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Recently, four dimensional scanning transmission electron microscopy (4D STEM) emerged as a 

promising technique for sample characterization due to the multitude of different signals which can be 

created from the data sets after acquisition (Ophus, 2019). Synthetic images like annular dark field (ADF), 

annular bright field (ABF) or center of mass (COM) yield useful information about a sample´s structure, 

composition or even fields present within the sample. 

Especially ABF and COM are generated by electrons which are scattered at rather small angles as 

compared to HAADF (high angle annular dark field) STEM. This has implications if it comes to 

complementary image simulation. In the case of HAADF STEM, multi-slice simulations are well 

established and quantitative agreement with the experiment can be achieved, see e.g. (Beyer et al., 2016). 

This allows to quantify the local composition and structure of experimental images. However, at low 

scattering angles involved in 4D STEM there are significant deviations between simulation and 

experiment (Müller-Caspary et al., 2016). 

Here we investigate three potential sources of discrepancy, i.e. the presence of amorphous layers from 

sample preparation, the neglection of plasmon scattering, and the assumption of uncorrelated phonons. To 

this end, we use a double aberration corrected JEOL JEM 2200 FS equipped with an in-column energy 

filter and a pixelated pnCCD camera. This allows for the acquisition of atomically resolved 4D STEM 

data sets selecting different energy ranges from the electron energy loss spectrum. As well defined sample, 

we prepared a lamella of silicon in [010] projection exhibiting discrete thickness steps via focused ion 

beam (FIB) milling with a JEOL JIB 4601. Final Ar ion milling was carried out with a Fischione NanoMill 

1040 to control the thickness of amorphous layers on the surfaces of the specimen. 

With the help of state-of-the-art image simulations (Oelerich et al., 2017; Rosenauer & Schowalter, 2008), 

we elucidate and quantify the individual contributions to the scattering. Simulated and experimental data 

sets reveal that all three investigated factors, i.e. plasmon scattering, the presence of amorphous layers as 

well as the correlated movement of the sample atoms, significantly contribute to the low angle signal. By 

correctly implementing these effects into the image simulations, the fit between simulation and experiment 

at low scattering angles can be improved significantly. 

This contribution summarizes the amendments which have to be made to multi-slice simulations to be 

able to simulate 4D-STEM data sets quantitatively. 
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