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The presence of an active and functioning endocannabinoid (EC) system within cardiovas-
cular tissues implies that this system has either a physiological or pathophysiological role (or
both), and there is a substantial literature to support the notion that, in the main, they are
protective in the setting of various CVD states. Moreover, there is an equally extensive
literature to demonstrate the cardio- and vasculo-protective effects of n-3 long-chain
(LC)-PUFA. It is now becoming evident that there appears to be a close relationship
between dietary intervention with #-3 LC-PUFA and changes in tissue levels of EC, raising
the question as to whether or not EC may, at least in part, play a role in mediating the
cardio-and vasculo-protective effects of n-3 LC-PUFA. This brief review summarises the
current understanding of how both EC and n-3 LC-PUFA exert their protective effects in
three major cardiovascular disorders (hypertension, atherosclerosis and acute myocardial
infarction) and attempts to identify the similarities and differences that may indicate com-
mon or integrated mechanisms. From the data available, it is unlikely that in hypertension
EC mediate any beneficial effects of n-3 LC-PUFA, since they do not share common mech-
anisms of blood pressure reduction. However, inhibition of inflammation is an effect shared
by EC and n-3 LC-PUFA in the setting of both atherosclerosis and myocardial reperfusion
injury, while blockade of L-type Ca®" channels is one of the possible common mechanisms
for their antiarrhythmic effects. Although both EC and n-3 LC-PUFA demonstrate vasculo-
and cardio-protection, the literature overwhelmingly shows that n-3 LC-PUFA decrease
tissue levels of EC through formation of EC-#n-3 LC-PUFA conjugates, which is counter-
intuitive to an argument that EC may mediate the effects of n-3 LC-PUFA. However, the
discovery that these conjugates have a greater affinity for cannabinoid receptors than the
native EC provides a fascinating avenue for further research into novel approaches for
the treatment and prevention of atherosclerosis and myocardial injury following ischae-
mia/reperfusion.

Endocannabinoids: n-3 LC-PUFA: Atherosclerosis: Hypertension: Cardioprotection:
Arrhythmia

There is now a substantial literature demonstrating that
there is an active and functioning endocannabinoid
(EC) system within cardiovascular tissues. Moreover,
there is an equally extensive literature to demonstrate
the cardio- and vasculo-protective effects of n-3 long-
chain (LC)-PUFA. Since both of these topics have
been subject to recent detailed published reviews,

this article is not intended to present a comprehensive
review of topics that have previously been well covered.
However, as is now becoming apparent, there appears
to be a close relationship between dietary intervention
with n-3 LC-PUFA and changes in tissue levels of EC.
The aim of this review is therefore to attempt to draw
comparisons between the effects of the EC and n-3
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Fig. 1. Synthetic pathways for anandamide (AEA). NAPE, N-arachidonyl-phosphatidyl ethanol-

amine; pAEA, phospho-anandamide;
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LC-PUFA in the setting of common CVD, and to weigh
up the evidence around whether or not EC may play a
role in the protective effects of LC-PUFA.

The endocannabinoid system

The EC system constitutes an endogenous signalling
system that plays a pivotal role in a variety of centrally
and peripherally regulated physiological processes. The
system comprises G-protein-coupled cannabinoid (CB)
receptors, their endogenous CB (EC) ligands and the
associated enzymatic apparatus that controls their syn-
thesis and degradation (as reviewed in")). The two recog-
nised G-protein coupled receptors are the CB; and CB,
receptors'>?; CB receptors are predominantly expressed
in the central nervous system, but are also located
in numerous peripheral tissues including cardiac*>
vascular®” and adipose® tissue. CB, receptors, while
expressed primarily in the periphery, particularly by
immune cells®, have also been reported to be present
in both the myocardium® and endothelial cells"?.
However, evidence from functional studies also suggests
the existence of non-CB receptor targets of the EC,
including transient receptor potential vanilloid type-1
channels, PPAR®, the vascular ‘anandamide’ receptor'?
and the recently de-orphanised receptor GPR55!!%).

The very presence of these receptors in cardiovascular
tissue implies that they are there to mediate responses to
endogenous ligands, either as part of cardiovascular
homoeostasis, or to participate in pathological processes
either as a stress response or as a causative factor. Indeed,
endogenous ligands do exist that activate these receptors,
the most studied of which are anandamide (AEA) and
2-arachidonyl glycerol (2-AG) and will therefore be the
main focus of this review. However, it is worthy of
note that various additional endogenous CB receptor
ligands have been identified, including docosatetraenyl-
ethanolamide, N-arachidonoyl dopamine, virodhamine
and noladin (reviewed in'¥).
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Endocannabinoid synthesis and sites of action

AEA was first shown to be synthesised from the phos-
pholipid precursor N-arachidonyl-phosphatidyl ethanol-
amine (NAPE), via hydrolysis of NAPE by a calcium
(Ca®*) sensitive, NAPE-selective phospholipase D!'%.
However, alternate routes (Fig. 1) of AEA biosynthesis
have since been identified, including conversion of
NAPE to 2-lyso-NAPE (via phospholipase A,) and sub-
sequently to AEA through a Ca®* independent mechan-
ism"”, and also hydrolysis of NAPE by phospholipase C
to yield the phospho-AEA, which is further hydrolysed
to produce AEA. The synthesis of 2-AG (Fig. 2),
which is generated from arachidonic acid-containing
phospholipids, can be synthesised via (i) the pro-
duction of diacylglycerol from phosphatidylinositol via
phospholipase Cp and subsequent hydrolysis by snl-
diacylglycerol lipase to yield 2-AG"® and (ii) through
generation (via phospholipase A;) of lyso-phos-
phatidylinositol from phosphatidylinositol and sub-
sequent hydrolysis by a lyso-phosphatidylinositol
selective phospholipase C to yield 2-AG (reviewed
in"”). In terms of receg)tor activation by these endogenous
ligands (reviewed in''® ), AEA is a partial agonist at CB
receptors, with a marginally higher affinity and markedly
higher efficacy for the CB; receptor compared with the
CB, receptor. 2-AG, on the other hand, has a similar
affinity for both CB receptors but has a higher efficacy at
the CB, receptor compared to AEA.

There are now numerous reports that both circulat-
ing and tissue EC levels are raised in a variety of
cardiovascular-related patholo;ies, including cerebral'®,
hepatic® and myocardial®" ischaemia/reperfusion
(I/R) injury, heart failure®?, diabetic cardiomyopathy®?,
advanced atherosclerosis® and obesity-related cardio-
vascular dysfunction®. However, the nature of the
specific EC, and its precise role (i.e. whether it is protec-
tive or detrimental) varies widely between pathological
conditions. For the purposes of this review, the
discussion will focus on the potential role of the EC
in the setting of three cardiovascular disorders,
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namely hypertension, atherosclerosis and acute myocar-
dial I/R.

Interactions between long-chain-PUFA
and endocannabinoids

There is a significant literature concerning the cardio-
and vasculo-protective effects of »n-3 LC-PUFA and
various underlying mechanisms have been proposed
including: anti-inflammatory and anti-oxidant effects;
modulation of cardiac ion channels; reduction of TAG;
influence on membrane microdomains and downstream
cell signalling pathways; improved cardiac mitochondrial
function; antithrombotic and antiarrhythmic effects
(reviewed in®® 2% ). What is interesting is that the ben-
eficial effects of n-3 LC-PUFA are observed in very simi-
lar settings to those in which changes in levels of EC are
observed, which begs the question as to whether or not
there are shared or integrated mechanisms through
which both the n-3 LC-PUFA and the EC exert their
effects. Indeed, there is building evidence of interactions
between the n-3 LC-PUFA and activation of the EC sys-
tem (recently reviewed in®***", although the findings are
variable in terms of whether or not n-3 LC-PUFA raise
or lower EC levels. Berger er al®? were one of the first
groups to demonstrate a definitive effect of n-3
LC-PUFA ingestion on raising brain levels of AEA in
piglets, and this has since been extended in studies in
mice where DHA supplementation significantly altered
EC-related metabolites in plasma and brain®®. In con-
trast, other studies have shown that n-3 LC-PUFA
deficiency increases, while supplementation decreases,
2-AG levels in the brains of mice™. Thus the impact
of n-3 LC-PUFA on EC levels appears to be dependent
upon the EC in question. In terms of the effects of n-3
LC-PUFA on EC levels in peripheral tissues the picture
appears to be largely opposite to the effects on central
EC levels, as dietary n-3-PUFA supplementation,
given as either fish 0il®> or krill 0il®® in models of either
high-fat feeding or metabolic syndrome, decreases both
AEA and 2-AG levels in adipose and heart tissue,
effects that are associated with an anti-obesogenic effect
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and an improvement in glucose tolerance®”. These find-
ings raise the possibility that modulation of the EC sys-
tem by n-3-PUFA may be an important part of their
protective mechanisms of action. The remainder of this
review will therefore attempt to synthesise the evidence
for the protective mechanisms of ECs and n-3-PUFA
to identify where similarities exist and where they do not.

Could the endocannabinoid system be a mechanism for
the effects of n-3 long-chain-PUFA in hypertension?

Both AEA®*49 and 2-AG“" elicit complex vaso-
dilatory® and cardio-depressive responses in vivo that
are sensitive to inhibition by CB; receptor antagonists®
and are absent in CB;-knockout mice*". Together this
implies that the CB; receptor is responsible for mediating
the cardiovascular responses to the EC. The simple
fact, however, that CB receptor antagonists do not elicit
significant blood pressure responses™®'? 3434 ‘and that
blood pressure in CB; knockout mice is comparable with
wild-type controls?, suggests that EC do not play a
tonic role in blood pressure maintenance. However, in
hypertensive rats CB; receptor antagonists increase
blood pressure, whereas inhibitors of AEA metabolism
normalise blood pressure, suggesting that under situ-
ations of pathophysiological (i.e. hypertensive) stress
the EC are produced as a compensatory mechanism.
While, as far as the authors are aware, no determination
of EC levels has been made in either hypertensive animal
models or in clinical samples from hypertensive patients,
the increased expression of CB; receptors in both the
heart and endothelium of hypertensive rats® is sugges-
tive of an up-regulation of the EC system aimed at
redressing the balance. The blood pressure lowering
effects of EC in hypertension have been attributed to a
combination of a tonic suppression of cardiac contracti-
lity (and thus cardiac output) along with a direct vaso-
dilator effect.

The effect of n-3 LC-PUFA on blood pressure has
long been an issue of controversy. Recent analysis of
clinical and epidemiological studies“” shows that,
while very high (>3g/d) doses of n-3 LC-PUFA do
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produce a small but significant decrease in blood pressure
(especially systolic blood pressure), this is evident only in
certain groups such as older hypertensive subjects and
individuals with hypertriglyceridaemia®®. Moreover,
lower doses of n-3 LC-PUFA as a single treatment are
ineffective in lowering blood pressure in mild essential
hypertensive patients®” or individuals with metabolic
syndrome“®. Thus, like the EC system, n-3 LC-PUFA
only appear to modify blood pressure in the setting of
hypertension.

The blood pressure lowering effects of EC are thought
to be mediated through an endothelial mechanism invol-
ving the release of nitric oxide (NO)®”, via both CB{*®
and non-CB,/CB, (possibly vanilloid) receptors*®*?.
Conversely, the proposed mechanism(s) by which n-3
LC-PUFA reduce blood pressure are numerous
(reviewed in®” ) and include effects on sodium excretion,
interference with the renin-angiotensin system and
enhancement of endothelial NO production, although
with respect to the latter there is a degree of ambiguity
between experimental findings. In vitro studies on iso-
lated bovine and ovine blood vessel preparations show
that EPA relaxes blood vessels through endothelial NO
release®'°?. However, studies in human subjects are
inconsistent with this and have reported no effect of long-
term n-3 LC-PUFA supplementation (0-45-3-4g/d EPA
+DHA) on flow-mediated dilatation and/or arterial stiff-
ness (surrogate markers of endothelial function) in either
normal subjects®**¥, hypertensives®> or patients with
peripheral vascular disease®®, although microvascular
endothelial function is improved in individuals with
type II diabetes®”.

At present there is no data around whether or not n-3
LC-PUFA influence EC levels in the vasculature in
hypertension. However, the profiles of EC and n-3
LC-PUFA in the setting of hypertension differ substan-
tially: n-3 LC-PUFA are not particularly effective as
either anti-hypertensive or NO-releasing agents, while
EC are potent endothelium (and presumably NO)
dependent vasodilators. On this basis, current evidence
suggests that there is no correlation between n-3
LC-PUFA and EC in hypertension.

Could the endocannabinoid system contribute to the
anti-atherosclerotic effects of n-3 long-chain-PUFA?

There is a growing evidence base for a role of the EC sys-
tem in atherosclerotic lesion progression. CB, activation
has been associated with an anti-atherogenic effect on
the basis of the following: (i) the phytocannabinoid
A’-tetrahydrocannabinol reduces atherosclerotic lesion
progression and suppresses leucocyte adhesion to the vas-
cular wall in high-fat fed ApoE ™'~ mice, an effect that is
abolished by co-administration with a CB, selective
antagonist (SR144528)°® . (i) the CB, agonist
JWH-133 attenuates smooth muscle cell proliferation
and migration® and (iii) the suppressant effect of the
CB,/CB; receptor agonist WIN 55,212-2 on TNFa and
superoxide production in human peripheral blood mono-
nuclear cells is sensitive to CB, receptor blockade®”.
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However, more recent data have shown that neither
CB, receptor activation with a selective agonist
(JWH-133) nor CB, receptor gene deletion modulate
atherogenesis in high-fat fed LDLR ™~ mice®". In con-
trast to the picture with CB, receptors, evidence that
CB; activation results in atherogenesis is derived from
the findings that patients with advanced coronary artery
disease exhibit elevated circulating levels of both AEA
and 2-AG along with increased CB; receptor expression
in coronary plaques®”. Taken together with the findings
that the CB; selective antagonist rimonabant (i) attenu-
ates lesion development in a murine model of athero-
sclerosis via mechanisms involving suppression of
proinflammatory gene expression and macrophage
recruitment®® and (ii) inhibits vascular smooth muscle
cell proliferation and migration®, this has led to the
proposal that EC exert a pro-atherogenic effect, signal-
ling through CB; receptors. However, it should be
borne in mind that all of the afore-mentioned studies
employed phyto- or synthetic CB ligands, which may
behave differently from the endogenous EC, AEA and
2-AG. In fact, AEA attenuates TNFa-induced ex-
pression of inter-cellular adhesion molecule 1 and vascu-
lar cell adhesion molecule 1 in human coronary artery
endothelial cells and attenuates TNFa-stimulated
human acute monocytic leukaemia cells monocyte
adhesion, both actions being sensitive to CB; and CB,
receptor blockade®®, suggesting that AEA at least exhi-
bits effects that are more in line with an anti-, rather than
pro-, atherogenic effect. With regard to 2-AG, there is in
fact a dearth of literature about its effects on either ather-
ogenesis or the cellular events involved in the atherogenic
process.

The impact of n-3 LC-PUFA intervention in athero-
sclerosis progression has long been a subject of conten-
tion, but there is now sufficient evidence from several
large-scale  randomised  trials (DART  Trial®,
GISSI-Prevenzione Study®®, JELIS Study®” ) to
demonstrate the effectiveness of n-3 LC-PUFA sup-
plementation in the primary and secondary prevention
of CHD. The main effects of n-3 LC-PUFA appear to
involve modulation of processes key to atherosclerosis
progression and plaque stablisation®®®” via both direct
(i.e. at the level of the plaque) and indirect (i.e. through
alterations in lipid metabolism) mechanisms. Since the
aim of this article is to identify similarities between the
actions of n-3 LC-PUFA and EC, and since EC influ-
ences in atherogenesis are related to direct effects on
the developing plaque, this discussion will be confined
to the direct effects of n-3 LC-PUFA on plaque stability,
which are predominantly of an anti-inflammatory and
antioxidant nature.

Dietary fish-oil intake has been documented to lower
chemoattractant (platelet-derived growth factor and
monocyte chemoattractant Protein 1) production in
mononuclear cell fractions”” and decrease surface
expression of the adhesion molecules inter-cellular
adhesion molecule 1 and vascular cell adhesion molecule
1 in cultured human aortic endothelial cells”", both of
which actions would serve to reduce the inflammatory
response and subsequent leucocyte infiltration that fuels
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plaque progression. n-3 LC-PUFA also directly alter pla-
que morphology by inducing structural changes consist-
ent with increased stability, characterised by an
increased fibrous cap thickness and reduced macrophage
infiltration'’?, reduced foam cell infiltration and mRNA
expression of matrix metalloproteinase-7, -9 and -127%,
and increased collagen content of the plaques”.

These positive effects of n-3 LC-PUFA on athero-
sclerotic plaque resemble very closely those seen with
agents that modulate CB,-mediated effects in the EC sys-
tem. Although there is evidence of increased CB receptor
expression in atherosclerotic plaques, there are no defini-
tive data to show that EC levels (as opposed to the recep-
tors that mediate their effects) are similarly elevated.
However, n-3 LC-PUFA do reduce cardiac EC levels
in high-fat fed mice®® and unpublished results from
our own laboratory have shown that both heart and vas-
cular tissue levels of both AEA and 2-AG are markedly
elevated in high-fat fed ApoE-/- and that these are nor-
malised by dietary intervention with EPA. At face
value it could therefore be argued that the anti-
atherogenic effect of n-3 LC-PUFA could be explained
by removal of EC, and thus their pro-atherogenic influ-
ence mediated by CB; receptors; however, this would
not take account of the possible protective role of the
EC exerted via CB,.

Could the endocannabinoid system contribute to the
beneficial effects of long-chain-PUFA in IHD?

I/R injury represents the principal cause of tissue damage
following acute myocardial infarction (AMI), while the
electrical disturbances that occur during an AMI pose
a threat to life through sudden arrhythmic death.

Mpyocardial injury

Elevated levels of tissue and circulating EC have been
reported following myocardial I/R injury in both exper-
imental animals® and, more recently, in patients with
recent AMI7®. The cellular source and exact role of the
EC remains a point of contention and has been the subject
of a number of comprehensive reviews (e.g.7%"” ). AEA
has been shown in some studies to reduce myocardial
infarct size in isolated rat hearts”®, an effect that is sensi-
tive to both CB; and CB, receptor antagonists, whereas in
others it does not’?. Moreover, suppression of AEA
metabolism by either pharmacological inhibition or gen-
etic deletion of fatty acid amine hydrolase exacerbates
oxidative/nitrative stress-dependent doxorubicin-induced
myocardial injury, an effect that is reversed by CB; antag-
onism, and increases AEA-induced cardiomyocyte cell
death®”, further supporting a role for AEA-induced
myocardial injury via CB;.

In contrast, reports of a cardioprotective effect of
2-AG are more consistent”’’*" although the evidence
is similarly conflicting around whether or not selective
CB, and CB, receptor agonists do’” or do not'"®
mimic 2-AG-induced cardioprotection, suggesting that
a site distinct from the classical CB receptors might be
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involved. 2-AG has also been implicated in myocardial
preconditioning (a potent endogenous form of protection
against I/R injury’®) triggered by ischaemic®?,
remote®® and pharmacological®? stimuli, effects largely
attributed to activation of CB,, rather than CB;,
receptors®3-5Y),

The potential of n-3 LC-PUFA to act as direct cardi-
oprotective agents in the setting of AMI (as opposed to
preventing cardiac events) has been evident for well
over 20 years. Clinically, patients with a high level of
fish-oil derived n-3 LC-PUFA consumption have been
reported to have smaller infarcts following an AMI and
to demonstrate an improved response to coronary throm-
bolysis®. Experimentally, prolonged (>2 weeks dur-
ation) dietary intervention with fish-oil derived n-3
LC-PUFA has been shown to reduce the extent of tissue
injury (infarct size) in numerous studies via a broad range
of proposed mechanisms including attenuation of platelet
function®®, opening of cardiac K *-activated Ca>" chan-
nels®”, increased expression of protein kinase C5®® and
altered fatty acid composition of mitochondrial phospho-
lipids, in particular the mitochondrial antioxidant phos-
pholipid cardiolipin®. Interestingly, n-3 LC-PUFA
have also been described to induce cardioprotection simi-
lar to ischaemic preconditioning®”, either when given
as a ‘pre-emptive’ infusion into the coronary circulation
immediately prior to the onset of I/R®Y, or following
prolonged dietary intervention®”, possibly through a
reduction of reperfusion-induced oxidative stress and
induction of heat shock protein 72°?. Moreover, a posi-
tive effect on post-infarction ventricular remodelling has
also been demonstrated®?.

The proposed cellular mechanisms for EC-induced
cardioprotection are plentiful, and some similarities
can be drawn to the cardioprotective effects of n-3
LC-PUFA. In particular, as with the n-3 LC-PUFA,
inhibition of inflammation and oxidative/nitrosative
stress, are believed to be major targets for EC,7579),
However, activation of the myocardial protein kinase C
and p38 mitogen-activated protein kinase pro-survival
pathways®”, induction of heat shock protein 72¢% and
generation of NO have all also been implicated in
EC-induced cardioprotection. Although there are no
reports of n-3 LC-PUFA affecting kinase pathways in
the heart, they are known to influence mitogen-activated
protein kinase activity in the brain®>, endothelial cells®®
and human T-cells®” and therefore whether or not EC
play a role in these effects remains to be explored. In
terms of NO production, #n-3 LC-PUFA suppress myo-
cardial NO synthase activity in hypertensive hearts®® ;
whether or not n-3 LC-PUFA influence NO production
in the setting of myocardial I/R remains to be explored.

Arrhythmias

Endogenously released EC are implicated as being
anti-arrhythmic®>°%1%? against both ischaemia and
reperfusion-induced arrhythmias through an action at
CB; receptors. Likewise, a clear beneficial effect of the
n-3 LC-PUFA is seen against I/R-induced arrhythmias;
a meta-analysis of twenty-seven experimental studies
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Fig. 3. (colour online) Proposed mechanism of n-3 LC-PUFA-endocannabinoid interaction in
atherogenesis and myocardial ischaemia. AEA, anandamide; 2-AG, 2-arachidonyl glycerol;
DHEA, docosahexaenoyl ethanolamide; EPEA, eicosapentaenoyl ethanolamine; CB,, cannabinoid

receptor type 2.

into the antiarrhythmic effects of n-3 LC-PUFA revealed
that they afford significant protection particularly
against ventricular tachycardia and ventricular fibrilla-
tion!"Y. The mechanisms responsible for these anti-
arrhythmic effects have been thoroughly reviewed!'®®
and are believed to be largely due to direct effects of
n-3 LC-PUFA on cardiomyocyte transmembrane cur-
rents, resulting in electrophysiological changes such as
(i) slowing of the Na™ current (reducing excitability
and slowing ventricular conduction), (ii) reduced opening
of L-type Ca®* channels (thus reducing early after-
depolarisations), (iii) an effect on the Na*/Ca** exchan-
ger (to reduced delayed after-depolarisations) and
(iv) reduced spontaneous release of Ca>* from the sarco-
plasmic reticulum (reduced triggered activity).

In terms of the cellular mechanisms underlying the
antiarrhythmic effects of EC, there is a paucity of data
on this, although studies on the direct electrophysiologi-
cal effects, at least of AEA, give some insight as to these.
Like the n-3 LC-PUFA, AEA suppresses action potential
duration and blockade of L-type Ca>* channels in car-
diac myocytes!’?, but although there are no data con-
cerning the effect of AEA on Ca®" release from the
sarcoplasmic reticulum (a known action of n-3
LC-PUFA), the intriguing observation that AEA inhibits
IPs-induced Ca®* release from the cardiomyocyte
nucleus'% suggests that this may be worth pursuing as
a common mechanism. However, AEA also exerts elec-
trophysiological effects that are not shared with the n-3
LC-PUFA, such as suppression of the cardiac transient
outward potassium current I(to) through a non-CB,;/
CB,receptor-mediated pathway and augmentation of
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the ATP-sensitive potassium current I(KATP) through
a CB,-dependent mechanism'%®, both of which would
contribute to an antiarrhythmic effect. Moreover, AEA
suppresses noradrenaline release from sympathetic nerves
innervating the heart!!°®, which would potentially reduce
catecholamine-related arrhythmias during early ischae-
mia; this is in contrast with n-3 LC-PUFA, which do
not influence cardiac sympathetic tone'*”.

Can the beneficial effects of n-3 long-chain-PUFA in
CVD be linked to those of the endocannabinoid system?

From the afore-mentioned discussion, while it is evident
that a link between n-3 LC-PUFA and EC is unlikely to
exist in the setting of hypertension, there are sufficient
similarities regarding the effects of both in atherosclerosis
and IHD to consider that a connection exists.
Considering the cardinal role that inflammatory cells
play in many CVD states, and the similar influence of
both n-3 LC-PUFA and EC on inflammatory processes
in atherogenesis, this raises the intriguing possibility
that EC may be the ‘missing link’ in understanding the
mechanisms underlying the vasculo-protective effects of
n-3 LC-PUFA. Similarly, common mechanisms exist
for both the tissue-sparing and antiarrhythmic effects
of both n-3 LC-PUFA and EC, again raising the notion
that modulation of the EC system by n-3 LC-PUFA may
play a part in the underlying mechanisms. However,
counterintuitive to this hypothesis is that while EC
levels are consistently seen to be up-regulated in these
pathological conditions, n-3 LC-PUFA tend to suppress
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EC levels. While this may be interpreted as an overall
reduction of activity of the EC system by n-3
LC-PUFA, it is probably more probably that these
changes are a consequence of a shift in the n-3/n-6 bal-
ance of membrane lipids, resulting in compensatory
increases in the n-3 LC-PUFA-derived acyl conjugates
docosahexaenoyl ethanolamide and eicosapentaenoyl
ethanolamine®”. Indeed, it is plausible that these n-3
LC-PUFA-EC conjugates may in part be responsible
for some of the beneficial effects of n-3 LC-PUFA, since
docosahexaenoyl ethanolamide and eicosapentaenoyl
ethanolamine both bind to CB; and CB, receptors in
human and mouse leucocytes'**!% and docosa-
hexaenoyl ethanolamide has been shown to exert
anti-inflammatory effects in mouse peritoneal and
RAW264-7 macrophages!'”. Moreover, in contrast to
AEA, docosahexaenoyl ethanolamide appears to have a
greater affinity for CB, than for CBy, in human inflamma-
tory cells''®® ; what this likely means at a cellular level is
that, in the presence of high n-3 LC-PUFA concen-
trations, EC are converted to n-3 LC-PUFA-EC conju-
gates, which then act as ‘surrogate’ CB, agonists and
thus alter the balance between activation of CB; v. CB,
receptors in favour of CB, (Fig. 3). However, it must not
be overlooked that the EC are known to act at sites
other than the classical CB/CB, receptors and therefore
the n-3 LC-PUFA-EC conjugates may similarly exert
actions at sites distinct from CB receptors, although as
far as we are aware this has not yet been tested.

Conclusions

There is no doubt that #n-3 LC-PUFA and the EC AEA
and 2-AG each demonstrate protective effects in the set-
ting of CVD. Mechanistically speaking, at least in the
setting of atherosclerosis and AMI, there are sufficient
similarities to suggest that some (but by no means all)
relationships exist between the two in these effects. The
fact that n-3 LC-PUFA influence endogenous EC levels,
possibly resulting in the generation of conjugates that act
preferentially on the CB receptors linked to the beneficial
effects of the EC, is an attractive explanation for this, but
further studies are warranted before this hypothesis can
be proven or refuted.
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