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Abstract

Let W = C[t, t−1]∂t be the Witt algebra of algebraic vector fields on C× and let Vir
be the Virasoro algebra, the unique nontrivial central extension of W . In this paper,
we study the Poisson ideal structure of the symmetric algebras of Vir and W , as well
as several related Lie algebras. We classify prime Poisson ideals and Poisson primitive
ideals of S(Vir) and S(W ). In particular, we show that the only functions in W ∗ which
vanish on a nontrivial Poisson ideal (that is, the only maximal ideals of S(W ) with a
nontrivial Poisson core) are given by linear combinations of derivatives at a finite set
of points; we call such functions local. Given a local function χ ∈W ∗, we construct the
associated Poisson primitive ideal through computing the algebraic symplectic leaf of
χ, which gives a notion of coadjoint orbit in our setting. As an application, we prove a
structure theorem for subalgebras of Vir of finite codimension and show, in particular,
that any such subalgebra of Vir contains the central element z, substantially generalising
a result of Ondrus and Wiesner on subalgebras of codimension one. As a consequence,
we deduce that S(Vir)/(z − ζ) is Poisson simple if and only if ζ �= 0.
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1. Introduction

Let G be a connected algebraic group over C with Lie algebra g, and consider the coadjoint
action of G on g∗. This is a beautiful classical topic, with profound connections to areas from
geometric representation theory to combinatorics to physics. Algebraic geometry tells us that
coadjoint orbits in g∗ correspond to G-invariant radical ideals in the symmetric algebra S(g).

These can also be defined using the Kostant–Kirillov Poisson bracket on S(g):

{f, g} =
∑
i,j

∂f

∂ei

∂f

∂ej
[ei, ej ],

where {ei} is a basis of g. Recall that an ideal I of S(g) is a Poisson ideal if I is also a Lie ideal
for the Poisson bracket. A basic fact is that I is G-invariant if and only if I is Poisson.

Thus, to compute the closure of the coadjoint orbit of χ ∈ g∗, let mχ be the kernel of the
evaluation morphism

evχ : S(g) → k,

and let P(χ) be the Poisson core of mχ: the maximal Poisson ideal contained in mχ. By definition,
an ideal of the form P(χ) is called a Poisson primitive; by a slight abuse of notation, we refer to
P(χ) as the Poisson core of χ. The closure of the coadjoint orbit of χ is defined by P(χ):

G · χ = V (P(χ)) := {ν ∈ g∗ | evν(P(χ)) = 0}, (1.0.1)

and so χ, ν ∈ g∗ are in the same G-orbit if and only if P(χ) = P(ν). In the case of algebraic Lie
algebras over C or R, coadjoint orbits are symplectic leaves for the respective Poisson structure.

In this paper, we investigate how this theory extends to the Witt algebra W = C[t, t−1]∂t of
algebraic vector fields on C×, and to its central extension the Virasoro algebra Vir = C[t, t−1]∂t ⊕
Cz, with Lie bracket given by

[f∂t, g∂t] = (fg′ − f ′g)∂t + Res0(f ′g′′ − g′f ′′)z, z is central.

(We also consider some important Lie subalgebras of W .) These infinite-dimensional Lie alge-
bras, of fundamental importance in representation theory and in physics, have no adjoint group
[Lem97], but one can still study the Poisson cores of maximal ideals and, more generally, the
Poisson ideal structure of S(W ) and S(Vir). Motivated by (1.0.1), we say that functions χ,
ν ∈ Vir∗ or in W ∗ are in the same pseudo-orbit if P(χ) = P(ν). These (coadjoint) pseudo-orbits
can be considered as algebraic symplectic leaves in Vir∗ or W ∗.
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Taking the previous discussion as our guide, we focus on prime Poisson ideals and Poisson
primitive ideals of S(Vir) and S(W ). Important questions here, which for brevity we ask in the
introduction only for Vir, include the following.

(i) Given χ ∈ Vir∗, can we compute the Poisson core P(χ) and the pseudo-orbit of χ? When
is P(χ) nontrivial?

(ii) How can we understand prime Poisson ideals of S(Vir)? Can we parameterise them in a
reasonable fashion, ideally in a way which gives us further information about the ideal?
How does one distinguish Poisson primitive ideals from other prime Poisson ideals?

(iii) It is known, see [LS08, Corollary 5.1], that S(Vir) satisfies the ascending chain condition
on prime Poisson ideals. The augmentation ideal of S(Vir), that is, the ideal generated by
Vir ⊂ S(Vir), is clearly a maximal Poisson ideal. What are the others? Conversely, does any
nontrivial prime Poisson ideal have finite height?

(iv) Do prime Poisson ideals induce any reasonable algebraic geometry on the uncountable-
dimensional vector space Vir∗?

We answer all of these questions, almost completely working out the structure of the Poisson
spectra of S(Vir) and S(W ).

Let us begin by discussing the idea of algebraic geometry on Vir∗. A priori, this seems
completely intractable as Vir∗ is an uncountable-dimensional affine space; little interesting can
be said about S(a) where a is a countable-dimensional abelian Lie algebra. However, Vir and
W are extremely noncommutative and so Poisson ideals in their symmetric algebras are very
large: in particular, by a result of Iyudu and the second author [IS20, Theorem 1.3], if I is a
nontrivial Poisson ideal of S(W ) (respectively, a noncentrally generated Poisson ideal of S(Vir)),
then S(W )/I (respectively, S(Vir)/I) has polynomial growth. This suggests that we might hope
that a Poisson primitive ideal, and, more generally, a prime Poisson ideal, would correspond to
a finite-dimensional algebraic subvariety of Vir∗, which we might be able to investigate using
tools from affine algebraic geometry. We show that this is indeed the case.

From the discussion, it is important to characterise which functions χ ∈ Vir∗ have nontrivial
Poisson cores. One striking result, proved in this paper, is that such χ must vanish on the
central element z. Further, the induced function χ ∈W ∗ is given by evaluating local behaviour
on a proper (that is, finite) subscheme of C×. We have the following result.

Theorem 1.1 (Theorem 3.3.1). Let χ ∈ Vir∗. The following are equivalent.

(1) The Poisson core of χ is nontrivial: that is, P(χ) � (z − χ(z)).
(2) We have χ(z) = 0 and the induced function χ ∈W ∗ is a linear combination of functions of

the form

f∂t �→ α0f(x) + · · · + αnf
(n)(x),

where x ∈ C× and α0, . . . , αn ∈ C.
(3) The isotropy subalgebra Virχ of χ has finite codimension in Vir.

We call functions χ ∈ Vir∗ satisfying the equivalent conditions of Theorem 1.1 local functions
as by condition (2) they are defined by local data.

Motivated by condition (3) of Theorem 1.1, we investigate subalgebras of Vir of finite
codimension. We prove the following.

Theorem 1.2 (Proposition 3.3.3). Let k ⊆ Vir be a subalgebra of finite codimension. Then
there is f ∈ C[t, t−1] \ {0} so that k ⊇ Cz + fC[t, t−1]∂t. In particular, any finite codimension
subalgebra of Vir contains z.
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As an immediate corollary of Theorem 1.2, we show the following result.

Corollary 1.3 (Corollary 3.3.5). If 0 �= ζ ∈ C, then S(Vir)/(z − ζ) is Poisson simple: it has
no nontrivial Poisson ideals.

We then study the pseudo-orbits of local functions on Vir, W and related Lie algebras;
we describe our results for Vir in the introduction. If χ ∈ Vir∗ is local, then by combining
Theorem 1.1 and [IS20, Theorem 1.3], S(Vir)/P(χ) has polynomial growth and we thus expect
the pseudo-orbit of χ to be finite-dimensional. We show that pseudo-orbits of local functions in
Vir∗ are, in fact, orbits of a finite-dimensional solvable algebraic (Lie) group acting on an affine
variety which maps injectively to Vir∗, and we describe these orbits explicitly (Section 4.2).
This allows us to completely determine the pseudo-orbit of an arbitrary local function in Vir∗

(Theorem 4.3.1) and thus also determine the Poisson primitive ideals of S(Vir) (Remark 4.3.9).
We also classify maximal Poisson ideals in S(Vir) (Corollary 4.3.18): they are the augmentation
ideal, the ideals (z − ζ) for ζ ∈ C×, and the defining ideals of all but one of the two-dimensional
pseudo-orbits.

Through this analysis, we obtain a nice combinatorial description of pseudo-orbits in W ∗:
pseudo-orbits of local functions on W and, thus, Poisson primitive ideals of S(W ), correspond to
a choice of a partition λ and a point in an open subvariety of a finite-dimensional affine space Ak,
where k can be calculated from λ. (See Remark 4.3.3.) In Theorem 5.2.8 and Remark 5.2.13, we
expand this correspondence to obtain a parameterisation of all prime Poisson ideals of S(W ) and
S(Vir). We also study the related Lie algebra W�−1 = C[t]∂t, and prove (Corollary 5.2.14) that
Poisson primitive and prime Poisson ideals of S(W�−1) are induced by restriction from S(W ).

Our understanding of prime Poisson ideals allows us to determine exactly which prime
Poisson ideals of S(Vir) obey the Poisson Dixmier–Moeglin equivalence (PDME), which gen-
eralises the characterisation of primitive ideals in enveloping algebras of finite-dimensional Lie
algebras due to Dixmier and Moeglin. The central question is when a Poisson primitive ideal of
S(Vir) is Poisson locally closed : that is, locally closed in the Zariski topology on Poisson primitive
ideals. (If dim g <∞, then a prime Poisson ideal of S(g) is Poisson primitive if and only if it is
Poisson locally closed [LL19, Theorem 2].) We show (Theorem 5.3.1) that (z) is the only Poisson
primitive ideal of S(Vir) which is not Poisson locally closed. We further prove (Corollary 5.4.2)
that S(W ) has no nonzero prime Poisson ideals of finite height.

One part of the proof of Theorem 1.2 is to show that, given a subalgebra k of finite codimen-
sion in W , there are a finite collection of points S (the ‘support’ of k) and n ∈ Z�0 such that all
vector fields in k vanish at all points of S and so that k contains all vector fields vanishing to
order � n at every point of S. Based on this result, we classify subalgebras of Vir of codimension
� 3 in § 6.

Our original motivation for studying Poisson ideals of S(Vir) was to study two-sided ideals in
the universal enveloping algebra U(Vir), and we turn to enveloping algebras in § 7. In the finite-
dimensional setting, Kirillov’s orbit method gives a correspondence between primitive ideals of
U(g) and coadjoint orbits in g∗. We conjecture that a similar correspondence exists for Vir and
related Lie algebras, and in § 7.1 we show that pseudo-orbits of dimension two in Vir∗ quantise to
give a family of primitive ideals, kernels of well-known maps from U(Vir) through U(W ) to the
localised Weyl algebra. We end the paper with some conjectures about (two-sided) ideals of
the universal enveloping algebra U(Vir) which are motivated by our work on S(Vir); these are
the subject of further research.

To end the introduction, let us briefly discuss the classical (continuous) version of the theory
of coadjoint orbits of the Virasoro algebra. If one considers the real Lie algebra of continuous
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vector fields on the circle and its central extension the real Virasoro algebra VirR, then the group
of diffeomorphisms of the circle acts on VirR and its continuous dual. There are, of course, notions
of coadjoint orbits in this context, see [Kir81, Wit88]. However, it happens that the corresponding
orbits do not define an interesting (Poisson) ideal in the symmetric algebra S(VirR); in fact, this
can be viewed as a somewhat informal result of our paper. Note that the local functions which
appear in Theorem 1.1 and which we study in this paper can be thought of as a product of a
point-based distribution with a vector field and, hence, are very far from being continuous.

2. Poisson ideals and pseudo-orbits

In this section, we recall the general notions of Poisson algebra, Poisson ideal and Poisson
primitive ideal. We then consider how these concepts behave for the symmetric algebras of
the infinite-dimensional Lie algebras in which we are interested.

Throughout, let k be an uncountable algebraically closed field of characteristic zero. Let us
define the Lie algebras of interest in this paper. The Witt algebra W = k[t, t−1]∂ is the Lie algebra
of vector fields on k× := k \ {0}; here ∂ = ∂t = d/dt. It is graded by setting deg tn∂ = n− 1. Then
W�−1 is the subalgebra k[t]∂ of W and W�1, sometimes called the positive Witt algebra, is the
subalgebra t2k[t]∂; W�0 stands for tk[t]∂.

The Virasoro algebra Vir is isomorphic as a vector space to k[t, t−1]∂ ⊕ kz. It is endowed
with a Lie algebra structure by the formula

[f∂ + c1z, g∂ + c2z] = (fg′ − f ′g)∂ + Res0(f ′g′′ − f ′′g′)z.

(Here Res0(f) denotes the algebraic residue of f at 0, i.e. the coefficient of t−1 in the Laurent
expansion of f at 0.) It is well-known that Vir is the unique nontrivial one-dimensional central
extension of W . There is a canonical Lie algebra homomorphism Vir →W given by factoring
out z.

Let V be a k-vector space. We use S(V ) to denote the symmetric algebra of V ; that is,
polynomial functions on V ∗. For χ ∈ V ∗ we denote by evχ the induced homomorphism S(V ) → k
defined by evχ(f) = f(χ).

Let g be one of the Lie algebras Vir, W , W�−1 or W�1. Our assumption on the cardinality
of the field k means that the following extended Nullstellensatz applies to S(g); see [MR87,
Corollary 9.1.8, Lemma 9.1.2].

Theorem 2.0.1 (Extended Nullstellensatz). Let A be a commutative k-algebra such that
dimkA < |k|. Then:

• A is a Jacobson ring: every radical ideal is an intersection of a family of maximal ideals;
• if m ⊆ A is a maximal ideal, then the canonical map k → A/m is an isomorphism;
• if A = S(V ) for a vector space V with dimV < |k|, then the maximal ideals of A are all of

the form mχ = ker evχ for some χ ∈ V ∗.

Let A be a commutative k-algebra. (Note that we make no noetherianity or finiteness assump-
tion on A.) Denote by MSpecA the set of maximal ideals of A, which we consider as a (potentially
infinite-dimensional) variety. We denote by mx the maximal ideal corresponding to a point
x ∈ MSpecA. As usual, MSpecA is a topological space under the Zariski topology. Given an
ideal N of A, we denote the corresponding closed subset of MSpecA by

V (N) := {m ∈ MSpecA |N ⊆ m}.
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Given X ⊆ MSpecA, we denote the corresponding radical ideal of A by

I(X) :=
⋂
x∈X

mx.

As we have enlarged the class of varieties somewhat beyond the usual, we make the convention
that for us an algebraic variety is a classical variety: a (nonempty) integral separated scheme of
finite type over k, as in [Har77, p. 105]. If A,B are commutative k-algebras which are domains,
an algebraic map or morphism of varieties φ : MSpecA→ MSpecB has the usual meaning: a
function so that the pullback φ∗ defines an algebra homomorphism B → A.

Let {·, ·} : A×A→ A be a skew-symmetric k-bilinear map. We say that (A, {·, ·}) is a
Poisson algebra if {·, ·} satisfies the Leibniz rule on each input and the Jacobi identity. An
ideal I of A is Poisson if {I, A} ⊆ I. It is clear that the sum of all Poisson subideals of any ideal
I of A is the maximal Poisson ideal inside I; we denote this ideal by Core(I) and refer to it as
the Poisson core of I. Note that if I is radical, respectively prime, then Core(I) inherits this
property; see [PS20, Lemmata 2.6 and 2.8].

A Poisson ideal I is called Poisson primitive if I = Core(m) for a maximal ideal m of A;
Poisson primitive ideals are prime. We denote the set of Poisson primitive ideals of A by
PSpecprimA, and the set of prime Poisson ideals by PSpecA. Both are given the Zariski topology,
where the closed subsets are defined by Poisson ideals of A.

Consider a Lie algebra g with dim g < |k|. It is well-known that S(g) possesses a canonical
Poisson algebra structure, induced by defining {u, v} = [u, v] for any u, v ∈ g. As dim g < |k|,
then by the Nullstellensatz MSpec(S(g)) can be canonically identified with g∗ :

χ ∈ g∗ ↔ mχ := ker evχ ∈ MSpec(S(g)).

Thus, any Poisson primitive ideal of S(g) is equal to Core(mχ) for some χ ∈ g∗. Set P(χ) :=
Core(mχ). For any Lie algebra g, the ideal m0 = Core(m0) = P(0) (the augmentation ideal) is
the Poisson core of 0 ∈ g∗ and so is Poisson primitive.

Even in the absence of an adjoint group to g, the Poisson primitives P(χ) give analogues of
coadjoint orbits.

Definition 2.0.2. Let g be any Lie algebra. The pseudo-orbit of χ ∈ g∗ is

O(χ) := {ν ∈ g∗ | P(ν) = P(χ)}.
The dimension of O(χ) is defined to be GKdim S(g)/P(χ). (Here if R is a k-algebra, then
GKdimR denotes the Gelfand–Kirillov dimension of R; see [KL00].)

Remark 2.0.3. If g = LieG is the Lie algebra of a connected algebraic group and χ ∈ g∗, then
O(χ) is the coadjoint orbit of χ. In our setting, g is not the Lie algebra of any algebraic group.
However, we show that we can still define algebraic group actions on pieces of g∗ that allow us
to recover pseudo-orbits as actual orbits.

Part (b) of the next result is an analogue of (1.0.1) for pseudo-orbits.

Lemma 2.0.4. Let g be a Lie algebra with dim g < |k|.
(a) Any radical Poisson ideal in S(g) is equal to an intersection of Poisson primitive ideals.

Explicitly, given a radical Poisson ideal I we have

I =
⋂

{P(χ) |χ ∈ g∗, evχ(I) = 0}.
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(b) Assume now that dim g is countable and let χ ∈ g∗ be nonzero. Then

P(χ) =
⋂

ν∈O(χ)

mν .

Proof. Part (a) is well-known, but we give a proof for completeness. As I is radical and Poisson,

I ⊆
⋂

{P(χ) |χ ∈ g∗, evχ(I) = 0},
and this is contained, by definition, in

⋂
χ∈g∗, evχ(I)=0 mχ. By the Nullstellensatz, this last part

is equal to I.
For part (b), set R := S(g)/P(χ). Thanks to the proof of [LS08, Theorem 6.3], which uses

only that g is countably generated (see also [BLLM17, Theorem 3.2]), there is a sequence of
nonzero Poisson ideals L1, L2, . . . of R such that if μ ∈ g∗ with P(μ) strictly containing P(χ),
then P(μ)/P(χ) contains Li for at least one i.

This is equivalent to the following statement: there is a sequence f1, f2, . . . ∈ R \ {0}
such that if P(μ) strictly contains P(χ) then fi(μ) = 0 for at least one i. Therefore, R′ =
(S(g)/P(χ))[f−1

1 , f−1
2 , . . .] is Poisson simple. On the other hand, R′ is clearly at most countable-

dimensional and, hence, (0) ⊂ R′ is an intersection of a family of maximal ideals of R′ by the
Nullstellensatz. The definition of R′ and f ′i guarantees that P(μ) = P(χ) for each μ ∈ g∗ defining
such an ideal. We thus obtain a family of maximal ideals of S(g) contained in the pseudo-orbit
of χ whose intersection is P(χ). This implies the desired result. �

2.1 Some results on pseudo-orbits
We now give several results which are well-known for finite-dimensional algebraic Lie algebras,
but require proof in our setting. Throughout this subsection, let g be a Lie algebra with dim
g < |k|.

For every χ ∈ g∗ define the skew-symmetric bilinear form Bχ(x, y) := χ([x, y]). The kernel of
Bχ is a Lie subalgebra of g, which we denote by gχ. Observe that gχ is precisely {v ∈ g | v · χ = 0};
that is, gχ is the isotropy subalgebra of χ under the (coadjoint) action of g on g∗. As Bχ induces
a nondegenerate skew-symmetric form on g/gχ, we have rkBχ = dim g/gχ.

Lemma 2.1.1. The dimension of O(χ) is at least rkBχ, i.e.

GKdim(S(g)/P(χ)) � rkBχ.

Before proving Lemma 2.1.1, we establish some notation, which we need for several results.
For u1, . . . , un, v1, . . . , vn ∈ g set D(u1, . . . , un; v1, . . . , vn) ∈ S(g) to be the determinant∣∣∣∣∣∣

[u1, v1] · · · [u1, vn]
· · · · · · · · ·

[un, v1] · · · [un, vn]

∣∣∣∣∣∣ . (2.1.2)

Proof of Lemma 2.1.1. Pick r ∈ Z�0 such that r � rkBχ. Then there is an r-dimensional
subspace V of g so that rk(Bχ|V ) = r; that is, if u1, . . . , ur is a basis of V , then
evχ(D(u1, . . . , ur, u1, . . . , ur)) �= 0. We show that u1, . . . , ur are algebraically independent in
S(g)/P(χ); that is, that GKdim(S(g)/P(χ)) � r.

Assume to the contrary that the ui are not algebraically independent modulo P(χ). This
means that there is some nonzero P ∈ k[u1, . . . , ur] ∩ P(χ), and we may assume P is of minimal
degree among such elements. As P(χ) is Poisson,

{ui, P} =
∑
j

{ui, uj}∂jP ∈ P(χ), (2.1.3)

where ∂jP = ∂P/∂uj .
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Let Q be the field of fractions of S(g)/P(χ) (recall that P(χ) is prime). We may rewrite (2.1.3)
as the matrix equation

({ui, uj})ij

⎛⎜⎝∂1P
...

∂rP

⎞⎟⎠ = 	0

overQ. By minimality of degP , the vector

(
∂1P
...

∂rP

)
∈ Qr is nonzero. Thus, ({ui, uj})ij ∈Mr×r(Q)

is singular, so D(u1, . . . , ur;u1, . . . , ur) ∈ P(χ) ⊆ mχ. This contradicts the first paragraph of the
proof. �

It is not necessarily easy to calculate P(χ), but we can sometimes use GK dimension to show
that a Poisson ideal contained in mχ is, in fact, equal to P(χ). This is given by the following
lemma.

Lemma 2.1.4. Let g be a Lie algebra and A a commutative k-algebra that is a domain. Let
φ : S(g) → A be an algebra homomorphism so that kerφ is Poisson. Let χ ∈ g∗ be such that

kerφ ⊆ mχ and rkBχ � GKdimA. (2.1.5)

Then kerφ = P(χ) and, thus, is Poisson primitive; further, rkBχ = GKdimA = dim O(χ).

Proof. Certainly kerφ ⊆ P(χ). If the containment is strict, then as A is a domain,

GKdim(S(g)/P(χ)) < GKdimA � rkBχ,

contradicting Lemma 2.1.1. The final equality is direct from Lemma 2.1.1. �

Corollary 2.1.6. If both χ1, χ2 satisfy (2.1.5) for the same φ, then P(χ1) = P(χ2).

We use Lemma 2.1.4 and Corollary 2.1.6 to describe primitive ideals in S(g) and the corre-
sponding pseudo-orbits in g∗ explicitly. In the situation of Lemma 2.1.4, A may not necessarily
be a Poisson algebra. We abuse notation slightly, however, and say that if kerφ is a Poisson
ideal, then φ is a Poisson morphism. Further, given a morphism of varieties

ψ : MSpec(A) → MSpec(S(g)) = g∗,

we say that ψ is Poisson if ψ∗ : S(g) → A is Poisson.
It is important to know under which conditions maps are Poisson and the answer is given

in Proposition 2.1.7. To explain the setup we need to use some concepts from (affine) algebraic
geometry. As mentioned, we, somewhat loosely, refer to infinite-dimensional vector spaces such
as g∗ as varieties, enlarging the class from standard usage. For any variety X and any point
x ∈ X let TxX = (mx/m

2
x)

∗ denote the tangent space to X at x; this definition makes sense for
X = g∗ as well. Without further comment, we identify TxX with elements of m∗

x which vanish
on m2

x. If there is a map ψ : X → Y between algebraic varieties X and Y , then, for all x ∈ X,
there is an induced map ψx : TxX → Tψ(x)Y .

We canonically identify the tangent space to g∗ at χ ∈ g∗ with g∗. For any derivationD of S(g)
and any χ ∈ g∗ we denote by Dχ the tangent vector defined by D at χ; that is, Dχ(f) = χ(Df)
for any f ∈ mχ. Now, g acts by derivations on S(g). For u ∈ g and χ ∈ g∗ let uχ be the tangent
vector defined by u at χ. If v ∈ g, then uχ(v) = χ([u, v]) and, thus, uχ ∈ Tχ(g∗) = g∗ is identified
with u · χ. If u ⊆ g let uχ = {uχ |u ∈ u}. Thus, gχ ∼= g · χ ∼= g/gχ and rkBχ = dim gχ.

940

https://doi.org/10.1112/S0010437X23007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007030


Poisson primes in the symmetric algebra of the Virasoro algebra

Proposition 2.1.7. Let g be a Lie algebra with dim g < |k|. Let X be an affine variety and let
φ : X → g∗ be a morphism of varieties. Then φ is Poisson if and only if gφ(x) ⊆ φx(TxX) for all
x ∈ X.

Proposition 2.1.7 is a direct consequence of the following lemma.

Lemma 2.1.8. Let g, X, φ be as in the statement of Proposition 2.1.7 and let D be a derivation
of S(g). Then kerφ∗ is D-stable if and only if Dφ(x) ∈ φx(TxX) for all x ∈ X.

Proof. Suppose that Dφ(x) ∈ φx(TxX) for all x ∈ X. Let f ∈ kerφ∗. We show that φ∗(Df) = 0
or, equivalently, thatDf ∈ mφ(x) for all x ∈ X. Fix x and let � ∈ TxX be such thatDφ(x) = φx(�).
Then

(Df)(φ(x)) = �(φ∗f) = �(0) = 0,

as needed.
Conversely, let x ∈ X and let nx := mx ∩ φ∗(S(g)). If kerφ∗ is D-stable, then D induces a

derivation D on φ∗(S(g)), defined by

D(φ∗f) = φ∗(Df),

and, thus, defines an element Dx ∈ (nx/n2
x)

∗. Let � ∈ TxX be any extension of Dx to mx/m
2
x.

Then for f ∈ mφ(x) we have

Dφ(x)(f) = evφ(x)(Df) = φ∗(Df)(x) = Dxφ
∗f = �φ∗f,

showing that Dφ(x) ∈ φx(TxX). �

2.2 Some pseudo-orbits in W ∗ and W ∗
�−1

This subsection is effectively an extended example, where we use the methods of the previous
subsection, particularly Lemma 2.1.4, to compute the Poisson cores of some particular functions
in W ∗ and W ∗

�−1. We show later (Proposition 4.3.14) that these give all of the prime Poisson
ideals of S(W ) and S(W�−1) of co-GK-dimension two.

Throughout the subsection fix x, α, γ ∈ k with x �= 0 and α, γ not both zero. Let χ := χx;α,γ ∈
W ∗ be defined by

f∂ �→ αf(x) + γf ′(x).

Further, given g ∈ k[t, t−1] let W (g) := k[t, t−1]g∂ ⊆W . Both sets of notation are generalised
and used more extensively in § 3.

We first compute the isotropy subalgebra of χ.

Lemma 2.2.1. We have

Wχ =

{
W ((t− x)2) γ = 0,
{g∂ | g(x) = αg′(x) + γg′′(x) = 0} γ �= 0.

Proof. Recall that χ defines a bilinear form Bχ on W by Bχ(v, w) = χ([v, w]), and that Wχ =
kerBχ. For all χ, that is, for all choices of x, α, γ, therefore, Wχ �= W .

First assume that γ = 0. If g∂ ∈W ((t− x)2), then

χ([g∂, f∂]) = α(g(x)f ′(x) − f(x)g′(x)) = 0,

so W ((t− x)2) ⊆Wχ. However, Bχ defines a nondegenerate bilinear form on W/Wχ, so
dimW/Wχ � 2 and, thus, W ((t− x)2) = Wχ.
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Now suppose γ �= 0. Let

V := {g ∈ k[t, t−1] | g(x) = χ(g′∂) = 0},
which is a codimension-two subspace of k[t, t−1] and let g ∈ V , f ∈ k[t, t−1]. Then

χ([f∂, g∂]) = α(f(x)g′(x) − f ′(x)g(x)) + γ(f(x)g′′(x) − f ′′(x)g(x)) = f(x)χ(g′∂) − g(x)χ(f ′∂),

which is zero by assumption on g. Thus, Wχ ⊇ V ∂ and, as before, the two must be equal. �
Note that in all cases Wχ ⊇W ((t− x)3) and that if λ �= 0, then Wχ = Wχx;λα,λγ .
We now compute P(χ). Let B = k[t, t−1, y], and define a Poisson bracket on B induced from

defining {y, t} = 1.
Define pγ : S(W ) → B as the algebra homomorphism induced by defining

pγ(f∂) = fy + γf ′. (2.2.2)

We verify

{pγ(f∂), pγ(g∂)} = {fy + γf ′, gy + γg′} = y(fg′ − f ′g) + γ(fg′′ − f ′′g) = pγ((fg′ − f ′g)∂).

Thus, pγ respects Poisson brackets, so ker pγ is a Poisson ideal of S(W ).

Lemma 2.2.3. The Poisson core of χ is equal to ker pγ and, in particular, depends only on γ as
long as (α, γ) �= (0, 0).

Proof. First, χ(f∂) = pγ(f∂)|t=x,y=α, and it follows immediately that if we extend χ to a homo-
morphism evχ : S(W ) → k, it factors through pγ . As a result, evχ(ker pγ) = 0. As, in all cases,
Wχ has codimension 2 = GKdim(B) by Lemma 2.2.1, the result is a direct consequence of
Lemma 2.1.4. �
Remark 2.2.4. Let x, α, γ ∈ k with α, γ not both zero, and define ν ∈W ∗

�−1 analogously to χ:
that is, ν(f∂) = αf(x) + γf ′(x). One may similarly prove that P(ν) = S(W�−1) ∩ ker pγ and, in
particular, that

P(χ|W�−1
) = P(χ) ∩ S(W�−1).

We show in Proposition 4.3.6 that this is true for all elements of W ∗. Likewise, P(χ|W�1
) =

P(χ) ∩ S(W�1).

2.3 Pseudo-orbits versus orbits
We wish to relate the pseudo-orbits from § 2.1 to orbits of an algebraic group acting on an
appropriate algebraic variety X. The next result gives us a general technique to do this.

Proposition 2.3.1. Let g be a Lie algebra with dim g < |k|. Let X be an irreducible affine
algebraic variety acted on by a connected algebraic group H with Lie algebra h and let U ⊆ X
be an open affine subset. Fix a morphism of varieties φ : U → g∗. Assume that for every x ∈ U
we have gφ(x) ⊆ φx(hx).

(a) For all x ∈ U the pseudo-orbit of φ(x) is contained in φ(Hx ∩ U), recalling that the topology
on g∗ is the Zariski topology.

(b) For x ∈ U , let IU (Hx) be the defining ideal in k[U ] of Hx ∩ U . Let x ∈ U be such that
dim gφ(x) = dim hx. Then P(φ(x)) is equal to the kernel of the induced homomorphism

S(g) → k[U ]/IU (Hx) = k[Hx ∩ U ], (2.3.2)

and

dim O(φ(x)) = GKdim S(g)/P(φ(x)) = dim gφ(x). (2.3.3)
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In particular, if y ∈ U is such that Hx = Hy and dim gφ(y) = dim hy, then P(φ(x)) =
P(φ(y)).

(c) Let x, y ∈ U be such that dim gφ(x) = dim hx and dim gφ(y) = dim hy. Then P(φ(x)) =
P(φ(y)) if and only if there are open subsets Ux ⊆ Hx ∩ U and Uy ⊆ Hy ∩ U such that
φ(Ux) = φ(Uy).

Proof. (a) The kernel of (2.3.2) is Poisson by Proposition 2.1.7 and is contained in mφ(x) by
definition. Thus, it is contained in P(φ(x)), which is what we need. Note also that this statement
is completely trivial if g is the Lie algebra of a finite-dimensional algebraic group.

(b) Let K be the kernel of (2.3.2). Then K is Poisson by part (a). We have

GKdim S(g)/K � dimHx = dim hx = rkBφ(x),

so K = P(φ(x)) by Lemma 2.1.4. Certainly

GKdim S(g)/P(φ(x)) � GKdim k[U ]/IU (Hx) = dim hx = dim gφ(x),

and the two are equal by Lemma 2.1.4. The final statement follows from Corollary 2.1.6.
(c) For any dense subset Ux ⊆ Hx ∩ U , by part (b) P(φ(x)) is equal to the kernel of the

induced map S(g) → k[Ux]. This is determined by φ(Ux), so if φ(Ux) = φ(Uy), then P(φ(x)) =
P(φ(y)).

Suppose now that P(φ(x)) = P(φ(y)). Consider the induced mapsHx→ g∗, Hy → g∗ and the
respective fibre product (Hx) ×g∗ (Hy). Note that (Hx) ×g∗ (Hy) is a closed subset of (Hx) ×
(Hy) and, hence, the ideal defining (Hx) ×g∗ (Hy) is generated by a finite collection of elements.
This implies that there is a finite-dimensional subspace V ⊂ g such that

(Hx) ×g∗ (Hy) = (Hx) ×V ∗ (Hy).

As P(φ(x)) = P(φ(y)), the images of Hx and Hy in V ∗ have the same closure in V ∗; call it Z.
The image of Hx in V ∗ may not be open in Z, but it is constructible and, thus, contains an
open subset U(x) of Z. Likewise the image of Hy in V ∗ contains an open subset U(y) of Z. We
pick Ux to be the preimage of U(x) ∩ U(y) in Hx and let Uy be the preimage of U(x) ∩ U(y) in
Hy; then they satisfy the desired property. �

3. Primitive ideals and local functions

We now specialise to let g be one of W , W�1, W�−1 or Vir. The main goal of this section is to
determine which functions χ ∈ g∗ have nontrivial Poisson core P(χ). We show that these χ are
precisely those χ which measure the local behaviour of f∂ ∈ g at a finite collection of points;
we call these functions local. (For example, the functions χ ∈W ∗ of § 2.2 are local.) We provide
several equivalent characterisations of local functions and apply these to classify subalgebras of
g of finite codimension. As a consequence, we show that S(Vir)/(z − ζ) is Poisson simple for
ζ �= 0.

More formally, consider g = W�−1. Let x, α0, . . . , αn ∈ k with (α0, . . . , αn) �= 	0. Define a
linear function χx;α0,...,αn ∈W ∗

�−1 by

χx;α0,...,αn : f∂ �→ α0f(x) + α1f
′(x) + · · · + αnf

(n)(x). (3.0.1)

The same formula defines elements of W ∗
�1 and W ∗, although in the last case we need to

require that x �= 0.
We now formally define local functions.
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Definition 3.0.2.

(a) A local function on W�−1 or W�1 is a sum of finitely many functions of the form (3.0.1)
with (possibly) distinct x.

(b) A local function on W is a sum of finitely many functions of the form (3.0.1) with (possibly)
distinct x �= 0.

(c) A local function on Vir is the pullback of a local function on W via the canonical map
Vir →W .

A local function of the form (3.0.1) is called a one-point local function. Let χ = χx;α0,...,αn be a
one-point local function. We say that {x} is the support of χ and that x is the base point of χ.
If αn �= 0, we say that n is the order of χ.

Let χ be an arbitrary local function. The support of χ is the union of the supports of
the component one-point local functions. Further, the orders of the component one-point local
functions give rise to a partition λ(χ). More explicitly, write χ = χ1 + · · · + χr, where the χi are
one-point local functions based at distinct points. Let mi be the order of χi. By reordering the
χi if necessary, we may assume that m1 � m2 � · · · � mr. The partition

λ(χ) := (m1 + 1, . . . ,mr + 1)

is called the order partition of χ. (We add 1 here so that the partition (0) corresponds to the
zero function.) We call m1 the order of χ.

It follows from the Chinese remainder theorem that a local function is zero if and only if it
is zero pointwise and, thus, any local function χ on W , W�−1 or Vir has a unique presentation
as a sum of nonzero one-point local functions with distinct base points. This also shows that the
partition λ(χ) and the order of χ are well-defined. For W�1 it is easy to see that χ0;1 = χ0;0,1 = 0
and the presentation is unique under the assumption that the coefficients of f(0) and f ′(0)
are zero.

Remark 3.0.3. Let g be Vir, W , W�−1 or W�1. Then g∗ and the subspace of local functions
are both uncountable-dimensional vector spaces; for local functions observe that any set of one-
point local functions with distinct base points is linearly independent. On the other hand, clearly
‘most’ elements of g∗ are not local. In fact, we show in Remark 5.2.3 that local functions are
parameterised by a countable union of algebraic varieties.

For a specific example of a nonlocal function, let α0, α1, . . . ∈ k be algebraically independent
over Q, and define κ ∈W ∗

�−1 by κ(ti∂) = αi.

As local functions are defined similarly for W , W�1, W�−1 and Vir we sometimes discuss all
of them simultaneously. When we do so, we assume without comment whenever we talk about
a one-point local function on W or Vir that x �= 0.

Pick χ ∈W ∗ or W ∗
�1 or W ∗

�−1. In this section, we show that P(χ) is nonzero if and only if
χ is local and prove a similar statement for Vir∗. The starting point here is the following result,
due in its strongest form to Iyudu and the second author.

Theorem 3.0.4. Let g be W , W�1 or W�−1 and let I be a nonzero Poisson ideal of S(g). Then

GKdim(S(g)/I) <∞.

In particular, if χ ∈ g∗ is such that (0) �= P(χ), then GKdim(S(g)/P(χ)) <∞.
Further, if χ ∈ Vir∗ is such that P(χ) �= (z − χ(z)), then

GKdim(S(Vir)/P(χ)) <∞.

Proof. See [PS20, Theorem 1.4] for W�1 and [IS20, Theorem 1.3] for all other g. �

944

https://doi.org/10.1112/S0010437X23007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007030


Poisson primes in the symmetric algebra of the Virasoro algebra

Theorem 3.0.4 has the following extremely useful consequence.

Corollary 3.0.5. Let g be as before and let χ ∈ g∗. If g = W , W�−1 or W�1, assume that
P(χ) �= (0), and if g = Vir, assume that P(χ) �= (z − χ(z)). Then dim g · χ <∞.

Proof. Combine Theorem 3.0.4 and Lemma 2.1.1. �

We also recall the following result.

Proposition 3.0.6. [LS08, Corollary 5.1] Let g be Vir, W , W�−1 or W�1. Then S(g) satisfies
the ascending chain condition on radical Poisson ideals and every Poisson ideal has finitely many
minimal primes above it, each of which is Poisson.

It is not known for any of these Lie algebras whether S(g) satisfies the ascending chain
condition on arbitrary Poisson ideals.

Although we use similar notation forW�−1,W�1,W and Vir, the details are slightly different,
so we analyse local functions in each of these cases separately.

3.1 Local functions on W�−1 and W�1

In this subsection we set g = W�−1 = k[t]∂. It is useful to consider Lie subalgebras of W�−1 of a
particular form. For any f ∈ k[x] \ {0} denote by W�−1(f) the space of vector fields of the form

{gf∂}g∈k[x].

In other words, W�−1(f) = fW�−1 under the obvious notation. It is clear that W�−1(f) is a Lie
subalgebra of W�−1 = W�−1(1).

We give five equivalent conditions for local functions. Similar conditions will hold for the
other Lie algebras we consider, see Theorems 3.2.1 and 3.3.1.

Theorem 3.1.1. Let f ∈ k[t] \ {0} and χ ∈W�−1(f)∗. Then the following conditions are
equivalent:

(1) χ is the restriction of a local function on W�−1;
(2) P(χ) �= (0);
(3) dimW�−1(f)/W�−1(f)χ = dimW�−1(f) · χ <∞;
(4) there exists h ∈ k[t] such that χ|W�−1(fh) = 0;
(5) W�−1(f)χ �= (0).

Remark 3.1.2. Fix a basis {fti∂ | i � −1} of W�−1(f) and consider a local function χ ∈
W�−1(f)∗. Then χ can be identified with a sequence

χ0 = χ(f∂), χ1 = χ(ft∂), χ2 = χ(ft2∂), χ3 = χ(ft3∂), . . . ∈ k. (3.1.3)

Condition (3) can be restated as follows:

anχm+n + · · · + a0χm = 0

for all m � 0, where h = ant
n + · · · + a0. Therefore, local functions on W�−1(f) can be identified

with sequences (3.1.3) obeying a linear recurrence relation. This shows, in particular, that the
function κ defined in Remark 3.0.3 is not local.

Part of the proof of Theorem 3.1.1 is a general technique that can allow us to show that
Poisson cores of elements of g∗ are nontrivial for any Lie algebra g.
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Lemma 3.1.4. Let g be an arbitrary Lie algebra and let n ∈ Z�0. There is a Poisson ideal I(n)
with the property that

I(n) ⊆ mχ ⇐⇒ dim g · χ � n (3.1.5)

for any χ ∈ g∗.

Proof. Recall the determinant D(u1, . . . , un; v1, . . . , vn) from (2.1.2), and note that dim g ·
χ � n− 1 if and only if for all u1, . . . , un, v1, . . . , vn ∈ g, (2.1.2) evaluated at χ is degenerate, i.e.

evχ(D(u1, u2, . . . , un; v1, v2, . . . , vn)) = 0.

Let I(n) be the ideal generated by the D(u1, u2, . . . , un+1; v1, v2, . . . , vn+1) for all possible
tuples

u1, . . . , un+1, v1, . . . , vn+1 ∈ g.

By the previous paragraph,
I(n) ⊆ mχ ⇐⇒ dim g · χ � n.

Let w ∈ g. It is easy to check that

{D(u1, u2, . . . ; v1, v2, . . .), w}
= D([u1, w], u2, u3, . . . ; v1, v2, . . .) +D(u1, [u2, w], u3, . . . ; v1, v2, . . .) + · · ·

+D(u1, u2, . . . ; [v1, w], v2, v3, . . .) +D(u1, u2, . . . ; v1, [v2, w], v3, . . .) + · · · ∈ I(n).

It follows that I(n) is Poisson. �
Proof of Theorem 3.1.1. That (0) ⇐⇒ (3) is a straightforward application of the Chinese
remainder theorem. It is clear that (2) ⇒ (4); Corollary 3.0.5 gives that (1) ⇒ (2). We show
that (4) ⇒ (3) ⇒ (2) ⇒ (1). This will complete the proof.

We first show that condition (4) implies condition (3). Let hf∂ ∈W�−1(f)χ \ {0} with h ∈
k[t]. Then

0 = χ([hf∂, hfr∂]) = χ(h2f2r′∂) (3.1.6)

for all r ∈ k[t]. This is equivalent to χ|W�−1(h2f2) = 0 as needed.
Next, we show that condition (3) implies condition (2). Let h satisfy condition (3). As

[W�−1(f2h2),W�−1] ⊆W�−1(fh),

we have W�−1(h2f2) ⊆W�−1(f)χ and, thus, dimW (f)/W (f)χ <∞ as needed.
Finally we show that condition (2) implies condition (1). Suppose that χ ∈W�−1(f) satisfies

condition (2). Let n = dimW�−1(f)/W�−1(f)χ = dimW�−1(f) · χ and let I(n) be the ideal
defined in Lemma 3.1.4. By that lemma, I(n) is Poisson and I(n) ⊆ mχ, so I(n) ⊆ P(χ).

Therefore, if I(n) �= 0, then P(χ) �= 0. To show that I(n) �= 0 it suffices to find ω ∈W�−1(f)∗

with dimW�−1(f) · ω > n. In fact, we find ω ∈W ∗
�−1 with

dimW�−1(f) · ω = ∞.

Indeed, as (2) ⇒ (3), if dimW�−1(f) · ω <∞, then ω can be represented by a linearly recurrent
sequence by Remark 3.1.2. On the other hand, the sequence 1, 1

2 ,
1
3 , . . . is clearly not linearly

recurrent. �
Remark 3.1.7. Similarly to Remarks 3.0.3 and 5.2.3, we should expect that ‘most’ sequences are
not linearly recurrent and that the linearly recurrent sequences are parameterised by a countable
union of affine varieties, although we do not formalise these notions here.
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Note that W�−1(t2) = W�1 and that W�−1(t) is equal to the nonnegative Witt algebra W�0.
Therefore, Theorem 3.1.1 gives a complete characterisation of local functions on W�1 and W�0.

3.2 Local functions on W and applications
In this subsection we set g = k[t, t−1]∂ and define W (f) similarly to W�1(f). A partial analogue
of Theorem 3.1.1 holds for W .

Theorem 3.2.1. For any f ∈ k[t] \ {0} and χ ∈W (f)∗ the following conditions are
equivalent:

(1) χ is the restriction of a local function on W ;
(2) P(χ) �= (0);
(3) dimW (f)/W (f)χ <∞;
(4) there exists h ∈ k[x] such that χ|W (fh) = 0.

Remark 3.2.2. The reason that Theorem 3.2.1 differs slightly from Theorem 3.1.1 is that the
function Res0(·) ∈W ∗ satisfies condition (4) of Theorem 3.1.1 but does not satisfy the other
conditions (0), (1), (2), and (3).

Before proving Theorem 3.2.1 we give two lemmata on functions defined by residues. Denote
by k((t)) the field of formal Laurent power series in t. Fix f ∈ k((t)) and consider the map

(a, b) �→ (a, b)f := Res0(f(ab′ − a′b)), (3.2.3)

which defines a skew-symmetric bilinear form on k((t)).

Lemma 3.2.4. The kernel of (a, b)f is one-dimensional if f is a perfect square in k((t)) and is
trivial otherwise. In the first case, the kernel is generated by 1/

√
f .

Proof. Let a be in the kernel of (·, ·)f . Then

Res0(fa2r′) = Res0(f(a(ar)′ − a′(ar))) = (a, ar)f = 0 (3.2.5)

for all r ∈ k((t)). This implies that fa2 is constant. Thus, f is a perfect square in k((t)) and
a is proportional to 1/

√
f . Equation (3.2.5) also gives that if f is a perfect square, then 1/

√
f

belongs to the kernel of (·, ·)f . �
The second lemma proves part of (a more general version of) Remark 3.2.2.

Lemma 3.2.6. Let g ∈ k[t, t−1] \ {0} and define ω ∈W (g2)∗ by

ω = Res0

( ·
g2

)
.

Then dimW (g2) · ω = ∞.

Proof. For a, b ∈ k[t, t−1] we have

Bω(g2a∂, g2b∂) = Res0(g2(ab′ − a′b)).

Suppose that a �∈ k · 1/g. Then by Lemma 3.2.4 there is a formal Laurent series b̂ so that

(a, b̂)g2 = Res0(g2(ab̂′ − a′b̂)) �= 0.

However, the computation of Res0(g2(ab̂′ − a′b̂)) needs only finitely many terms in the Laurent
expansion of b̂ and so we may replace b̂ by b ∈ k[t, t−1] so that Res0(g2(ab′ − a′b)) �= 0. Thus
ag2∂ �∈ kerBω = W (g2)ω. This means that W (g2)ω ⊆ k · g∂ and dimW (g2) · ω = ∞. �
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Proof of Theorem 3.2.1. The proofs of (0) ⇐⇒ (3), (1) ⇒ (2) and (3) ⇒ (2) ⇒ (1) are very sim-
ilar to the corresponding steps of the proof of Theorem 3.1.1. The only part which is significantly
different is (2) ⇒ (3).

Pick χ satisfying condition (2) and h ∈W (f)χ \ {0}. Then (3.1.6) holds for all r ∈ k[t, t−1].
Unfortunately, this is not enough to show that χ vanishes on W (h2f2), as the map r �→ r′ is not
surjective on k[t, t−1].

Consider χ|W (f2h2): we have

χ(f2h2p∂) = χ

(
f2h2

t
∂

)
Res0(p)

for all p ∈ k[t, t−1]. Suppose that χ((f2h2/t)∂) �= 0. Then dimW (f2h2) · χ|W (f2h2) = ∞ by
Lemma 3.2.6. Thus, dimW (h2f2) · χ = ∞, as dimW (f)/W (f2h2) <∞. This contradicts our
assumption that χ satisfies condition (2) and so χ((f2h2/t)∂) = 0, i.e. χ|W (f2h2) = 0. �

To end the subsection, we apply Theorem 3.2.1 to obtain a structure result on finite
codimension subalgebras of W . For a polynomial f ∈ k[t, t−1] set

rad(f) :=
∏

{(t− x) |x ∈ k×, f(x) = 0}.

Proposition 3.2.7. Let k be a subalgebra of W of finite codimension. Then:

(a) there exists f ∈ k[t, t−1] so that W (rad(f)) ⊇ k ⊇W (f);
(b) we can choose f satisfying (a) so that f ∈ k[t], f is monic and f(0) �= 0;
(c) if we assume that f is of minimal degree then such a choice of f is unique.

Proof. The inclusion k ⊆W induces the dual map W ∗ → k∗. We identify (W/k)∗ with the kernel
of this map; that is, with elements of W ∗ which vanish on k, so k is the set of common zeros
of (W/k)∗ ⊆W ∗. Let χ1, . . . , χs be a basis of (W/k)∗. Fix i ∈ {1, . . . , s}; by definition, we have
Bχi(k, k) = 0, so k is an isotropic subspace of W with respect to Bχi . Hence, the rank of Bχi is
at most 2 dim(W/k) and, thus, is finite. By Theorem 3.2.1, χi is local.

Theorem 3.2.1 implies that for all i there is hi ∈ k[t, t−1] \ {0} with χi(W (hi)) = 0. Therefore
W (h1 · · ·hs) is annihilated by all χi and therefore W (h1 · · ·hs) ⊆ k as desired.

Let f ∈ k[t, t−1] \ {0} with k ⊇W (f); we may assume without loss of generality that f ∈ k[t],
f is monic and f(0) �= 0 as W (f) corresponds to an ideal of k[t, t−1]. Suppose, in addition, that
f has minimal degree among all such polynomials with k ⊇W (f). Thus, if k ⊇W (h), then by
the Euclidean algorithm f |h. This justifies uniqueness of f .

Write f =
∏n
i=1(t− xi)ai with the xi �= 0 distinct and ai > 0; set h := rad(f) = (t− x1) · · ·

(t− xn). It is clear that h | f | hmax(ai). Let k∂ ∈ k. We wish to show that h | k. Indeed, for all r ∈
k[t, t−1] the element [k∂, fr∂] = (k(fr′ + f ′r) − frk′)∂ is in k. As k ⊇W (f), thus kf ′r ∈ k for
all r ∈ k[t, t−1]. Thus, k ⊇W (kf ′) and so f | f ′k. This forces k to vanish at all roots of f , which
is equivalent to h | k. �

3.3 Local functions on Vir
In this subsection we set g = Vir.

The natural map Vir →W extends to the morphism S(Vir) → S(W ); the kernel is the
Poisson ideal (z) of S(Vir). The main goal of the subsection is to prove the following analogue
of Theorem 3.2.1 for Vir.
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Theorem 3.3.1. For χ ∈ Vir∗ we have

P(χ) �= (z − χ(z)) ⇐⇒ χ is local ⇐⇒ dimVir/Virχ <∞.

In particular, if P(χ) �= (z − χ(z)), then χ(z) = 0.

Remark 3.3.2. It follows from Theorems 3.2.1 and 3.3.1 that χ ∈ Vir∗ is local if and only if there
is some f ∈ k[t, t−1] such that χ vanishes on W (f) + k · z ⊆ Vir.

Before proving Theorem 3.3.1, we consider arbitrary subalgebras of Vir of finite codimension
and show they are strongly constrained.

Proposition 3.3.3. If k is a subalgebra of Vir of finite codimension, then z ∈ [k, k]. Thus,
dimVir/k <∞ if and only if k contains some W (f) + k · z, where f ∈ k[t, t−1] \ {0}.

This result generalises [OW18, Proposition 2.3], which considered subalgebras of Vir of codi-
mension one. We also note that [OW18] refers to subalgebras of Vir of the form W (f) + k · z as
polynomial subalgebras.

Proof of Proposition 3.3.3. Let k̄ be the image of k in W . By Proposition 3.2.7 there is some
f ∈ k[t, t−1] \ {0} so that k̄ ⊇W (f). Thus, for all p ∈ Z, there is ζp ∈ k so that the element

vp := ftp∂ + ζpz

is in k. Therefore, [k, k] contains the elements
1

q − p
[vp, vq] = f2tp+q−1∂ + Res0(tp+q−3(2t2(f ′)2 + ff ′t(p+ q − 1) − t2ff ′′ + f2pq))z (3.3.4)

for all p, q ∈ Z. Fix d = p+ q and consider p = d− q as a function of q. The only part of (3.3.4)
that varies with q is q(d− q) Res0(td−3f2).

If Res0(td−3f2) is not zero, then
1

d− 2q1
[vd−q1 , vq1 ] −

1
d− 2q2

[vd−q2 , vq2 ] = (q1 − q2)(d− q1 − q2) Res0(td−3f2)z

is a nonzero scalar multiple of z for almost all q1, q2. If z �∈ [k, k], we therefore have Res0(tdf2) = 0
for all d ∈ Z. This implies that f2 = 0, contradicting our assumption on f .

The final sentence is an immediate consequence of Proposition 3.2.7. �
Proof of Theorem 3.3.1. Let χ ∈ Vir∗. If χ is local, then by definition χ descends to a local
function χ on Vir/(z) ∼= W . By Theorem 3.2.1, P(χ) � (z) and dimVir/Virχ = dimW/Wχ <∞.

If dimVir/Virχ <∞, then by Proposition 3.3.3, z ∈ [Virχ, Virχ] and so χ(z) = 0, as χ van-
ishes, by definition, on [Virχ, Virχ]. We may, thus, factor out z and apply Theorem 3.2.1 again
to conclude that χ is local.

Finally, suppose that P(χ) �= (z − χ(z)). Then by Corollary 3.0.5 dimVir · χ =
dimVir/Virχ <∞. �

As an immediate corollary of Theorem 3.3.1, we obtain a powerful result on Poisson ideals
of S(Vir).

Corollary 3.3.5. If ζ ∈ k×, then S(Vir)/(z − ζ) is Poisson simple, i.e. contains no nontrivial
Poisson ideals.

Proof. Let ζ ∈ k. If S(Vir)/(z − ζ) is not Poisson simple, then (z − ζ) is strictly contained in some
proper Poisson ideal J of S(Vir). By the Nullstellensatz there is some χ ∈ Vir∗ with J ⊆ mχ;
thus, χ(z) = ζ as z − ζ ∈ mχ. Further P(χ) ⊇ J � (z − ζ) and so by Theorem 3.3.1 we have
ζ = 0. �
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We thus show that almost all prime Poisson ideals of S(Vir) contain z.

Corollary 3.3.6. Let Q be a prime Poisson ideal of S(Vir). Then either:

(i) Q = (0);
(ii) Q = (z − ζ) for some ζ ∈ k×;
(iii) Q ⊇ (z).

Proof. By Corollary 3.3.5 and primeness of Q, it suffices to prove that if Q �= (0), then Q contains
a nonzero element of k[z]. Let h ∈ Q \ {0}; using primeness of Q we may assume that h is not
a multiple of any element of k[z] \ k. Let χ ∈ Vir∗ so that Q ⊆ mχ. As h ∈ P(χ), we see that
P(χ) �= (z − χ(z)). By Theorem 3.3.1 P(χ) ⊇ (z). Thus, applying Lemma 2.0.4(a),

Q =
⋂

{P(χ) | evχ(Q) = 0} ⊇ (z). �

Given Corollary 3.3.5 it is natural to conjecture as follows.

Conjecture 3.3.7. If ζ �= 0, then U(Vir)/(z − ζ) is simple.

However, we as yet have no proof of Conjecture 3.3.7. Note that the obvious strategy of proof
by taking the associated graded of an ideal (z − ζ) � J �U(Vir) does not work, because in this
case gr J � z and Corollary 3.3.5 is not directly relevant.

4. Pseudo-orbits and Poisson primitive ideals for the algebras of interest

Let g be one of Vir, W , W�−1 or W�1. In this section, we describe the pseudo-orbits for
g, using the results on local functions from the previous section and the general strategy of
Proposition 2.3.1, and derive some consequences for the Poisson primitive spectrum of S(g).

We begin by describing the pseudo-orbits of non-local functions, where the results of § 3
quickly give the answer.

Proposition 4.0.1. For g = W ,W�−1 orW�1, the nonlocal functions in g∗ form a pseudo-orbit.
If g = Vir, then for any ζ ∈ k the nonlocal functions χ with χ(z) = ζ form a pseudo-orbit.

Proof. This is immediate from Theorems 3.1.1 (g = W�−1 or W�1), 3.2.1 (g = W ) or 3.3.1
(g = Vir). By those results, if g = W , W�−1 or W�1, then χ ∈ g∗ is not local if and only if
P(χ) = 0; and if g = Vir, then χ is not local if and only if P(χ) = (z − χ(z)). �

We may thus restrict to considering pseudo-orbits of local functions. By Proposition 4.0.1 if
χ ∈ g∗ is local and ω ∈ O(χ), then ω is also local. As, by definition, local functions on Vir vanish
on z, the pseudo-orbits for W directly determine those for Vir.

Thus, for the rest of the section we let g be W , W�−1 or W�1. In § 4.1 we introduce a
finite-dimensional action which determines the pseudo-orbits of one-point local functions on g,
in § 4.2 we describe the orbits of this action explicitly and in § 4.3 we use this action to describe
pseudo-orbits of arbitrary local functions.

4.1 An algebraic group acting on local functions
Set g to be W , W�−1, or W�1. We fix notation for the subsection.

Definition 4.1.1. For x ∈ k, n ∈ Z�0, let Loc�n
x denote the subspace of g∗ consisting of

one-point local functions based at x and of order � n. Let Locx :=
⋃
n�0 Loc�n

x .
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Define Loc�n
g =

⋃
x∈k× Loc�n

x if g = W , and Loc�n
g =

⋃
x∈k

Loc�n
x if g = W�−1 or W�1. Let

L̃oc
�n
g =

⎧⎪⎨⎪⎩
k× × kn+1 g = W

k × kn+1 g = W�−1

k × kn+1 g = W�1.

For all g there is a canonical map π�n
g : L̃oc

�n
g → Loc�n

g (this is, in fact, birational, cf.
Proposition 5.1.1). If g = W,W�−1, then π�n

g is an isomorphism away from χ = 0. If g = W�1 it
is an isomorphism away from χ = 0 and x = 0, due to the fact that χ0;β0,β1 = 0 for all β0, β1 ∈ k

in this case. Formally, we let φ�n
g : L̃oc

�n
g → g∗ be the composition of π�n

g with the inclusion

Loc�n
g ⊆ g∗. There is an induced pullback morphism (φ�n

g )∗ : S(g) → k[L̃oc
�n
g ].

If χ is a local function on g and v ∈ g, then v · χ is local and, in fact, the coadjoint action of g

preserves Locx for all x. We now study the action of g on Locx, and relate it to a finite-dimensional
action using Proposition 2.3.1.

We begin by defining a group action. Fix x ∈ k (if g = W we assume that x �= 0). Let t̃ :=
t− x. Clearly, (3.0.1) makes sense for every formal power series f∂ ∈ k[[t̃]]∂, and so Loc�n

x also
gives elements of (k[[t̃]]∂)∗. For every s ∈ k[[t̃]] with s(x) = x we introduce a local change of
coordinates endomorphism Endt→s(·) of k[[t̃]] through the formula t→ s. Note that Endt→s is
invertible if s′(x) �= 0. Let DLocx, the group of formal local diffeomorphisms at x, denote the
group of all Endt→s with s(x) = x and s′(x) �= 0. The group DLocx has a subgroup of
transformations of the form t→ ζt+ (1 − ζ)x, for ζ ∈ k×; we also write this transformation as
t̃→ ζt̃ and let Dilx denote the group of such transformations, which we term dilations at x.

Pick s ∈ k[[t̃]] with s(x) = x and s′(x) �= 0. We extend Endt→s to an automorphism of k[[t̃]]∂
via the formulae

t �→ s, ∂ �→ 1
s′
∂ (= ∂s). (4.1.2)

This gives actions of DLocx on k[[t̃]]∂ and on (k[[t̃]]∂)∗. We may consider Loc�n
x as a subset of

(k[[t̃]]∂)∗, and this subset is preserved by the DLocx-action.
Denote by DLoc�n

x the image of DLocx in the group Aut(Loc�n
x ) of linear automorphisms of

Loc�n
x . Although DLocx is infinite-dimensional, its image in Aut(Loc�n

x ) is a finite-dimensional
solvable algebraic group. Let us consider the action of the corresponding (finite-dimensional) Lie
algebra, which we denote by lie�n

x .

Lemma 4.1.3. Identify lie�n
x with the tangent space to DLoc�n

x at the identity. Let s ∈ k[[t]]
with s(x) = 0 and denote by ξs the tangent direction at the identity defined by the line h→
Endt→t+hs(·) for h ∈ k. The action of DLoc�n

x derives to an action of ξs on Loc�n
x . Then:

(a) lie�n
x consists of vectors of the form ξs with s(x) = 0;

(b) ξs · χ = s∂ · χ for all χ ∈ Locx.

Proof. Part (a) is clear from the definition of DLoc�n
x . For part (b), as the action of ξs on Locx

is induced by the action (4.1.2) on k[[t̃]]∂, it is enough to check that ξs · f∂ = [s∂, f∂] for
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all f∂ ∈ g. However,

ξs · f∂ = (ξs · f)∂ + f(ξs · ∂)

= (∂hf(t+ hs))|h=0∂ + f(∂h(Endt→t+hs ∂))|h=0

= (f ′(t+ hs)s)|h=0∂ + f

(
∂h

(
1

1 + hs′
∂

))∣∣∣∣
h=0

= f ′s∂ − fs′∂ = [s∂, f∂],

as needed. �
We now let g = W�−1. For all x, n, the coadjoint action of W�−1(t− x) preserves Loc�n

x , and
Lemma 4.1.3 shows that

W�−1(t− x) · χ = lie�n
x ·χ (4.1.4)

for χ ∈ Loc�n
x . For z ∈ k define

Shiftz(χx;α0,α1,...) := χx+z;α0,α1,....

The set {Shiftz | z ∈ k} forms a one-dimensional algebraic group, which we denote by Shifts;
clearly Shifts ∼= k+. Deriving the action of Shifts on LocW�−1

and on Loc�n
W�−1

, we have

∂hShifth(χx;α0,...,αn(f∂))|h=0

= ∂h(α0f(x+ h) + α1f
′(x+ h) + · · · + αnf

(n)(x+ h))|h=0

= α0f
′(x) + · · · + αnf

(n+1)(x) = (∂ · χx;α0,...,αn)(f∂) (4.1.5)

and, thus, we may without ambiguity identify the Lie algebra of Shifts with k · ∂.
For all x, z ∈ k, Shiftz gives a continuous homomorphism k[[t− x]] → k[[t− x− z]] and,

hence, induces an isomorphism

Shiftz : DLoc�n
x → DLoc�n

x+z.

In particular, we can take x = 1, and then for g = W�−1 and for all n the action map Shifts ×
Loc�n

1 → Loc�n
W�−1

is clearly bijective. This allows us to introduce the action of D̂Loc
�n

:=

Shifts × DLoc�n
1 and D̂Loc := Shifts × DLoc1 on

Loc�n
W�−1

∼= k × Loc�n
1

componentwise. Note that D̂Loc and D̂Loc
�n

also act on L̃oc
�n
W�−1

in such a way that π�n
W�−1

is
equivariant.

Let l̂ie
�n

denote the Lie algebra of D̂Loc
�n

. From Lemma 4.1.3 we have the following result.

Lemma 4.1.6. Let g = W , W�−1 or W�1 and fix x, n and χ ∈ Loc�n
x (recall that x �= 0 if

g = W ).

(a) If g = W�−1, then

g · χ = lie�n
x ·χ+ k∂x · χ.

(b) If g = W�−1, then g · χ = l̂ie
�n · χ for all χ ∈ Loc�n

g .

(c) If x �= 0, then we can identify Loc�n
x for W , W�−1 and W�1. If g = W or g = W�1, under

this identification we have g · χ = W�−1 · χ.
(d) If g = W�1 and x = 0, then g · χ = lie�n

x ·χ.
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Proof. Parts (a), (b) and (d) are straightforward from the previous discussion. For part (c) note
that the image of f∂ in Loc�n

x depends only on the Taylor series expansion of f around x up to
degree n+ 1, which is not affected by the behaviour of f at 0. �

It is useful to have a more detailed description of DLocx and DLoc�n
x . The main point here is

that DLoc�n
x is a connected solvable algebraic group which has a filtration by normal subgroups

with one-dimensional quotients.
Pick k � 2. Let x ∈ k (or x ∈ k× if g = W ), and recall that t̃ denotes t− x. Elements of the

form

Endt̃→t̃+t̃kh, h ∈ k[[t̃]],

constitute a subgroup of DLocx and we denote this subgroup by DLock+x . We use the notation
DLoc�n,k+

x for the image of DLock+x in DLoc�n
x . The following lemma is straightforward.

Lemma 4.1.7. Let x ∈ k and let g = W , W�1 or W�−1 with x �= 0 for g = W .

(a) The group DLoc2+,�n
x is the unipotent radical of DLoc�n

x and Dilx is a maximal reductive
subgroup of DLoc�n

x . In particular, the natural map

Dilx → DLoc�n
x /DLoc2+,�n

x

is an isomorphism.
(b) The group DLock+,�nx /DLock+1+,�n

x is either isomorphic to k or {0} if 2 � k � n. Moreover,
the natural map

k → DLock+,�nx /DLock+1+,�n
x

induced by sending h �→ Endt̃→t̃+ht̃n(·) is surjective.

(c) The group DLock+,�nx is trivial for k � n.

4.2 Explicit description of DLoc�n
x -orbits

We now compute the DLocx-orbits of one-point local functions; in the next subsection we see
that this allows us to compute the pseudo-orbit of an arbitrary local function. If g = W�−1, then
the action of DLocx is clearly homogeneous in x for all x ∈ k, and similarly for W for x �= 0. If
x = 0 and g = W�1, the story is a bit more delicate.

Let g be W�−1, W or W�1 and let x ∈ k. If g = W or W�−1, we additionally assume that
x �= 0. For i ∈ Z�0 we set ei(x) = (t− x)i+1∂ and define ei(x)∗ by the formula

f∂ �→ f i+1(x)
(i+ 1)!

,

so that ei(x)∗(ej(x)) = δij . (We view the ei(x)∗ as elements either of (k[[t− x]]∂)∗ or g∗, depend-
ing on context.) The main goal of this subsection is to prove the following theorem, and to
consider its consequences.

Theorem 4.2.1. Assume g = W�−1, W or W�1 and let x ∈ k. If g = W or W�1 we additionally
assume that x �= 0. Fix n, β0, . . . , βn with βn �= 0 and set χ = χx;β0,...,βn . Let ei := ei(x) and
e∗i := ei(x)∗ for all i ∈ Z�0.

(a) If n is even, then DLoc�n
x χ = DLoc�n

x e∗n−1 and dimDLoc�n
x χ = n+ 1.

(b) If n is odd and n > 1, then there is β such that DLoc�n
x χ = DLoc�n

x (e∗n−1 + βe∗k) where
k = (n− 1)/2. We have dimDLoc�n

x χ = n.
(b′) If n = 1, then DLoc�n

0 χ = DLoc�n
x (β1e

∗
0) and dimDLoc�n

x χ = 1.
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(c) Pick β1, β2 ∈ k and k ∈ Z�1. Then DLoc�n
x (e∗2k + β1e

∗
k) = DLoc�n

x (e∗2k + β2e
∗
k) if and only if

β1 = ±β2.
(c′) Pick β1, β2 ∈ k. Then DLoc�1

x (β1e
∗
0) = DLoc�1

x (β2e
∗
0) if and only if β1 = β2.

Proof. The proof is the same for any base point; to reduce notation we give the proof for g =
W�−1 and x = 0.

First we compute the dimensions of the corresponding orbits. Note that

dimDLoc�n
0 χ = dim lie�n

0 ·χ = dimW�0 · χ,
see (4.1.4). Moreover, (4.1.5) implies that W�−1 · χ �⊆ Loc�n

0 . Thus, dimW�−1 · χ = dimW�0 ·
χ+ 1. Further dimW�−1 · χ = rkBχ. The rank of this form can be evaluated explicitly. Indeed,

χ0;β0,...,βn([ei, ej ]) =

{
0 if i+ j > n− 1,
(j − i)(i+ j + 1)!βi+j+1 if i+ j � n− 1.

From this formula it is clear that Bχ(ei, ej) = 0 if i � n+ 1 or j � n+ 1. Thus, the rank of this
form can be evaluated on the first (n+ 2) × (n+ 2) entries corresponding to −1 � i, j � n. This
block is skew-upper-triangular. If n is even, then all values on the skew-diagonal line are nonzero
(because βn �= 0); hence, the rank is n+ 2 in this case. If n is odd, then this skew-diagonal line
contains zero only in the position corresponding to i = j = (n− 1)/2; hence the rank is n+ 1 in
this case. This provides the desired dimensions.

The idea of the rest of the proof is to use the subnormal series in Lemma 4.1.7 to reduce the
number of coefficients which we have to consider step by step.

Let i ∈ Z�0. For j � 1 we have

Endt→t+αtj+1(ei) =
(t+ αtj+1)i+1

1 + α(j + 1)tj
∂ = (ti+1 + α(i− j)ti+j+1 + higher)∂

= ei + α(i− j)ei+j + higher.

Thus,

Endt→t+αtj+1(e∗i ) = e∗i + α(i− 2j)e∗i−j + a linear combination of e∗<i−j . (4.2.2)

Likewise

Endt→ζt(e∗i ) = ζie∗i . (4.2.3)

We apply these transformations to

χ0;β0,...,βn = β0e
∗
−1 + · · · + βn(n!)e∗n−1, (4.2.4)

noting that the coefficient of e∗n−1 in (4.2.4) is nonzero.
By applying Endt→t+α1t2 with appropriate α1 we may cancel the coefficient of e∗n−2, using

(4.2.2). This does not affect the coefficient of e∗n−1. Then by applying the appropriate Endt→t+α2t3

we can cancel the coefficient of e∗n−3 without changing the coefficient of e∗n−2 or e∗n−1. Repeating,
we may cancel the coefficients of all e∗n−1−k with 1 � k � n, unless k = (n− 1)/2.

Thus, in cases (a) or (b′) we obtain that ω = βne
∗
n−1 ∈ DLoc�n

0 (χ). In case (b) we obtain
some

ω = αe∗(n−1)/2 + βne
∗
n−1 ∈ DLoc�n

0 (χ).

Now applying (4.2.3) to ω we may rescale the coefficient of e∗n−1 by any ζn−1, so if n �= 1 we
may set the coefficient of e∗n−1 to be 1. This proves the rest of the cases (a), (b) and (b′).
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We now prove case (c′). It follows from (4.2.2) that applying any nontrivial element of the
unipotent radical of DLoc�1

0 to e∗0 will give a nonzero e∗−1 term. Thus, we must simply consider
acting by Dil0, and rescaling as in (4.2.3) does not affect the coefficient of e∗0.

Finally, we prove case (c). Formula (4.2.3) implies that if β1 = ±β2, then

DLoc�n
0 (e∗2k + β1e

∗
k) = DLoc�n

0 (e∗2k + β2e
∗
k).

Pick β1, β2 ∈ k and set χ1 = e∗2k + β1e
∗
k, χ2 = e∗2k + β2e

∗
k. Assume that DLoc�n

0 (χ1) =
DLoc�n

0 (χ2), so there exists s ∈ k[[t]] with Endt→s(χ1) = χ2, s(0) = 0 and s′(0) �= 0.
If

s = s′(0)t, (4.2.5)

then the statement of case (c) is straightforward. Assume to the contrary that s �= s′(0)t. Then

s(t) �= s′(0)t mod td

for some d, and we choose d to be minimal.
If d � 2k + 2, then linear operators Endt→s and Endt→s′(0)t coincide after the restriction to

Loc�n
0 , i.e. we can replace s by s′(0)t, which is case (4.2.5).
If d � 2k + 1, then

s = s′(0)t+
s(d)(0)
d!

td mod td+1

with s(d)(0) �= 0; set γ = s′(0), τ = s(d)(0)/d!. Further (4.2.2) and (4.2.3) imply

Endt→s(χ1) = γ−2ke2k + γi−2j−1τ(2k − 2d)e2k−d mod Loc�2k−d
0 .

This cannot give χ2 unless d = k.
Thus, suppose d = k and note that

Endt→t+αtk+1+(α2(k+1)−α(β/2))t2k+1(e∗2k + βe∗k) = (e∗2k + βe∗k)

for every α ∈ k. Thus, we can replace s by

s+ αsk+1 +
(
α2(k + 1) − α

β

2

)
s2k+1 (4.2.6)

for an arbitrary α. Pick α = −s(d+1)(0)/(d+ 1)!(s′(0))d+1. Then (4.2.6) is equal to s′(0)t
mod td+1 and we have reduced this case to the previous one. �
Remark 4.2.7. If χ ∈W ∗ is a one-point local function, the beginning of the proof of
Theorem 4.2.1 provides an explicit description of Wχ. Indeed, if χ = χx;β0,β1,...,βn with βn �= 0,
then Wχ = W ((t− x)n+1) if n is even, and Wχ is the sum of W ((t− x)n+1) with a one-
dimensional subspace if n is odd.

A modification of Theorem 4.2.1 holds for g = W�1 and x = 0 with a very similar proof,
which we leave to the reader.

Theorem 4.2.8. Assume g = W�1. Fix n � 2 and β2, . . . , βn with βn �= 0 and set χ =
χ0;0,0,β2,...,βn .

(a) If n is even, then DLoc�n
0 χ = DLoc�n

0 e∗n−1. We have dimDLoc�n
0 χ = n− 1.

(b) If n is odd and n > 1, then there is β such that DLoc�n
0 χ = DLoc�n

0 (e∗n−1 + βe∗k) where

k = (n− 1)/2. We have dimDLoc�n
0 χ = n− 2.

(c) Pick β1, β2 ∈ k and k ∈ Z�1. Then DLoc�n
0 (e∗2k + β1e

∗
k) = DLoc�n

0 (e∗2k + β2e
∗
k) if and only if

β1 = ±β2.
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We next describe the ‘Bruhat order’ on DLoc�n
x orbits (that is, the inclusions of orbit

closures): it turns out that it can almost be computed just from the dimension of the orbit.

Corollary 4.2.9. Let g, x be as in the statement of Theorem 4.2.1. Let χ−, χ+ be local
functions on g based at x and of order � n.

Then the following conditions are equivalent:

(1) DLoc�n
x · χ− is contained in the closure of DLoc�n

x · χ+ and DLoc�n
x · χ− �= DLoc�n

x · χ+;
(2) P(χ+) � P(χ−);
(3) dimDLoc�n

x · χ− < dimDLoc�n
x · χ+ and χ+ is not of order one.

Proof. We again give the proof for g = W�−1 and x = 0. We show that (2) ⇒ (3) ⇔ (1) ⇒ (2).
Next, without loss of generality we assume that n is the order of χ+.

We first show that (3) implies (1). As in Theorem 4.2.1, pick the related presentation
χ0;β+

0 ,β
+
1 ,...,β

+
n

for χ+, with β+
n �= 0. If n is even, then the closure of DLoc�n

0 · χ+ equals Loc�n
0 .

On the other hand, all orbits of strictly smaller dimension belong to Loc�n
0 , so this completes

the proof in this case.
If n = 2k + 1 is odd, then k � 1 by the assumptions of condition (3). The closure of DLoc�n

0 ·
χ+ is an irreducible subvariety of Loc�n

0 of codimension one, i.e. a hypersurface defined by some
function F+. We claim that this function is semi-invariant with respect to DLoc�n

0 .
To prove that F+ is semi-invariant, we describe it in more detail. Let R =

k[β0, β1, . . . , βn−1, β
±1
n ], where β0, β1, . . . , βn are free variables. Denote by (·)k→R the base change

from k to R. The arguments of Theorem 4.2.1(b) imply that there exists a group element
g ∈ (DLoc�n

0 )k→R and h ∈ R such that

g · χ0;0, . . . , 0︸ ︷︷ ︸
k times

,h,0, . . . , 0︸ ︷︷ ︸
k times

,βn
= χ0;β0,β1,...,βn .

Recall that k = (n− 1)/2 � 1. By replacing each βi by ei−1/i! (cf. (4.2.4)) we may identify R
with k[Loc�n

0 ][e−1
2k ]. (Here we regard the ei as functions on Loc�n

0 in the obvious way.) Then
h = f/e�2k for some f ∈ k[Loc�n

0 ] and � ∈ Z�0.
Let χ, χ′ ∈ Loc�n

0 with e2k(χ), e2k(χ′) �= 0. As in the proof of Theorem 4.2.1(c), DLoc�n
0 · χ =

DLoc�n
0 · χ′ if and only if

e2k(χ)−1 f2(χ)
e2k(χ)2�

= e2k(χ′)−1 f2(χ′)
e2k(χ′)2�

.

The rational function

F := f2/e2�+1
2k (4.2.10)

is, thus, DLoc�n
0 -invariant and separates orbits. Therefore, DLoc�n

0 · χ+ is the hypersurface in
Loc�n

0 \ Loc�n−1
0 defined by

F+ := e2k(χ+)2�+1f2 − f2(χ+)e2�+1
2k .

Note that F+ is semi-invariant, as claimed.
All orbits of dimension more than n belong to Loc�n−2

0 . We check that the closure of DLoc�n
0 ·

χ+ contains Loc�n−2
0 . The orbit closure DLoc�n

0 χ+ is defined in Loc�n
0 by F+, so we must

show that F+|Loc�n−2
0

= 0. The restriction of F+ to Loc�n−1
0 is also a semi-invariant function;

in particular, this restriction is invariant with respect to DLoc1+,�n
0 , see Lemma 4.1.7. The

arguments of Theorem 4.2.1 imply that all n-dimensional DLoc1+,�n
0 -invariant hypersurfaces
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of Loc�n−1
0 are defined by the equality en−1 = βn−1 for some βn−1 ∈ k. This implies that the

restriction of F+ is a polynomial in en−1. The fact that F+ is DLoc�n
0 -semi-invariant implies

that F+|Loc�n−1
0

= c(en−1)m for some m � 0 and c ∈ k. This implies the desired condition that
F+|Loc�n−2

0
= 0.

We now show that condition (1) implies condition (3), so suppose that condition (1) holds.
The dimension inequality in condition (3) is clear. Thus, we are left to deal with the case when
χ+ has order one; we want to show this cannot happen.

Suppose now that χ+ = χx;α,β has order one, so β �= 0. By the dimension inequality, χ− = 0.
Now, Theorem 4.2.1(b′) shows that DLoc�1

0 · χ+ = DLoc�1
0 · (βe∗0) consists of all χ0;α′,β for α′ ∈ k,

and so is defined in Loc�1
0 \ Loc�0

0 = Spec k[β0, β1, β
−1
1 ] by β1 = β. Thus, DLoc�1

0 · χ+ is defined
in Loc�1

0
∼= Spec k[β0, β1] by β1 = β and does not contain 0 = χ0;0,0, a contradiction.

We now show that (1) ⇒ (2). This is an application of Proposition 2.3.1. Let X = L̃oc
�n
g

(recall that g = W�−1) and let H = D̂Loc
�n

. Let h = l̂ie
�n

= Lie(H). Let φ = φ�n
g : X → g∗.

Choose x+ ∈ φ−1(χ+) and x− ∈ φ−1(χ−); note here that φ is bijective onto Loc�n
g \ {0} so x±

may be uniquely determined. By Lemma 4.1.6, dim hx± = dim gχ± . Thus, by Proposition 2.3.1,
P(χ+) is the kernel of the map φ+ : S(g) → k[H · x+] induced from φ∗ : S(g) → k[X] and P(χ−)
is the kernel of φ− : S(g) → k[H · x−]. However, by assumption, H · x− ⊆ H · x+ ⊆ X, giving the
following commutative diagram.

S(g)
φ+

��

φ− �����������
k[H · x+]

��

k[H · x−]

Thus, P(χ−) = kerφ− ⊇ kerφ+ = P(χ+). The two are clearly distinct.
We still must show condition (2) implies condition (3). If condition (2) holds, then

dim O(χ−) < dim O(χ+). By the previous discussion and (2.3.3),

dim O(χ±) = dim gχ± = dimDLoc�n
x · χ± + 1.

Finally, note that if χ+ = χx;α,γ has order zero or one, by the dimension inequality we must have
χ− = 0. We have seen in Lemma 2.2.3 that P(χ+) is the kernel of

pγ : S(g) → k[t, t−1, y], f∂ �→ fy + γf ′.

We compute

pγ([(t− x)∂]2 − ∂[(t− x)2∂]) = ((t− x)y + γ)2 − y((t− x)2y + 2γ(t− x)) = γ2

and so [(t− x)∂]2 − ∂[(t− x)2∂] − γ2 ∈ ker pγ . This element is contained in m0 = P(0) if and
only if γ = 0, so χ+ cannot have order one. �

For future reference, we record that Corollary 4.2.9 also gives information about D̂Loc
�n

orbits. Let

LocnW�−1
:= Loc�n

W�−1
\ Loc�n−1

W�−1

and similarly define LocnW . We identify k[LocnW�−1
] with k[x, β0, . . . , βn, β

−1
n ]. Note that each

LocnW�−1
is D̂Loc

�n
-stable.
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The action of Shifts and, thus, the action of D̂Loc on LocW is only partially defined, as
we cannot shift the base point to 0. We refer to orbits of this partial action with the obvious
meaning: the intersection of an orbit in LocW�−1

with W ∗.

Corollary 4.2.11. Let g = W or W�−1.

(a) If n is even, then Locng is a single D̂Loc
�n

-orbit.
(b) If n � 3 is odd, there is Fn ∈ k[x, x−1, β0, . . . , βn, β

−1
n ] (if g = W ) or in k[x, β0, . . . , βn, β

−1
n ]

(if g = W�−1) so that the D̂Loc
�n

-orbits are precisely the fibres of the morphism Fn :
Locng → A1.

(c) Define F1 : Loc1
g → A1 \ {0} by χx;α,γ �→ γ. Then the fibres of F1 are exactly the orbits of

D̂Loc
�1

on Loc1
g.

Proof. This result is a consequence of Theorem 4.2.1 and the proof of Corollary 4.2.9. If n � 3
is odd, note that, by definition, applying an element of Shifts changes x but not any of the βi.
Thus, we may take Fn to be the polynomial F defined in (4.2.10), regarded as an element of
k[x, β0, . . . , βn, β

−1
n ]. The proof for n = 1 is similar. �

It is instructive to compute that for n = 3, the polynomial F3 given by Corollary 4.2.11 is a
scalar multiple of β2

2/β3. In particular, x does not occur.

Remark 4.2.12. The dimension of a D̂Loc
�n

-orbit in Corollary 4.2.11 is

2
⌊
n+ 2

2

⌋
=

{
n+ 2 n even,
n+ 1 n odd.

4.3 Implicit description of pseudo-orbits
Let g = W , W�−1 or W�1. We now consider arbitrary local functions on g. We provide every
pair of local functions χ, ν ∈ g∗ with an affine variety X acted on by an algebraic group H, an
open subset U ⊆ X, a Poisson map φ : U → g∗ and a pair of points x, y ∈ X which will satisfy
the conditions of Proposition 2.3.1. Thus, we reduce the mysterious infinite-dimensional case to
the more easily comprehensible action of an algebraic group on an affine variety. We use this to
determine the pseudo-orbits in g∗.

Theorem 4.3.1. Let g = Vir, g = W or W�−1. Let χI and χII be local functions in g∗

represented by sums

χI =
�∑
i=1

χIi , χII =
�∑
i=1

χIIi , χIi ∈ LocxI
i
, χIIi ∈ LocxII

i
,

such that xIi �= xIj and xIIi �= xIIj for i �= j. Then χI and χII are in the same pseudo-orbit if and

only if it is possible to reorder xIi and xIIi in such a way that

DLoc1(Shift1−xI
i
χIi ) = DLoc1(Shift1−xII

i
χIIi ) for all i; (4.3.2)

that is,

D̂Loc(χIi ) = D̂Loc(χIIi ) for all i.

In particular, if O(χI) = O(χII), then λ(χI) = λ(χII) and, hence, the supports of χI and χII

have the same cardinality.
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Remark 4.3.3. Let g = W or W�−1. Fix a partition λ = (m1, . . . ,mr) and consider the set V λ
g of

all local functions χ ∈ g∗ with λ(χ) = λ. Let χ = χ1 + · · · + χr, ν = ν1 + · · · + νr ∈ V λ
g , where

each χi (respectively, νi) is a one-point local function of order mi − 1. By Theorem 4.3.1,
O(χ) = O(ν) ⇐⇒ O(χi) = O(νi) for 1 � i � r (up to permutation of indices). Combining
Corollary 4.2.11 and Theorem 4.3.1 applied to one-point local functions we have

(a) if mi is odd, then Locmi−1
g is a single pseudo-orbit;

(b) if mi is even and mi �= 2, then the pseudo-orbits in Locmi−1
g are parameterised by A1;

(c) the pseudo-orbits in Loc1
g are parameterised by A1 \ {0}.

Thus, pseudo-orbits in V λ
g (and the corresponding Poisson primitive ideals of S(g)) are param-

eterised by a symmetric product (A1)×(k−k2) × (A1 \ {0})×k2 , where k is the total number of even
parts of λ and k2 := |{i | mi = 2}|.

More specifically, let

A(λ) :=

{
Ak if k2 = 0,
Ak−1 × (A1 \ {0}) if k2 �= 0.

Let Sλ = {σ ∈ Sk |mi = mσ(i) for all i}. The pseudo-orbits in V λ
g are parameterised by

[(A1)×(k−k2) × (A1 \ {0})×k2 ]/Sλ
∼= A(λ).

In § 5.2 we refine this parameterisation to apply to arbitrary prime Poisson ideals of S(g).

To prove Theorem 4.3.1 we need two preparatory results.

Lemma 4.3.4. Let χ ∈W ∗ be a local function with χ = χ1 + · · · + χs and χi ∈ Locxi such that
xi �= xj if i �= j. Then W · χ =

⊕
iW · χi. Likewise, if χ ∈W ∗

�−1, then W�−1 · χ =
⊕

iW�−1 · χi.
Proof. This statement is basically implied by the Chinese remainder theorem, but we give the
details for W . It is easy to verify that W · χ = {Bχ(u, ·) | u ∈W}. As χ is local, there are
d1, . . . , ds ∈ Z�1 so that χ|W (

∏
i(t−xi)di ) = 0. Let f :=

∏
i(t− xi)di+1. Then Bχ|W (f) = 0. By the

Chinese remainder theorem,

k[t, t−1]/
(∏

(t− xi)di+1
) ∼=⊕

i

k[t]/(t− xi)di+1. (4.3.5)

This leads to the decomposition

W/W (f) ∼=
⊕
i

[W (fi)/W (f)], where fi :=
f

(t− xi)di+1
.

It is straightforward to verify that the partial restriction Bχi(W (fj), ·) is nonzero only if i = j.
Hence,

W · χ = {Bχ(u, ·) | u ∈W} =
⊕
i

{Bχ(ui, ·) | ui ∈W (fi)}.

This implies the desired result. �
We next apply the general results from § 2 and the group action from § 4.1 to the Poisson

cores of local functions and deduce some consequences.

Proposition 4.3.6.

(a) Let χ ∈W ∗. Then

P(χ) ∩ S(W�−1) = P(χ|W�−1
).

959

https://doi.org/10.1112/S0010437X23007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007030


S. J. Sierra and A. V. Petukhov

(b) Let g be W , W�−1 or W�1 and pick χ ∈ g∗. Then

dim O(χ) = GKdim S(g)/P(χ) = dim g · χ.
We alert the reader that the proof of Proposition 4.3.6 establishes notation that is also used

in the proof of Theorem 4.3.1. (This notation generalises that used in the proof of the last part
of Corollary 4.2.9.)

Proof. (a) If χ is not local, then by Theorems 3.2.1 and 3.1.1 P(χ) and P(χ|W�−1
) are the zero

ideals, respectively, of S(W ) and S(W�−1).
Thus, we may assume that χ is local. Write χ =

∑�
i=1 χi with χi ∈ Locxi and xi �= xj if i �= j;

further, assume that no χi = 0. Let n be the order of χ.
Let X := (L̃oc

�n
W�−1

)×�, let Y := (L̃oc
�n
W )×� and let U ⊆ Y be the complement of all the

diagonals Δij in Y , where for i �= j we define

Δij = {(x1, α1, . . . , x�, α�) ∈ Y |xi = xj},
where αi stands for the sequence αi0, α

i
1, . . . . That is, U gives representations of local functions

as sums of one-point local functions based at distinct points. Note that U, Y are open sub-

sets of X, and H := (D̂Loc
�n

)×� acts on X. Let ΣW : (W ∗)×� →W ∗ be the summation map,
and likewise define ΣW�−1

. Let φW : U →W ∗ be ΣW ◦ (φ�n
W )×� and let φW�−1

: X →W ∗
�−1 be

ΣW�−1
◦ (φ�n

W�−1
)×�. There is a commutative diagram

X
φW�−1

�� W ∗
� −1

U
φW

��

⊆
��

W ∗

��
(4.3.7)

where the right vertical arrow is restriction. This induces maps

k[X]

⊆
��

S(W�−1)
φ∗W�−1

��

⊆
��

k[U ] S(W ).
φ∗W

��

(4.3.8)

By Lemma 4.3.4, dimW · χ = ⊕i dimW · χi, which is dim((l̂ie
�n

)×�) · χ by Lemma 4.1.6. Let
y ∈ φ−1

W (χ). By Proposition 2.3.1, P(χ) is the full preimage under φ∗W of IU (Hy) and, likewise,
P(χ|W�−1

) is the full preimage under φ∗W�−1
of IU (Hy). By commutativity of (4.3.8), this is

P(χ) ∩ S(W�−1).
(b) If dim g · χ = ∞, then the result follows from Lemma 2.1.1. Thus, we can assume g · χ <

∞. For g = W or W�−1 this follows from the previous discussion and Proposition 2.3.1; see, in
particular, (2.3.3). The proof for g = W�1 is similar. �

We now give the proof of Theorem 4.3.1.

Proof of Theorem 4.3.1. We give the proof for the case g = W .
By definition, O(χI) = O(χII) if and only if P(χI) = P(χII). Thus, we compute the Poisson

cores of χI and χII .
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First, by changing � and switching χI and χII if necessary, we may assume that none of the
χIi are zero. Let n be the maximum of the orders of χI and of χII ; thus, both are in the image
of (Loc�n

W )×�.
Define U, V,X,H as in the proof of Proposition 4.3.6, and set up maps as in (4.3.7) and

(4.3.8). Let φ = φW . Then χI = φ(yI), χII = φ(yII) for some yI , yII ∈ U . As in the proof of
Proposition 4.3.6, P(χI) is the full preimage under φ∗ of the defining ideal of IU (HyI). Likewise,
P(χII) is the full preimage under φ∗ of the defining ideal of IU (HyII).

Note that φ factors through the dominant map U → U/S�, where S� is the symmetric group.
It is clear that if we can reorder the χIi and χIIi as described, then P(χI) = P(χII).

Suppose now that P(χI) = P(χII). Then by Proposition 2.3.1(c), there are open sets U I ⊆
HyI ∩ U and U II ⊆ HyII ∩ U such that their images in W ∗ are the same. In particular, there are

hI1, h
II
1 , . . . , h

I
� , h

II
� ∈ D̂Loc

�n
, with (hI1χ

I
1, . . . , h

I
�χ

I
� ) ∈ U and so that

∑
hIiχ

I
i −
∑
hIIi χ

II
i = 0.

Now, a set of one-point local functions with distinct base points is linearly independent. As, by
the definition of U , the base points of the one-point local functions hIiχ

I
i are distinct, the only

option is that the supports of
∑
hIiχ

I
i and

∑
hIIi χ

II
i are equal and we can reorder χII1 , . . . , χ

II
�

so that hIiχ
I
i = hIIi χ

II
i for all i. This is clearly equivalent to (4.3.2). �

Remark 4.3.9. Let g = Vir, W or W�−1 and let χ ∈ g∗. If χ is not local, then P(χ) = (0) (if
g = W or W�−1) or P(χ) = (z − χ(z)) (if g = Vir). If χ is local, then by Lemma 2.0.4(a) we may
construct P(χ) =

⋂{mν | ν ∈ O(χ)} from Theorem 4.3.1.
Further combining Corollary 4.2.11 with Theorem 4.3.1 one may, in principle, compute all the

Poisson primitive ideals of S(W ) or S(W�−1); the function F2k+1 whose fibres by Corollary 4.2.11
give the pseudo-orbits of a one-point local function of order 2k + 1 may be worked out using
Lemma 4.1.7 for any k. There is an example of this in § 2.2, although we have not given a fully
general formula.

Note also that we have not studied generators (in any sense) for the Poisson prime ideals
P(χ), and this might be an interesting subject of research.

A version of Theorem 4.3.1 holds for W�1 and W�0 with almost the same proof. We state it
as follows.

Theorem 4.3.10. Let g = W�0 or W�1. Let χI , χII ∈ g∗ be local functions. Then there are
unique local functions χIW , χ

II
W ∈W ∗ and χI[0], χ

II
[0] ∈ Loc0 such that

χI = χIW |g + χI[0], χII = χIIW |g + χII[0].

Moreover, P(χI) = P(χII) if and only if P(χIW ) = P(χIIW ) and DLoc0(χI[0]) = DLoc0(χII[0]).

The description of pseudo-orbits in Theorem 4.3.1 has several immediate applications. We
start by comparing pseudo-orbits in W ∗ and W ∗

�−1.

Corollary 4.3.11. Let χI , χII ∈W ∗ be local functions. Then

O(χI) = O(χII) ⇐⇒ O(χI |W�−1
) = O(χII |W�−1

).

Further, restriction induces a bijection

PSpecprim S(W ) → PSpecprim S(W� −1). (4.3.12)

In Corollary 5.2.14 we show that restriction also provides a bijection between Poisson prime
ideals of S(W ) and S(W�−1).
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Proof. The first statement is immediate from Theorem 4.3.1. By that result, if χ ∈W ∗
�−1 is a

local function, then there is ν ∈ O(χ) so that 0 is not in the support of ν. Thus, restriction of
local functions induces a bijection on pseudo-orbits.

By Lemma 2.0.4 there are bijections

nonzero Poisson primitive ideals of S(W ) ↔ pseudo-orbits in W ∗

↔ pseudo-orbits in W ∗
�−1 ↔ nonzero Poisson primitive ideals of S(W�−1),

where the middle bijection comes from restriction of local functions as in the first paragraph of
the proof. By Proposition 4.3.6(a) P(χ) ∩ S(W�−1) = P(χ|W�−1

). Thus, the bijection from left
to right above agrees with restriction of ideals from S(W ) to S(W�−1). �

Remark 4.3.13. Let P = P(χ) be a Poisson primitive ideal of S(W�−1), where χ ∈ (W�−1)∗ is
local. As we may apply elements of Shifts to χ without affecting P(χ), we may assume that χ
does not involve any element of Loc0. Then χ extends uniquely to a local function χ̃ on W , and
we have seen that P(χ) = P(χ̃) ∩ S(W�−1).

Let γ ∈ k and recall the definition of the map pγ of (2.2.2) and the fact, proved in Lemma 2.2.3
that ker pγ = P(χx;α,γ).

Proposition 4.3.14. The ideals ker pγ are all of the Poisson prime ideals of S(W ) of co-GK 2.

Proof. Let J(γ) = ker pγ for all γ ∈ k. Let J be a prime Poisson ideal of S(W ) with
GKdim S(W )/J = 2. By Lemma 2.0.4

J =
⋂

{P(χ) |χ ∈W ∗, evχ(J) = 0}.
Fix such χ. By Lemma 2.1.1 rkBχ, which must be even as Bχ is an alternating form, is zero
or two. The only χ ∈W ∗ with rkBχ = 0 is χ = 0; as J �= P(0) = m0 there is some ν ∈W ∗ with
evν(J) = 0 and rkBν = 2.

If J � P(ν), then 2 = GKdim S(W )/J > GKdim S(W )/P(ν), but this last is dimW · ν by
Proposition 4.3.6, which must be an even positive integer. Thus, J = P(ν) and dimW · ν = 2.

Lemma 4.3.4 implies that ν is a one-point local function, and by Theorem 4.2.1 we must
have ν = χx;α,γ for some x ∈ k×, α, γ ∈ k. Thus, J = P(ν) = J(γ). �

Remark 4.3.15. The codomain of the maps pγ of (2.2.2) is the localised Poisson–Weyl algebra
B = k[t, t−1, y] with {y, t} = 1. Define a Poisson bracket on B[s] by setting s to be Poisson
central, and define

Φ : S(W ) → B[s], f∂ �→ fy + sf ′.

As in § 2.2, it is easy to check that Φ is a Poisson map. One can show using the methods of the
proof of Proposition 4.3.14 that kerΦ is the unique prime Poisson ideal of S(W ) of co-GK 3.
This is proved in Remark 5.2.11 with a different argument, so we do not give a proof here.

Let g be a Lie algebra and let χ ∈ g∗. The closure of O(χ) is, by definition, V (P(χ)). We call
V (P(χ)) = O(χ) the orbit closure of χ. (Technically, this term should probably be ‘pseudo-orbit
closure’; we have used wording which we find more pleasant at the cost of a slight abuse of
terminology.) Note that μ is in the orbit closure of χ if and only if P(μ) ⊇ P(χ).

The orbit closure relations for one-point local functions are essentially given by
Corollary 4.2.9, but for arbitrary local functions they are quite complex. Consider the following
example, which for simplicity we give for W�−1 only.

962

https://doi.org/10.1112/S0010437X23007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007030


Poisson primes in the symmetric algebra of the Virasoro algebra

Example 4.3.16. Let k = C, let x �= y ∈ C and let a, b, c, d ∈ C with (a, b) not both zero and
likewise for (c, d). Let χ = χx;a,b + χy;c,d. We claim that Loc�1

W�−1
⊆ O(χ) and, in particular,

O(χ) contains the functions 0, χx;a,b and χy;c,d.
To see this, let γ, s ∈ C×. Consider the local function

χ(γ, s) := χs;γ/s,b + χ0;−γ/s,d ∈W ∗
�−1.

By Theorems 4.3.1 and 4.2.1, the χ(γ, s) are all in O(χ). For f ∈ k[t], we have

lim
s→0

χ(γ, s)(f∂) = lim
s→0

γ
f(s) − f(0)

s
+ bf ′(s) + df ′(0) = (γ + b+ d)f ′(0).

As Zariski closed sets are closed in the complex analytic topology,

lim
s→0

χ(γ, s) = χ0;0,γ+b+d ∈ O(χ)

for any γ. Applying Corollary 4.2.9, O(χ) contains all of Loc�1
W�−1

.
The same statement holds for arbitrary k by the Lefschetz principle.

Although arbitrary orbit closures are complicated, we are able to give a partial description
of orbit closures of general local functions in the next corollary.

Corollary 4.3.17. Let g = Vir, W , W�−1 or W�1.

(a) Let μ, χ ∈ g∗ be local functions with disjoint support and let ν be in the orbit closure of μ.
Then ν + χ is in the orbit closure of μ+ χ.

(b) Let χ be a local function. Then 0 is not in the orbit closure of χ if and only if λ(χ) = (2),
i.e. χ = χx;α,β for some β ∈ k×.

Proof. For part (a), by Theorem 4.3.1, the pseudo-orbit of μ+ χ consists of all local functions
of the form μ′ + χ′ where μ′ ∈ O(μ), χ′ ∈ O(χ) and the supports of μ′ and χ′ are disjoint. A
modification of Corollary 4.2.9 for the multipoint case implies that the orbit closure O(μ+ χ)
contains ν + χ.

For part (b), Corollary 4.2.9 gives that if λ(χ) = (2), then 0 �∈ O(χ).
Assume now that 0 �∈ O(χ). Write

χ = μ1 + · · · + μ� + ν1 + · · · + νr,

where the μi, νj are 1-point local functions supported at distinct points, the μi have order zero
or one and the νj have order nj > 1. By part (a), 0 must not be in the orbit closure of at least
one of the component 1-point local functions of χ, so � � 1 by Corollary 4.2.9.

Write μi = χxi;βi,γi and νj = χ
yj ;α

j
0,...,α

j
nj

, where αjnj �= 0. If r � 1, then let μ′i = χy1;βi,γi . As

we may move points within an orbit,

μ′1 + · · · + μ′� + ν1,

which is a 1-point local function of order n1 > 1, is in the orbit closure of μ1 + · · · + μ� + ν1. By
part (a) and the previous paragraph, then 0 is in the orbit closure of χ, a contradiction. Thus,
r = 0.

If � � 2, then, applying Example 4.3.16 and part (a) repeatedly, we have 0 ∈ O(χ). Thus,
� = 1, and by Corollary 4.2.9 χ = μ1 must have order 1. �

We now apply our results to classify maximal Poisson ideals of S(Vir).

Corollary 4.3.18. The maximal Poisson ideals of S(Vir) are the ideals (z − ζ) for ζ ∈ k×, the
ideals P(χ1;0,γ) for γ ∈ k×, and the augmentation ideal P(0).

963

https://doi.org/10.1112/S0010437X23007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007030


S. J. Sierra and A. V. Petukhov

Proof. That (z − ζ) is a maximal Poisson ideal if ζ ∈ k× is Corollary 3.3.5. If Q is any other maxi-
mal Poisson ideal, then we must have z ∈ Q; it follows from the Nullstellensatz and Theorem 3.2.1
that there is a local function χ with Q = P(χ). If λ(χ) �= (2), then by Corollary 4.3.17 we have
P(χ) ⊆ P(0), so we must have χ = 0 and Q must be the augmentation ideal P(0).

If λ(χ) = (2), then P(χ) is maximal among Poisson primitive ideals by Corollaries 4.2.9
and 4.3.17, and thus maximal among Poisson ideals. �

5. Prime Poisson ideals

In this section we apply our results on Poisson primitive ideals to the structure of arbitrary
Poisson prime ideals of S(g), where g is one of our Lie algebras of interest. After a preliminary
subsection on birational maps in our context, we show that the partition data associated to local
functions may be used to parameterise Poisson primes of S(W ) and S(W�1). This will allow us
to show that the bijection PSpecprim S(W ) → PSpecprim S(W�−1) of Corollary 4.3.11 extends to
prime Poisson ideals. We then investigate when the Poisson analogue of the Dixmier–Moeglin
equivalence holds for S(g) and, in particular, when Poisson primitive ideals are locally closed in
PSpec S(g); we show that this is almost always, but not always, the case. Finally, we answer a
question of León Sánchez and the second author [LS08] on heights of Poisson prime ideals, and
in the process show that PSpec S(W ) has the somewhat counterintuitive property that every
proper radical Poisson ideal contains a proper Poisson primitive ideal.

5.1 Birational maps
Chevalley’s fundamental result that images of algebraic maps are constructible holds for mor-
phisms of finite presentation [SP22, Theorem 10.29.10, Tag 00FE] and, thus, applies to any
homomorphism from S(g) to an affine algebra. The main result of this subsection is related to
Chevalley’s theorem, and allows us to conclude that two domains are birational, even in our
non-noetherian context.

Proposition 5.1.1. Let A, B be commutative k-algebras which are domains, and let φ : A→ B
be an injective homomorphism. Assume also that B is affine, (we make no additional assumption
on A) and that the map MSpecB → MSpecA is also injective. Then there is f ∈ A \ {0} so that
the natural map A[f−1] → B[f−1] is an isomorphism.

Before proving Proposition 5.1.1 we provide a preliminary lemma.

Lemma 5.1.2. Let A, B be commutative k-algebras which are domains, and let φ : A→ B be an
injective homomorphism. Assume also that B is affine (we make no additional assumption on A).
Let b ∈ B \ {0}. There is a ∈ A \ {0} so that if χ : A→ k is a homomorphism with χ(a) �= 0,
then there is some χ′ : B → k with χ′φ = χ and χ′(b) �= 0.

Proof. Without loss of generality A ⊆ B and φ is the inclusion. Denote by B[b−1] the localisation
of B by b. As B is affine, B[b−1] is finitely generated over A. By Chevalley’s theorem the image
of MSpecB[b−1] contains an open subset {m ∈ MSpecA | a /∈ m} of MSpecA defined by some
element a ∈ A \ {0}. This implies that a ∈ A satisfies the desired property. �
Proof of Proposition 5.1.1. As dimkA � dimkB � ℵ0 < |k|, A is a Jacobson ring and the
Nullstellensatz applies. In particular, if m ∈ MSpecA, then the natural map k → A/m is an
isomorphism.

Without loss of generality A ⊆ B and φ is the inclusion. Let Q(A) and Q(B) be the quotient
fields of A and B, respectively. Assume that Q(B) is not algebraic over Q(A). Then there exists
x ∈ B so that x is not algebraic over Q(A), i.e. the natural map A[t] → B, t �→ x is injective; we
denote the image of this map by A[x].
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Choose p ∈ A[x] \ {0} to be the element defined by Lemma 5.1.2 for A = A[x], B = B and
b = 1. Let p0 ∈ A be a nonzero coefficient of p. Then, for every m ∈ MSpecA with p0 �∈ m there
are at most finitely many x0 ∈ k such that p(x0) ∈ m. Every other x0 provides a maximal ideal
(m, x− x0) of A[x] which extends to a maximal ideal of B thanks to Lemma 5.1.2. Thus, every
such m has uncountably many preimages in MSpecB, contradicting our assumption.

Thus, we can assume that Q(B) is algebraic over Q(A). Let B be generated as a k-algebra
by b1, . . . , bk. If Q(A) = Q(B), then every bi can be written a+

i /a
−
i with a±i ∈ A \ {0}; further,

we have that A[f−1] = B[f−1] for f = a−1 · · · a−k . Thus, we can assume that Q(A) �= Q(B) and,
hence, there exists x ∈ B \Q(A).

As x is algebraic over Q(A) there are a0, a1, . . . , an ∈ A with a0 �= 0, an �= 0 such that

F (x) := a0x
0 + a1x

1 + a2x
2 + · · · + anx

n = 0

with n � 2. Let p = p+/adn with p+ ∈ A \ {0}, d ∈ Z�0 be the resultant of F . Consider m ∈
MSpecA with an, p

+ �∈ m. Then it is well-known that there are exactly n maximal ideals m′ of
A[x] with m = m′ ∩A. Pick y ∈ A[x] to be the element defined by Lemma 5.1.2 for A = A[x],
B = B and b = 1. This element y is algebraic over A and thus there are a′0, a′1, . . . ∈ A with
a′0 �= 0 such that

a′0y
0 + a′1y

1 + a′2y
2 + · · · = 0.

If m′ is a maximal ideal of A[x] such that a′0 �∈ m = m′ ∩A, then we have y /∈ m′.
Pick m ∈ MSpecA such that anp+a′0 /∈ m. Then there are at least n maximal ideals m′′ of B

such that m′′ ∩A = m. This contradicts the injectivity of MSpecB → MSpecA. �

5.2 Parameterising Poisson primes
Throughout this subsection, let g = W or W�−1. We refine Remark 4.3.3 to a parameterisa-
tion of Poisson primes of S(g); we use this to show in Corollary 5.2.14 that the bijection of
Corollary 4.3.11 extends to prime Poisson ideals.

Given a local function χ, recall the definition of the partition λ(χ) from § 3. Write λ(χ) = (mi)
and define

D(λ(χ)) := 2
∑⌊mi + 1

2

⌋
.

By Proposition 4.3.6 and Remark 4.2.12,

dim O(χ) = D(λ(χ)), (5.2.1)

and, in particular, dim O(χ) depends only on λ(χ).
Fix a partition λ = (m1 � m2 � · · · � mr), where mi ∈ Z�1, and let

V λ
g := {χ ∈ g∗ |λ(χ) = λ}.

Let

Locλg :=
r∏
i=1

Locmi−1
g ,

where recall that Locmg = {χx;α0,...,αm ∈ g∗ |αm �= 0}. There is a natural summation map Σλ
g :

Locλg → g∗ defined by Σλ
g(χ1, . . . , χr) =

∑
χi. As in the proof of Proposition 4.3.6, let

Uλg := {(χx1;α1 , . . . , χxr;αr) ∈ Locλg | the xi are all distinct}
(here αi stands for a sequence αi0, α

i
1, . . .). Note that Σλ

g(Uλg ) is precisely V λ
g , whereas Σλ

g(Locλg)
usually includes other local functions.
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Let the partition
λe := (mi |mi is even)

consist of the even parts occurring in λ (with the same multiplicity); set k := len(λe), k2 := |{i |
mi = 2}|. For any mi ∈ λe let

πi : Locmi−1
g →

{
A1 if mi > 2
A1 \ {0} if mi = 2

be the morphism Fmi−1 defined in Corollary 4.2.11. The fibres of πi are pseudo-orbits (that is,

D̂Loc
�mi−1

-orbits) in Locmi−1
g .

Let
πλg : Locλg → Ak−k2 × (A1 \ {0})k2

be the composition

Locλg
pr

�� Locλ
e

g

∏
πi

�� [A1 × · · · ] × [(A1 \ {0}) × · · · ] = Ak−k2 × (A1 \ {0})×k2 ,
where pr denotes projection.

Now, D̂Loc
�mi−1

-orbits in Locmi−1
g are nonsingular and all are of dimension 2�(mi + 1)/2�.

Further, πi is flat: any torsion-free module over k[x] or k[x, x−1] is flat. Thus, by [Har77,
Theorem III.10.2], πi is smooth, and so πλg is also smooth.

Given a partition λ = (mi) as before, we also write

λ = (n1, . . . , n1︸ ︷︷ ︸
j1

, n2, . . . , n2︸ ︷︷ ︸
j2

, . . . , n�, . . . , n�︸ ︷︷ ︸
j�

),

where n1 > n2 > · · · > n�. Note that m1 = · · · = mj1 = n1, mj1+1 = mj1+2 = · · · = mj1+j2 =
n2, etc., and r = len(λ) =

∑�
i=1 ji. The multisymmetric group Sλ := Sj1 × · · · × Sj� acts on

Locλg and on Uλg by permuting the factors. Further, Sλ also acts on Ak−k2 × (A1 \ 0)×k2 by
permutations (if ni is odd, the factor Sji acts trivially). We name the action map

μλ : Sλ × Ak−k2 × (A1 \ 0)×k2 → Ak−k2 × (A1 \ 0)×k2 (5.2.2)

because we need to refer to it later. As in Remark 4.3.3, denote the quotient [(A1)×(k−k2) × (A1 \
{0})×k2 ]/Sλ by A(λ).

Note that πλg is Sλ-equivariant. There is thus an induced map

πλg : Uλg /Sλ → A(λ).

We remark that Uλg /Sλ and A(λ) are affine. Further, A(λ) is nonsingular (in fact, isomorphic
to Ak or Ak−1 × (A1 \ {0})) because Sλ is a reflection group, see also Remark 4.3.3. The fibres
of πλg are isomorphic to fibres of the smooth morphism πλg and are thus nonsingular. Therefore,
Uλg /Sλ is also nonsingular.

The summation map Σλ
g factors through Locλg/Sλ. This induces a morphism of varieties

ψλg : Uλg /Sλ → g∗,

which is injective, as any collection of one-point functions with distinct supports is linearly
independent. The image of ψλg is precisely the set V λ

g of local functions with order partition λ.
Further note that ψλg maps the tangent space to a D̂Loc-orbit of χ ∈ g∗ at χ∗ to gψλ

g (χ) (see
Lemma 4.1.6 and 4.3.4), i.e. it satisfies the conditions of Propositions 2.1.7 and 2.3.1.
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Remark 5.2.3. We may identify V λ
g with Uλg /Sλ as a set. This construction allows us to write the

set of local functions on g as a countable union of the affine varieties Uλg /Sλ, further justifying
the statement in Remark 3.0.3 that most elements of g∗ are not local.

We abuse notation slightly, and identify LocλW , via restriction, with the subset of LocλW�−1

consisting of functions whose support does not contain 0. The diagram

W ∗ res �� W ∗
�−1

UλW /Sλ

ψλ
W

��

⊂
��

πλ
W

������������
UλW� −1

/Sλ

ψλ
W�−1

��

πλ
W�−1

������������

A(λ)

(5.2.4)

commutes, and both maps to A(λ) are surjective.

Let D̂Loc
λ

:= D̂Loc
�m1−1 × · · · × D̂Loc

�mr−1
. The group D̂Loc

λ
acts on LocλW�−1

, and there

are partial D̂Loc
λ
-actions on LocλW , on UλW , and on UλW�−1

; as usual, we speak of D̂Loc
λ
-orbits

on these varieties to mean the intersections with full orbits in LocλW�−1
. This (partial) action

does not commute with the Sλ-action. Nevertheless, it is compatible with the natural action

of Sλ on D̂Loc
λ

and together these provide an action of the semidirect product D̂Loc
λ

� Sλ.

Further, by Corollary 4.2.11 the fibres of πλg are precisely the images in Uλg /Sλ of D̂Loc
λ

�
Sλ-orbits in Uλg . (In particular, they all have dimensionD(λ).) It follows from Theorem 4.3.1 that
these fibres correspond under ψλg precisely with pseudo-orbits of local functions with partition λ.

We refer to the image in Uλ/Sλ of a D̂Loc
λ

� Sλ-orbit in Uλg as simply a D̂Loc
λ
-orbit quotient.

We abuse terminology and say a subset or subvariety of Uλ/Sλ is D̂Loc
λ
-invariant if it is a

union of D̂Loc
λ
-orbit quotients.

We can use the maps ψλg defined previously to strengthen Proposition 2.1.7 in our setting.

Proposition 5.2.5. Let g = W or g = W�−1. Let Q be a proper radical ideal of S(g) and let
Z := V (Q). Suppose also that for some λ the set V λ

g ∩ Z is (Zariski) dense in Z. Then Q is

Poisson if and only if (ψλg)−1(Z ∩ V λ
g ) is D̂Loc

λ
-invariant.

Proof. Let ψ := ψλg , let U := Uλg /Sλ, let X := ψ−1(Z) ⊆ U and let X̃ be the preimage of X in
UλW . As Z ∩ V λ is dense in Z, thus Q is the kernel of the composition

S(g)
ψ∗

�� k[U ] �� k[X] � � �� k[X̃]

and by Proposition 2.1.7, Q is Poisson if and only if gψ(x) ⊆ ψx(TxX) for all x ∈ X.
Denote by A the image of S(g) in k[X]. The map U → g∗ is injective and therefore the

map X → MSpecA is also injective. Let f ∈ A be the element given by Proposition 5.1.1. Then
the open subsets MSpec(A[f−1]) and MSpec(k[X][f−1]) of MSpec(A) and X, respectively, are
isomorphic to each other. This implies that ψx identifies the tangent spaces TxX and Tψ(x)Z for
every x ∈ MSpec(k[X][f−1]).
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Moreover, X̃ → X is finite and so by generic smoothness there are dense open affine subsets
X ′ ⊆ X, X̃ ′ ⊆ X̃ so that X̃ ′ → X ′ is étale and so identifies tangent spaces.

LetX ′′ = X ′ ∩ MSpec(k[X][f−1]) and let X̃ ′′ ⊆ X̃ be the preimage ofX ′′, which is also affine.
For every x ∈ X ′′ and every preimage x̃ ∈ X̃ ′′ of x, the map X̃ → g∗ gives an isomorphism of
the tangent spaces Tx̃X̃ and Tψ(x)Z.

Let h be the Lie algebra of D̂Loc
λ
. The proofs of Lemma 4.1.6 and Lemma 4.3.4 show that

ψx(hx) = gψ(x) for any x ∈ U . By Proposition 2.1.7 applied to the morphism X ′′ → g∗ and the
previous discussion, the ideal Q is Poisson if and only if hx ⊆ TxX̃ for all x ∈ X̃ ′′. To finish the
proof we note that the following conditions are equivalent:

(a) hx ⊆ TxX̃ for all x ∈ X̃ ′′ (that is, tangent spaces to D̂Loc
λ
-orbits of points of X̃ ′′ are tangent

to X̃);

(b) X̃ = X̃ ′′ is D̂Loc
λ
-invariant; that is, a union of D̂Loc

λ
-orbits;

(c) the defining ideal of X = X ′′ is D̂Loc
λ
-invariant. �

Let Jλg := I(V λ
g ). We immediately obtain the following.

Corollary 5.2.6. The ideal Jλg is a prime Poisson ideal.

Proof. That Jλg is Poisson is an immediate application of Proposition 5.2.5. To see that it is
prime, note that Uλg /Sλ is irreducible and that Jλg is the kernel of (ψλg)∗ : S(g) → k[Uλg /Sλ]. �

Remark 5.2.7. Recall that V λ
g ⊂ g∗ is the image of the affine variety Uλg /Sλ. Thus, by Chevalley’s

theorem V λ
g contains a nonempty open subset of V λ

g . Let U be the union of all open subsets of
V λ

g contained in V λ
g . It is surely true that U is Poisson, in the sense that the defining ideal of

V λ
g \ U is a Poisson ideal. However, we cannot prove this at this point.

We next show how to parameterise Poisson primes of S(g).

Theorem 5.2.8. Let g = W or g = W�−1.

(a) Let Q be a nonzero proper prime Poisson ideal of S(g). There is a unique λ := λ(Q) so that

V (Q) ∩ V λ
g contains a nonempty open subset of V (Q). Further, Y (Q) := πλg(ψλg)−1(V (Q))

is a (nonempty) irreducible closed subvariety of A(λ), and

GKdim S(g)/Q = dimY (Q) +D(λ(Q)).

(b) The function Q �→ (λ(Q), Y (Q)) defines a bijection

Ψg : PSpec S(g) → {(λ, Y ) |Y is an irreducible subvariety of V arλ(Q)}.
(c) If Q,Q′ are Poisson primes of S(g) with λ(Q) = λ(Q′), then Q ⊆ Q′ if and only if Y (Q) ⊇

Y (Q′).

We call the partition λ(Q) defined in Theorem 5.2.8 the generic order partition of Q, in
other words the partition of a generic orbit in the associated variety. It is easy to check that the
construction of Theorem 5.2.8(a) guarantees that a Poisson prime Q is the kernel of the map

S(g) → k[(πλg)
−1

(Y (Q))], (5.2.9)

where λ = λ(Q). This provides the explicit inverse to the map Ψg of Theorem 5.2.8(b).
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Proof. Let Q be a nonzero proper prime Poisson ideal of S(g) and let Z := V (Q). As Q is prime,
there can be at most one λ so that Z ∩ V λ

g contains a nonempty open subset of Z; it remains to
establish existence of some such λ.

By Theorem 3.0.4 d := GKdim(S(g)/Q) <∞. By (5.2.1) there are thus only finitely many
partitions λ such that dim O(χ) � d for any χ with order partition λ, and so for some λ1, . . . , λn

we have

Z ⊆ V λ1

g ∪ · · · ∪ V λn

g .

Fix i and let λ = λi. Let Q′ be a minimal prime of Q+ Jλg , which exists by Proposition 3.0.6,
and let Z ′ = V (Q′), which is an irreducible component of Z ∩ V λ

g . Let X ′ = (ψλg)−1(Z ′). By
Chevalley’s theorem V λ

g ∩ Z contains a dense subset Ui which is locally closed in Z. As
⋃
Ui = Z,

by primeness of Q some Uj has Uj = Z: in other words, Uj is open in its closure Z. Thus,
λ(Q) = λj .

Let λ := λ(Q) = λj , and let X := (ψλg)−1(Z). This is an irreducible closed subvariety of

Uλg /Sλ, and by Proposition 5.2.5 it is a union of D̂Loc
λ
-orbits. It therefore follows that Y (Q) :=

πλg(X) is closed in A(λ). This proves all but the last statement of part (a).
We now prove part (b). Fix a partition λ and let k := len(λe). Let Sλ acts as in (5.2.2).

Let Y be an irreducible closed subvariety of A(λ). Let X := (πλg)−1(Y ). As the fibres of πλg are

D̂Loc
λ
-orbit quotients and are therefore irreducible (note that D̂Loc

λ
is a connected algebraic

group), X is an irreducible D̂Loc
λ
-invariant closed subvariety of Uλg /Sλ with Y = πλg(X). Let Q

be the kernel of S(g) → k[X]; clearly Q is prime, and by Proposition 5.2.5 Q is a Poisson ideal
of S(g). Let Z := V (Q). By applying Chevalley’s theorem to the morphism ψλg : X → Z we see
that ψλg(X) contains a nonempty open subset of Z. This shows, in particular, that λ = λ(Q),
and it is clear that Y = Y (Q).

Conversely, given Q apply the procedure in the previous paragraph to λ(Q) and Y (Q); one
recovers Q, see also (5.2.9). This shows that Ψg is bijective, completing the proof of part (b).

Given a nonzero proper Poisson prime Q of S(g) let λ := λ(Q) and Y := Y (Q). Let X :=
(πλg)−1(Y ). We have seen that the fibres of πλg have dimension D(λ) and so dimX = dimY +
D(λ). It is shown in the proof of Proposition 5.2.5 that S(g) and k[X] are birational, so dimX =
GKdim S(g)/Q. This completes part (a).

For part (c), let λ = λ(Q) = λ(Q′) and let ψ = ψλg and π = πλg . Now let Z = V (Q), X =
ψ−1(Z) = ψ−1(Z ∩ V λ

g ) and Y = Y (Q) = π(X). Likewise define Z ′ = V (Q′), X ′ = ψ−1(Z ′) and
Y ′ = Y (Q′).

By the Nullstellensatz,

Q ⊆ Q′ ⇐⇒ Z ⊇ Z ′.

Thus, if Q ⊆ Q′ we have Z ∩ V λ
g ⊇ Z ′ ∩ V λ

g and we see immediately that Y ⊇ Y ′. Conversely,
if Y ⊇ Y ′, then ψ(X) = Z ∩ V λ

g ⊇ ψ(X ′) = Z ′ ∩ V λ
g . The proof of part (b) showed that Z =

Z ∩ V λ
g , which clearly contains Z ′ ∩ V λ

g = Z ′. �

It follows from Theorem 5.2.8 that PSpec(W ) and PSpec(W�−1) are partitioned into count-
ably many affine strata, corresponding to partitions. Given a partition λ, the corresponding
stratum consists of prime Poisson ideals Q with λ(Q) = λ and is homeomorphic to the affine
variety A(λ), an open subset of a finite-dimensional affine space. However, we do not know how to
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tell in terms of the parameterisation Q↔ (λ, Y ) when Q ⊆ Q′ for arbitrary Q,Q′. In fact, we can-
not answer this question completely even when Q,Q′ are Poisson primitive; see Corollary 4.3.17
and Example 4.3.16 for some discussion of the complexities.

Corollary 5.2.10 (Cf. [PS20, Lemma 2.9]). Let g = W or g = W�−1 and let Q be a prime
Poisson ideal of S(g). Then there exists f ∈ S(g) \Q such that (S(g)/Q)[f−1] is a finitely
generated Poisson algebra.

Proof. It is clear that (S(g)/Q)[f−1] is a Poisson algebra for every such f and, thus, we need to
choose f in such a way that (S(g)/Q)[f−1] is finitely generated. Set A = S(g)/Q, λ = λ(Q) and
B = k[(πλg)

−1
(Y (Q))]; note that B is finitely generated as it is easy to check that (πλg)

−1
(Y (Q))

is affine. By (5.2.9) we have an injective map A→ B and the induced map MSpecB → MSpecA
is injective as well because it is a restriction of an injective map Uλg /Sλ → g∗. This together with
Proposition 5.1.1 guarantees the existence of f . �

Remark 5.2.11. Let Q be a prime Poisson ideal of S(W ) of co-GK 3. By Theorem 5.2.8 we have

3 = dimY (Q) +D(λ(Q)),

and, recalling that D(λ(Q)) is even by definition, we must have dimY (Q) = 1 and D(λ(Q)) = 2.
(The case dimY (Q) = 3, D(λ(Q)) = 0 cannot occur.) Thus, λ(Q) = (2) and A(λ) = A1 \ {0} =
Y (Q).

Now, if χ ∈W ∗, then λ(χ) = (2) if and only if χ = χx;α,γ for some x, γ ∈ k∗, α ∈ k, and so

Q =
⋂

x,γ∈k∗
α∈k

P(χx;α,γ) =
⋂
γ

ker pγ ,

using Lemma 2.2.3. However, from the definition of pγ in (2.2.2) we see that
⋂

ker pγ is precisely
the kernel of the map Φ from Remark 4.3.15. Thus, ker Φ is the only prime Poisson ideal of S(W )
of co-GK 3.

We thank the anonymous referee for drawing our attention to this fact.

Remark 5.2.12. Fix a partition λ. Taking Y = A(λ) in Theorem 5.2.8 we see that the pair (λ, Y )
corresponds to the ideal Jλg . This is another way to see that Jλg is prime.

Remark 5.2.13. By Corollary 3.3.6 any noncentrally generated prime Poisson ideal of S(Vir)
strictly contains (z) and thus corresponds to a nontrivial prime Poisson ideal of S(W ) as given in
Theorem 5.2.8. On the other hand, centrally generated prime Poisson ideals of course correspond
to prime ideals of k[z]. Thus, PSpec S(Vir) is also partitioned into countably many strata, each
homeomorphic either to a finite-dimensional affine space or to some Ak × (A1 \ {0}).

We now prove that restriction from S(W ) to S(W�−1) induces a bijection on arbitrary prime
Poisson ideals, not just Poisson primitive ideals. We conjecture that this bijection is, in fact,
a homeomorphism between PSpecprim(S(W )) and PSpecprim(S(W�−1)), but at this point we
cannot prove it.

Corollary 5.2.14. Restriction induces a bijection between prime Poisson S(W ) and prime
Poisson ideals of S(W�−1), and a bijection between irreducible closed subsets of

PSpecprim S(W�−1) and of PSpecprim S(W ).
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Proof. We must show that restriction gives a bijection

res : {prime Poisson ideals of S(W )} → {prime Poisson ideals of S(W�−1)}.
Certainly, if J is a prime Poisson ideal of S(W ), then J is closed under all {v,−} for v ∈W�−1

and so J ∩ S(W�−1) is a prime Poisson ideal. Thus, res is well-defined.
Let P ∈ PSpec S(W ). Let (λ, Y ) := ΨW (P ) and let Q := Ψ−1

W�−1
(λ, Y ). We claim that Q =

res(P ).
For each y ∈ Y choose a representative χy ∈W ∗ lying in the pseudo-orbit corresponding via

πλW to y. Then Theorem 5.2.8 gives that

P = Ψ−1
W (λ, Y ) =

⋂
{mχ |χ ∈W ∗, λ(χ) = λ, πλW (χ) ∈ Y }.

By Lemma 2.0.4, this is
⋂
y∈Y P(χy). Likewise, Q is equal to

Ψ−1
W�−1

(λ, Y ) =
⋂

{mχ |χ ∈W ∗
�−1, λ(χ) = λ, πλW�−1

(χ) ∈ Y } =
⋂
y∈Y

P(χy|W�−1
).

By Proposition 4.3.6(a), this is⋂
y∈Y

P(χy) ∩ S(W�−1) = P ∩ S(W�−1) = res(P ).

As res acts on nonzero Poisson prime ideals as the composition of the bijections ΨW and Ψ−1
W�−1

,
it is a bijection. �

5.3 The PDME
We next consider which Poisson prime ideals satisfy the PDME. This is the Poisson version
of the equivalent conditions for primitive ideals in enveloping algebras of finite-dimensional Lie
algebras, which are due to Dixmier and Moeglin. We describe the conditions here.

Let Q be a Poisson prime ideal in a Poisson algebra A, which we assume to be a domain.
Then Q is Poisson locally closed if it is locally closed in the Zariski topology on PSpec(A). We
say Q is Poisson rational if the Poisson centre of the field of fractions of A/Q is algebraic over k.
We say the PDME holds for A if for any prime Poisson ideal Q of A, the conditions

Q is Poisson locally closed,
Q is Poisson primitive,
Q is Poisson rational,

are equivalent. If g is a finite-dimensional Lie algebra, then the PDME holds for S(g) (see [LL19,
Theorem 2]).

On the other hand, the next result shows that the PDME fails for S(Vir), S(W ) and S(W�−1).
However, it almost holds: for all these algebras, there is only one Poisson prime for which the
PDME fails.

Theorem 5.3.1. The PDME holds for all prime Poisson ideals of S(Vir) except for (z): that is,
if Q �= (z) is a prime Poisson ideal of S(Vir), then Q is locally closed in the Poisson spectrum if
and only if Q is Poisson primitive, if and only if Q is Poisson rational. However, (z) is Poisson
primitive and Poisson rational but not Poisson locally closed. Thus, the PDME for S(W ) fails
but holds for all prime Poisson ideals except for (0). Likewise, the PDME for S(W�−1) fails but
holds for all prime Poisson ideals except for (0).

Remark 5.3.2. By Corollary 3.3.5, the Poisson spectrum of S(Vir)[z−1], which is in natural bijec-
tion with the set of prime Poisson ideals of S(Vir) that do not contain z, consists of (0) and
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the ideals (z − λ) for λ ∈ k∗: in other words, PSpec(S(Vir)[z−1]) ∼= A1 \ {0}. Therefore, the most
interesting structure of S(Vir) is concentrated above the ideal (z), which Theorem 5.3.1 shows
to be pathological in some sense.

To prove Theorem 5.3.1, we need notation for the Zariski topology on PSpec S(g). If A is
a Poisson algebra and N is a Poisson ideal of A, we denote the corresponding closed subset of
PSpecA by

VP (N) := {P ∈ PSpecA |N ⊆ P}.
We caution the reader that although V (N) ⊆ MSpecA consists of maximal ideals, VP (N) ⊆
PSpecA consists of prime (Poisson) ideals.

Before proving Theorem 5.3.1, we note that the standard equivalent condition for a Poisson
prime to be locally closed also holds in this infinite-dimensional setting.

Lemma 5.3.3. Let A be a (possibly non-noetherian) Poisson algebra, and let Q be a prime
Poisson ideal of A. Then Q is locally closed in PSpecA if and only if there is some f ∈ A \Q so
that (A/Q)[f−1] is Poisson simple.

We leave the proof to the reader.

Proof of Theorem 5.3.1. Let g be any countable-dimensional Lie algebra. By [LS08,
Theorem 6.3], for prime Poisson ideals of S(g), Poisson locally closed implies Poisson primi-
tive and Poisson primitive is equivalent to Poisson rational. Thus, to prove the theorem for
S(Vir) and S(W ), it suffices to prove the following.

(a) Let Q be a prime Poisson ideal of S(Vir) with Q �= (z). If Q is Poisson primitive, then Q is
Poisson locally closed.

(b) The ideal (z) is Poisson primitive but not Poisson locally closed.

We first prove part (b). Let ν ∈ Vir∗ be any nonlocal function with ν(z) = 0 (for example, we
can take ν to induce the nonlocal function κ on W given in Remark 3.0.3). By Theorem 3.3.1,
P(ν) = (z) and so (z) is Poisson primitive.

To prove that (z) is not Poisson locally closed, by Lemma 5.3.3 it is enough to prove that
S(W )[f−1] is not Poisson simple for any f ∈ S(W ) \ {0}. Suppose that S(W )[f−1] is Poisson
simple. Then f is contained in all proper Poisson ideals of S(W ). Let χ ∈W ∗ be a local function.
The Poisson core P(χ) of χ is nontrivial, so f ∈ P(χ) ⊆ mχ. In other words, for any local function
χ ∈W ∗, we have evχ(f) = 0, which is ridiculous.

We now prove part (a). Let χ ∈ Vir∗ with P(χ) �= (z). We show that P(χ) is Poisson locally
closed.

The ideals (z − ζ) with ζ �= 0 are maximal in PSpec S(Vir) by Corollary 3.3.5 and are, thus,
closed points of PSpec S(Vir). Thus, we may assume that P(χ) �= (z − χ(z)). By Theorem 3.3.1
χ is therefore local and d := dimVir/Virχ <∞.

Let I(d− 1) be the Poisson ideal of S(Vir) defined in Lemma 3.1.4. We claim that

VP (P(χ)) \ VP (I(d− 1)) = {P(χ)}
so P(χ) is Poisson locally closed.

First, by (3.1.5) I(d− 1) �⊆ mχ so P(χ) �∈ VP (I(d− 1)). By Proposition 4.3.6 d =
GKdim S(Vir)/P(χ). Thus, if ν ∈ O(χ) \ O(χ), we have

d− 1 � GKdim S(Vir)/P(ν) = dimVir · ν,
where we have used Proposition 4.3.6 again for the last equality. Thus, I(d− 1) ⊆ mν by (3.1.5),
so I(d− 1) ⊆ P(ν). It follows that if P is a Poisson prime ideal of S(Vir) with P � P(χ),
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then writing

P =
⋂

{P(ν) |mν ⊇ P},
we have P ⊇ I(d− 1), establishing the claim.

The proof for S(W�−1) is almost identical. �
We remark that we have used relatively few pieces of structure theory of Vir, W and W�−1

in the proof of Theorem 5.3.1 (the inputs are essentially that dim O(χ) = dim g · χ and that
dim g · χ <∞ for all χ in which we are interested). Thus, similar results may hold for a wider
class of Lie algebras.

5.4 Radical Poisson ideals contain Poisson primitive ideals
Let g = W or W�−1. From the bijection in Theorem 5.2.8 it is tempting to think of Poisson
primitive ideals of S(g) as analogous to closed points: by that result, a prime Poisson ideal Q
is Poisson primitive if and only if Y (Q) is a single point. Note, however, that Theorem 5.3.1
also tells how to distinguish Poisson primitive ideals in PSpec S(W ), and we saw there that, in
general, they are only locally closed. The next result shows how far most of the Poisson primitive
ideals are from being maximal in PSpec S(g); see also Corollary 4.3.18.

Proposition 5.4.1. Let g = W , W�−1 or W�1 and let I be a nonzero radical Poisson ideal of
S(g). Then there is some local function ν ∈ g∗ with P(ν) ⊆ I.

If I is prime and g = W or W�−1 this may be deduced from the bijection Ψ of Subsection 5.2.
We provide a direct proof, however.

Proof. Thanks to Theorem 3.0.4 we have that GKdim(S(g)/I) <∞; pick d ∈ Z�1 with 2d >
GKdim(S(g)/I). By Lemma 2.0.4 I is an intersection of a family of primitive ideals P(μ), and

GKdim(S(g)/P(μ)) � GKdim(S(g)/I)

for each μ with mμ ⊇ I. We show that there exists ν = νd ∈ g∗ such that if μ ∈ g∗ with

GKdim(S(g)/P(μ)) < 2d,

then P(ν) ⊆ P(μ).
Pick μ ∈ g∗ with dim g · μ = GKdim(S(g)/P(μ)) < 2d, see Proposition 4.3.6(b). Then μ is

local and, thus, is a sum of several (say �) nonzero one-point local functions μi ∈ g∗ with distinct
supports xi. Recall that dim g · μ =

∑�
i=1 dim g · μi by Lemma 4.3.4 and therefore dim g · μi <

2d together with � < 2d. Pick n ∈ Z�0 such that n � 2d and μi ∈ Loc�n
xi

for all i. Thanks to
Lemmata 4.1.3 and 4.1.6 we have dimDLoc�n

xi
μi < 2d for all i.

Let χ̃i := χxi;0, 0, . . . , 0,︸ ︷︷ ︸
2d times

1. Thanks to Theorem 4.2.1 we have dimDLoc�n
xi
χ̃i = 2d+ 1 >

dimDLoc�n
xi
μi. This together with Corollary 4.2.9 implies that P(χ̃i) ⊆ P(χi).

By Corollary 4.3.17, P(
∑�

i=1 χ̃i) ⊆ P(μ).
Set χ̃i′ := χi;0, 0, . . . , 0,︸ ︷︷ ︸

2d times

1. By Theorem 4.3.1, P(
∑�

i=1 χ̃i) = P(
∑�

i=1 χ̃i
′) and hence, applying

Corollary 4.3.17, ν =
∑2d

i=1 χ̃i
′ satisfies the desired properties.

By Lemma 2.0.4, P(ν) ⊆ I. �
The statement of the above corollary can be rephrased as follows: every proper algebraic

collection of pseudo-orbits is (strictly) contained in the closure of a single finite-dimensional
pseudo-orbit. If dim g <∞, this means that g∗ contains a dense coadjoint orbit; such Lie algebras

973

https://doi.org/10.1112/S0010437X23007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007030


S. J. Sierra and A. V. Petukhov

are called Frobenius Lie algebras and there are very few of them. For infinite-dimensional Lie
algebras this statement seems quite counterintuitive. We expect that only a few Lie algebras
satisfy it.

The next corollary answers Question 6.8 of [LS08].

Corollary 5.4.2. Let g = W , W�−1 or W�1. Then S(g) has no nonzero prime Poisson ideals
of finite height.

Proof. For d ∈ Z�0 let νd ∈ g∗ be the local function defined in the proof of Proposition 5.4.1.
The crucial property of νd, established in that proof, is that

if GKdim(S(g)/P(μ)) < 2d, then P(νd) ⊆ P(μ). (5.4.3)

Let Q be a nonzero Poisson prime ideal of S(g) and let d1 := GKdim S(g)/Q, which is finite by
Theorem 3.0.4. By the proof of Proposition 5.4.1, P(νd1) ⊆ Q. Then define di by induction: let
di+1 := GKdim(S(g)/P(νdi)) + 2. By (5.4.3), each P(νdi+1) � P(νdi). �

By Corollary 3.3.5, if ζ ∈ k×, then (0) is the only prime Poisson ideal of S(Vir) which is
contained in (z − ζ); thus, the maximal Poisson ideal (z − ζ) has height 1 as a prime Poisson
ideal.

6. Subalgebras of finite codimension

In this section we sharpen earlier results to classify subalgebras of Vir of small codimension.
By Proposition 3.3.3 we know any such subalgebra contains z, so we may reduce to considering
the corresponding subalgebra of W ; by Proposition 3.2.7 this contains some W (f) with f �= 0.
We refine these results and provide more precise statements on subalgebras of Vir and of W of
codimensions one, two and three.

Throughout this section we assume that k is a subalgebra of W of finite codimension. Let
fk ∈ k[t] be the lowest-degree monic polynomial with k ⊃W (f), which exists by Proposition 3.2.7.
Proposition 3.2.7, in fact, gives us that

W (fk) ⊆ k ⊆W (rad(fk)), (6.0.1)

where recall that rad(f) =
∏{(t− x) | f(x) = 0}. Thus,

codimW k � deg rad(fk) = |{x ∈ k× | fk(x) = 0}|. (6.0.2)

By the Euclidean algorithm, W (h) ⊆ k if and only if fk | h.
We immediately obtain a classification of subalgebras of codimension one, a more conceptual

proof of a result originally due to Ondrus and Wiesner [OW18, Proposition 2.3].

Corollary 6.0.3. Let h be a subalgebra of Vir of codimension one. Then there is x ∈ k× so
that

h = (t− x)k[t, t−1]∂ ⊕ kz.

Proof. As remarked previously, by Proposition 3.3.3 z ∈ h so it suffices to prove that k := h/(z),
which is a subalgebra of W of codimension one, is equal to some W (t− x). By (6.0.2) fk must be
equal to some (t− x)a and by (6.0.1) k ⊆W (t− x). However, W (t− x) already has codimension
one. �

The problem of classifying general cofinite-dimensional subalgebras of Vir is equivalent, by
Proposition 3.3.3 and (6.0.1), to the problem of classifying subalgebras of an arbitrary Lie
algebra of the form W (rad(f))/W (f); note that W (f) is a Lie ideal of W (rad(f)) and that
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W (rad(f))/W (f) is finite-dimensional and nilpotent. In §§ 6.2 and 6.3 we give a complete clas-
sification of Lie subalgebras k ⊆W of codimension two and three, illustrating the complexity of
the problem.

6.1 Notation and concepts
We begin by establishing some needed notation. We call the full list of subalgebras of W of
codimension one the spectrum of W . Corollary 6.0.3 implies that every such subalgebra is of the
form W (t− x) for an appropriate x ∈ k× and, thus, we can identify the spectrum of W with
k×. Pick a subalgebra k of W of finite codimension. Denote by supp(k) the list of x ∈ k× so that
k ⊆W (t− x). By (6.0.1) supp(k) is nonempty and finite. The picture is parallel to that of ideals
in a commutative k-algebra, where subalgebras of codimension one (maximal subalgebras) are
the natural analogues of ideals of codimension one (maximal ideals).

It will be useful below to carry out a more detailed analysis of subalgebras with | supp(k)| = 1.
We establish notation for various invariants of such k.

Notation 6.1.1. Let k be a finite-codimension subalgebra of W with | supp(k)| = 1. We define the
following invariants of k.

Let d := d(k) := codimW k. As supp(k) = {x} for some x ∈ k× we have fk = (t− x)a for some
a � d. Let a(k) := a. If a = d, then k = W ((t− x)d). By the definition of fk, if a �= d, then

(t− x)a−1∂ �∈ k. (6.1.2)

Assume that a �= d. Set t̃ := t− x. Let f1, f2, . . . , fa−d be elements of k[t, t−1] so that the
images of the fi∂ give a basis for k/W (f). We may write each fi as t̃niki where ki(x) = 1. By
cancelling leading terms in the Taylor expansion of fi around t̃ = 0 we may assume that

1 � n1 < n2 < · · · < na−d < a− 1,

where we used (6.1.2) for the last inequality. Write {1, . . . , a− 1} \ {n1, . . . , na−d} =
{g1, . . . , gd−1} where g1 < g2 < · · · . We say that

ldeg(k) := {n1 − 1, . . . , na−d − 1}
are the leading degrees of k. We say that gaps(k) := {g1 − 1, . . . , gd − 1} are gaps of k.

Note that we do not allow gaps(k) = {0, . . . , a− 2} as this would mean that ldeg(k) = ∅,
contradicting the assumption that a(k) �= d(k).

Lemma 6.1.3.

(a) Let k satisfy | supp(k)| = 1 with a := a(k) > d := d(k). Pick 1 � i �= j � a− d. Then either
(ni − 1) + (nj − 1) � (a− 1) or (ni − 1) + (nj − 1) ∈ ldeg(k).

(b) Let S = {n1, . . . , n�} be a subset of {1, . . . , a− 2} satisfying the conclusion of part (a). Then
there exists a subalgebra k̃ of W with a(k̃) = a and ldeg(k̃) = S.

Proof. For part (a), consider

f̃i,j∂ := [fi∂, fj∂] = [t̃niki∂, t̃
njkj∂] = (j − i)t̃ni+nj−1kikj + t̃ni+nj (kik′j − k′ikj) ∈ k.

It is easy to verify that ki,j = f̃i,j/t̃
ni+nj−1 ∈ k[t, t−1] and ki,j(x) �= 0. This implies part (a).

For part (b), it is clear that the space k̃ defined as the span of W (t̃a) and t̃i∂ with i ∈ S is a
Lie subalgebra of W . �

The reason for subtracting 1 in the definition of the leading degrees of k is that Lemma 6.1.3
shows that ldeg(k) has the structure of a partial semigroup under addition.

We deduce from Lemma 6.1.3 the following fact.
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Table 1. Subalgebras of W of codimension two.

Code gaps(k) fk Additional generators

W ((t− x)(t− y)) – (t− x)(t− y) –

W 2;1
x;α 1 (t− x)3 (t− x)∂ + α(t− x)2∂

W 2;2
x;α 2 (t− x)4 (t− x)∂ + α(t− x)3∂,

(t− x)2∂

Lemma 6.1.4. Let k satisfy | supp(k)| = 1 with a := a(k) > d := d(k). If g1 = 1, then gi � 2i− 1
for all i, 1 � i � d− 1. If g1 �= 1, then gi � 2i+ 1 for all i, 1 � i � d.

Proof. First assume that g1 = 1. Next, assume to the contrary that gi = 2i− 1 + δ with δ > 0.
Consider the list of pairs

(2, 2i− 2 + δ), (3, 2i− 3 + δ), . . . , (i, i+ δ). (6.1.5)

For each pair (p, q) in (6.1.5) we have p+ q − 1 = gi; further, Lemma 6.1.3 implies that either
p− 1 or q − 1 belongs to gaps(k) for each pair (p, q) from (6.1.5), it must be in {g2, . . . , gi−1} as
g1 = 1 < p, q. There are i− 1 pairs in (6.1.5) but only i− 2 gaps from g2 to gi−1. This contra-
diction completes the case g1 = 1. In the case g1 > 1 we have to do the same thing with a minor
modification: we have to add g1 to the list {g2, . . . , gi−1}. �
Remark 6.1.6. Note that gd = a− 1 � 2d+ 1 and, hence, one can enumerate all the pairs (S, a)
satisfying the conclusion of condition (a) of Lemma 6.1.3 for a given codimension d. We believe
that such pairs (S, a) are in bijection with irreducible components of the moduli space of
subalgebras k of codimension d with | supp(k)| = 1.

6.2 Subalgebras of codimension two
The goal of this subsection is to show that all subalgebras of W of codimension two are listed in
Table 1.

Here x, y, α are parameters taking values in k with x, y �= 0.
The proof consists of the following two statements.

Proposition 6.2.1.

(a) If codimW k = 2, then | supp(k)| ∈ {1, 2}.
(b) If | supp(k)| = 2, then k = W ((t− x)(t− y)) and supp(k) = {x, y} for some x �= y ∈ k×.

Proposition 6.2.2.

(a) If codimW k = 2 and | supp(k)| = 1 (so supp(k) = {x} for some x ∈ k×), then either k =
W ((t− x)2) or gaps(k) is {1} or {2}.

(b) If gaps(k) = {1}, then k = W 2;1
x;α for a unique α ∈ k.

(c) If gaps(k) = {2}, then k = W 2;2
x;α for a unique α ∈ k.

Proof of Proposition 6.2.1. Theorem 3.2.7 implies | supp(k)| � 1, and (6.0.2) implies that
| supp(k)| � 2. This proves part (a).

Assume supp(k) = {x, y} for some distinct x, y ∈ k×. We have k ⊆W ((t− x)(t− y)) and

codimW W ((t− x)(t− y)) = codimW k = 2.

Hence, k = W ((t− x)(t− y)) and part (b) is complete. �
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Proof of Proposition 6.2.2. We may assume that k �= W ((t− x)2). Adopt the terminology of
Notation 6.1.1. We have | gaps(k)| = codim(k) − 1 and, hence, | gaps(k)| = {g1 − 1} for a cer-
tain positive integer g1. Note that g1 = a(k) − 1 by (6.1.2). Thanks to Lemma 6.1.3 we have
g1 � 3. This proves part (a).

Note that g1 �= 1 as by convention gaps(k) cannot be equal to {0, . . . , a− 2}. Assume g1 = 2,
so a(k) = 3. Recall that t̃ = t− x. Let f1 = t̃k1 be as in Notation 6.1.1; as a(k) − d(k) = 1, the
image of f1∂ in k/W (t̃3) provides a generator of this one-dimensional vector space. We can assume
that f1 is monic in t̃ and contains no terms in t̃ of degree three or more. Thus, f1 = t̃+ αt̃2 for
some α ∈ k and k = W 2;1

x;α. Further, α is unique as dim k/W (t̃3) = 1.
Assume g1 = 3, so a(k) = 4. Let f1 = t̃k1, f2 = t̃2k2 ∈ k[t] = k[t̃] be as in Notation 6.1.1, so the

images of f1∂, f2∂ in k/W ((t− x)3) give a basis. We can assume that f1, f2 contain no terms in t̃ of
degree four or more and f1 contains no terms in t̃ of degree two. Thus, f1 = t̃+ αt̃3, f2 = t̃2 + βt̃3

for some α, β ∈ k. We have

k � [f1∂, f2∂] = t̃2∂ + 2βt̃3∂ mod W (t̃4).

Hence, [f1∂, f2∂] = f2∂ modulo W (t̃4). This implies β = 0 and, therefore, k = W 2;2
x;α. Again α is

unique. �
Remark 6.2.3. Similar proofs give a classification of subalgebras of W�−1 of codimension two:
these are either of the form W�−1((t− x)(t− y)) or may be written (W�−1)

2;1
x;α or (W�−1)

2;2
x;α,

where these last two are defined similarly to the analogous subalgebras of W . (Here, of course,
we allow x, y to be zero.) These subalgebras are all deformations of W�−1(t2) = W�1.

Deformations of W�1 are classified in [Fia83] (see also [FF97]). These papers show that up
to isomorphism there are three such deformations, denoted in [Fia83] by L(1)

1 , L(2)
1 , L(3)

1 . It can
be shown that

L
(1)
1

∼= W (t(t− y)), L
(2)
1

∼= (W�−1)
2;1
0;α, L

(3)
1

∼= (W�−1)
2;2
0;α

for appropriate y, α. We thank Lucas Buzaglo for explaining this to us.

6.3 Subalgebras of codimension three
It can also be shown that all subalgebras of W of codimension three are listed in Table 2. Because
the methods are similar to those in § 6.2 we omit the proof.

The notation here is as follows:

• k is given in the final column as either an intersection of two explicitly given subalgebras or
is spanned by W (fk) and a few more explicit generators;

• α, β are parameters taking arbitrary values in k for all cases but W 3A
x,y;α,β (for this case the

required restrictions on α, β are given in the table);
• x, y are parameters taking arbitrary values in k× except when restrictions are given in the

table.

It is easy to verify that a subalgebra k of W of codimension three belongs to only one type
and, moreover, the parameters defining k are unique if k �= W 3A

x,y;α,β and unique up to scaling
(α, β) → (λα, λβ) in the case k = W 3A

x,y;α,β .

Remark 6.3.1. (1) Recall the analogy between subalgebras of W of codimension one and max-
imal ideals. It is natural to ask whether or not an analogue of the Lasker–Noether primary
decomposition theorem holds in this setting. However, this statement fails as we can easily see
that the Lie algebra W 3A

x,y;α,β is not an intersection of subalgebras kx and ky with supp(kx) = {x}
and supp(ky) = {y}.
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Table 2. Subalgebras of W of codimension three.

Code gaps(k) fk Additional generators or description

W (fk) – (t− x)(t− y)(t− z) –

W 3A
x,y;α,β – (t− x)2(t− y)2 (t− x)(t− y)(αt+ β)∂,

αx+ β, αy + β �= 0, x �= y

W 3B1
x,y;α – (t− x)3(t− y) W 2;1

x;α ∩W (t− y),
x �= y

W 3B2
x,y;α – (t− x)4(t− y) W 2;2

x;α ∩W (t− y),
x �= y

W 3C1
x;α 0, 2 (t− x)4 (t− x)2∂ + α(t− x)3∂

W 3C2
x;α,β 1, 2 (t− x)4 (t− x)∂ + α(t− x)2∂ + β(t− x)3∂

W 3C3
x;α,β 1, 3 (t− x)5 (t− x)∂ + α(t− x)2∂ + β(t− x)4∂,

(t− x)3∂ − α(t− x)4∂

W 3C4
x;α,β 1, 4 (t− x)6 (t− x)∂ + α(t− x)2∂ + β(t− x)5∂,

(t− x)3∂ − α2(t− x)5∂,
(t− x)4∂ − 2α(t− x)5∂

W 3C5
x;α,β 2, 3 (t− x)5 (t− x)∂ + α(t− x)3∂ + β(t− x)4∂,

(t− x)2∂ +
α

2
(t− x)4∂

(2) Recall that every subalgebra k of finite codimension in W lies between W (fk) and W (rad(fk)).
One can construct a sequence of polynomials

h0 = radfk, h1, h2, . . . , hs = fk

with deg hi+1 = deg hi + 1 and hi | hi+1 and consider the filtration of W (radfk) by the Lie ideals
W (hi). The associated graded algebra

⊕i�0([W (hi) ∩ k]/[W (hi+1) ∩ k])

is isomorphic to a graded algebra k
˜

with

W (h0) ⊇ k
˜
⊇W (fk), codimW k = codimW k

˜
and fk = fk

˜
.

The subalgebras k
˜

can be described in purely combinatorial terms and, thus, they give a col-

lection of discrete invariants for k. This generalises the notation of gaps and leading degrees for
subalgebras with one-point support.

6.4 Some general comments on finite codimension subalgebras of W
The lattice of subalgebras k with supp(k) = {x} and a(k) � a can be naturally identified with
the subalgebras of

W (t− x)/W ((t− x)a)) ∼= W (t)/W (ta);

in particular, the isomorphism class of this lattice is independent of x.
A similar result holds true in a greater generality. Pick s � 0, a � 1 and distinct x1, . . . , xs ∈

k×; set h := (t− x1) · · · (t− xs). Consider subalgebras k satisfying W (h) ⊃ k ⊃W (ha). It is clear
that W (ha) is a Lie ideal of W (h) and the quotient W (h)/W (ha) is a finite-dimensional solvable
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Lie algebra. A version of the Chinese remainder theorem implies that

W (h)/W (ha) ∼= ⊕iW (t− xi)/W ((t− xi)a) ∼= [W (t)/W (ta)]⊕s. (6.4.1)

In particular, the isomorphism class of W (h)/W (ha) depends only on a and s but not on the
particular choice of the xi. This immediately gives the following corollaries.

Corollary 6.4.2. Let k be a subalgebra of finite codimension of g = W , W�−1, W�1 or Vir.
Then there are subalgebras k+, k− with

k− ⊆ k ⊆ k+ and codimg(k−) + 1 = codimg(k) = codimg(k+) − 1.

Proof. A similar statement is well-known for subalgebras of solvable Lie algebras so (6.4.1)
implies the desired result if k �= W (fk). If k = W (fk) the result follows from a similar fact on
ideals in k[t, t−1]. �
Corollary 6.4.3. The lattices of subalgebras of finite codimension of Vir, of W and of W�−1

are all isomorphic.

Proof. Lemma 3.3.3 implies that the lattices of subalgebras of finite codimension are isomorphic
for W and Vir; hence, we left to show that the lattices are isomorphic for W and W�−1.

Theorem 3.2.7 implies that the lattices of subalgebras of finite codimension for both W and
W�−1 are direct limits of the sublattices of subalgebras k containing W ((t− x1)a · · · (t− xs)a)
for all tuples (a;x1, . . . , xs); the only difference between W and W�−1 here is that in the first
case xi �= 0. These lattices are isomorphic for W and W�−1 and the embeddings between them
are the same for W and W�−1 (they essentially depend only on the integer-valued parameters s
and a and on the cardinality of k). �

7. Implications of our results for U(g)

In this final section, we shift, for the first time in this paper, to considering the universal envelop-
ing algebra U(g) of one of our Lie algebras of interest. We apply a version of the orbit method to
relate the Poisson primitive ideals ker pγ = P(χx;α,γ) of S(g) to primitive ideals of U(W ) obtained
as kernels of maps to the (localised) Weyl algebra. We end with some conjectures about ideals
in U(Vir), U(W ), and U(W�−1).

7.1 Constructing primitive ideals through the orbit method
Kirillov’s orbit method for nilpotent and solvable Lie algebras attaches to χ ∈ g∗ the annihilator
in U(g) of the module induced from a polarisation of χ and the induced character. We apply the
same construction to g = W and χ = χx;α,γ . We denote the corresponding induced W -modules
by Mx;γ .

A description of the annihilators of Mx,γ is given in Proposition 7.1.5. The main result here
is that

AnnU(W )Mx;γ

depends only on γ; thanks to Theorem 4.2.1 (or Lemma 2.2.3) the same holds for P(χx;α;γ). This
shows that the constructions of Kirillov’s orbit method give rise to a map from a certain class of
Poisson primitive ideals of S(W ) to a certain class of primitive ideals of U(W ), which are known
in the literature [CM07, SW16] as kernels of maps to the localised Weyl algebra. We believe this
map extends to a surjection from Poisson primitive ideals of S(g) to primitive ideals of U(g); this
is the subject of ongoing research.

Throughout this section, we write the localised Weyl algebra as A = k[t, t−1, ∂], with ∂t =
t∂ + 1.
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We first describe a polarisation for χx;α,γ . Let x, α, γ ∈ k with x �= 0, (α, γ) �= (0, 0) and let
χ = χx;α,γ . Recall the computation of Wχ in Lemma 2.2.1, and consider the Lie subalgebra
W (t− x) of W , which contains Wχ. We have

dimW/Wχ = 2 =⇒ W (t− x) = k(t− x)∂ ⊕Wχ.

As Bχ((t− x)∂, (t− x)∂) = 0, thusW (t− x) is a totally isotropic subspace of (W,Bχ); by dimen-
sion count it is maximal totally isotropic. Thus,W (t− x) is a polarisation ofW at χ, as in [Dix96,
1.12.8]. Further, W (t− x) is the unique polarisation of W at χ: because any polarisation of W
at χ must be a codimension-one subalgebra of W , by Corollary 6.0.3 it must be equal to some
W (t− y) and it is easy to see that we must have y = x.

Note that χ is a character of W (t− x); let kmx;γ be the corresponding one-dimensional
representation of W (t− x), with basis element mx;γ . (The restriction χ|W (t−x), which sends
p∂ �→ γp′(x), depends only on x and γ: this is the reason to omit α in the notation kmx;γ .) Put

Mx;γ := U(W ) ⊗U(W (t−x)) kmx;γ .

As e−1 = ∂ �∈W (t− x), thus W = ke−1 ⊕W (t− x) and by the Poincaré–Birkhoff–Witt theorem
the set {ek−1mx;γ |k ∈ Z�0} is a basis for Mx;γ .

We now give an alternative construction of Mx;γ . Set

Nx := k[t, t−1, (t− x)−1]/k[t, t−1].

For every x, Nx is a simple (faithful) left A-module.

Remark 7.1.1. The space Nx can be thought of as a space of distributions on k×; for, setting
δx = (t− x)−1 ∈ Nx we have (t− x)δx = 0 so δx behaves like a δ-function at x. The elements
∂kδx form a basis of Nx.

Recall that, for any γ ∈ k, the map

πγ : W → A, f∂ �→ f∂ + γf ′ (7.1.2)

is a Lie algebra homomorphism; see [CM07]. Thus, πγ extends to define a ring homomorphism
U(W ) → A. Note that the map pγ defined in (2.2.2) is not the associated graded map attached
to πγ even though they are clearly analogous.

The images of πγ have been computed in [CM07, Lemma 2.1], and we give them here.

Lemma 7.1.3. We have:

(a) im(π0) = k ⊕A∂, and imπ1 = k ⊕ ∂A;
(b) im(πγ) = A if γ �= 0, 1.

Remark 7.1.4. The restriction of πγ to U(W�1) was considered, under slightly different notation,
in [SW16]; see [SW16, Remark 3.14]. It was shown there that the ideal kerπ0|W�1

= kerπ1|W�1

is not finitely generated as a left or right ideal of U(W�1).

For every γ ∈ k the map πγ from (7.1.2) induces the structure of a W -module on Nx; we
denote the space Nx with the corresponding W -module structure ·γ by Nγ

x .

Proposition 7.1.5. Let x �= 0, α, γ ∈ k. Then Nγ
x
∼= Mx;γ−1. Moreover, Nγ

x is a simple
W -module if and only if γ �= 1. There is an exact sequence

0 → N0
x → N1

x → k → 0.

For all γ the annihilator of Nγ
x is equal to kerπγ , which is primitive.
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Proof. Let p ∈ k[t, t−1] with (t− x)|p. By taking the Taylor expansion of p about x one may
verify that

(p∂) ·γ δx = (γ − 1)p′(x)δx. (7.1.6)

This immediately implies that there exists a surjective module homomorphism Mx;γ−1 → Nγ
x

which sends mx;γ−1 �→ δx. The basis element ek−1mx;γ−1 maps to ∂kδx, so this map is an
isomorphism.

Assume γ �= 0, 1. In this case πγ is surjective by Lemma 7.1.3, so simplicity of Nγ
x follows

from simplicity of Nx as an A-module.
We claim that N0

x is simple. To see this, let 0 �= n ∈ Nx, which we recall is a simple A-module.
By construction of Nx there is some 0 �= f(t) ∈ k[t, t−1] so that fn = 0 and, thus, ∂n �= 0 as
A∂ +Af(t) = A. Thus, A∂n = Nx, proving the claim because by Lemma 7.1.3 A∂ ⊆ π0(U(W )).

Finally, we consider N1
x . Lemma 7.1.3 implies ∂A � imπ1 = k ⊕ ∂A and, thus, Ñ := ∂ANx =

∂Nx is a submodule of N1
x , with N1

x/Ñ
∼= k. We claim that Ñ is simple. Let 0 �= n ∈ Ñ . As Nx is

a simple A-module, ∂An = Ñ and so U(W ) ·1 n = (k ⊕ ∂A)n = Ñ , as needed. The reader may
verify that as in (7.1.6)

p∂ ·1 ∂δx = −p′(x)∂δx,

and so Ñ ∼= Mx;−1
∼= N0

x . The claim about annihilators follows from the fact that Nx is a faithful
module over the (simple) ring A. That kerπγ is primitive is immediate for γ �= 1; for γ = 1 it
follows from the fact that kerπ1 = kerπ0. �

Remark 7.1.7. (a) Note that the primitive ideal kerπγ is completely prime. We do not know of
a primitive (or prime) ideal of U(W ) which is not completely prime.

(b) We believe that the ideals kerπγ above are all of the primitive ideals of U(W ) of
Gelfand–Kirillov codimension two.

(c) By Remark 7.1.4, kerπ0 = kerπ1. However, ker p0 �= ker p1. To see this, note that
if ker p0 = ker p1 then χ1;1,0 ∈ V (ker p1) = O(χ1;1,1). Thus, either O(χ1;1,0) = O(χ1;1,1) or
dim O(χ1;1,0) < dim O(χ1;1,1). Neither is true.

Thus, the orbit method does not give a bijection from Poisson primitive ideals of S(W ) to
primitive ideals of U(W ).

7.2 Conjectures for U(g)
We have focused almost entirely on the symmetric algebra of g, where g is one of Vir, W or
several related Lie algebras. However, our results are at a minimum suggestive for the enveloping
algebras of these Lie algebras. In this final subsection, we make several conjectures for U(g).
Broadly speaking, these are instances of the meta-conjecture.

The ideal structure of U(g) is closely analogous to the Poisson structure of S(g).

For each conjecture, we give the Poisson result which suggested it to us.

Conjecture 7.2.1 (Cf. Corollary 3.3.5). If ζ �= 0, then U(Vir)/(z − ζ) is simple.

Conjecture 7.2.2 (Cf. Corollaries 4.3.11 and 5.2.14). Restriction gives a bijection between
primitive (respectively, prime) ideals of U(W ) and U(W�−1), and a homeomorphism

PSpecprim U(W ) ∼→ PSpecprim U(W�−1).

981

https://doi.org/10.1112/S0010437X23007030 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007030


S. J. Sierra and A. V. Petukhov

Conjecture 7.2.3 (Cf. Proposition 5.4.1). Every proper prime ideal of U(W ) contains a
proper primitive ideal.

Conjecture 7.2.4 (Cf. Proposition 4.3.14). The kerπγ are all of the prime ideals of U(W ) of
co-GK-dimension two.

Conjecture 7.2.5 (cf. § 7.1). Kirillov’s orbit method, i.e. the assignment

a local function χ→ a polarization of χ→ the annihilator of the induced module

always produces a primitive ideal, is independent of polarisation, and depends only on O(χ).
There is thus an induced map PSpecprim S(g) → Specprim U(g) for g = Vir,W,W�−1. This map
is surjective onto Specprim U(g).

These conjectures are the subject of ongoing research.

Index of notation

(a, b)f 947
a(k) 975
A(λ) 959, 966
Bχ(x, y) 939
χx;α0,...,αn

943
d(k) 975
Dχ 940
D(λ(χ)) 965
Dilx 951
DLocx 951
DLoc�n

x 951

DLock+
x , DLoc�n,k+

x 953

D̂Loc
λ

967
D̂Loc

�n
, D̂Loc 952

D̂Loc
λ
-orbit quotient 967

D(u1, . . . , un; v1, . . . , vn) 939
ei(x), ei(x)∗ 953
Endt→s(·) 951
evχ 937
fk 974
gaps(k), gaps of a subalgebra 975
gχ 939
I(n) 946
I(X) ⊆ A 938
Jλ

g := I(V λ
g ) 968

λ(χ), order partition of χ 944
λ(Q), generic order partition of Q 968
ldeg(k), leading degrees of a subalgebra 975
lie�n

x 951

l̂ie
�n

952

Locλ
g 965

Loc�n
g , L̃oc

�n

g , Locx, Loc�n
x 950

Local function 944
mχ 934, 937
MSpecA 937
O(χ), orbit closure of χ 962
Order of a local function 944
pγ : S(W ) → k[t, t−1, y] 942
π�n

g , φ�n
g 951

P(χ), Poisson core 934, 938
Poisson morphism 940
PSpecprimA, PSpecA 938
Pseudo-orbit, O(χ) 938
rad(f) 948
Sλ 959
Σλ

g 965
Shiftz, Shifts 952
Support of a local function 944
Support of a subalgebra, supp(k) 975
uχ, uχ 940
Vir 937
V λ

g 959, 965
V (N) ⊆ MSpec(A) 938
VP (N) ⊆ PSpecA 972
W 937
W (g) 941, 947
W�−1 937
W�−1(f) 945
W�1 937
W 2;1

x;α, W 2;2
x;α 976

W 3A
x,y;α,β , W 3B1

x,y;α, etc. 978
Y (Q) 968
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