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Abstract. 
We probe gravitational clustering in N-body simulations using geomet-

rical descriptors sensitive to 'connectedness': the genus curve, percolation 
and shape statistics. As gravitational clustering advances, the density field 
in N-body simulations shows an increasingly pronounced departure from 
Gaussianity reflected in the changing shape of the percolation curve and 
the changing amplitude and shape of the genus curve. We feel that both 
genus and percolation curves provide complementary probes of large scale 
structure topology and could be used to discriminate between models of 
structure formation and the analysis of observational data such as galaxy 
catalogs and M B R maps. The filling factor in clusters & superclusters at 
percolation is small indicating that matter is more likely to lie in filaments 
and pancakes. An analysis of 'shapes' in N-body simulations has shown that 
filaments are more pronounced than pancakes. To probe shapes of clusters 
and superclusters more rigorously we propose a new shape statistic which 
does not fit isodensity surfaces by ellipsoids (as done earlier). Instead our 
shape statistic is derived from fundamental properties of a compact body 
such as its volume V , surface area 5, integrated mean curvature C , and 
connectivity (characterized by the Genus). The new shape statistic gives 
sensible results for topologically simple surfaces such as the ellipsoid, and 
for more complicated surfaces such as the torus. 

1. Introduction 

The Universe as we perceive it seems abundantly rich in visual form. Its 
large scale structure consisting of clusters and superclusters of galaxies 
has been variously perceived to be ca cosmic web', 'network of surfaces', 
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'sponge-like', bubble-like' etc. Attempts to describe its large scale fea-
tures quantitatively have been made using a number of statistical indi-
cators sensitive to the 'connectedness' of large scale structure including the 
genus curve and percolation statistics (Zeldovich 1982; Shandarin 1983; 
Gott, Melott, Sz Dickinson 1986); minimal spanning trees (Barrow et al. 
1995); Minkowski functionals; (Mecke et al. 1994) and statistics sensitive 
to shape (see Sahni & Coles (1995) and references therein). 

In this talk we assess the relative merits of genus and percolation curves 
by applying them to the same N-body simulations in an Ω = 1 Uni-
verse with scale-invariant initial conditions P(k) = (|£fc|2) oc fcn,n = 
—2,-1 ,0 ,+1 , (for simplicity we show results only for η = — 2 which may 
be considered the lower limit of the slope of the initial spectrum on galaxy 
scales). Results are shown at several epochs each characterized by the scale 
of nonlinearity, &Λ/Χ> at that epoch measured in units of the fundamental 
mode 2π/Ζ/, where L is the length of the simulation box. N-body simula-
tions were performed on a 1283 grid using a particle-mesh algorithm (Melott 
& Shandarin 1993). A reduced grid of size 64 3 was used to construct den-
sity fields from particle positions and the analysis of percolation and genus 
curves was then performed on these fields. 

We also introduce a new statistic sensitive to shape based on Minkowski 
functionals. 

2. Growth of non-Gaussianity during Cosmological gravitational 
clustering. 

Conventional models of gravitational clustering usually assume that primor-
dial density perturbations had a scale-invariant Harrison-Zeldovich spec-
trum and were distributed in the manner of a Gaussian random field. Ar-
guments which support this hypothesis stem from the central limit theorem 
and the Inflationary paradigm. The non-Gaussianity which we observe in 
the Universe today (clusters, superclusters, voids) is attributed to non-
linear evolution and the resulting phase correlation between modes. Two 
robust and widely used statistical indicators of clustering are the proba-
bility density function (PDF) and the two point correlation function £(r). 
However neither characterizes the nonlinear distribution of matter uniquely. 
The two point correlation function ξ(χ) = f d?kexp(ik · x)P(k) being sen-
sitive o'nly to the power spectrum P(k) = (\Sk\2) and not to the phases 
of individual modes [S(k) = \ôk\ exp(i<fik)] misses features arising because 
of phase correlations in the nonlinear regime. On the other hand, the P D F 
does not characterize a distribution uniquely in the nonlinear regime: distri-
butions with identical PDF ' s can have very different topological properties 
and, conversely, distributions differing in their PDF ' s may have identical 
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geometrical properties (this happens for instance in the case of distributions 
related by a mapping = F {à LIN), such as the log-normal). 

3. Percolation and Genus Curves 

It is clear that traditional indicators of clustering: the two point correlation 
function and the probability density function, must be complemented in the 
non-linear regime if we are to get a better understanding of the issue of non-
Gaussianity. One way of achieving this is to use geometrical measures which 
are sensitive to the connectedness of a distribution. Two such indicators -
percolation and the genus curve, will be studied in this section, a third 
shape statistics, will be discussed in the next. 

One of the aims of percolation theory is to study the connectedness 
of structure as a function of the density threshold. Varying the density 
threshold from a high to low value, leads to a 'percolation transition' as the 
volume fraction in the largest cluster changes rapidly from almost zero to 
unity when the density threshold crosses a critical value. It is convenient to 
characterize percolation in terms of filling factor - henceforth FF - the total 
volume in all clusters/voids above/below the density contrast threshold 
divided by the simulation volume 1 . Gaussian random fields percolate at the 
critical filling factor FFc — 16% regardless of the spectrum. Density fields 
evolving under gravitational instability typically percolate at lower levels 
of FFc depending upon the initial spectrum and the extent of non-linear 
evolution (Yess & Shandarin 1996). Similar conclusions are also reached in 
the case of point like distributions although the natural reference in this 
case is the Poisson distribution (Klypin & Shandarin 1993). 

Earlier work on gravitational clustering focussed on FFc as a diagnostic 
measure (Shandarin 1983; Dominik & Shandarin 1992; Klypin & Shandarin 
1993). However, although useful in probing the extent of nonlinear evolution 
FFc does have certain drawbacks, for instance it is sensitive to resolution, 
number of particles and sample geometry (Dekel h West 1985). A pow-
erful new statistic without the above limitations is the percolation curve 
(PC) . Consider the volume fraction v m a x defined as the ratio of the volume 
in the largest cluster/void to the total volume in all clusters/voids lying 
above/below a density contrast threshold. The percolation curve describes 
the volume fraction v^x as a function of the density contrast threshold (or 
filling factor). 

The percolation curve is plotted in Fig. 1 for evolved density fields from 
N-body simulations with the power-law initial spectrum η = —2. Perco-
lation curves for clusters (thick solid lines) and voids (thick dashed lines) 
are plotted separately. Vertical thin solid and thin dashed lines show the 

L F F is the cumulative probability distribution function: F F = P(S > ST)-
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percolation density threshold below which clusters and above which voids 
percolate. From Fig. 1 we find that at very high (low) thresholds the number 
of clusters (voids) is very small and v m a x < < 1. As the threshold is gradu-
ally decreased (increased) the volume fraction in the largest cluster (void) 
increases as clusters (voids) begin to merge until the percolation transition 
when the largest 'supercluster' (supervoid) spans the entire simulation box. 
(Decreasing (increasing) the density threshold corresponds to increasing the 
filling factor for clusters (voids).) From Fig. 1 we see that as the simulation 
evolves be increases monotonically as power in longer wavelengths causes 
structures to form and align on increasingly larger scales. For spectra with 
lesser long range power such as η = 0, be initially increases but later begins 
to decrease signaling the formation of small, isolated clumps (not shown) 
(Sahni, Sathyaprakash & Shandarin 1997a). 

An analysis similar to percolation can also be performed using the genus 
curve ( G C ) which can be formally expressed as an integral over the Gaus-
sian curvature Κ of the iso-density surfaces Sy lying above/below a density 
threshold ν = b/a$ by the Gauss-Bonnet theorem: 4TG(U) = — fs^KdA. 
For Gaussian Random fields the genus curve has a 'bell shaped' form: 
G{y) = A ( l - i / 2 ) e x p ( - i / 2 / 2 ) (Hamilton et al. 1986; Gott et al. 1987; 
Gott et al. 1989). (An analytical expression for the genus in the weakly 
non-linear regime has been obtained in (Matsubara 1994).) Multiply con-
nected surfaces have G > 0 while simply connected have G < 0. The upper 
right hand panels of Fig. 1 show the genus curve plotted as a function 
of the density contrast. It is interesting to note that zero-crossings of the 
genus curve are quite close to the percolation threshold for both clusters 
and voids. This reflects the fact that the structure transforms from simply 
connected to multiply connected at the zero-crossing of G which allows it 
to percolate. One can discern a strong increase in non-Gaussianity as the 
simulation evolves, reflected by an evolution in shape of both percolation 
and genus curves. 

Instead of plotting G C and P C against the density contrast (which is not 
a normalized quantity), it may be more appropriate to plot them against 
the filling factor. This helps to distinguish between distributions related by 
a mapping b —• f(b) (such as the log-normal) which have identical topologi-
cal properties but can have quite different PDF ' s . The lower panels in fig. 1 
show P C , G C for clusters (solid) and voids (dashed) plotted against F F . 
The three vertical lines show the filling factor at percolation for clusters, 
voids and Gaussian random fields with identical spectra. Both percolation 
and genus curves now resemble 'hysteresis' curves, the area between void 
and cluster curves indicating the degree of non-Gaussianity in the distri-
bution. For P C we notice a marked increase in non-Gaussianity reflected 
in the increasing difference between percolation thresholds for clusters and 
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voids measured by: FFe (νoids) — FFq (clusters). The genus curve does not 
appear to evolve much, which is surprising. However the amplitude of G C 
does decrease with epoch, an effect which is more pronounced for spectra 
with greater small scale power, and which we attribute to the rapid build 
up of phase correlations due to nonlinear mode coupling during advanced 
gravitational clustering (Sahni, Sathyaprakash & Shandarin 1997a). 

Comparing the geometrical properties of a distribution to a featureless 
Gaussian, one can make statements regarding its 'connectedness or topol-
ogy'. In Fig. 1 we have indicated the percolation threshold of Gaussian ran-
dom fields by a dotted vertical line. Comparing these percolation thresholds 
with those of clusters and voids we conclude that percolation is 'easier' for 
clusters and more 'difficult' for voids. Clusters percolating at lower FF than 
Gaussian are said to possess a 'network-like' topology. Voids on the other 
hand percolate at higher FF than Gaussian and so have a 'bubble-like' 
topology. This appears to be a generic feature of most models of gravita-
tional clustering with a reasonable amount of long-wavelength power in the 
initial spectrum (i.e η < 0) (Sahni, Sathyaprakash & Shandarin 1997a). 

4. Shape-statistics 

As discussed in the last section, gravitating systems clustering from Gaus-
sian initial conditions percolate at low values of the filling factor. For C D M 
& C H D M models the filling factor can be as small as 2% —7%, much smaller 
than the 16% expected for a random Gaussian field (Klypin & Shandarin 
1993). This immediately suggests that the percolating phase is more likely 
to be sheet or filament-like since such distributions are likely to occupy a 
larger linear dimension (for an equal amount of mass) and will therefore 
percolate more easily. Some indication that this is indeed the case also 
comes from the Zeldovich approximation (Shandarin & Zeldovich 1989). 

A detailed study of 'shapes' in scale invariant models of gravitational 
clustering revealed that one dimensional 'filaments' are more abundant than 
two-dimensional 'sheets'. The filamentarity and pancakeness of structures 
grows with time, leading to the development of a long coherence length 
scale in simulations (Sathyaprakash, Sahni, & Shandarin 1996). Exploring 
the 'connectedness' of large scale structure semi-analytically, Bond and col-
laborators recently concluded that clusters and superclusters appear to be 
interwoven in a 'cosmic web', with superclusters acting as cluster-cluster 
'bridges'. More pronounced bridges are likely to form between clusters of 
galaxies which are aligned and close together (Bond, Kofman & Pogosyan 
1996). 

The supercluster-void morphology is likely to vary for different sce-
nario's of structure formation, it is unlikely that structure formation models 
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based on gravitational instability will have identical topological properties 
as those based on string/texture models or explosions. We therefore feel that 
a study of shapes of superclusters/voids could help distinguish between dif-
ferent alternatives once galaxy catalogues become fully three dimensional 
and a detailed comparison between theory and observations becomes pos-
sible. Forthcoming redshift surveys such as S D S S and 2dF promise to shed 
more light on issues such as whether the 'great walls' appearing in Northern 
and Southern sky surveys are planar objects or are more like filaments or 
'ribbons'. 

Most shape statistics proposed so far study the shape of a collection 
of points by measuring its moment of inertia tensor, a procedure which is 
quite similar to fitting by an ellipsoid. Although this method has yielded 
some interesting results it is fair to say that none of the statistics applied to 
shapes is entirely satisfactory (Sathyaprakash, Sahni, Shandarin & Fisher 
1997). To illustrate this consider two examples: (1) the shape of an empty 
cup as determined from its moment of inertia tensor is approximately el-
lipsoidal whereas the cup is really a curved two-dimensional object. (The 
Zeldovich approximation in fact suggests that the caustic surfaces of the 
first pancake-like singularities are more likely to be curved than flat.) (2) A 
torus has both planar and filamentary properties; fitting with an ellipsoid 
would suggest an oblate shape, whereas a 'thin' torus is clearly more like a 
curved filament. 

Results of N-body simulations clearly demonstrate that shapes of iso-
density surfaces vary widely when viewed at different density thresholds. 
At high thresholds density peaks are mostly spheroidal, whereas at closer 
to percolation thresholds, surfaces get rather 'spongy' with a complicated 
topology. 

To assess the shapes of objects which may be topologically non-trivial, 
we have recently proposed a shape statistic based on the four Minkowski 
functionals of a compact surface: (i) its Volume V , (ii) surface area 5, (iii) 
integrated mean curvature: C = \ J(K.I + ri2)dS, and (iv) Genus G. 

From V , 5, C and G we construct three dimensionful and two dimen-
sionless shape functions (Sahni, Sathyaprakash & Shandarin 1997b). The 
dimensionful shape functions are: Hi = V/S, H2 = S/C and Ή 3 = C. (For 
multiply connected surfaces C/G may be more appropriate than C.) The 
pair of dimensionless shape functions /C = (/Ci, /C2) is constructed from Hf. 
Κι = % W ^ 2 = ^ F Ä & , ( £ Ι , 2 < 1). 

The shape functions are given below for certain 'idealized surfaces': 

(1) pancake with vanishing thickness: H3 ~ H2 » Hi and /C ~ (1,0), 
(2) filament with infinitesimal diameter: Ή3 > > H2 — Hi and /C ~ 

(0 ,1) , 
(3) sphere: Uz ~ Ui ~ Ux and Κ ~ (0 ,0) , 
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(4) ribbon: H3 » U2 » Ux and /C ~ (1,1). 
Realistic surfaces will be represented as points on a 'shape plane' {K\, /C2) , 

with ideal pancakes, filaments, ribbons and spheres defining its four ver-
tices: (1,0), (0,1), (1,1), (0,0). 

To demonstrate the effectiveness of the shape statistic we apply it to 
two surfaces- an ellipsoid and a torus. The surface of the triaxial ellipsoid 
has the parametric form 

r = a(sin θ cos φ)χ + 6(sin θ sin 4>)y + c(cos θ)ζ (1) 

where 0 < φ < 2ττ, 0 < θ < π. 
In table 1 we show results for deformations of this ellipsoid. 

T A B L E 1. Deformations of a triaxial ellipsoid with axis a, 6, c. The shape functions V / 5 , 5 / C , 
C have dimensions of length, (/Ci,/C2) are dimensionless. 

a, 6, c deformation V/S S/C C (/Ci, /C2) 
(100, 100, 100) sphere —> filament 100.00 100.00 100.00 (0, 0) 

(100, 80, 80) 85.45 86.12 86.97 (3.9 χ 1 0 - 3 , 4.9 χ 10~:* 

(100, 50, 50) 58.51 61.92 69.01 (2.8 χ 1 0 - 2 , 5.4 χ 10" 2 

(100, 20, 20) 25.04 29.22 54.68 (7.7 χ 1 0 - 2 , 0.30) 

(100, 10, 10) 12.67 15.32 51.50 (9.5 χ 1 0 " 2 , 0.54) 

(100, 3, 3) 3.82 4.70 50.19 (0.10, 0.83) 

(100, 100, 100) sphere —> pancake 100.00 100.00 100.00 (0,0) 

(100, 100, 80) 91.99 92.89 93.63 (4.9 χ 1 0 " 3 , 3.9 χ 10" 3 

(100, 100, 50) 72.45 80.75 85.46 (5.4 χ 1 0 - 2 , 2.8 χ 10" 2 

(100, 100, 20) 36.58 68.45 79.88 (0.30, 7.7 χ 1 0 - 2 ) 

(100, 100, 10) 19.42 65.28 78.90 (0.54, 9.5 χ 1 0 - 2 ) 

(100, 100, 3) 5.98 63.88 78.57 (0.83, 0.10) 

(100, 100, 3) pancake - » filament 5.98 63.88 78.57 (0.83, 0.10) 

(100, 70, 3) 5.97 52.27 67.32 (0.80, 0.13) 

(100, 30, 3) 5.90 27.81 54.88 (0.65, 0.33) 

(100, 10, 3) 5.47 10.79 50.88 (0.33, 0.65) 

(100, 3, 3) 3.82 4.70 50.19 (0.10, 0.83) 

Next consider a topologically more complicated surface, the elliptical 
torus 

r = (b + c sin φ) cos θ χ + (b + c sin φ) sin θ y + a(cos φ)ζ (2) 

where α, c < 6, 0 < 0, φ < 2π. Table 2 shows shape functions for deforma-
tions of an elliptical torus which are illustrated in Fig. 2. (The inner tube of 
the torus has an elliptical cross-section with a Sz c being respectively, radii 
of curvature perpendicular and parallel to the plane of the torus; a = c 
gives the usual circular torus.) 
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T A B L E 2 . Shape functions for an elliptical torus with axis 6, a, c, (6 > ayc 

6, a, c Morphology ( /Ci , /C 2 ) V/S S/C C 

(100, 99, 3) Pancakel (0.90, 2.9 χ 10~ 2 ) 7.05 136.89 144.94 

(100, 3, 99) Pancake2 (0.88, 0.20) 7.05 114.66 173.03 

(100, 3, 3) Filament (0.14, 0.93) 4.5 6.0 157.08 

(150, 20, 2) Ribbon 1 (0.70, 0.80) 4.64 25.88 235.56 

(150, 2, 20) Ribbon2 (0.70, 0.80) 4.64 25.87 235.65 

(20, 19, 19) Sphere- with-hole (0.14, -0 .09) 28.5 38.0 31.42 

0-

We find that qualitatively similar deformations of the ellipsoid and torus 
give rise to similar values of the shape statistic which demonstrates that 
the statistic is robust. 

The shape statistic we propose has several advantages over earlier shape-
finders which were insensitive to topology (Sahni, Sathyaprakash & Shan-
darin 1997b; Sathyaprakash, Sahni, Shandarin & Fisher 1997). As a result 
it can successfully be applied to superclusters and voids in N-body simu-
lations and in galaxy catalogues even when these occur at relatively low 
density threshold and are therefore not necessarily simply connected. 2 

5. Conc lus ions . 

Non-Gaussianity in simulations of large scale structure and in galaxy cata-
logs can be studied using geometrical descriptors such as percolation, genus 
curves and shape statistics. Geometrical indicators are sensitive to the 'con-
nectedness of a distribution and complement the two-point correlation func-
tion and the P D F . As gravitational clustering advances, the density field 
in N-body simulations shows an increasingly pronounced departure from 
Gaussianity reflected in the changing shape of the percolation curve and 
the changing amplitude and shape of the genus curve, we conclude that 
both genus and percolation curves provide complementary probes of large 
scale structure topology and can be used to discriminate between mod-
els of structure formation and the analysis of observational data such as 
galaxy catalogs and M B R maps. The smallness of the filling factor in clus-
ters & superclusters at percolation indicates that a bulk of the matter is 
likely to lie in filaments and pancakes. An analysis of 'shapes' in N-body 
simulations shows that filaments grow more pronounced as the simulation 
evolves and are more prominent for spectra with greater large scale power. 

2 T h e number of clusters peaks at thresholds just below FFc making this a useful 
threshold at which to determine cluster shapes using our statistic. (At FF > FFc most 
clusters link up to form a percolating supercluster whereas at FF « FFc only a few 
clusters are present and these gradually disappear as FF —• 0.) 
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To probe 'shapes' more rigorously we introduce a new shape-statistic which 
studies shapes of compact surfaces (iso-density surfaces in galaxy surveys 
or N-body simulations) without fitting them to ellipsoidal configurations 
as done earlier. The new shape-indicators arise from simple, geometrical 
considerations and are derived from fundamental properties of a compact 
body such as its volume V , surface area 5, integrated mean curvature C , 
and Genus. The new shape statistics can be applied to topologically simple 
and complicated surfaces and appears to be quite robust. 
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Figure 1. Percolation (left panels) and genus (right panels) curves are shown as 
functions of the density contrast δ (above) and filling factor (below) for a scale free 
initial spectrum η = —2. In plots showing P C (left panels), solid (dashed) curves 
correspond to the volume fraction in the largest cluster (void) - t W r - Vertical solid 
(dashed) lines show the threshold describing percolation between opposite faces 
of the cube for clusters (voids). The thin dotted line in the lower left hand panel 
shows the filling factor at percolation for a Gaussian random field with the same 
power spectrum as of evolved density fields (for details see Sahni, Sathyaprakash 
& Shandarin 1997a). 
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Figure 2. Deformations of an elliptical torus. 
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