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Abstract

We prove a lower bound for the large sieve with square moduli.
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1. Introduction

The classical large sieve inequality states that for Q,N ∈ N, M ∈ Z and any sequence
of complex numbers {an},
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In [8], the third author studied the large sieve inequality for square moduli and
conjectured that for any ε > 0,
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where the implied constant depends only on ε. In his undergraduate thesis, the second
author investigated the validity of (1.1) numerically. A natural question is whether
(1.1) can hold with the factor Qε removed. In this note, we answer this question in the
negative. More precisely, we prove the following result.
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Theorem 1.1. For every ε > 0, there are infinitely many natural numbers Q such that
for suitable M ∈ Z, N ∈ N and sequences {an} of complex numbers,
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|an|
2 (1.2)

for some absolute positive constant D.

The theorem shows that the Qε factor in (1.1) cannot be discarded or even replaced
by a power of logarithm. We note that the best-known upper bound for the left-hand
side of (1.1) is

� (QN)ε(Q3 + N + min{
√

QN,
√

NQ2})
M+N∑

n=M+1

|an|
2

due to the first and third authors [2].
The large sieve inequality for square (and quadratic) moduli has many applications.

For example, it is used in the study of the Bombieri–Vinogradov theorem for square
moduli [1], elliptic curves over finite fields [3, 7], Fermat quotients [4] and the
representation of primes [1, 6].

In [8], the third author also studied the large sieve inequality for k-power moduli,
where k > 2. The best-known result for these k-power moduli with k > 2 is due to
Halupczok [5], who gave a large sieve inequality for k-power moduli which is uniform
in k.

2. Proof of Theorem 1.1

We first establish a lower bound for the number of Farey fractions with square
denominators near certain rational points.

Lemma 2.1. Let ε > 0 and p1, . . . , pm be the first m odd primes. Set Q := p1 · · · pm and

S(Q) :=
{
(a, q) ∈ N × N : Q < q ≤ 2Q, 1 ≤ a ≤ q2, (a, q) = 1,

∣∣∣∣∣ a
q2 −

1
Q

∣∣∣∣∣ ≤ 1
Q3

}
. (2.1)

Then
]S(Q) ≥ Qlog 2/(1+ε) log log Q, (2.2)

provided m is sufficiently large.

Here we note that the expected number of Farey fractions of the form a/q2 with
Q < q ≤ 2Q, 1 ≤ a ≤ q2 and (a, q) = 1 in an interval of length ∆ is, heuristically, of
order of magnitude Q3∆. Lemma 2.1 shows that under certain circumstances, the true
number can exceed the expectation significantly.

Proof of Lemma 2.1. Using the Chinese remainder theorem, the number of solutions
to the congruence

q2 ≡ 1 (mod Q)
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with Q < q ≤ 2Q is exactly 2m. If q solves the above congruence, then

q2 = 1 + aQ

for some a with 1 ≤ a ≤ q2 and (a, q) = 1, and it follows that∣∣∣∣∣ a
q2 −

1
Q

∣∣∣∣∣ =
1

q2Q
≤

1
Q3 .

Hence,
]S(Q) ≥ 2m.

Moreover, using the prime number theorem, for any given ε > 0,

log Q =

m∑
i=1

log pi ≤ (1 + ε)pm ≤ (1 + 2ε)m log m,

if m is sufficiently large. Consequently, for any given ε > 0,

m ≥
log Q

(1 + ε) log log Q
,

if m is sufficiently large. Now the desired inequality (2.2) follows. �

Proof of Theorem 1.1. It suffices to prove (1.2) with the summation range 1 ≤ q ≤ Q
replaced by Q < q ≤ 2Q. Set Q = p1 · · · pm as in Lemma 2.1. Further, set

M := 0, N :=
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9
, an := e
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)
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then |αn| ≤ 1/9 for n = 1, . . . ,N and∣∣∣∣∣ N∑
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e(αn)
∣∣∣∣∣ ≥ CN (2.3)

for some absolute positive constant C.
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Define S(Q) as in (2.1). Then
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where the third line follows from (2.3), and the last line follows from Lemma 2.1. This
completes the proof. �
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