ON GRADED C*-ALGEBRAS

IAIN RAEBURN

(Received 13 June 2017; accepted 3 July 2017; first published online 4 October 2017)

Abstract

We show that every topological grading of a C^* -algebra by a discrete abelian group is implemented by an action of the compact dual group.

2010 Mathematics subject classification: primary 46L05.

Keywords and phrases: grading, Fell bundle, graph algebra.

Suppose that A is an algebra over a field K and G is a group. We say that A is G-graded if there are linear subspaces $\{A_g : g \in G\}$ such that A is the direct sum of the A_g and $a \in A_g$, $b \in A_h$ imply $ab \in A_{gh}$. Then each element of A has a unique decomposition as a sum $a = \sum_{g \in G} a_g$ of homogeneous components $a_g \in A_g$ (and all but finitely many $a_g = 0$). We have known since the first paper on the subject that the Leavitt path algebras $L_K(E)$ of a directed graph E are \mathbb{Z} -graded [1, Lemma 1.7].

For graph C^* -algebras, the field K is always \mathbb{C} . The graph algebra $C^*(E)$ is not graded in the algebraic sense and the role of the grading in the general theory is played by a *gauge action* γ of the circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ on $C^*(E)$. We can use this action to define homogeneous components of $a \in C^*(E)$ by

$$a_n := \int_0^1 \gamma_{e^{2\pi i t}}(a) e^{-2\pi i n t} dt$$
 for $n \in \mathbb{Z}$.

But $\{n : a_n \neq 0\}$ can be infinite and then the relationship between a and the sequence $\{a_n\}$ is well-known to be analytically subtle (see [12], for example).

In the recent book [2], the authors show that $C^*(E)$ is always graded in a weaker sense introduced by Exel [3]. He defined a C^* -algebra A to be G-graded if there is a family $\{A_g:g\in G\}$ of linearly independent closed subspaces such that $a\in A_g$ and $b\in A_h$ imply $ab\in A_{gh}$ and $a^*\in A_{g^{-1}}$, and such that A is the norm-closure of $\bigoplus_{g\in G}A_g$. It is proved in [2, Proposition 5.2.11] that every graph algebra $C^*(E)$ is \mathbb{Z} -graded in Exel's sense.

In fact, the result in [2] says rather more than this. Exel also introduced a stronger notion: a G-graded C^* -algebra A is topologically graded if there is a bounded linear map $F: A \to A$ which is the identity on A_e and vanishes on every A_g with $g \neq e$

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

128 I. Raeburn [2]

[4, Section 19]. (His original [3, Definition 3.4] looks a little stronger, since it asserts that F is a conditional expectation. But it follows from [3, Theorem 3.3] or [4, Theorem 19.1] that this extra requirement is automatic.) The extra information in [2, Proposition 5.2.11] implies that the \mathbb{Z} -grading of $C^*(E)$ is topological, and this information is obtained using the gauge action of \mathbb{T} .

In this paper, we revisit gradings of C^* -algebras. We work with topological gradings by an abelian group G, because that is enough to cover the \mathbb{Z}^k -graded graph algebras of higher-rank graphs and their twisted analogues. We show that every topological G-grading of a C^* -algebra A is implemented by a natural action of the Pontryagin dual \widehat{G} , which in the case of a graph algebra $C^*(E)$ is the usual gauge action of $\mathbb{T} = \widehat{\mathbb{Z}}$. We then use recent results on the C^* -algebras of Fell bundles [13] to reconstruct an arbitrary element of a topologically \mathbb{Z}^k -graded algebra from its graded components.

We begin by discussing a couple of illustrative examples from Exel's book [4].

EXAMPLE 1. We consider the graph E with one vertex v and one loop e. The graph algebra $C^*(E)$ has identity P_v and is generated by the unitary element S_e . Because graph algebras are universal for Cuntz-Krieger families, this graph is universal for C^* -algebras generated by a unitary element, and hence $(C^*(E), S_e)$ is $(C(\mathbb{T}), z)$. The gauge action of \mathbb{T} is implemented by rotations and, for $n \in \mathbb{Z}$, the graded components $C^*(\mathbb{T})_n$ are the scalar multiples of the polynomials z^n . Since these polynomials form an orthonormal basis for $L^2(\mathbb{T})$ and $C(\mathbb{T}) \subset L^2(\mathbb{T})$, the Fourier coefficients

$$\widehat{f}(n) = \int_{\mathbb{T}} f(z)z^{-n} dz := \int_{0}^{1} f(e^{2\pi it})e^{-2\pi int} dt$$

of $f \in C(\mathbb{T})$ determine f uniquely: $\widehat{f}(n) = \widehat{g}(n)$ for all n implies f = g in $C(\mathbb{T})$. It has long been known that the Fourier series of f need not converge in the norm of the ambient C^* -algebra $C(\mathbb{T})$, but a classical theorem of Féjer (1900) tells us that the Césaro means of the partial sums of the Fourier series converge uniformly to f on \mathbb{T} . Thus we can recover f from its Fourier coefficients and, provided we remember that this recovery process is not the obvious one, we can view $C(\mathbb{T})$ as a \mathbb{Z} -graded algebra.

Example 2 (Motivated by the discussion following [4, Proposition 19.3]). We take a closed subset X of \mathbb{T} , which is infinite but not all of \mathbb{T} , and consider C(X). We write e_n for the polynomial z^n , viewed as an element of $C(\mathbb{T})$. Then, as observed in [4], the subspaces

$$C(X)_n := \{ce_n|_X : c \in \mathbb{C}\}$$

are linearly independent (because X is infinite). Because the e_n span a dense subspace of $C(\mathbb{T})$ and $f \mapsto f|_X$ is a surjection of $C(\mathbb{T})$ onto C(X), the direct sum $\bigoplus_{n \in \mathbb{Z}} C(X)_n$ is dense in C(X). Thus the $C(X)_n$ give a \mathbb{Z} -grading of C(X) in the sense of [3, 4].

Since X is a proper closed subset of \mathbb{T} , and the map $f \mapsto f|_X$ has infinite-dimensional kernel isomorphic to $C_0(\mathbb{T}\backslash X)$, each $f \in C(X)$ has many extensions g in $C(\mathbb{T})$. Each such extension g has a canonical sequence of homogeneous components $\widehat{g}(n)e_n$ and the Césaro means for this sequence converge uniformly in $C(\mathbb{T})$ to g. The restrictions of

the Césaro means to X converge uniformly in C(X) to $g|_X = f$. But different extensions of f have different Fourier coefficients, and hence there is no canonical choice of homogeneous components for f in C(X).

Example 2 shows that a \mathbb{Z} -graded C^* -algebra need not have the properties one would expect of a grading. So Exel also considered his stronger notion of 'topological grading', in which the bounded linear map $F:A\to A_e$ gives a continuous choice of homogeneous component $a_e:=F(a)$. In the discussion in [4, Section 19], he proves that the algebra C(X) in Example 2 is not topologically graded. Our main result says that for a topologically G-graded C^* -algebra, the map F is implemented by integration of a continuous action of the compact dual group \widehat{G} with respect to the normalised Haar measure.

THEOREM 3. Suppose that G is an abelian group and that A is a C^* -algebra which is topologically G-graded in Exel's sense. Then there is a strongly continuous action α of \widehat{G} on A such that $\alpha_{\gamma}(a) = \gamma(g)a$ for $a \in A_g$, and then

$$F(a) = \int_{\widehat{G}} \alpha_{\gamma}(a) \, d\gamma \quad for \ all \ a \in A.$$

The subspaces $\{A_g : g \in G\}$ in the *G*-grading form a *Fell bundle B* over *G*. There is an extensive theory of Fell bundles, originally developed by Fell (he called them C^* -algebraic bundles [5]), and revisited by several authors in the 1990s. We shall lean heavily on results of Exel [3], as presented in his recent monograph [4].

Each Fell bundle B over a (discrete) group G has an enveloping C^* -algebra $C^*(B)$ that is universal for a class of Hilbert-space representations, consisting of linear maps $\pi_g: A_g \to B(H)$ such that $\pi_g(a)\pi_h(b) = \pi_{gh}(ab)$ and $\pi_g(a)^* = \pi_{g^{-1}}(a^*)$, and such that π_e is a nondegenerate representation of A_e . There is also a reduced C^* -algebra $C^*_r(B)$ which is generated by a regular representation [4, Section 17]. Because we are interested in Fell bundles over abelian groups, all our Fell bundles are amenable in Exel's sense [4, Theorem 20.7] and $C^*(B) = C^*_r(B)$.

EXAMPLE 4. A G-graded algebra can be quite different from the C^* -algebra of its Fell bundle. To see this, consider the Fell bundles B_1 and B_2 over $\mathbb Z$ associated to the gradings of $C(\mathbb T)$ in Example 1 and C(X) in Example 2. The maps $ce_n \mapsto ce_n|_X$ are Banach-space isomorphisms of the fibres $B_{1,n}$ onto the fibres $B_{2,n}$ (both are one-dimensional) and respect the Fell-bundle structure. Since $C(\mathbb T)$ is topologically graded (on any graph algebra there is a map $a \mapsto a_0$ defined by averaging over the gauge action), we have $C^*(B_1) = C(\mathbb T)$. Thus we also have $C^*(B_2) = C(\mathbb T)$.

PROOF OF THEOREM 3. Because A is topologically graded there is a bounded linear map $F: A \to A$ such that f(a) = a for $a \in A_e$ and f(a) = 0 for $a \in A_g$ with $g \ne e$. Let B be the corresponding Fell bundle over G with fibres A_g . From [4, Theorem 19.5], there are surjections ϕ of $C^*(B)$ onto A and ψ of A onto the reduced algebra $C^*_r(B)$ such that $\psi \circ \phi$ is the regular representation of $C^*(B)$. Since the group G is abelian, the Fell bundle is amenable and the regular representation is an isomorphism. Hence so are ϕ

130 I. Raeburn [4]

and ψ . We deduce that A is generated by a representation ρ of B in A, and that (A, ρ) is universal for Hilbert-space representations of B.

We now fix $\gamma \in \widehat{G}$. For each $g \in G$, we define $\alpha_{\gamma,g} : A_g \to A$ by $\alpha_{\gamma,g}(a) = \gamma(g)a$. Since $|\gamma(g)| = 1$, $\alpha_{\gamma,g}$ is a linear and isometric embedding of the Banach space A_g in A. Since each A_g is a left Hilbert module over A_e , the action of A_e on A_g is nondegenerate [14, Corollary 2.7], and since $A = \bigoplus_g A_g$, it follows that any approximate identity for A_e is also an approximate identity for A. Thus $\alpha_{\gamma,e}$ is nondegenerate. For $a \in A_g$ and $b \in A_h$,

$$\alpha_{\gamma,g}(a)\alpha_{\gamma,h}(b) = (\gamma(g)a)(\gamma(h)b) = \gamma(gh)ab = \alpha_{\gamma,gh}(ab)$$

and

$$u_{\gamma,g}(a)^* = (\gamma(g)a)^* = \overline{\gamma(g)}a^* = \gamma(g^{-1})a^* = \alpha_{\gamma,g^{-1}}(a^*).$$

Thus $\alpha_{\gamma} = \{\alpha_{\gamma,g}\}$ is a representation of the Fell bundle B, and the universal property of $A = C^*(B)$ gives a nondegenerate homomorphism $\alpha_{\gamma} : A \to A$ such that $\alpha_{\gamma} \circ \rho_g = \alpha_{\gamma,g}$ for $g \in G$.

For $\gamma, \chi \in \widehat{G}$, $\alpha_{\gamma}\alpha_{\chi} = \alpha_{\gamma\chi}$ on each A_g , and hence also on $A = \overline{\bigoplus_g A_g}$. Since α_1 is the identity on A, it follows that each α_{γ} is an isomorphism, and that $\gamma \mapsto \alpha_{\gamma}$ is a homomorphism of \widehat{G} into the automorphism group Aut A. Since convergence in the dual of a discrete abelian group is pointwise convergence, the map $\gamma \mapsto \alpha_{\gamma}(a)$ is continuous for each $a \in A_g$ and hence, by an $\epsilon/3$ argument, for all $a \in A = \overline{\bigoplus_g A_g}$. Thus α is a strongly continuous action of \widehat{G} on A.

Now averaging with respect to the normalised Haar measure on \widehat{G} gives a conditional expectation E of A onto the fixed-point algebra A^{α} such that

$$E(a) = \int_{\widehat{G}} \alpha_{\gamma}(a) \, d\gamma \quad \text{for all } a \in A$$

(following the discussion for $\widehat{G} = \mathbb{T}$ in the first few pages of [11, Ch. 3], for example). Since $\alpha_{\gamma}(a) = a$ for $a \in A_e$ and we are using the normalised Haar measure, E(a) = a for $a \in A_e$. For $a \in A_g$ with $g \neq e$,

$$E(a) = \int_{\widehat{G}} \gamma(g) a \, d\gamma = \left(\int_{\widehat{G}} \gamma(g) \, d\gamma \right) a = 0.$$

Thus E = F on $\bigoplus A_g$, and hence by continuity of E and F also on the closure A.

Since E is a faithful conditional expectation, we deduce that F is too.

Corollary 5. The bounded linear map $F: A \to A_e$ in Theorem 3 is a conditional expectation onto A_e , and is faithful in the sense that $F(a^*a) = 0$ implies a = 0.

As we remarked earlier, Exel also proved directly in [3] that F is a conditional expectation.

REMARK 6. We have concentrated on Fell bundles over abelian groups because our motivation for looking at this material came from graph algebras, where the appropriate group is $G = \mathbb{Z}^k$. However, the first paragraph of the proof of Theorem 3 works for arbitrary amenable groups. Then we can use the universal property of $C^*(B)$ to construct a coaction $\delta: A \to A \otimes C^*(G)$ such that $\delta(a) = a \otimes u_g$ for $a \in A_g$ (see the preliminary material in [13, Appendix B]). The group algebra $C^*(G)$ has a trace τ characterised by $\tau(1) = 1$ and $\tau(u_g) = 0$ for $g \neq e$, and hence there is a slice map id $\otimes \tau: A \otimes C^*(G) \to A$. Composing gives a contraction $E := (\mathrm{id} \otimes \tau) \circ \delta$ of $E = (\mathrm{id} \otimes \tau) \circ \delta$

$$A^{\delta} := \{ a \in A : \delta(a) = a \otimes 1 \}.$$

Again, $A^{\delta} = A_e$ and E = F.

When G is not amenable, Theorem 19.5 of [4] only tells us that A lies somewhere between $C^*(B)$ and $C^*_r(B)$. For $A = C^*(B)$, we can use the coaction of the previous paragraph. If $A = C^*_r(B)$, then we can use spatial arguments to construct a reduced coaction on A (see [9, Example 2.3(6)] and [10]). But in general, trying to construct suitable coactions on A seems likely to pose rather delicate problems in nonabelian duality.

We now return to the case of an abelian group G and the set-up of Theorem 3. The action $\alpha: \widehat{G} \to \operatorname{Aut} A$ allows us to construct homogeneous components

$$a_g := \int_{\widehat{G}} \alpha_\gamma(a) \overline{\gamma(g)} \, d\gamma \quad \text{ for } a \in A \text{ and } g \in G.$$

For $a \in A_h$,

$$a_g = \int_{\widehat{G}} \alpha_h(a) \overline{\gamma(g)} \, d\gamma = \int_{\widehat{G}} \gamma(hg^{-1}) a \, d\gamma = \begin{cases} a & \text{if } g = h \\ 0 & \text{if } g \neq h. \end{cases}$$

Comparing this with the formula in [4, Corollary 19.6], we see that a_g is the same as Exel's Fourier coefficient $F_g(a)$.

Since our motivation came from applications to graph algebras, we are particularly interested in \mathbb{Z}^k -graded C^* -algebras. Besides the usual graph algebras of directed graphs, for which k=1, this includes the higher-rank graph algebras of [6] and the twisted higher-rank graph algebras of [7, 8] (which by [13, Corollary 4.9] can be realised as the C^* -algebras of Fell bundles over \mathbb{Z}^k). For all these graph algebras, the action of the dual \mathbb{T}^k given by Theorem 3 is the usual gauge action.

When $G = \mathbb{Z}^k$, the dual is \mathbb{T}^k , and Theorem 3 gives us an action α of \mathbb{T}^k on A. We then define the homogeneous components of $a \in A$ by

$$a_n = \int_{\mathbb{T}^k} \alpha_z(a) z^{-n} \, dz \quad \text{for } n \in \mathbb{Z}^k.$$
 (1)

Now [13, Proposition B.1] tells us how to recover a from its homogeneous components a_n . More precisely, we have the following corollary.

COROLLARY 7. Suppose that a C^* -algebra A is \mathbb{Z}^k -graded in Exel's sense. Suppose also that there is a bounded linear map $F: A \to A_e$ such that $F|_{A_g} = 0$ for $g \neq e$ and $F|_{A_e}$ is the identity. For $a \in A$ and $n \in \mathbb{Z}^k$, define the homogeneous components a_n using (1). For $m, n \in \mathbb{Z}^k$, we write $m \leq n$ to mean $n - m \in \mathbb{N}^k$, and set

$$s_n(a) := \sum_{-n < m < n} a_m \quad \text{for } n \in \mathbb{N}^k$$

and

$$\sigma_N(a) := \frac{1}{\prod_{j=1}^k (N_j + 1)} \sum_{0 \le n \le N} s_n(a) \quad \text{for } N \in \mathbb{N}^k.$$

Then $\|\sigma_N(a) - a\| \to 0$ as $N \to \infty$ in \mathbb{N}^k .

References

- [1] G. Abrams and G. Aranda Pino, 'The Leavitt path algebra of a graph', J. Algebra 293 (2005), 319–334.
- [2] G. Abrams, P. Ara and M. Siles Molina, *Leavitt Path Algebras: A Primer and Handbook*, to appear, available at academics.uccs.edu/gabrams.
- [3] R. Exel, 'Amenability for Fell bundles', J. reine angew. Math. 492 (1997), 41–73.
- [4] R. Exel, Partial Dynamical Systems, Fell Bundles and Applications, to appear, arXiv:1511.04565.
- [5] J. M. G. Fell and R. S. Doran, *Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles*, Pure and Applied Mathematics, 125 and 126 (Academic Press, San Diego, 1988).
- [6] A. Kumjian and D. Pask, 'Higher rank graph C*-algebras', New York J. Math. 6 (2000), 1–20.
- [7] A. Kumjian, D. Pask and A. Sims, 'Homology for higher-rank graphs and twisted C*-algebras', J. Funct. Anal. 263 (2012), 1539–1574.
- [8] A. Kumjian, D. Pask and A. Sims, 'On twisted higher-rank graph C*-algebras', Trans. Amer. Math. Soc. 367 (2015), 5177–5216.
- [9] M. B. Landstad, J. Phillips, I. Raeburn and C. E. Sutherland, 'Representations of crossed products by coactions and principal bundles', *Trans. Amer. Math. Soc.* 299 (1987), 747–784.
- [10] J. C. Quigg, 'Discrete coactions and C*-algebraic bundles', J. Aust. Math. Soc. 60 (1996), 204–221.
- [11] I. Raeburn, Graph Algebras, CBMS Regional Conference Series in Mathematics, 103 (American Mathematical Society, Providence, RI, 2005).
- [12] I. Raeburn, Graph Algebras: Bridging the Gap between Algebra and Analysis (eds. G. Aranda Pino, F. Domenesc Perera and M. Siles Molina) (University of Malaga, 2007), Ch. 1, available online at http://webpersonal.uma.es/~MSILESM/Pub_BST_files/APS_Edts.pdf.
- [13] I. Raeburn, 'Deformations of Fell bundles and twisted graph algebras', Math. Proc. Cambridge Philos. Soc. 161 (2016), 535–558.
- [14] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, Mathematical Surveys and Monographs, 60 (American Mathematical Society, Providence, RI, 1998).

IAIN RAEBURN, Department of Mathematics and Statistics,

Victoria University of Wellington, PO Box 600,

Wellington 6140, New Zealand e-mail: Ian.Raeburn@vuw.ac.nz