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Abstract

We show that every topological grading of a C∗-algebra by a discrete abelian group is implemented by an
action of the compact dual group.
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Suppose that A is an algebra over a field K and G is a group. We say that A is G-graded
if there are linear subspaces {Ag : g ∈ G} such that A is the direct sum of the Ag and
a ∈ Ag, b ∈ Ah imply ab ∈ Agh. Then each element of A has a unique decomposition
as a sum a =

∑
g∈G ag of homogeneous components ag ∈ Ag (and all but finitely many

ag = 0). We have known since the first paper on the subject that the Leavitt path
algebras LK(E) of a directed graph E are Z-graded [1, Lemma 1.7].

For graph C∗-algebras, the field K is always C. The graph algebra C∗(E) is not
graded in the algebraic sense and the role of the grading in the general theory is played
by a gauge action γ of the circle T = {z ∈ C : |z| = 1} on C∗(E). We can use this action
to define homogeneous components of a ∈ C∗(E) by

an :=
∫ 1

0
γe2πit (a)e−2πint dt for n ∈ Z.

But {n : an , 0} can be infinite and then the relationship between a and the sequence
{an} is well-known to be analytically subtle (see [12], for example).

In the recent book [2], the authors show that C∗(E) is always graded in a weaker
sense introduced by Exel [3]. He defined a C∗-algebra A to be G-graded if there is
a family {Ag : g ∈ G} of linearly independent closed subspaces such that a ∈ Ag and
b ∈ Ah imply ab ∈ Agh and a∗ ∈ Ag−1 , and such that A is the norm-closure of

⊕
g∈G Ag.

It is proved in [2, Proposition 5.2.11] that every graph algebra C∗(E) is Z-graded in
Exel’s sense.

In fact, the result in [2] says rather more than this. Exel also introduced a stronger
notion: a G-graded C∗-algebra A is topologically graded if there is a bounded linear
map F : A→ A which is the identity on Ae and vanishes on every Ag with g , e
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[4, Section 19]. (His original [3, Definition 3.4] looks a little stronger, since it
asserts that F is a conditional expectation. But it follows from [3, Theorem 3.3] or
[4, Theorem 19.1] that this extra requirement is automatic.) The extra information
in [2, Proposition 5.2.11] implies that the Z-grading of C∗(E) is topological, and this
information is obtained using the gauge action of T.

In this paper, we revisit gradings of C∗-algebras. We work with topological gradings
by an abelian group G, because that is enough to cover the Zk-graded graph algebras
of higher-rank graphs and their twisted analogues. We show that every topological G-
grading of a C∗-algebra A is implemented by a natural action of the Pontryagin dual Ĝ,
which in the case of a graph algebra C∗(E) is the usual gauge action of T = Ẑ. We then
use recent results on the C∗-algebras of Fell bundles [13] to reconstruct an arbitrary
element of a topologically Zk-graded algebra from its graded components.

We begin by discussing a couple of illustrative examples from Exel’s book [4].

Example 1. We consider the graph E with one vertex v and one loop e. The graph
algebra C∗(E) has identity Pv and is generated by the unitary element Se. Because
graph algebras are universal for Cuntz–Krieger families, this graph is universal for
C∗-algebras generated by a unitary element, and hence (C∗(E), Se) is (C(T), z). The
gauge action of T is implemented by rotations and, for n ∈ Z, the graded components
C∗(T)n are the scalar multiples of the polynomials zn. Since these polynomials form
an orthonormal basis for L2(T) and C(T) ⊂ L2(T), the Fourier coefficients

f̂ (n) =

∫
T

f (z)z−n dz :=
∫ 1

0
f (e2πit)e−2πint dt

of f ∈ C(T) determine f uniquely: f̂ (n) = ĝ(n) for all n implies f = g in C(T). It
has long been known that the Fourier series of f need not converge in the norm of
the ambient C∗-algebra C(T), but a classical theorem of Féjer (1900) tells us that the
Césaro means of the partial sums of the Fourier series converge uniformly to f on T.
Thus we can recover f from its Fourier coefficients and, provided we remember that
this recovery process is not the obvious one, we can view C(T) as a Z-graded algebra.

Example 2 (Motivated by the discussion following [4, Proposition 19.3]). We take a
closed subset X of T, which is infinite but not all of T, and consider C(X). We write
en for the polynomial zn, viewed as an element of C(T). Then, as observed in [4], the
subspaces

C(X)n := {cen|X : c ∈ C}

are linearly independent (because X is infinite). Because the en span a dense subspace
of C(T) and f 7→ f |X is a surjection of C(T) onto C(X), the direct sum

⊕
n∈ZC(X)n is

dense in C(X). Thus the C(X)n give a Z-grading of C(X) in the sense of [3, 4].
Since X is a proper closed subset of T, and the map f 7→ f |X has infinite-dimensional

kernel isomorphic to C0(T\X), each f ∈ C(X) has many extensions g in C(T). Each
such extension g has a canonical sequence of homogeneous components ĝ(n)en and the
Césaro means for this sequence converge uniformly in C(T) to g. The restrictions of
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the Césaro means to X converge uniformly in C(X) to g|X = f . But different extensions
of f have different Fourier coefficients, and hence there is no canonical choice of
homogeneous components for f in C(X).

Example 2 shows that a Z-graded C∗-algebra need not have the properties one
would expect of a grading. So Exel also considered his stronger notion of ‘topological
grading’, in which the bounded linear map F : A→ Ae gives a continuous choice of
homogeneous component ae := F(a). In the discussion in [4, Section 19], he proves
that the algebra C(X) in Example 2 is not topologically graded. Our main result says
that for a topologically G-graded C∗-algebra, the map F is implemented by integration
of a continuous action of the compact dual group Ĝ with respect to the normalised
Haar measure.

Theorem 3. Suppose that G is an abelian group and that A is a C∗-algebra which is
topologically G-graded in Exel’s sense. Then there is a strongly continuous action α
of Ĝ on A such that αγ(a) = γ(g)a for a ∈ Ag, and then

F(a) =

∫
Ĝ
αγ(a) dγ for all a ∈ A.

The subspaces {Ag : g ∈ G} in the G-grading form a Fell bundle B over G. There
is an extensive theory of Fell bundles, originally developed by Fell (he called them
C∗-algebraic bundles [5]), and revisited by several authors in the 1990s. We shall lean
heavily on results of Exel [3], as presented in his recent monograph [4].

Each Fell bundle B over a (discrete) group G has an enveloping C∗-algebra C∗(B)
that is universal for a class of Hilbert-space representations, consisting of linear maps
πg : Ag→ B(H) such that πg(a)πh(b) = πgh(ab) and πg(a)∗ = πg−1 (a∗), and such that πe is
a nondegenerate representation of Ae. There is also a reduced C∗-algebra C∗r (B) which
is generated by a regular representation [4, Section 17]. Because we are interested in
Fell bundles over abelian groups, all our Fell bundles are amenable in Exel’s sense
[4, Theorem 20.7] and C∗(B) = C∗r (B).

Example 4. A G-graded algebra can be quite different from the C∗-algebra of its
Fell bundle. To see this, consider the Fell bundles B1 and B2 over Z associated to
the gradings of C(T) in Example 1 and C(X) in Example 2. The maps cen 7→ cen|X

are Banach-space isomorphisms of the fibres B1,n onto the fibres B2,n (both are one-
dimensional) and respect the Fell-bundle structure. Since C(T) is topologically graded
(on any graph algebra there is a map a 7→ a0 defined by averaging over the gauge
action), we have C∗(B1) = C(T). Thus we also have C∗(B2) = C(T).

Proof of Theorem 3. Because A is topologically graded there is a bounded linear map
F : A→ A such that f (a) = a for a ∈ Ae and f (a) = 0 for a ∈ Ag with g , e. Let B be
the corresponding Fell bundle over G with fibres Ag. From [4, Theorem 19.5], there
are surjections φ of C∗(B) onto A and ψ of A onto the reduced algebra C∗r (B) such that
ψ ◦ φ is the regular representation of C∗(B). Since the group G is abelian, the Fell
bundle is amenable and the regular representation is an isomorphism. Hence so are φ
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and ψ. We deduce that A is generated by a representation ρ of B in A, and that (A, ρ) is
universal for Hilbert-space representations of B.

We now fix γ ∈ Ĝ. For each g ∈ G, we define αγ,g : Ag → A by αγ,g(a) = γ(g)a.
Since |γ(g)| = 1, αγ,g is a linear and isometric embedding of the Banach space Ag in A.
Since each Ag is a left Hilbert module over Ae, the action of Ae on Ag is nondegenerate
[14, Corollary 2.7], and since A =

⊕
g Ag, it follows that any approximate identity for

Ae is also an approximate identity for A. Thus αγ,e is nondegenerate. For a ∈ Ag and
b ∈ Ah,

αγ,g(a)αγ,h(b) = (γ(g)a)(γ(h)b) = γ(gh)ab = αγ,gh(ab)

and
uγ,g(a)∗ = (γ(g)a)∗ = γ(g)a∗ = γ(g−1)a∗ = αγ,g−1 (a∗).

Thus αγ = {αγ,g} is a representation of the Fell bundle B, and the universal property of
A = C∗(B) gives a nondegenerate homomorphism αγ : A→ A such that αγ ◦ ρg = αγ,g
for g ∈ G.

For γ, χ ∈ Ĝ, αγαχ = αγχ on each Ag, and hence also on A =
⊕

g Ag. Since α1

is the identity on A, it follows that each αγ is an isomorphism, and that γ 7→ αγ is
a homomorphism of Ĝ into the automorphism group Aut A. Since convergence in
the dual of a discrete abelian group is pointwise convergence, the map γ 7→ αγ(a) is
continuous for each a ∈ Ag and hence, by an ε/3 argument, for all a ∈ A =

⊕
Ag. Thus

α is a strongly continuous action of Ĝ on A.
Now averaging with respect to the normalised Haar measure on Ĝ gives a

conditional expectation E of A onto the fixed-point algebra Aα such that

E(a) =

∫
Ĝ
αγ(a) dγ for all a ∈ A

(following the discussion for Ĝ = T in the first few pages of [11, Ch. 3], for example).
Since αγ(a) = a for a ∈ Ae and we are using the normalised Haar measure, E(a) = a
for a ∈ Ae. For a ∈ Ag with g , e,

E(a) =

∫
Ĝ
γ(g)a dγ =

( ∫
Ĝ
γ(g) dγ

)
a = 0.

Thus E = F on
⊕

Ag, and hence by continuity of E and F also on the closure A. �

Since E is a faithful conditional expectation, we deduce that F is too.

Corollary 5. The bounded linear map F : A→ Ae in Theorem 3 is a conditional
expectation onto Ae, and is faithful in the sense that F(a∗a) = 0 implies a = 0.

As we remarked earlier, Exel also proved directly in [3] that F is a conditional
expectation.
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Remark 6. We have concentrated on Fell bundles over abelian groups because
our motivation for looking at this material came from graph algebras, where the
appropriate group is G = Zk. However, the first paragraph of the proof of Theorem 3
works for arbitrary amenable groups. Then we can use the universal property of
C∗(B) to construct a coaction δ : A→ A ⊗ C∗(G) such that δ(a) = a ⊗ ug for a ∈ Ag

(see the preliminary material in [13, Appendix B]). The group algebra C∗(G) has a
trace τ characterised by τ(1) = 1 and τ(ug) = 0 for g , e, and hence there is a slice map
id ⊗ τ : A ⊗C∗(G)→ A. Composing gives a contraction E := (id ⊗ τ) ◦ δ of A onto

Aδ := {a ∈ A : δ(a) = a ⊗ 1}.

Again, Aδ = Ae and E = F.
When G is not amenable, Theorem 19.5 of [4] only tells us that A lies somewhere

between C∗(B) and C∗r (B). For A = C∗(B), we can use the coaction of the previous
paragraph. If A = C∗r (B), then we can use spatial arguments to construct a reduced
coaction on A (see [9, Example 2.3(6)] and [10]). But in general, trying to construct
suitable coactions on A seems likely to pose rather delicate problems in nonabelian
duality.

We now return to the case of an abelian group G and the set-up of Theorem 3. The
action α : Ĝ→ Aut A allows us to construct homogeneous components

ag :=
∫

Ĝ
αγ(a)γ(g) dγ for a ∈ A and g ∈ G.

For a ∈ Ah,

ag =

∫
Ĝ
αh(a)γ(g) dγ =

∫
Ĝ
γ(hg−1)a dγ =

a if g = h
0 if g , h.

Comparing this with the formula in [4, Corollary 19.6], we see that ag is the same as
Exel’s Fourier coefficient Fg(a).

Since our motivation came from applications to graph algebras, we are particularly
interested in Zk-graded C∗-algebras. Besides the usual graph algebras of directed
graphs, for which k = 1, this includes the higher-rank graph algebras of [6] and the
twisted higher-rank graph algebras of [7, 8] (which by [13, Corollary 4.9] can be
realised as the C∗-algebras of Fell bundles over Zk). For all these graph algebras,
the action of the dual Tk given by Theorem 3 is the usual gauge action.

When G = Zk, the dual is Tk, and Theorem 3 gives us an action α of Tk on A. We
then define the homogeneous components of a ∈ A by

an =

∫
Tk
αz(a)z−n dz for n ∈ Zk. (1)

Now [13, Proposition B.1] tells us how to recover a from its homogeneous components
an. More precisely, we have the following corollary.
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Corollary 7. Suppose that a C∗-algebra A is Zk-graded in Exel’s sense. Suppose also
that there is a bounded linear map F : A→ Ae such that F|Ag = 0 for g , e and F|Ae is
the identity. For a ∈ A and n ∈ Zk, define the homogeneous components an using (1).
For m, n ∈ Zk, we write m ≤ n to mean n − m ∈ Nk, and set

sn(a) :=
∑
−n≤m≤n

am for n ∈ Nk

and
σN(a) :=

1∏k
j=1(N j + 1)

∑
0≤n≤N

sn(a) for N ∈ Nk.

Then ‖σN(a) − a‖ → 0 as N →∞ in Nk.
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