn ‖Ψεn,yn‖

p
Vεn,p + ‖Ψεn,yn‖

q
Vεn,q > δ−µ

∣∣∣B δ
2

∣∣∣2 F (tεnω(z̄))f(tεnω(z̄))

(tεnω(z̄))
q−1 ω(z̄)q.

(4.5)

According to the Dominated Convergence Theorem and lemma 2.2 in the study
by Ambrosio [7], we can deduce that

‖Ψεn,yn‖Vεn,t → ‖ω‖V0,t ∈ (0,+∞) in R as n→ ∞ for t ∈ {p, q} (4.6)

and∫
RN

(
1

|x|µ ∗ F (Ψεn,yn)

)
F (Ψεn,yn)dx →

∫
RN

(
1

|x|µ ∗ F (ω)

)
F (ω)dx in R as n → ∞.

(4.7)

Therefore, if tεn → +∞, we can conclude that the left-hand side of (4.5) satisfies
the following property:

lim
n→∞

(
tp−q
εn ‖Ψεn,yn‖

p
Vεn,p + ‖Ψεn,yn‖

q
Vεn,q

)
= ‖ω‖qV0,q, (4.8)

since q > p. On the other hand, we deduce from hypothesis (f3) that

lim
n→∞

F (tεnω(z̄))

(tεnω(z̄))
q
2

= lim
n→∞

f(tεnω(z̄))

(tεnω(z̄))
q
2−1

= +∞. (4.9)
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From (4.5), (4.8), and (4.9) we get a contradiction. Then, we pass to a subsequence
and assume that there exists t0 such that tεn → t0 > 0. In addition, applying (4.4)
and (4.6) and combining with (f1)–(f2), we deduce that t0 > 0.

In (4.4), we pass to the limit as n → ∞, and then we can use (4.6) and the
Dominated Convergence Theorem to infer that

tp−q
0 ‖ω‖pV0,p + ‖ω‖qV0,q =

∫
RN

(
1

|x|µ
∗ F (t0ω)

)
f(t0ω)

tq−1
0

ωdx. (4.10)

Due to ω ∈ MV0
, we derive that

‖ω‖pV0,p + ‖ω‖qV0,q =

∫
RN

(
1

|x|µ
∗ F (ω)

)
f(ω)

tq−1
0

ωdx. (4.11)

From the fact that the functions F (t)

t
q
2

and f(t)

t
q
2−1

are increasing for t > 0, together

with (4.10) and (4.11), it follows that t0 = 1.
In (4.3), we pass to the limit as n→ ∞, and together with (4.7), we have

lim
n→∞

Jεn(Φεn(yn)) = IV0(ω) = cV0 .

This is a contradiction, since (4.2). So, we complete the proof of the lemma. �

Let us consider the function h : R+ 7→ R+ such that h(ε) :=
supy∈M

∣∣Jε(Φε(y)) − cV0
∣∣ for all ε> 0. Then, we define the following subset of Nε:

N̂ε :=
{
u ∈ Nε : Jε(u) 6 cV0 + h(ε)

}
.

From lemma 4.1, it follows that h(ε) → 0 as ε → 0. Additionally, we deduce from

the definition of h that Φε(y) ∈ N̂ε for any y ∈M and ε> 0, and so N̂ε 6= ∅.
For any δ > 0 given by (4.1), let us choose ρ := ρ(δ) > 0 such that Mδ ⊂ Bρ.

Then, we introduce the map ζ : RN 7→ RN defined by

ζ(x) :=

x if |x| < ρ,
ρx
|x| if |x| > ρ.

Now, we introduce the following barycenter map βε : Nε 7→ RN defined by

βε(u) :=

∫
RN ζ(εx) (|u|p + |u|q) dx∫

RN (|u|p + |u|q) dx

for all u ∈ Nε.
Then, from the above information, we can give the following lemma.

Lemma 4.2. The function βε has the following property:

lim
ε→0

βε(Φε(y)) = y uniformly in y ∈M.
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Proof. Arguing by contradiction, assume that there exist δ0 > 0, {yn}n∈N ⊂ M ,
and εn → 0 in R as n→ ∞ such that

|βεn(Φεn(yn)) − yn| > δ0. (4.12)

Employing the definitions of Φεn , βεn , and ζ and using the change of variable
z = (εnx− yn)/εn, we can conclude that

βεn(Φεn(yn)) = yn +

∫
RN (ζ(εnz + yn) − yn) (|η(|εnz|)ω(z)|p + |η(|εnz|)ω(z)|q) dz∫

RN (|η(|εnz|)ω(z)|p + |η(|εnz|)ω(z)|q) dz
.

On account of {yn}n∈N ⊂ M ⊂ Mδ, combining the Dominated Convergence
Theorem, we can derive that

lim
n→∞

|βεn(Φεn(yn)) − yn| = 0,

which contradicts relation (4.12). This proof is now complete. �

Lemma 4.3. Let 0 < µ < sp and ν < (N − µ)q/(N − sq). Assume that
the sequences {εn}n∈N ⊂ R and {un}n∈N ⊂ Nεn satisfy εn → 0 in R and
Jεn(un) → cV0 in R as n→ ∞; then, there is a sequence {ŷn}n∈N ⊂ RN such that
the sequence {ûn(x) := un(x+ ŷn)}n∈N admits a subsequence which converges in
XV0

. Furthermore, the sequence {yn := εnŷn}n∈N ⊂ RN has a subsequence {yn}n∈N
(still denoted by itself ) such that yn → y0 ∈M as n→ ∞.

Proof. It is easy to verify that {un}n∈N ⊂ XV0
is bounded. Then, using lemma 3.4,

we know that there exist a sequence {ŷn}n∈N ⊂ RN and some constants R, α> 0
such that

lim inf
n→∞

∫
BR(ŷn)

|un|qdx > α.

Let ûn(x) := un(x+ ŷn). Consequently, {ûn}n∈N ⊂ XV0
is bounded, and so passing

to a subsequence, we can suppose that there exists some 0 6= û ∈ XV0
such that

ûn
w−→ û in XV0

as n → ∞. Let tn > 0 be such that v̂n := tnûn ∈ MV0
, and let

yn := εnŷn. Thus, we deduce that

cV0 6 IV0(v̂n) (from the definition of cV0)

6
1

p
[v̂n]ps,p +

1

q
[v̂n]qs,q +

∫
RN

V (εnx+ yn)

(
1

p
|v̂n|p +

1

q
|v̂n|q

)
dx

− 1

2

∫
RN

(
1

|x|µ
∗ F (v̂n)

)
F (v̂n)dx

6
tpn
p

[un]ps,p +
tqn
q

[un]qs,q +

∫
RN

V (εnx)

(
tpn
p
|un|p +

tqn
q
|un|q

)
dx

− 1

2

∫
RN

(
1

|x|µ
∗G(εx, tnun)

)
G(εx, tnun)dx (by (g2))
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= Jεn(tnun) 6 Jεn(un) (since un ∈ Nεn)

= cV0 + on(1) as n→ ∞.

This implies that IV0(v̂n) → cV0 in R as n → ∞ and v̂n ∈ MV0
. Clearly, the

sequence {v̂n}n∈N ⊂ XV0
is bounded. Therefore, up to a subsequence if necessary,

still denoted by itself, we may assume that there exists v̂ ∈ XV0
such that v̂n

w−→ v̂
in XV0

as n → ∞. It is easy to see that the sequence {tn}n∈N ⊂ R is bounded,
and it holds that tn → t0 > 0 as n → ∞. Indeed, t0 > 0. Otherwise, t0 = 0, so,
we infer from the boundedness of the sequence {v̂n}n∈N ⊂ XV0

that ‖v̂n‖XV0
=

tn‖ûn‖XV0
→ 0 in R as n → ∞, and so IV0(v̂n) → 0 in R as n → ∞, but this

is impossible, since cV0 > 0. Thus, t0 > 0. We deduce from the uniqueness of the
weak limit that v̂ = t0û and û 6= 0. Then, from lemma 3.6, it follows that

v̂n → v̂ in XV0
as n→ ∞, (4.13)

and so ûn → û in XV0
as n→ ∞. Moreover, IV0(v̂) = cV0 and 〈I ′V0(v̂), v̂〉 = 0.

Next, we shall prove that the sequence {yn}n∈N ⊂ RN has a subsequence, still
denoted by itself, such that yn → y0 ∈M as n→ ∞. We first show the boundedness
of the sequence {yn}n∈N ⊂ RN . Otherwise, the sequence {yn}n∈N ⊂ RN is not
bounded. So, we may assume that there exists a subsequence, still denoted by
itself, such that |yn| → +∞ in R as n → ∞. Then, we choose R> 0 large enough
such that Λ ⊂ BR, we may suppose that |yn| > 2R for n ∈ N sufficiently large, and
so for all x ∈ BR/εn we have

|εnx+ yn| > |yn| − |εnx| > R.

On account of the facts that un ∈ Nεn and Jεn(un) → cV0 in R as n→ ∞, thus,
for n ∈ N large enough, we have that un ∈ B. Consequently, from lemma 2.6, it
follows that ∣∣∣∣ 1

|x|µ
∗G(εnx, un)

∣∣∣∣
L∞(RN )

<
K

2
for n ∈ N large enough.

Therefore, for n ∈ N large enough, we obtain

‖ûn‖pV0,p + ‖ûn‖qV0,q 6
K

2

∫
RN

g(εnx+ yn, ûn)ûndx

6
K

2

∫
BR/εn

f̃(ûn)ûndx+
K

2

∫
Bc
R/εn

f(ûn)ûndx

6
K

2

∫
BR/εn

V0
K

(|ûn|p + |ûn|q) dx+
K

2

∫
Bc
R/εn

f(ûn)ûndx,

(on account of the fact that f̃(ûn)ûn

6
V0
K

(|ûn|p + |ûn|q) on BR/εn).
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Recalling that ûn → û in XV0
as n→ ∞ and using the Dominated Convergence

Theorem, we obtain ∫
Bc
R/εn

f(ûn)ûndx = on(1) as n→ ∞.

So, we have

1

2

(
‖ûn‖pV0,p + ‖ûn‖qV0,q

)
6 on(1) as n→ ∞.

Using ûn → û 6= 0 in XV0
as n→ ∞ again, we see that this is a contradiction.

Now, we get the boundedness of the sequence {yn}n∈N ⊂ RN . Passing to a
subsequence (still denoted by {yn}n∈N), we may assume that there exists y0 ∈ RN

such that yn → y0 ∈ Λ as n → ∞. In fact, if y0 6∈ Λ, then we can find some
constant r > 0 such that yn ∈ Br/2(y0) ⊂ Λ

c
. Arguing as before, we can reach a

contradiction. So, y0 ∈ Λ.
It remains to show that V (y0) = V0. Arguing by contradiction, again we may

assume that V (y0) > V0. From (4.13), together with Fatou’s lemma and the
invariance of RN by translations, it follows that

cV0 = IV0(v̂)

< lim inf
n→∞

(
1

p
[v̂n]ps,p +

1

q
[v̂n]qs,q +

∫
RN

V (εnx+ yn)

(
1

p
|v̂n|p +

1

q
|v̂n|q

)
dx

− 1

2

∫
RN

(
1

|x|µ
∗ F (v̂n)

)
F (v̂n)dx

)
6 lim inf

n→∞
Jεn(tnun) 6 lim inf

n→∞
Jεn(un) = cV0 .

This is impossible. So, from hypothesis (V2), it follows that y0 ∈ M . This proof is
now complete. �

Lemma 4.4. For any δ > 0, we have

lim
ε→0

sup
u∈N̂ε

dist (βε(u),Mδ) = 0.

Proof. Let εn → 0 in R as n → ∞, then we can find a sequence {un}n∈N ⊂ N̂εn

such that

sup
u∈N̂εn

inf
y∈Mδ

|βεn(un) − y| = inf
y∈Mδ

|βεn(un) − y| + on(1) as n→ ∞.

Noting that {un}n∈N ⊂ N̂εn ⊂ Nεn , we infer that

cV0 6 cεn 6 Jεn(un) 6 cV0 + h(εn),
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and so

lim
n→∞

Jεn(un) = cV0 .

Then, we deduce from lemma 4.3 that for n ∈ N large enough, there exists some
sequence {ŷn}n∈N ⊂ RN such that yn = εnŷn ∈Mδ. So, we have

βεn(un) = yn +

∫
RN (ζ(εnz + yn) − yn) (|un(z + ŷn)|p + |un(z + ŷn)|q) dz∫

RN (|un(z + ŷn)|p + |un(z + ŷn)|q) dz
.

Taking into account the facts that {ûn(· + ŷn)}n∈N ⊂ XV0
has a convergent subse-

quence and εnz+ yn → y0 ∈M as n→ ∞, we derive that βεn(un) = yn + on(1) in
RN as n→ ∞. So, there exists a sequence {yn}n∈N ⊂Mδ such that

lim
n→∞

|βεn(un) − yn| = 0.

This ends the proof of the lemma. �

5. Multiple solutions for problem (2.2)

In this section, we shall establish a relationship between the topology of M and
the number of solutions for problem (2.2). Since Nε is not a C 1 submanifold of
the space Xε, we cannot use directly the standard Ljusternik–Schnirelmann theory,
but we can bypass this difficulty by applying the abstract results in the study by
Szulkin & Weth [55].

Theorem 5.1 Let 0 < µ < sp and ν < (N − µ)q/(N − sq). Assume that (f1)–(f4)
and (V1)–(V2) are fulfilled, then for any δ > 0 satisfying Mδ ⊂ Λ, there exists ε̂δ > 0
such that for any ε ∈ (0, ε̂δ) problem (2.2) possesses at least catMδ

(M) positive
solutions.

Proof. For any fixed ε> 0, we introduce the mapping αε : M 7→ S+
ε defined by

αε(y) := m−1
ε (Φε(y)) for all y ∈M.

Consequently, we deduce from lemma 4.1 that

lim
ε→0

ψε(αε(y)) = lim
ε→0

Jε(Φε(y)) = cV0 uniformly in y ∈M. (5.1)

Let us introduce the following function:

h′(ε) := sup
y∈M

|ψε(αε(y)) − cV0 |.

According to (5.1), we see that h′(ε) → 0 in R as ε → 0. Also, we define the
following set:
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Ŝ+
ε :=

{
ω ∈ S+

ε : ψε(ω) 6 cV0 + h′(ε)
}
.

Clearly, for all y ∈M and ε> 0, ψε(αε(y)) ∈ Ŝ+
ε , and so Ŝ+

ε 6= ∅.
From lemma 4.1, lemma 2.2 (c), lemma 4.4, and lemma 4.2, it follows that there

exists ε̂ = ε̂δ > 0 such that the following diagram is well-defined:

M
Φε7−→ Φε(M)

m−1
ε7−→ αε(M)

mε7−→ Φε(M)
βε7−→Mδ for any ε ∈ (0, ε̂).

Using lemma 4.2 and decreasing ε̂ if necessary, for all y ∈M , we have βε(Φε(y)) =
y + l(ε, y), where |l(ε, y)| 6 δ/2 uniformly in y ∈ M and for all ε ∈ (0, ε̂). Hence,
H(t, y) := y + (1 − t)l(ε, y) for (t, y) ∈ [0, 1] ×M is homotopy between βε ◦ Φε =
(βε ◦mε) ◦

(
m−1

ε ◦ Φε

)
and the inclusion map id : M 7→Mδ. This means that

catαε(M)αε(M) > catMδ
(M). (5.2)

Additionally, let us choose a function h′(ε) > 0 such that h′(ε) → 0 in R as ε→ 0
and such that cV0 +h′(ε) is not a critical level for the functional Jε. Using corollary
2.9 and theorem 27 in the study by Szulkin and Weth [55], for ε> 0 sufficiently
small, we can deduce that ψε possesses at least catαε(M)αε(M) critical points on

Ŝ+
ε . So, lemma 2.3 and (5.2) imply that the functional Jε has at least catMδ

(M)

critical points in N̂ε. This proof is now complete. �

6. Proof of theorem 1.2

The main idea is to show that the solutions obtained in theorem 5.1 verify the
following estimate:

for ε > 0 sufficiently small, uε(x) 6 a for all x ∈ Λc
ε.

Then, we can deduce from this fact that these solutions are indeed solutions of the
original problem (1.3). To this end, we shall treat the regularity of non-negative
solutions to problem (2.2). More precisely, we first establish the following result
inspired by Moser [48] and Ambrosio and Rădulescu [11].

Lemma 6.1. Let 0 < µ < sp and ν < (N − µ)q/(N − sq), and let εn → 0 in R
as n → ∞ and un ∈ N̂εn be a solution to problem (2.2). Then, Jεn(un) → cV0
in R as n → ∞, and there exists a sequence {ŷn}n∈N ⊂ RN such that ûn(·) :=
un(·+ ŷn) ∈ L∞(RN ) and |ûn|L∞(RN ) 6 C for all n ∈ N, for some constant C> 0.

Furthermore,

ûn(x) → 0 as |x| → +∞ uniformly in n ∈ N. (6.1)

Proof. On account of the fact that un ∈ N̂εn , arguing as in the proof of lemma 4.4,
we see that Jεn(un) → cV0 in R as n → ∞. Then, from lemma 4.3, it follows that

there exists a sequence {ŷn}n∈N ⊂ RN such that ûn(·) := un(· + ŷn) → û(·) ∈ XV0
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and yn := εnŷn → y0 ∈ M as n → ∞. For any L> 0 and β > 1, we introduce the
function

ψ(ûn) := ûnû
q(β−1)
n,L ∈ Xεn , where ûn,L := min {ûn, L} .

Taking ψ(ûn) as test function, we have∫
RN

∫
RN

|ûn(x) − ûn(y)|p−2(ûn(x) − ûn(y))(ψ(ûn(x)) − ψ(ûn(y)))

|x− y|N+sp
dxdy

+

∫
RN

∫
RN

|ûn(x) − ûn(y)|q−2(ûn(x) − ûn(y))(ψ(ûn(x)) − ψ(ûn(y)))

|x− y|N+sq
dxdy

+

∫
RN

V (εnx+ yn)|ûn|p−2ûnψ(ûn)dx+

∫
RN

V (εnx+ yn)|ûn|q−2ûnψ(ûn)dx

=

∫
RN

(
1

|x|µ
∗G(εnx+ yn, ûn)

)
g(εnx+ yn, ûn)ψ(ûn)dx.

Additionally, applying the boundedness of the sequence {ûn}n∈N ⊂ Xεn and argu-
ing as in the proof of lemma 2.6, we can deduce that there exists C0 > 0 such
that

sup
n∈N

∣∣∣∣ 1

|x|µ
∗G(εnx+ yn, ûn)

∣∣∣∣
L∞(RN )

6 C0.

According to the hypotheses on g, we see that for any σ> 0 there exists Cσ > 0
such that

|g(x, t)| 6 σ|t|p−1 + Cσ|t|q
∗
s−1 for all (x, t) ∈ RN × R.

Choosing σ ∈ (0, V0/C0), together with the above inequalities, we can infer that∫
RN

∫
RN

|ûn(x) − ûn(y)|p−2(ûn(x) − ûn(y))(ψ(ûn(x)) − ψ(ûn(y)))

|x− y|N+sp
dxdy

+

∫
RN

∫
RN

|ûn(x) − ûn(y)|q−2(ûn(x) − ûn(y))(ψ(ûn(x)) − ψ(ûn(y)))

|x− y|N+sq
dxdy

6 C

∫
RN

|ûn|q
∗
s û

q(β−1)
n,L dx (6.2)

for some constant C > 0.
Let us define the following functions:

ϕ(t) :=
|t|q

q
and Υ(t) :=

∫ t

0

(ψ′(τ))
1
q dτ.

We first observe that ψ is an increasing function, and hence

(a− b)(ψ(a) − ψ(b)) > 0 for all a, b ∈ R. (6.3)
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Then, we can infer from (6.3) and the Jensen inequality that

ϕ′(a− b)(ψ(a) − ψ(b)) > |Υ(a) − Υ(b)|q for all a, b ∈ R. (6.4)

We also point out that

Υ(ûn) >
1

β
ûnû

β−1
n,L . (6.5)

So, putting together with (6.2), (6.3), (6.4), and (6.5) and using the Sobolev
embedding, we infer that there exists some constant C > 0 such that

|ûnûβ−1
n,L |q

q∗s
6 Cβq

∫
RN

û
q∗s
n û

q(β−1)
n,L dx. (6.6)

Choose β =
q∗s
q , and let R> 0 large enough. Combining ûn → û in XV0

as n→ ∞
with the Hölder inequality, we can conclude that there exists some constant C > 0
such that∫

RN

(
ûnû

q∗s−q
q

n,L

)q∗s

dx


q
q∗s

6 Cβq

∫
RN

Rq∗s−qû
q∗s
n dx

+ Cε

∫
RN

(
ûnû

q∗s−q
q

n,L

)q∗s

dx


q
q∗s

.

Then, we choose a fixed ε ∈ (0, 1/C) and infer that

∫
RN

(
ûnû

q∗s−q
q

n,L

)q∗s

dx


q
q∗s

6 Cβq

∫
Rq∗s−qû

q∗s
n dx < +∞.

In the above inequality, we pass to the limit as L → +∞ and we obtain ûn ∈

L
q∗s

2

q (RN ).
Thanks to 0 6 ûn,L 6 ûn, then in (6.6), we pass to the limit as L → +∞ and

we have

|ûn|βqβq∗s 6 Cβq

∫
RN

û
q∗s+q(β−1)
n dx.

This means that(∫
RN

û
βq∗s
n dx

) 1
q∗s (β−1)

6 (C1/qβ)
1

β−1

(∫
RN

û
q∗s+q(β−1)
n dx

) 1
q(β−1)

.

For 1 6 m ∈ N, let us define

q∗s + q(βm+1 − 1) = βmq
∗
s and β1 =

q∗s
q
.
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It follows that

βm+1 = βm
1 (β1 − 1) + 1,

and so

lim
m→∞

βm = +∞.

Let us define

Tm :=

(∫
RN

û
βmq∗s
n dx

) 1
q∗s (βm−1)

.

Then, we have

Tm+1 6 (C1/qβm+1)
1

βm+1−1Tm.

Consequently, using a standard iteration argument, we have

Tm+1 6
m∏

k=1

(C1/qβk+1)
1

βk+1−1T1 6 CT1, where C is independent of m.

In the above inequality, we pass to the limit as m → ∞ and then we infer that
|ûn|L∞(RN ) 6 C uniformly in n ∈ N.

Next, let us define

κn := −V (εnx+ yn)
(
ûp−1
n + ûq−1

n

)
+

(
1

|x|µ
∗G(εnx+ yn, ûn)

)
g(εnx+ yn, ûn).

We point out that ûn satisfies the following equation:

(−∆)spûn + (−∆)sqûn = κn in RN .

From the growth hypotheses on g, corollary 2.1 in the study by Ambrosio &
Rădulescu [11], ûn → û in XV0

as n → ∞, and the uniformly boundedness of

the sequence {ûn}n∈N in L∞(RN ) ∩XV0
, we can conclude that ûn(x) → 0 in R as

|x| → +∞ uniformly with respect to n ∈ N. This ends the proof of the lemma. �

Proof of theorem 1.2 completed

We first choose δ > 0 small enough such that Mδ ⊂ Λ. Then, we claim that there
exists ε̄δ > 0 such that for any ε ∈ (0, ε̄δ) and any solution uε ∈ N̂ε of problem
(2.2), we have

|uε|L∞(Λc
ε)
< a. (6.7)
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Otherwise, we may assume that there exists a subsequence {εn}n∈N ⊂ R such that

εn → 0 as n→ ∞, uεn ∈ N̂εn such that J ′
εn(uεn) = 0 and

|uεn |L∞(Λc
εn ) > a. (6.8)

But we see that Jεn(uεn) → cV0 in R as n→ ∞. Thus, from lemma 4.3, it follows

that there exists a sequence {ŷn}n∈N ⊂ RN such that ûn(·) := uεn(· + ŷn) → û(·)
in XV0

and εnŷn → y0 ∈M as n→ ∞.

Next, we choose r > 0 such that Br(y0) ⊂ B2r(y0) ⊂ Λ, and so B r
εn

(
y0
εn

)
⊂ Λεn .

Furthermore, for n large enough, we can deduce that Λc
εn ⊂ Bc

r
εn

(ŷn). In addition,

from (6.1), we see that ûn(x) → 0 as |x| → +∞ uniformly in n ∈ N. Therefore,
we can find R> 0 such that ûn(x) < a for any |x| > R, n ∈ N. Consequently,
uεn(x) < a for any x ∈ Bc

R(ŷn), n ∈ N. Moreover, for n ∈ N sufficiently large, we
know that

Λc
εn ⊂ Bc

r
εn

(ŷn) ⊂ Bc
R(ŷn).

Thus, we infer that uεn(x) < a for any x ∈ Λc
εn and for all n ∈ N large enough,

which contradicts relation (6.8).
Fix ε ∈ (0, εδ), where εδ := min{ε̂δ, ε̄δ}. From theorem 5.1, we can see that

problem (2.2) has at least catMδ
(M) nontrivial solutions. Now, we use uε to denote

one of these solutions, and so uε ∈ N̂ε. Then, using (6.7) and recalling that the
definitions of g and G, we can also infer that uε is a solution of problem (1.3). So,
problem (1.3) possesses at least catMδ

(M) nontrivial solutions.
Finally, we establish the behaviour of the maximum points of solutions to problem

(1.3). Let us choose εn → 0 and consider a sequence {un}n∈N ⊂ Xεn of solutions for
problem (1.3) as before. From (g1), it follows that there exists a positive constant
ι < a such that

g(εx, t)t 6
V0
K

(tp + tq) for any x ∈ RN , t ∈ [0, ι], (6.9)

since un ∈ Nεn and Jεn(un) → cV0 in R as n → ∞. Then, for n ∈ N sufficiently
large, we have that un ∈ B. Consequently, from lemma 2.6, it follows that∣∣∣∣ 1

|x|µ
∗G(εnx, un)

∣∣∣∣
L∞(RN )

<
K

2
for n ∈ N large enough. (6.10)

Arguing as before, there exists R> 0 such that

|un|L∞(Bc
R
(ŷn)) < ι. (6.11)

Furthermore, up to a subsequence, we may assume that

|un|L∞(BR(ŷn)) > ι. (6.12)
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Otherwise, if relation (6.12) does not hold, we deduce from (6.11) that
|un|L∞(RN ) < ι. Using un ∈ Nεn again and (6.9)–(6.10), we have

‖un‖pVεn,p + ‖un‖qVεn,q 6
∫
RN

(
1

|x|µ
∗G(εnx, un)

)
g(εnx, un)undx,

6
V0
2

∫
RN

(|un|p + |un|q) dx for all n ∈ N large enough.

This implies that ‖un‖Xεn
= 0 for all n ∈ N sufficiently large, which is a contra-

diction. Consequently, relation (6.12) holds true. On account of (6.11) and (6.12),
we can infer that if pn is a global maximum point of un and pn = ŷn + qn for some
qn ∈ BR, εnpn → y0 ∈ M as n → ∞; then using the continuity of the potential V
we see that V (εnpn) → V (y0) = V0 in R as n→ ∞.
This proof is now complete. �
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problems for the Baouendi-Grushin operator. J. Differ. Equ. 303 (2021), 645–666.

[13] J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch.
Rational Mech. Anal. 63 (1976/77), 337–403.

[14] J. M. Ball. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity.
Philos. Trans. Roy. Soc. London Ser. A 306 (1982), 557–611.

[15] V. Benci and G. Cerami. Multiple positive solutions of some elliptic problems via the
Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2 (1994), 29–48.

[16] D. Bonheure, P. d’Avenia and A. Pomponio. On the electrostatic Born-Infeld equation
with extended charges. Comm. Math. Phys. 346 (2016), 877–906.

[17] H. Brezis and E. Lieb. A relation between pointwise convergence of functions and
convergence of functionals. Proc. Amer. Math. Soc. 88 (1983), 486–490.

[18] H. Brezis and L. Nirenberg. Remarks on finding critical points. Comm. Pure Appl. Math.
44 (1991), 939–963.
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[30] H. Fröhlich. Theory of electrical breakdown in ionic crystal. Proc. Roy. Soc. Edinburgh
Sect. A 160 (1937), 230–241.

[31] Z. Gao, X. Tang and S. Chen. On existence and concentration behavior of positive ground
state solutions for a class of fractional Schrödinger-Choquard equations. Z. Angew. Math.
Phys. 69 (2018), Paper No. 122, 21.

[32] G. Gu and X. Tang. The concentration behavior of ground states for a class of Kirchhoff-
type problems with Hartree-type nonlinearity. Adv. Nonlinear Stud. 19 (2019), 779–795.

https://doi.org/10.1017/prm.2024.84 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.84


Concentration and multiplicity of solutions for fractional double phase problems 53

[33] S. Jarohs. Strong comparison principle for the fractional p-Laplacian and applications to
starshaped rings. Adv. Nonlinear Stud. 18 (2018), 691–714.

[34] C. Ji and V. D. Rădulescu. Multiplicity and concentration of solutions to the nonlinear
magnetic Schrödinger equation. Calc. Var. Partial Differ. Equ. 59 (2020), Paper No. 115,
28.

[35] C. Ji and V. D. Rădulescu. Concentration phenomena for nonlinear magnetic Schrödinger
equations with critical growth. Israel J. Math. 241 (2021), 465–500.

[36] K. R. W. Jones. Gravitational self-energy as the litmus of reality. Mod. Phys. Lett. A 10
(1995), 657–668.

[37] E. H. Lieb. Existence and uniqueness of the minimizing solution of Choquard’s nonlinear
equation. Stud. Appl. Math. 57 (1976/77), 93–105.

[38] E. H. Lieb and M. Loss. Analysis. Graduate Studies in Mathematics. Vol.14 (American
Mathematical Society, Providence, RI, 2001).

[39] P. -L. Lions. The Choquard equation and related questions. Nonlinear Anal. 4 (1980),
1063–1072.

[40] Z. Liu and N. S. Papageorgiou. Double phase Dirichlet problems with unilateral
constraints. J. Differ. Equ. 316 (2022), 249–269.

[41] P. Marcellini. On the definition and the lower semicontinuity of certain quasiconvex
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