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ABSTRACT: The monthly intracisternal inoculation of young adult New Zealand white rabbits with low-dose 
(100 u.g) aluminum chloride induces aggregates of phosphorylated neurofilament that mimics the intraneuronal inclu­
sions of amyotrophic lateral sclerosis. The chronic progressive myelopathy and topographically-specific motor neuron 
degeneration that occurs in the absence of suppressions of neurofilament messenger RNA levels in this model contrasts 
with the acute fulminant encephalomyelopathy and nonspecific gene suppressions that occur subsequent to high-dose 
(1000 u.g) aluminum chloride inoculations. Further analysis of this unique model of chronic motor system degeneration 
can be expected to provide additional insights into the pathogenesis of amyotrophic lateral sclerosis. 

RESUME: Degenerescence chronique du neurone moteur induite par l'aluminium : aspects cliniques, neu-
ropathologiques et biologie moleculaire. Une inoculation mensuelle intracisternale d'une petite dose de chlorure 
d'aluminium (100 |ig), chez de jeunes lapins blancs adultes de Nouvelle Zelande, induit l'apparition d'agregats de neu­
rofilaments phosphoryles qui simulent les inclusions intraneuronales de la sclerose laterale amyotrophique. La 
myelopathic progressive chronique et la degenerescence du neurone moteur a topographie specifique, qui survient en 
l'absence de suppression des niveaux d'ARN messager du neurofilament dans ce modele, constraste avec 
l'encephalomyelopathie aigue fulminante et la suppression genique non-specifique qui surviennent suite a l'inoculation 
de hautes doses de chlorure d'aluminium (1000 jug). Une analyse plus poussee de ce modele unique ce degenerescence 
chronique du systeme moteur laisse presager qu'on en tirera une comprehension additionnelle de la pathogenese de la 
sclerose laterale amyotrophique. 
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Amyotrophic lateral sclerosis (ALS) is a relentlessly progres­
sive, uniformly fatal disorder of the neuronal cytoskeleton 
affecting the upper and lower motor neurons. The disease has a 
world-wide distribution and increasing age-related incidence 
rates of 1.6 to 2.4/100,000.14 Death occurs within 2.5 years in 
50% of cases and 90-95% are deceased within the first 
decade.5-6 As a direct consequence of our studies of ALS in the 
Western Pacific where original incidence rates were at least 50 
times higher than worldwide rates,7"10 we have undertaken the 
long-term development of models of chronic, experimentally-
included neuronal degeneration, both in vivo and in vitro, in an 
attempt to understand the cellular and molecular pathogenic 
mechanisms of ALS. 

Irrespective of the clinical variant studied (classical sporadic, 
familial or Western Pacific), the neuropathological hallmark of 
ALS is a loss of upper and lower motor neurons that is topo­
graphically specific (e.g. sparing of Onuf's nucleus and cranial 
nuclei III, IV, VI).11 Whereas neuronal loss is a later event in the 

disease process, intracytoplasmic inclusions and neuroaxonal 
swellings consisting of interwoven skeins or parallel arrays of 
morphologically normal phosphorylated neurofilament within 
degenerating motor neurons are invariably early neuropathologi­
cal findings.12-21 While there are additional neuropathological 
features that further distinguish between the clinical variants 
(e.g. paired helical filaments in Western Pacific ALS;22'23 Clarke's 
nucleus and dorsal spinocerebellar tract degeneration in some 
cases of familial ALS),24-25 these inclusions suggest that ALS is 
a cytoskeletal disorder with an impairment in biosynthesis or 
catabolism of the neurofilament triplet protein as a common bio­
logical process underlying all of the clinical variants. Extensive 
epidemiological, genetic, cellular and molecular studies of the 
Western Pacific foci of ALS have provided insights into this 
process and strongly implicate environmental factors in its etiol­
ogy, specifically the interaction of calcium and aluminum in the 
disease process.9"10 The resulting hypothesis that an envi­
ronmental deficiency of calcium coupled with high aluminum 
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induces a form of secondary hyperparathyrodisim accompanied 
by enhanced gastrointestinal absorption of aluminum has been 
supported by a large body of data over the past three decades, as 
well as by the experimental induction of neuropathological 
lesions reminiscent of those seen in ALS in nonhuman primates 
(cynomolgus monkeys and Japanese macaques) chronically fed 
a hypocalcemic, aluminum-supplemented diet.26"28 

Experimentally, although aggregates of phosphorylated neu­
rofilament with ultrastructural characteristics reminiscent of 
ALS can be induced with single inoculations of large (1000 |ig 
or greater) doses of organic or inorganic aluminum compounds 
in a variety of experimental hosts, these conventional models of 
aluminum neurotoxicity are inappropriate for the study of the 
process of neurofilamentous degeneration in a chronic neurode­
generative disorder such as ALS.29 Invariably, these "acute" 
models are accompanied by a fulminant encephalopathy marked 
by seizures, quadraparesis and death (10 to 14 days post inocu­
lation), and a diffuse, nonspecific neuronal degeneration with 
suppression of gene transcription not thought to occur in 
ALS.30-33 To circumvent these difficulties, we have developed 
an experimental model of a slowly progressive, aluminum-
induced myelopathy that mimics to a large extent the clinical 
and topographic specificity of motor system degeneration in 
human ALS. Following repeated intracisternal inoculations of 
low dose (100 jug) A1C13 at 4 weekly intervals over the course of 
eight months in young adult New Zealand white rabbits (age 8-9 
weeks), encephalopathic signs, widespread neuronal degenera­
tion and suppressions of neurofilament mRNA levels seen in the 
"acute" model do not occur.34-35 

Neuropathologically, there was extensive degeneration of 
spinal motor nuclei with argentophilic globular inclusions with­
in motor neuron perikarya, dendrites and axonal processes. 
Neurofibrillary tangle-like argentophilic inclusions were consis­
tently present in the gigantocellularis, reticularis, raphe and 
trapezoid nuclei, but only rarely present in the doral and ventral 
subiculum, parasubiculum and anterior thalamus, and never 
found in the cerebral cortex, substantia nigra, locus ceruleus, or 
ferebellum. Ultrastructurally, these inclusions consisted of 
straight or interwoven skeins of 10 nm filaments. 

Immunocytochemically, the neurofilamentous inclusions 
demonstrated a spectrum of immunoreactivity with monoclonal 
antibodies against phosphorylated and nonphosphorylated epi­
topes of neurofilament subunit proteins - features reminiscent of 
the immunohistochemical studies of ALS reported by Schmidt 
et al18. While many inclusions are intensely immunoreactive 
with antibodies recognizing phosphorylated epitopes of neuro­
filament, inclusions are also present which demonstrate no 
immunoreactivity or are only faintly immunoreactive. Some 
inclusions react only to antibodies recognizing nonphosphory­
lated epitopes. Axonal spheroids and a variable number of intra-
cytoplasmic inclusions (< 20%) are also uniquely immunoreac­
tive to SMI 34, an antibody which recognized an "age-related" 
phosphorylation epitope of neurofilament36 but does not recog­
nize acute aluminum-induced neurofilamentous inclusions.37 

Molecular studies using our model of chronic aluminum 
intoxication demonstrated that alterations in gene transcription 
do not occur - unlike that reported for the acute model. In pre­
liminary experiments, we have correlated the dose of A1C13 

administered (1000, 750, 500, 200 or 100 (ig A1C13 intracister-

nally) with the presence of clinical deficits, extent of neurofila­
mentous inclusions (topographically and percentages of neurons 
involved per nuclear group), and the relative degree of low and 
intermediate weight neurofilament subunit protein mRNA sup­
pression (compared to actin and tubulin mRNA levels by 
Northern blot analysis) at 48 hours post inoculation.35 Neither 
suppression of neurofilament mRNA levels or inclusion devel­
opment occurred at the 100 to 250 fig dose. 

In order to demonstrate that the in vivo selectivity of neuro­
filamentous inclusions observed in the chronic model reflect 
neuron-specific thresholds of toxicity, we compared the respons­
es to dissociated hippocampal and motor neurons in vitro to alu­
minum challenge. When cultured under identical conditions and 
similar states of maturation in a chemically-defined media, 
motor neurons exhibited a 10 fold greater sensitivity to alu­
minum toxicity than hippocampal neurons as measured by mor­
phological criteria - e.g. cell degeneration, death or appearance 
of inclusions.38-39 Although electrophysiological alterations may 
precede the development of neuropathological changes follow­
ing aluminum administration,40 the striking disparity in sensitiv­
ity between motor neurons (10 uM A1C13) and hippocampal 
neurons (100 U.M A1C13) indicate neuron-specific thresholds of 
aluminum toxicity. 

Although the exact mechanisms of aluminum intoxication as 
they relate to the process of neuronal degeneration have yet to 
be clearly defined, multiple biological effects of aluminum have 
been identified in human, animal and plant species. '0,41-46 Those 
which are pertinent to altered neurofilament processing include 
the binding of aluminum to nuclear chromatin,47-48 alterations in 
cAMP activity with subsequent increases in the rate of neurofil­
ament phosphorylation,49-51 direct covalent binding of alu­
minum to phosphorylated neurofilament epitopes,52 inhibition 
of ca lmodul in , 5 3 5 6 inhibition of microtubule assembly,57 

impairment of slow axonal transport,53-6' and inhibition of neu­
rofilament loading onto the axonal transport system.62-63 While 
these mechanisms are not mutually exclusive, they may be 
dependent on host genetics, the chemical form, route and fre­
quency of aluminum administration, or the cell types analyzed. 
Ultimately, it is likely that one or more separate defects in neu­
rofilament biosynthesis or catabolism lead to aberrant accumu­
lations of neurofilament which are morphologically indistin­
guishable and neuron-specific. Based on our observations, and 
those of others demonstrating alterations in the gross morpho­
logical appearance of aluminum-induced inclusions over 
time,64-66 we hypothesize that, once deposited, neurofilamen­
tous inclusions are subject to a dynamic chemical remodelling 
of their phosphorylation state. 

Current in vivo studies are attempting to identify the mecha­
nisms by which the phosphorylation states of neurofilamentous 
inclusions in chronic aluminum toxicity are altered. It is likely 
that the same protein kinase is responsible for normal phospho­
rylation and for the phosphorylation by the SMI 34 antibody (V. 
Ingram, personal communication). This raises the question of 
whether the protein kinase itself is altered in some fashion (for 
which kinetic studies will provide some insight) or if the site of 
phosphorylation is altered as suggested for tau proteins in 
Alzheimer disease.67-68 Ultimately, determining if aberrant 
protein phosphorylation is crucial to the induction of motor neu­
ronal degeneration will provide an insight into the pathogenesis 
of ALS. 
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Future in vivo and in vitro studies should continue to address 
the cellullar and molecular mechanisms of chronic low-dose 
aluminum intoxication leading to the induction of neurofilamen-
tous inclusions. Such studies should not only include attempts to 
understand the molecular biology of altered neurofilament gene 
expression, transcription, translation and post-translational mod­
ification, but also the identification of aluminum transport 
mechanisms, neuronal metalloenzyme receptor sites and the 
effects of various aluminum species, chemical remodelling of 
aluminum complexes and calcium-aluminum interactions of the 
induction of neuronal degeneration. 
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