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Abstract
We initiate the study of a class of polytopes, which we coin polypositroids, defined to be those polytopes that
are simultaneously generalized permutohedra (or polymatroids) and alcoved polytopes. Whereas positroids are
the matroids arising from the totally nonnegative Grassmannian, polypositroids are “positive” polymatroids. We
parametrize polypositroids using Coxeter necklaces and balanced graphs, and describe the cone of polypositroids
by extremal rays and facet inequalities. We introduce a notion of (𝑊, 𝑐)-polypositroid for a finite Weyl group W and
a choice of Coxeter element c. We connect the theory of (𝑊, 𝑐)-polypositroids to cluster algebras of finite type and
to generalized associahedra. We discuss membranes, which are certain triangulated 2-dimensional surfaces inside
polypositroids. Membranes extend the notion of plabic graphs from positroids to polypositroids.
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1. Introduction

1.1. Polypositroids

The aim of this work is to study a new class of polytopes, which we call polypositroids. These are
polytopes which are simultaneously generalized permutohedra (or polymatroids) and alcoved polytopes.

A permutohedron is the convex hull of the orbit of a point in R𝑛 under the action of the symmetric
group 𝑆𝑛. A generalized permutohedron is obtained from a permutohedron by parallel translation of
some of the facets. The class of generalized permutohedra include many classical polytopes: the usual
permutohedron, the associahedron, hypersimplices, matroid polytopes, and many others. Generalized
permutohedra are polytopal analogues of matroids, and are essentially equivalent to the polymatroids
of Edmonds and the closely related submodular functions [Edm, Po09, CL].

An alcoved polytope is a polytope whose facets are normal to roots in the type 𝐴𝑛−1 root system. In
[LP07], we studied the class of integer alcoved polytopes, which are (convex) unions of alcoves in the
affine Coxeter arrangement of type A. In the present paper, we work with alcoved polytopes that may
not be integral.

Our initial motivation for studying polypositroids as a subclass of polymatroids comes from the
theory of total positivity. Lusztig [Lus] and Postnikov [Po06] have defined the totally nonnegative
Grassmannian Gr(𝑘, 𝑛)≥0, a subspace of the real Grassmannian Gr(𝑘, 𝑛) of k-planes in R𝑛. Any point
𝑋 ∈ Gr(𝑘, 𝑛) gives rise to a (realizable) matroid 𝑀𝑋 . When 𝑋 ∈ Gr(𝑘, 𝑛)≥0 is totally nonnegative, the
matroid 𝑀𝑋 is called a positroid, short for “positive matroid.” Positroids were classified in [Po06] and
[Oh], and the geometry of positroid varieties in the Grassmannian was studied by Knutson-Lam-Speyer
[KLS].

To a matroid M on the set {1, 2, . . . , 𝑛}, one has an associated matroid polytope 𝑃𝑀 ⊂ R𝑛. Our
investigations began with the observation that a matroid M is a positroid if and only if 𝑃𝑀 is an
alcoved polytope (Theorem 2.1). Polypositroids are thus “positive polymatroids.” In the present work,
we study polypositroids from a discrete geometer’s perspective, leaving aside potential connections to
Grassmannians, and so on.

Whereas matroids are notoriously difficult to parametrize, the subclass of positroids were
parametrized in [Po06, Oh]. In Theorem 6.12, we give a parametrization of polypositroids, showing that
they are in bijection with Coxeter necklaces and with balanced graphs. Coxeter necklaces and balanced
graphs are generalizations of the Grassmann necklaces and decorated permutations of [Po06]. The set
of generalized permutohedra attains a cone structure under the Minkowski sum, and the corresponding
cone is the cone of submodular functions Csub [Edm]. Alcoved polytopes and polypositroids also form
cones Calc and Cpol. There is a (projection) map of cones Csub → Calc, and we show in Theorem 4.8 that
the image of this map is Cpol. In Corollary 6.14 and Theorem 4.9, we describe the extremal rays and give
defining inequalities for the cone Cpol. For example, the extremal rays of Cpol are indexed by directed
cycles on {1, 2, . . . , 𝑛}.

The normal fan of the permutohedron is the braid fan associated to the arrangement of hyperplanes
{𝑥𝑖 − 𝑥 𝑗 = 0}. Generalized permutohedra are exactly the polytopes with a normal fan, a coarsening of
the braid fan. In Section 8, we study the possible normal fans N (𝑃) for a generic simple polypositroid
P. In contrast to generalized permutohedra, there is more than one such normal fan, and each such N (𝑃)
is a coarsening of the braid fan.

We show in Lemma 8.2 that each maximal cone 𝐶𝑇 of N (𝑃) is labeled by an alternating noncrossing
tree. The maximal cones 𝐶𝑤 , 𝑤 ∈ 𝑆𝑛 satisfying 𝐶𝑤 ⊂ 𝐶𝑇 are described in Proposition 8.22 in terms
of a dual noncrossing circular-alternating tree. In Theorem 8.4, we show that the normal fan N (𝑃) is
characterized by a matching ensemble, a collection of perfect matchings, one for each bipartite subgraph
of the complete graph, satisfying certain axioms. Our matching ensembles are a variant of the matching
ensembles of Oh and Yoo [OY], and the matching fields of Sturmfels and Zelevinsky [SZ]. In Theorem
8.1, we show that all generic simple polypositroids have the same f -vector, identical to that of the
cyclohedron.

https://doi.org/10.1017/fms.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.11


4 T. Lam and A. Postnikov

1.2. Coxeter polypositroids

In the second part of this work, we generalize the theory of polypositroids to the root-system theoretic
setting. Let V be a real vector space, 𝑅 ⊂ 𝑉 be a crystallographic root system with Weyl group W, and
𝑅+ ⊂ 𝑅 be a choice of positive roots. A generalized W-permutohedron is a polytope 𝑃 ⊂ 𝑉 whose edges
are in the directions of R.

Now fix the choice of a Coxeter element c. Define the twisted root system 𝑅̃ := (𝐼 − 𝑐)−1𝑅. We define
a (𝑊, 𝑐)-twisted alcoved polytope to be a polytope 𝑃 ⊂ 𝑉 whose facet normals belong to the twisted
roots 𝑅̃. These polytopes are c-twisted variants of the alcoved polytopes we studied in [LP18]. A (𝑊, 𝑐)-
polypositroid is a polytope that is simultaneously a generalized W-permutohedron and a (𝑊, 𝑐)-twisted
alcoved polytope. When R is of type 𝐴𝑛−1 and c is the long cycle (12 · · · 𝑛), this definition reduces to
the earlier one.

In general, the class of (𝑊, 𝑐)-polypositroids cannot be parametrized in the same manner that we
did for polypositroids. We introduce a larger class of (𝑊, 𝑐)-prepolypositroids as a compromise. The
set of (𝑊, 𝑐)-prepolypositroids is defined as a cone, by giving the facet inequalities (16.1) satisfied by
the support function. We define (𝑊, 𝑅+, 𝑐)-Coxeter necklaces and (𝑊, 𝑐)-balanced arrays and show in
Theorem 16.5 that these objects are in bijection with (𝑊, 𝑐)-prepolypositroids. We also show that there
is a projection map from the cone C𝑊sub of W-submodular functions (see [ACEP]) to the cone C𝑊 ,𝑐

pre of
(𝑊, 𝑐)-prepolypositroids, and we conjecture (Conjecture 17.2) that this map is surjective.

In Section 18, we connect the theory of (𝑊, 𝑐)-prepolypositroids to cluster algebras. Let A(𝑊, 𝑅+, 𝑐)
be the cluster algebra of finite type associated to the Coxeter element c, as studied by Yang and Zelevinsky
[YZ]. We show, using the work of Padrol et al. [P4], in Theorem 18.5 that each exchange relation of
A(𝑊, 𝑅+, 𝑐) gives rise to an inequality satisfied by the cone C𝑊 ,𝑐

pre of (𝑊, 𝑐)-prepolypositroids. We show
that (𝑊, 𝑐)-prepolypositroids are closely related to generalized associahedra, one of our main examples
of (𝑊, 𝑐)-polypositroids.

In Section 19, with the aim of studying the normal fans of (𝑊, 𝑐)-prepolypositroids, we develop
notions of alternating and c-noncrossing for root systems, and a notion of c-noncrossing tree. These
notions are related to the theory of finite type cluster algebras, and to the theory of reflection factorizations
of Coxeter elements.

1.3. Membranes

The third part of the paper is devoted to membranes. In Section 20, we define R-membranes, for a
root system 𝑅 ⊂ 𝑉 , which are essentially triangulated 2-dimensional surfaces in V homeomorphic to
wedges of disks, such that every edge of every triangle in them is a parallel translation of a root from
R. An R-membrane is minimal if it has minimal possible surface area among all membranes with the
same boundary loop. We view the problem of describing minimal membranes as a discrete version
of Plateau’s problem from geometric measure theory concerning the existence of a minimal surface
with a given boundary. In the rest of the paper, we discuss membranes of type A. In Section 21, we
show that membranes of type A are closely related to Postnikov’s plabic graphs, introduced in the
study of the totally nonnegative Grassmannian Gr(𝑘, 𝑛)≥0 [Po06]. For each positroid, there is a class
of reduced plabic graphs connected with each other by local moves. Each reduced plabic graph gives a
parametrization of the associated positroid cell in Gr(𝑘, 𝑛)≥0.

Membranes (of type A) are in bijection with plabic graphs with faces labelled by integer vectors. In
Section 22, we show that local moves of plabic graphs correspond to octahedron and tetrahedron moves
of membranes. In Section 23, we show that minimal membranes correspond to reduced plabic graphs.

In Sections 24, 25, and 26, we discuss special classes of membranes associated with positroids and
polypositroids. In Section 27, we define semisimple membranes as membranes that project bijectively
onto the Coxeter plane. We show that notions of semisimple membranes and minimal membranes are
equivalent to each other (for a particular class of boundary loops).

The structures that we study in this paper are related to the theory of cluster algebras in several
different ways. While in Section 18, we connect (𝑊, 𝑐)-prepolypositroids to cluster algebras of finite
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type, in Section 28, we connect membranes (of type A) to a certain class of cluster algebras, which,
in general, are not of finite type. We discuss the higher octahedron recurrence as a certain rational
recurrence relation on variables 𝑥𝜆 labelled by integer vectors 𝜆. This relation naturally extends the
octahedron recurrence on Z3 [Spe] to a higher dimensional integer lattice. With each polypositroid P,
we associate a cluster algebra A𝑃 generated by some finite subset of variables 𝑥𝜆. Minimal membranes
for the polypositroid P correspond to a class of clusters of this cluster algebra, and local moves of
membranes correspond to cluster mutations. Remarkably, the class of cluster algebras A𝑃 is the same
as the subclass associated to positroids, which Galashin and Lam have shown [GL] to be isomorphic to
the coordinate rings of open positroid varieties [KLS].

Finally, in Section 29, we propose an area of study, which we dub the “Asymptotic Cluster Algebra.”
We pose a problem related to asymptotics of membranes under dilations. The setup of membranes
extends several models from statistical physics.

Part I Polypositroids

Throughout the paper, we use the following notation. Let [𝑛] := {1, 2, . . . , 𝑛}. Let
( [𝑛]
𝑘

)
denote the set

of k-element subsets of [𝑛]. Also, let 𝑒1, . . . , 𝑒𝑛 denote the standard basis of R𝑛.

2. Positroid polytopes

The material of this section serves as motivation, and is largely independent of the rest of the work.
Let Gr(𝑘, 𝑛) denote the Grassmannian of k-planes in R𝑛. We may represent a point 𝑋 ∈ Gr(𝑘, 𝑛)

as a 𝑘 × 𝑛 matrix. For a k-element subset 𝐼 ∈
( [𝑛]
𝑘

)
, the Plücker coordinate Δ 𝐼 (𝑋) is defined to be the

𝑘 × 𝑘 minor indexed by the columns I. The matroid M𝑋 is given by M𝑋 := {𝐼 ∈
( [𝑛]
𝑘

)
| Δ 𝐼 (𝑋) ≠ 0}.

The totally nonnegative Grassmannian [Po06] Gr(𝑘, 𝑛)≥0 is the subspace of Gr(𝑘, 𝑛) represented by
matrices, all of whose Plücker coordinates are nonnegative. The matroid of a totally nonnegative point
𝑋 ∈ Gr(𝑘, 𝑛)≥0 is called a positroid.

The matroid polytope 𝑃M of a matroid M is the convex hull of the vectors 𝑒𝐼 , 𝐼 ∈ M, where
𝑒𝐼 := 𝑒𝑖1 + · · · + 𝑒𝑖𝑘 ∈ R𝑛 if 𝐼 = {𝑖1, . . . , 𝑖𝑘 }. By [G2MS], matroid polytopes are exactly those polytopes
whose vertices belong to {𝑒𝐼 | 𝐼 ∈

( [𝑛]
𝑘

)
} and whose edges are parallel to vectors of the form 𝑒𝑖 − 𝑒 𝑗 .

We have the following characterization of the matroid polytopes of positroids.
Theorem 2.1. A matroid M is a positroid if and only if the matroid polytope 𝑃M is an alcoved polytope,
that is, it is given by inequalities of the form 𝑐𝑖 𝑗 ≤ 𝑥𝑖 + 𝑥𝑖+1 + · · · + 𝑥 𝑗 ≤ 𝑏𝑖 𝑗 , for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, where
𝑐𝑖 𝑗 , 𝑏𝑖 𝑗 ∈ R.

We discovered Theorem 2.1 over a decade ago, and it has since found a number of applications,
for example, to positively oriented matroids [ARW17] (see [ALS, Ear, LPW] for other appearances of
positroid polytopes).

To prove Theorem 2.1, we use a classification of positroids due to Oh [Oh] (see also [Lam, Section
8.2]). The Bruhat partial order on

( [𝑛]
𝑘

)
is defined as follows. For two subsets 𝐼, 𝐽 ∈

( [𝑛]
𝑘

)
, we write

𝐼 ≤ 𝐽 if 𝐼 = {𝑖1 < 𝑖2 < · · · < 𝑖𝑘 }, 𝐽 = { 𝑗1 < 𝑗2 < · · · < 𝑗𝑘 }, and we have 𝑖𝑟 ≤ 𝑗𝑟 for 𝑟 = 1, 2, . . . , 𝑘 .
For 𝐼 ∈

( [𝑛]
𝑘

)
, the Schubert matroid S𝐼 is defined as

S𝐼 := {𝐽 ∈
(
[𝑛]
𝑘

)
| 𝐼 ≤ 𝐽}

and has minimal element I in the Bruhat order. For 𝑎 ∈ [𝑛], let <𝑎 denote the cyclically rotated order
on [𝑛] with minimum a, that is, 𝑎 <𝑎 (𝑎 + 1) <𝑎 · · · <𝑎 𝑛 <𝑎 1 <𝑎 · · · <𝑎 (𝑎 − 1), which induces
a partial order ≤𝑎 on

( [𝑛]
𝑘

)
. Let S𝐼 ,𝑎 := {𝐽 ∈

( [𝑛]
𝑘

)
| 𝐼 ≤𝑎 𝐽} denote the cyclically rotated Schubert

matroid. Equivalently, S𝐼 ,𝑎 := 𝑐𝑎−1 (S𝑐−𝑎+1 (𝐼 ) ), where c is the long cycle (1, 2, . . . , 𝑛) in the symmetric
group 𝑆𝑛 naturally acting on [𝑛] and

( [𝑛]
𝑘

)
.
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A (𝑘, 𝑛)-Grassmann necklace I = (𝐼1, 𝐼2, . . . , 𝐼𝑛) is an n-tuple of k-element subsets of [𝑛] satisfying
the following condition: for each 𝑎 ∈ [𝑛], we have
1. if 𝑎 ∉ 𝐼𝑎, then 𝐼𝑎+1 = 𝐼𝑎,
2. otherwise, 𝑎 ∈ 𝐼𝑎 and 𝐼𝑎+1 = (𝐼𝑎 \ {𝑎}) ∪ {𝑎′} for some 𝑎′ ∈ [𝑛],
with indices taken modulo n.
Theorem 2.2 [Oh, Po06]. Let I = (𝐼1, 𝐼2, . . . , 𝐼𝑛) be a (𝑘, 𝑛)-Grassmann necklace. Then the intersection
of cyclically rotated Schubert matroids

MI = S𝐼1 ,1 ∩ S𝐼2 ,2 ∩ · · · ∩ S𝐼𝑛 ,𝑛 (2.1)

is a positroid, and the map I ↦→ MI gives a bijection between (𝑘, 𝑛)-Grassmann necklaces and
positroids of rank k on [𝑛].
Proof of Theorem 2.1. Let Δ (𝑘, 𝑛) denote the hypersimplex, the convex hull of all points 𝑒𝐼 , for 𝐼 ∈( [𝑛]
𝑘

)
. The matroid polytope 𝑃S𝐼 ,𝑎 is the intersection of the hypersimplex Δ (𝑘, 𝑛) with the inequalities

𝑥𝑎 + 𝑥𝑎+1 + · · · + 𝑥𝑏 ≥ #(𝐼 ∩ [𝑎, 𝑏])

for 𝑖 = 1, 2, . . . , 𝑛. In particular, 𝑃S𝐼 ,𝑎 is an alcoved polytope.
Let M be an arbitrary matroid. Recall, that any matroid has a unique minimal base in the Bruhat

partial order ≤ on
( [𝑛]
𝑘

)
, and thus in any cyclically rotated partial order ≤𝑎. Denote by 𝐼𝑎 (M) the

minimal base of M with respect to ≤𝑎. Let 𝑄 = env(𝑃M) be the alcoved envelope of 𝑃M, that is, the
smallest alcoved polytope that contains 𝑃M. Then Q is given by the intersection of the rotated Schubert
matroid polytopes 𝑃S𝐼𝑎 (M) ,𝑎 for 𝑎 = 1, 2, . . . , 𝑛 (see Lemma 5.1). It is known [Po06, Lemma 16.3] that
for any matroid M, the n-tuple I (M) = (𝐼1(M), 𝐼2(M), . . . , 𝐼𝑛 (M)) is a (𝑘, 𝑛)-Grassmann necklace,
and MI is called the positroid envelope of M [KLS]. Thus, Q is the matroid polytope of the positroid
envelope of M. In particular, 𝑃M is alcoved if and only if 𝑄 = 𝑃M if and only if M is a positroid. �

A decorated permutation on [𝑛] is a pair 𝜋: = (𝜋, col), where 𝜋 is a permutation of [𝑛] and col is
an assignment of one of two colors “black” and “white” to each of the fixed points {𝑖 ∈ [𝑛] | 𝜋(𝑖) = 𝑖}.
We say that 𝑖 ∈ [𝑛] is an antiexceedance of 𝜋: if 𝜋−1 (𝑖) > 𝑖 or 𝜋(𝑖) = 𝑖 and i is colored white. Given a
(𝑘, 𝑛)-Grassmann necklace I = (𝐼1, 𝐼2, . . . , 𝐼𝑛), we define a decorated permutation 𝜋: (I) by
1. if 𝐼𝑎+1 = 𝐼𝑎 − {𝑎} ∪ {𝑎′}, 𝑎′ ≠ 𝑎, then 𝜋(𝑎) = 𝑎′;
2. if 𝐼𝑎+1 = 𝐼𝑎 and 𝑎 ∉ 𝐼𝑎, then 𝜋(𝑖) = 𝑖 and i is colored black;
3. if 𝐼𝑎+1 = 𝐼𝑎 and 𝑎 ∈ 𝐼𝑎, then 𝜋(𝑖) = 𝑖 and i is colored white.
[Po06, Lemma 16.2] states that the map I → 𝜋:(I) is a bijection between (𝑘, 𝑛)-Grassmann necklaces
and decorated permutations on [𝑛] with k antiexceedances.

3. Polypositroids

In this paper, we consider several classes of convex polytopes in R𝑛. All polytopes lie in an affine
hyperplane 𝐻 = 𝐻𝑘 := {𝑥 ∈ R𝑛 | 𝑥1 + · · · + 𝑥𝑛 = 𝑘}, for some constant k. For the majority of this work,
the reader may assume that the hyperplane H has been fixed.

3.1. Generalized permutohedra

Definition 3.1 [Po09]. A polytope 𝑃 ⊂ R𝑛 is called a generalized permutohedron if all edges of P are
parallel to a vector of the form 𝑒𝑖 − 𝑒 𝑗 .

The class of generalized permutohedra include many classical polytopes: the usual permutohedron,
the associahedron, hypersimplices, and many others (see [Po09]). Let us give several alternative ways
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to describe the class of generalized permutohedra. Let (R𝑛)∗ denote the vector space of linear functions
on R𝑛. For a face F of a polytope P, the normal cone 𝐶𝐹 ⊂ (R𝑛)∗ to F is given by

𝐶𝐹 = {ℎ ∈ (R𝑛)∗ | ℎ(𝑥) = max{ℎ(𝑦) | 𝑦 ∈ 𝑃} for 𝑥 ∈ 𝐹}.

The normal fan F𝑃 is the complete fan in (R𝑛)∗ consisting of all cones 𝐶𝐹 as F varies over all the faces
of P. We say that a complete fan F ′ is a coarsening of a complete fan F if the maximal cones of F ′ are
unions of the maximal cones of F .

For a permutation 𝑤 ∈ 𝑆𝑛, let 𝑣𝑤 = −(𝑤−1 (1), . . . , 𝑤−1 (𝑛)) ∈ R𝑛, and let 𝑃𝑛 := conv(𝑣𝑤 | 𝑤 ∈ 𝑆𝑛)
be the standard permutohedron in R𝑛. For the following result, see [PRW, Theorem 15.3] and [CL].

Theorem 3.2. The following are equivalent for a polytope P in R𝑛:

1. The polytope P is a generalized permutohedron.
2. The normal fan of P is a coarsening of the normal fan of the standard permutohedron 𝑃𝑛.
3. The vertices of P can be (possibly redundantly) labelled 𝑣′𝑤 , 𝑤 ∈ 𝑆𝑛, such that for any edge (𝑣𝑢 , 𝑣𝑤 )

in 𝑃𝑛, there is a nonnegative real t, such that (𝑣′𝑢 − 𝑣′𝑤 ) = 𝑡 (𝑣𝑢 − 𝑣𝑤 ).

For a polytope P, we define the support function 𝑓𝑃 : (R𝑛)∗ → R given by

𝑓𝑃 (ℎ) = max
𝑣 ∈𝑃

ℎ(𝑣).

The function 𝑓𝑃 is a piecewise linear function on (R𝑛)∗ whose maximal domains of linearity are exactly
the top-dimensional cones of the normal fan of P.

The normal fan of the standard permutohedron 𝑃𝑛 is the braid fan (see Section 8.5), and by Theorem
3.2(2), a generalized permutohedron P is uniquely determined by the values 𝑓𝑃 (𝑆) := 𝑓𝑃 (ℎ𝑆), where
ℎ𝑆 (𝑥1, . . . , 𝑥𝑛) =

∑
𝑖∈𝑆 𝑥𝑖 , and S varies over proper nonempty subsets of [𝑛]. The polytope P is then

given by

𝑥1 + · · · + 𝑥𝑛 = 𝑘 = 𝑓𝑃 ([𝑛]) and
∑
𝑖∈𝑆

𝑥𝑖 ≤ 𝑓𝑃 (𝑆). (3.1)

We write 𝑓𝑃 |2[𝑛] for the function sending a subset 𝑆 ⊂ [𝑛] to 𝑓𝑃 (𝑆), and, more generally, we will use
notation, such as 𝑓𝑃 |S for a collection S ⊆ 2[𝑛] of subsets.

3.2. Alcoved polytopes

Let ℎ1, . . . , ℎ𝑛 be the basis of (R𝑛)∗, such that ℎ𝑖 (𝑥) = 𝑥1 + 𝑥2 + · · · + 𝑥𝑖 . Thus, ℎ𝑖 := ℎ [1,𝑖 ] .

Definition 3.3 [LP07]. A polytope 𝑃 ⊂ R𝑛 is called an alcoved polytope if it is given by inequalities of
the form

(ℎ𝑖 − ℎ 𝑗 ) (𝑥) ≤ 𝑎𝑖 𝑗 , for 𝑖 ≠ 𝑗 belonging to [𝑛] (3.2)

and the equation 𝑥1 + · · · + 𝑥𝑛 = 𝑘 , for some real1 numbers 𝑎𝑖 𝑗 and k.

Alcoved polytopes are also called polytropes in [JK]. We will always assume in (3.2) that the 𝑎𝑖 𝑗
have been chosen to be minimal, that is, they are values of the support function.

Lemma 3.4. The set of alcoved polytopes in the affine hyperplane 𝐻𝑘 and the set of alcoved polytopes
in 𝐻ℓ are in natural bijection via the isomorphism +(ℓ−𝑘)𝑒1 : 𝐻𝑘 → 𝐻ℓ adding (ℓ − 𝑘) to the first
coordinate. This bijection preserves the values of 𝑎𝑖 𝑗 .

1In [LP07], we required that 𝑎𝑖 𝑗 and k were integer numbers, while, in this paper, we allow any real coefficients. We will call
the polytopes from [LP07] integer alcoved polytopes. Their vertices are always integer lattice points.
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An alcoved polytope P is called generic if it is full-dimensional in H, and each equality (ℎ𝑖−ℎ 𝑗 ) (𝑥) =
𝑎𝑖 𝑗 defines a facet of P, for all 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 .

Definition 3.5. Let 𝑄 ⊂ 𝐻 be a bounded subset. The alcoved envelope env(𝑄) ⊂ 𝐻 is defined to be
the smallest alcoved polytope containing Q. Equivalently, env(𝑄) is given by inequalities (3.2), where
𝑎𝑖 𝑗 = supremum𝑥∈𝑄 (ℎ𝑖 − ℎ 𝑗 ) (𝑥).

Example 3.6. For 𝑛 = 3, the class of generalized permutohedra coincides with the class of alcoved
polytopes. However, for 𝑛 ≥ 4, neither of these two classes of polytopes contains the other. For example,
the standard permutohedron 𝑃4 = conv((𝑤(1), 𝑤(2), 𝑤(3), 𝑤(4)) | 𝑤 ∈ 𝑆4) ⊂ R4 is a generalized
permutohedron, but it is not an alcoved polytope, because one of its facets is given by 𝑥1 + 𝑥3 ≤ 7. On
the other hand, the simplex conv(𝑒1 + 𝑒3, 𝑒2 + 𝑒3, 𝑒2 + 𝑒4, 𝑒3 + 𝑒4) ⊂ R4 is an alcoved polytope, but it
is not a generalized permutohedron, because it has the edge (𝑒1 + 𝑒3, 𝑒2 + 𝑒4). Here, “conv” means the
convex hull of points.

Define the cyclic interval [𝑟, 𝑠] in [𝑛] as

[𝑟, 𝑠] :=
{
{𝑟, 𝑟 + 1, . . . , 𝑠} if 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛,
{𝑟, 𝑟 + 1, . . . , 𝑛, 1, 2, . . . , 𝑠} if 1 ≤ 𝑠 < 𝑟 ≤ 𝑛.

}
,

and set ℎ [𝑟 ,𝑠] :=
∑
𝑖∈[𝑟 ,𝑠] 𝑥𝑖 ∈ (R𝑛)∗. Alcoved polytopes P are exactly all polytopes of the form

𝑥1 + · · · + 𝑥𝑛 = 𝑘 and
∑

𝑖∈[𝑟 ,𝑠]
𝑥𝑖 ≤ 𝑓 [𝑟 ,𝑠] (3.3)

for cyclic intervals [𝑟, 𝑠] ⊂ [𝑛], where 𝑓 [𝑟 ,𝑠] = 𝑓𝑃 ([𝑟, 𝑠]) := 𝑓𝑃 (ℎ [𝑟 ,𝑠] ). Note that we have

𝑎𝑖 𝑗 =

{
𝑓 [ 𝑗+1,𝑖 ] if 𝑖 > 𝑗

𝑓 [ 𝑗+1,𝑖 ] − 𝑓 [𝑛] = 𝑓 [ 𝑗+1,𝑖 ] − 𝑘 if 𝑖 < 𝑗 ,
(3.4)

and it will be convenient to use both sets of parameters 𝑓 [𝑟 ,𝑠] and 𝑎𝑖 𝑗 .
If 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛, we shall use the shorthands 𝑥 [𝑟 ,𝑠] := ℎ [𝑟 ,𝑠] (𝑥) =

∑
𝑖∈[𝑟 ,𝑠] 𝑥𝑖 and

𝑥𝑆 := ℎ𝑆 (𝑥) =
∑
𝑖∈𝑆 𝑥𝑖 .

Remark 3.7. The class of generalized permutohedra in R𝑛 is closed under the operation of taking
the Minkowski sum polytopes, but is not closed under the operation of taking the intersection of
polytopes. On the other hand, the class of alcoved polytopes in R𝑛 is closed under the operation of
taking the intersection of polytopes (if it is nonempty), but is not closed under the operation of taking
the Minkowski sum of polytopes.

3.3. Polypositroids

Definition 3.8. A polypositroid is a polytope 𝑃 ⊂ 𝐻𝑘 which is both a generalized permutohedron and
an alcoved polytope.

As for alcoved polytopes, polypositroids in 𝐻𝑘 and in 𝐻ℓ are naturally in bijection. One of the main
results of this paper is an explicit parametrization of all polypositroids.

We give some examples of polypositroids. For 𝑎 ∈ R and P a polytope, the notation 𝑎𝑃 denotes the
polytope {𝑎𝑥 | 𝑥 ∈ 𝑃}. For a cyclic interval [𝑟, 𝑠], let

Δ [𝑟 ,𝑠] := conv(𝑒𝑟 , 𝑒𝑟+1, . . . , 𝑒𝑠)

denote the corresponding coordinate simplex.
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The cyclohedron is the Minkowski sum of simplices

𝑃 =
∑

[𝑟 ,𝑠]≠[𝑛]
𝑐𝑟 ,𝑠Δ [𝑟 ,𝑠] + 𝑏Δ [𝑛], (3.5)

where each 𝑐𝑟 ,𝑠 > 0 and 𝑏 > 0. By [Po09, Theorem 7.4], the cyclohedron P is both an alcoved polytope
and a generalized permutohedron, and in addition, P is simple. The 𝑓 [𝑟 ,𝑠] from (3.3) are given by

𝑓 [𝑟 ,𝑠] = 𝑏 +
∑

[𝑡 ,𝑢 ]∩[𝑟 ,𝑠]≠∅
𝑐𝑡 ,𝑢 , (3.6)

and we also set 𝑘 := 𝑏 +
∑

𝑐𝑟 ,𝑠 so that 𝑃 ⊂ 𝐻𝑘 .
If we set 𝑐𝑟 ,𝑠 = 0 whenever 𝑟 > 𝑠 (i.e., whenever [𝑟, 𝑠] is not an honest interval), then we obtain the

associahedron, which is also a polypositroid. Another possibility is to consider the polytope 𝑃(𝑏, 𝑐𝑟 ,𝑠)
defined by (3.5), where we allow 𝑏 ∈ R and 𝑐𝑟 ,𝑠 ≥ 0. When 𝑏 < 0, we use the Minkowski difference:

𝑃 −𝑄 := {𝑥 ∈ R𝑛 | 𝑥 +𝑄 ⊂ 𝑃}.

It is not hard to see that the deformed cyclohedron 𝑃(𝑏, 𝑐𝑟 ,𝑠) is either empty, or a polypositroid. When
𝑏 ≥ 0, the polytope 𝑃(𝑏, 𝑐𝑟 ,𝑠) is a deformation of a cyclohedron: the normal fan of 𝑃(𝑏, 𝑐𝑟 ,𝑠) is a
coarsening of that of the cyclohedron. However, when 𝑏 < 0, this may no longer be the case.

4. The cone of polypositroids

The numbers 𝑓𝑃 (𝑆) in (3.1) are not arbitrary. It is well-known that support functions of generalized
permutohedra are exactly the submodular functions, for example, see [MPS2W, Proposition 12], [A2,
Section 12], [CL, Theorem 3.11].

Theorem 4.1. The polytope P given by (3.1) is a generalized permutohedron if and only if 𝑓𝑃 is
submodular, that is

𝑓𝑃 (𝑆) + 𝑓𝑃 (𝑇) ≥ 𝑓𝑃 (𝑆 ∩ 𝑇) + 𝑓𝑃 (𝑆 ∪ 𝑇) (4.1)

for any subsets 𝑆, 𝑇 ⊂ [𝑛], where we assume that 𝑓𝑃 (∅) = 0.

Definition 4.2. The submodular cone, or the cone of generalized permutohedra, is the cone Csub of all
functions 𝑓 : 2[𝑛] → R satisfying (4.1).

The cone structure of Csub corresponds to taking Minkowski sums of generalized permutohedra. Let
us now turn to alcoved polytopes.

Theorem 4.3. Suppose 𝑛 ≥ 3. Let P be an alcoved polytope given by (3.2) (with 𝑎𝑖 𝑗 minimal). Then the
𝑎𝑖 𝑗 satisfy the triangle inequality

𝑎𝑖 𝑗 + 𝑎 𝑗𝑘 ≥ 𝑎𝑖𝑘 (4.2)

for distinct 𝑖, 𝑗 , 𝑘 ∈ [𝑛]. Conversely, any 𝑎𝑖 𝑗 satisfying (4.2) define a (nonempty) alcoved polytope in 𝐻𝑘 .

For example, for 𝑛 = 3, we have six inequalities (4.2): 𝑎12+𝑎23 ≥ 𝑎13, 𝑎13+𝑎32 ≥ 𝑎12, 𝑎21+𝑎13 ≥ 𝑎23,
𝑎23 + 𝑎31 ≥ 𝑎21, 𝑎31 + 𝑎12 ≥ 𝑎32, and 𝑎32 + 𝑎21 ≥ 𝑎31.

We thank Michael Joswig for pointing out that Theorem 4.3 is known to the optimization community
(see [JL, Jos] and the references therein).

Proposition 4.4. Let 𝑛 ≥ 3. Let P be an alcoved polytope given by the inequalities (ℎ𝑖 − ℎ 𝑗 ) (𝑥) ≤ 𝑎𝑖 𝑗 .
Then P is generic if and only if, for any three pairwise distinct indices 𝑖, 𝑗 , 𝑘 ∈ [𝑛], we have the strict
triangle inequality 𝑎𝑖 𝑗 + 𝑎 𝑗𝑘 > 𝑎𝑖𝑘 .
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Proof. The “only if” direction is trivial. We prove the “if” direction. Let P denote the “alcoved polyhe-
dron” inside R𝑛 given by the inequalities (ℎ𝑖 − ℎ 𝑗 ) (𝑥) ≤ 𝑎𝑖 𝑗 . The intersections 𝑃∩𝐻𝑘 for varying k are
linearly isomorphic via Lemma 3.4. Thus, it suffices to show that P itself is generic.

Since 𝑛 ≥ 3, summing 𝑎𝑐𝑑 + 𝑎𝑑𝑒 > 𝑎𝑐𝑒 and 𝑎𝑑𝑐 + 𝑎𝑐𝑒 > 𝑎𝑑𝑒 for distinct 𝑐, 𝑑, 𝑒, we obtain
𝑎𝑐𝑑 + 𝑎𝑑𝑐 > 0. It follows that P is not strictly contained in any hyperplane (ℎ𝑐 − ℎ𝑑) (𝑥) = 𝑎𝑐𝑑 , and
therefore P is full-dimensional.

Fix 𝑐 ≠ 𝑑, and let 𝐴 = {𝑥 ∈ R𝑛 | (ℎ𝑐 − ℎ𝑑) (𝑥) = 𝑎𝑐𝑑}. To show that 𝑃 ∩ 𝐴 is a facet of P, it suffices
to show that 𝑃∩ 𝐴 ≠ ∅ because, by the same reasoning as above, 𝑃∩ 𝐴 would be full-dimensional in A.

For 𝑥 ∈ R𝑛, define

𝑑𝑃 (𝑥) = max
𝑖, 𝑗
(max(0, (ℎ𝑖 − ℎ 𝑗 ) (𝑥) − 𝑎𝑖 𝑗 )).

Thus, 𝑥 ∈ 𝑃 if and only if 𝑑𝑃 (𝑥) = 0. Since the function 𝑑𝑃 is continuous, it is straightforward to see
that it achieves a minimum on A. Let 𝑣 ∈ 𝐴 be such a minimum, and assume 𝑑𝑃 (𝑣) > 0. We also assume
that v is chosen so that

𝑅(𝑣) = #{(𝑖, 𝑗) | (ℎ𝑖 − ℎ 𝑗 ) (𝑣) = 𝑎𝑖 𝑗 + 𝑑𝑃 (𝑣)}

is minimal. Note that since 𝑣 ∈ 𝐴, we have (𝑐, 𝑑) ∉ 𝑅(𝑣). It follows from 𝑎𝑐𝑑+𝑎𝑑𝑐 > 0 that (𝑑, 𝑐) ∉ 𝑅(𝑣).
Suppose (𝑒, 𝑓 ) ∈ 𝑅(𝑣). Assume that 𝑒 ∉ {𝑐, 𝑑}; the case 𝑓 ∉ {𝑐, 𝑑} is similar. If there does

not exist (𝑔, 𝑒) ∈ 𝑅(𝑣), then we can modify v slightly so that ℎ𝑒 (𝑣) decreases but the other ℎ𝑒′ (𝑣)
remain unchanged, and reducing the size of 𝑅(𝑣). This would contradict the construction of v. But if
(𝑔, 𝑒) ∈ 𝑅(𝑣), then using the condition of the proposition, we have (ℎ𝑔 − ℎ 𝑓 ) (𝑣) = (ℎ𝑔 − ℎ𝑒) (𝑣) + (ℎ𝑒 −
ℎ 𝑓 ) (𝑣) = 𝑎𝑔𝑒 + 𝑎𝑒 𝑓 + 2𝑑𝑃 (𝑣) > 𝑎𝑔 𝑓 + 𝑑𝑃 (𝑣), contradicting the definition of 𝑑𝑃 (𝑣). Thus, we conclude
that 𝑑𝑃 (𝑣) = 0, as desired. �

Proof of Theorem 4.3. By our assumption that the 𝑎𝑖 𝑗 -s are taken minimal, it is clear that (4.2) holds
for any alcoved polytope. By Proposition 4.4, the inequalities 𝑎𝑖 𝑗 + 𝑎 𝑗𝑘 > 𝑎𝑖𝑘 define an open cone
𝐶 ⊂ R𝑛(𝑛−1) , each point of which represents a generic alcoved polytope. It follows from (3.6) that C is
nonempty: the cyclohedron is a generic alcoved polytope. The closure of C is thus the closed cone cut
out by (4.2). The corresponding limits of generic alcoved polytopes are nonempty alcoved polytopes,
finishing the proof of the theorem. �

Definition 4.5. The triangle inequality cone, or the cone of alcoved polytopes, is the cone Calc ⊂ R𝑛(𝑛−1)

of all 𝑎𝑖 𝑗 satisfying (4.2).

Remark 4.6. We caution the reader that the cone Csub contains the information 𝑓𝑃 ([𝑛]) = 𝑘 and
thus parametrizes generalized permutohedra in various affine hyperplanes 𝐻𝑘 . In contrast, an alcoved
polytope is determined by a point in Calc together with the value of k. Equivalently, Calc is the cone of
alcoved polytopes inside 𝐻0.

The cone structure of Calc corresponds to the composition of the following two operations: first take
the Minkowski sum 𝑃1 + 𝑃2 of two alcoved polytopes, and then take the alcoved envelope env(𝑃1 + 𝑃2)
(see Definition 3.5).

Definition 4.7. The polypositroid cone Cpol ⊂ Calc is the subset of Calc representing alcoved polytopes
that are polypositroids.

The fact that Cpol is closed under the addition and positive scalar multiplication is a consequence of
Theorems 4.8 or 4.9 below. Let I ⊂ 2[𝑛] denote the collection of all nonempty cyclic intervals, including
[𝑛] itself. We define a map 𝜋I : R2[𝑛] → RI � R𝑛(𝑛−1) by first projecting to cyclic intervals, and then
applying the transformation (3.4). If 𝑓𝑃 is the support function of a generalized permutohedron P,
considered as an element of R2[𝑛] , then 𝜋I ( 𝑓𝑃) represents the alcoved envelope env(𝑃) of P (Definition
3.5).
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Theorem 4.8. We have 𝜋I (Csub) = Cpol.
Theorem 4.8 will be proved in Section 6.6. Note that 𝜋I : Csub → Cpol is a homomorphism of cones:

it commutes with addition and with scalar multiplication, and sends 0 to 0.
Theorem 4.9. The cone Cpol is the subcone of Calc satisfying

𝑎𝑖𝑘 + 𝑎 𝑗𝑙 ≥ 𝑎𝑖𝑙 + 𝑎 𝑗𝑘 (4.3)

for any four indices 𝑖, 𝑗 , 𝑘, 𝑙 in cyclic order.
Theorem 4.9 will be proved in Section 8.3.

Example 4.10. Let P be the cyclohedron of (3.5). Then (4.3) is immediate from (3.6).
Remark 4.11. We have described the three cones Csub, Calc, Cpol in terms of defining (possibly redundant)
inequalities. The extremal rays of Csub (modulo translation) are hard to describe explicitly (see, e.g. [Ng,
MPS2W, ACEP] for discussions of the rays). Among the rays of Csub are all connected matroids [Ng].

However, we will give in Corollary 6.14 an explicit description of the rays of Cpol (modulo translation).

5. Alcoved envelopes

Let 𝐶 ⊂ 𝐻0 ⊂ R𝑛 denote the following polyhedral (𝑛 − 1)-dimensional pointed cone

𝐶 := {𝑥 ∈ R𝑛 | 𝑥1 ≤ 0, 𝑥1 + 𝑥2 ≤ 0, . . . , 𝑥1 + · · · + 𝑥𝑛−1 ≤ 0, 𝑥1 + · · · + 𝑥𝑛 = 0}. (5.1)

Define the dominance order on the hyperplane 𝐻 = 𝐻𝑘 as the partial order 𝑥 � 𝑦 if and only if 𝑥1 ≤ 𝑦1,
𝑥1 + 𝑥2 ≤ 𝑦1 + 𝑦2, . . ., or equivalently, 𝑥 − 𝑦 ∈ 𝐶. For any bounded subset 𝑄 ⊂ 𝐻, there is a unique
maximal in the dominance order point 𝑣 = 𝑣(𝑄) ∈ 𝐻, such that 𝑄 ⊂ 𝑣 +𝐶. Informally, 𝑣 +𝐶 is the cone
containing Q, such that every facet of 𝑣 + 𝐶 touches Q. Note that the cone C is an alcoved polyhedron:
its facets have normals given by ℎ𝑖 − ℎ𝑛.

Let 𝑐 = (12 · · · 𝑛) ∈ 𝑆𝑛 be the long cycle, with 𝑐 = 23 · · · 𝑛1 in one-line notation. The permutations
𝑤 ∈ 𝑆𝑛 act on R𝑛 by the formula

𝑤 · (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑥𝑤−1 (1) , 𝑥𝑤−1 (2) , . . . , 𝑥𝑤−1 (𝑛) ).

Then c acts on R𝑛 as the cyclic shift linear operator given by 𝑐(𝑒𝑖) = 𝑒𝑖+1, for 𝑖 = 1, . . . , 𝑛 (here and
below, we assume that indices i are taken modulo n). For 𝑖 ∈ Z/𝑛Z, define the cyclically shifted cone
𝐶𝑖 := 𝑐𝑖−1(𝐶). Thus, 𝐶1 = 𝐶.

If v = (𝑣 (1) , . . . , 𝑣 (𝑛) ) is a sequence of points in H, we denote by 𝑄(v) the intersection

𝑄(v) :=
⋂

𝑖∈Z/𝑛Z
(𝑣 (𝑖) + 𝐶𝑖). (5.2)

It is clear that 𝑄(v) is an alcoved polytope whenever it is nonempty.
For a bounded subset 𝑄 ⊂ 𝐻, define

𝑣 (𝑖) = 𝑣 (𝑖) (𝑄) := 𝑐𝑖−1(𝑣(𝑐1−𝑖 (𝑄))). (5.3)

Again, the cone 𝑣 (𝑖) +𝐶𝑖 contains Q, and every facet of 𝑣 (𝑖) +𝐶𝑖 touches Q. Recall the alcoved envelope
env(𝑄) defined in Definition 3.5.
Lemma 5.1. For the cones 𝐶𝑖 and points 𝑣 (𝑖) , 𝑖 ∈ Z/𝑛Z, as above, the alcoved envelope of Q is the
intersection of the following cones

env(𝑄) =
⋂

𝑖∈Z/𝑛Z
(𝑣 (𝑖) + 𝐶𝑖).
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Proof. Let 𝑓 [𝑟 ,𝑠] be the minimal number, such that Q belongs to the halfspace 𝑆 [𝑟 ,𝑠] = {𝑥 ∈ 𝐻 |∑
𝑖∈[𝑟 ,𝑠] 𝑥𝑖 ≤ 𝑓 [𝑟 ,𝑠] }, that is the (unique) facet of 𝑆 [𝑟 ,𝑠] touches Q. Then the alcoved envelope of Q is the

alcoved polytope env(𝑄) =
⋂
𝑟 ,𝑠 𝑆 [𝑟 ,𝑠] . For fixed r, the intersection

⋂
𝑠 𝑆 [𝑟 ,𝑠] is the affine translation

𝑣 (𝑟 ) + 𝐶𝑟 of the cone 𝐶𝑟 that satisfies the conditions of the lemma. So env(𝑄) =
⋂
𝑟 ∈Z/𝑛Z(𝑣 (𝑟 ) + 𝐶𝑟 ),

as needed. �

6. Parametrization of polypositroids

6.1. Coxeter necklaces

As before, we fix an affine plane 𝐻 = 𝐻𝑘 := {𝑥 ∈ R𝑛 | 𝑥1 + · · · + 𝑥𝑛 = 𝑘}.

Definition 6.1. Let v = (𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑛) ) be a sequence of points in H. We say that v is a Coxeter
necklace if, for each i, we have

𝑣 (𝑖+1) − 𝑣 (𝑖) is nonnegative in all coordinates except the 𝑖-th coordinate. (6.1)

Here, the superscript i is taken modulo n. Since v ⊂ 𝐻, (6.1) implies that the i-th coordinate of 𝑣 (𝑖+1) −𝑣 (𝑖)

is nonpositive.

Remark 6.2. The set of (𝑘, 𝑛)-Grassmann necklaces (see Section 2) is exactly the set of Coxeter
necklaces v = (𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑛) ) in 𝐻𝑘 , such that each 𝑣 (𝑖) is a 01-vector.

The sum of two Coxeter necklaces v ∈ 𝐻𝑘 and v′ ∈ 𝐻𝑘′ is a Coxeter necklace v′′ ∈ 𝐻𝑘+𝑘′ . Recall
that the polytope 𝑄(v) was defined in (5.2).

Lemma 6.3. The space of Coxeter necklaces for varying 𝐻 = 𝐻𝑘 form a cone. The map v → 𝑄(v)
induces a homomorphism of cones from Coxeter necklaces to Calc.

It will follow from Theorem 6.12 below that the image of this homomorphism of cones is Cpol.

Lemma 6.4. Suppose that v = (𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑛) ) is a Coxeter necklace. Then each 𝑣 (𝑖) is a vertex of
𝑄(v).

Proof. It suffices to show that 𝑣 (𝑖) ∈ 𝑄(v). We will show that 𝑣 (𝑖)[1, 𝑗 ] ≤ 𝑣 (1)[1, 𝑗 ] ; the full set of inequalities
follows by cyclic symmetry. Suppose 𝑖 ≤ 𝑗 + 1. Then

(𝑣 (𝑖) − 𝑣 (1) )[1, 𝑗 ] =
∑

𝑘∈[2,𝑖 ]
(𝑣 (𝑘) − 𝑣 (𝑘−1) )[1, 𝑗 ] ≤ 0

using the definition (6.1) and the fact 𝑘 − 1 ∈ [1, 𝑗]. Suppose 𝑖 > 𝑗 + 1. Then

(𝑣 (1) − 𝑣 (𝑖) )[1, 𝑗 ] =
∑

𝑘∈[𝑖+1,1]
(𝑣 (𝑘) − 𝑣 (𝑘−1) )[1, 𝑗 ] ≥ 0

using the definition (6.1) and the fact that 𝑘 − 1 ∉ [1, 𝑗]. �

It follows from Lemma 6.4 that the map v→ 𝑄(v) is injective.

Proposition 6.5. Suppose P is a generalized permutohedron in H with vertices {𝑣𝑤 | 𝑤 ∈ 𝑆𝑛}. Then

1. the sequence (𝑣id, 𝑣𝑐 , 𝑣𝑐2 , . . . , 𝑣𝑐𝑛−1 ) is a Coxeter necklace,
2. one has 𝑣𝑐𝑖−1 = 𝑣 (𝑖) (𝑃) for 𝑖 = 1, . . . , 𝑛, where 𝑣 (𝑖) is defined in (5.3).

Proof. For (1), we show that all but the first coordinate of 𝑣𝑐 − 𝑣id is nonnegative, and a similar
argument shows that the entire sequence is a Coxeter necklace. We have 𝑐 = 23 · · · 1 in one-line notation.
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By Theorem 3.2(3),

𝑣213· · ·𝑛 − 𝑣123· · ·𝑛 ∈ R≥0 ((−2,−1,−3, . . .) − (−1,−2,−3, . . .)) = R≥0 (𝑒2 − 𝑒1)
𝑣2314· · ·𝑛 − 𝑣213· · ·𝑛 ∈ R≥0 ((−3,−1,−2, . . .) − (−2,−1,−3, . . .)) = R≥0 (𝑒3 − 𝑒1)

· · ·
𝑣23· · · (𝑛−1)𝑛1 − 𝑣23· · · (𝑛−1)1𝑛 ∈ R≥0 ((−𝑛,−1,−2, . . . , 1 − 𝑛) − (1 − 𝑛,−1,−2, . . . ,−𝑛))

= R≥0(𝑒𝑛 − 𝑒1).

It follows that all but the first coordinate of 𝑣𝑐 − 𝑣id is nonnegative.
For (2), we note that all edges of P incident to 𝑣𝑐𝑖−1 are in the same direction as an edge of the cone

𝐶𝑖 . It follows that 𝑃 ⊂ 𝑣𝑐𝑖−1 + 𝐶𝑖 , so that 𝑣𝑐𝑖−1 = 𝑣 (𝑖) (𝑃). �

6.2. Balanced digraphs

Definition 6.6. Let G be a real-weighted directed graph on the vertex set [𝑛]. Let 𝑚𝑖 𝑗 ∈ R denote the
weight of the edge 𝑖 → 𝑗 of G (we assume that 𝑚𝑖 𝑗 = 0 if G does not contain the edge 𝑖 → 𝑗). We say
that G is balanced if

1. the weight of nonloop edges are nonnegative, that is, 𝑚𝑖 𝑗 ∈ R≥0 when 𝑖 ≠ 𝑗 ;
2. the total outdegree is equal to the total indegree of each vertex; that is, for each i one has

𝑛∑
𝑗=1

𝑚𝑖 𝑗 =
𝑛∑
𝑗=1

𝑚 𝑗𝑖 . (6.2)

Remark 6.7. The set of decorated permutations (see Section 2) is the same as the set of balanced
graphs satisfying the following two conditions: (a) every vertex has one nonzero incoming edge and one
nonzero outgoing edge, and (b) all edges have weight ±1 (only loop edges can have weight −1).

Lemma 6.8. Suppose G is a balanced digraph. Then the quantity

𝑆𝑖 (𝐺) :=
∑
𝑗∈[𝑛]
(𝑚 𝑗 , 𝑗 + 𝑚 𝑗+1, 𝑗 + · · · + 𝑚𝑖, 𝑗 )

does not depend on 𝑖 ∈ [𝑛] (indices are taken modulo n in the sum 𝑚 𝑗 , 𝑗 + 𝑚 𝑗+1, 𝑗 + · · · + 𝑚𝑖, 𝑗 ).

Proof. We have 𝑆𝑖 − 𝑆𝑖+1 =
∑
𝑗∈[𝑛] 𝑚 𝑗 ,𝑖+1 −

∑
𝑗∈[𝑛] 𝑚𝑖+1, 𝑗 = 0. �

For a balanced digraph G, we define 𝑆(𝐺) = 𝑆𝑖 (𝐺) to be the sum of Lemma 6.8.
Note that the space of balanced graphs forms a cone in a natural way: 𝐺 = 𝛼𝐺 ′ + 𝛽𝐺 ′′ has weights

given by 𝑚𝑖 𝑗 = 𝛼𝑚′𝑖 𝑗 + 𝛽𝑚′′𝑖 𝑗 .

Proposition 6.9. Every balanced graph G is a linear combination of balanced directed cycles (including
loops and cycles of length 2), such that the coefficients of those cycles that are not loops are nonnegative.

Proof. Let G be a balanced graph. We may assume that 𝑚𝑖𝑖 = 0 for all 𝑖 ∈ [𝑛]. Let 𝑚𝑖 𝑗 > 0 be minimal
amongst the positive weights. Then the unweighted graph underlying G must contain a directed cycle
C containing the edge 𝑖 → 𝑗 . All the weights 𝑚𝑒 for e an edge of C satisfy 𝑚𝑒 ≥ 𝑚𝑖 𝑗 . Thus, we may
write 𝐺 = 𝐺 ′ +𝐶 (𝑚𝑖 𝑗 ), where 𝐶 (𝑚𝑖 𝑗 ) is the balanced directed cycle, where all edges have weight 𝑚𝑖 𝑗 ,
and 𝐺 ′ is still a balanced graph. But 𝐺 ′ has fewer edges (with nonzero weight) than G, so repeating this
reduction, we deduce the proposition. �
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Let v = (𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑛) ) be a balanced sequence of points in H. We define a weighted directed
graph 𝐺 (v) by the formula

𝑚𝑖 𝑗 =

{
(𝑣 (𝑖+1) − 𝑣 (𝑖) ) 𝑗 if 𝑗 ≠ 𝑖,

𝑣 (𝑖+1)𝑖 if 𝑗 = 𝑖.
(6.3)

Lemma 6.10. The map v ↦→ 𝐺 (v) is a bijection between Coxeter necklaces in H, and balanced graphs
G satisfying 𝑆(𝐺) = 𝑘 . Furthermore, allowing k to vary, we obtain an isomorphism of cones.

Proof. We first check that 𝐺 (v) is a balanced graph. By definition of a balanced sequence, 𝑚𝑖 𝑗 ∈ R≥0.
We have for each 𝑖 ∈ [𝑛],∑

𝑗∈[𝑛]
𝑚𝑖 𝑗 =

∑
𝑗∈[𝑛]
(𝑣 (𝑖+1) − 𝑣 (𝑖) ) 𝑗 + 𝑣 (𝑖)𝑖 = 𝑣 (𝑖)𝑖 =

∑
𝑗∈[𝑛]
(𝑣 ( 𝑗+1) − 𝑣 ( 𝑗) )𝑖 + 𝑣 (𝑖)𝑖 =

∑
𝑗∈[𝑛]

𝑚 𝑗𝑖 ,

so 𝐺 (v) is balanced. Finally, using 𝑣 (𝑖+1)𝑗 = 𝑚 𝑗 , 𝑗 + · · · + 𝑚𝑖, 𝑗 , one obtains 𝑆(𝐺) =
∑
𝑗 𝑣 (𝑖+1)𝑗 = 𝑘 .

Conversely, suppose we are given a balanced graph satisfying 𝑆(𝐺) = 𝑘 . Then we define a sequence
v by 𝑣 (𝑖+1)𝑗 = 𝑚 𝑗 , 𝑗 + · · · + 𝑚𝑖, 𝑗 . It is easy to verify that v is a balanced sequence in H, and that this is
inverse to v ↦→ 𝐺 (v).

The last statement follows immediately from the linearity of (6.3). �

We write v(𝐺) for the Coxeter necklace associated to a balanced digraph G.

Example 6.11. Let G be the balanced digraph on [4], such that 𝑚𝑖 𝑗 = 1 for all 𝑖 ≠ 𝑗 . Then 𝑆(𝐺) = 6
and v(𝐺) is given by

𝑣 (1) = (3, 2, 1, 0), 𝑣 (2) = (0, 3, 2, 1), 𝑣 (3) = (1, 0, 3, 2), 𝑣 (4) = (2, 1, 0, 3).

6.3. Parametrization

Theorem 6.12. There are natural bijections between the following sets:

1. The set of all polypositroids 𝑃 ⊂ 𝐻𝑘 .
2. The set of all Coxeter necklaces in 𝐻𝑘 .
3. The set of all balanced digraphs G with 𝑆(𝐺) = 𝑘 .

Furthermore, these bijections are compatible with the respective cone structures on the three sets.

After Lemma 6.10, it suffices to show that the map v→ 𝑄(v) is a bijection between Coxeter necklaces
and polypositroids. We delay the proof of Theorem 6.12 to Section 6.5.

The following result follows easily from the definition of the cone of balanced digraphs.

Corollary 6.13. The cone of balanced digraphs G satisfying 𝑆(𝐺) = 0 has 𝑛(𝑛 − 1) facets, given by the
inequalities 𝑚𝑖 𝑗 ≥ 0 for 𝑖 ≠ 𝑗 . Thus, the cone Cpol also has 𝑛(𝑛 − 1) facets.

The group 𝐻0 = R𝑛−1 of translations preserves the affine hyperplane 𝐻𝑘 and acts on the cone Cpol of
polypositroids via the formula 𝑧 : (𝑎𝑖 𝑗 ) ↦→ (𝑎𝑖 𝑗 + (ℎ𝑖 − ℎ 𝑗 ) (𝑧)), where 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) ∈ 𝐻0. The
lineality space of the cone Cpol can be identified with R𝑛−1. Let C ′pol := Cpol/R𝑛−1 denote the quotient
cone, which may be identified with the set of polypositroids inside 𝐻0, modulo translations.

Corollary 6.14. The cone C ′pol is a pointed cone, with extremal rays corresponding to the polypositroids
𝑄(v(𝐺)), where G is a balanced directed cycle (including cycles of length 2).

Proof. By Theorem 6.12, we are equivalently considering the cone of balanced digraphs with 𝑆(𝐺) = 0.
The translation action of R𝑛−1 on 𝐻0 corresponds to changing the weight of the n loop edges of G.
Ignoring the weights of the loops, the statement then follows from Proposition 6.9. �
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6.4. Face graphs

Let P be an alcoved polytope and F a face of P. We define the graph 𝑇𝐹 of P at F to be the directed
graph on [𝑛] with a directed edge (𝑖 → 𝑗) whenever F lies on the hyperplane (ℎ 𝑗 − ℎ𝑖) (𝑥) ≤ 𝑎 𝑗𝑖 , or
equivalently, on the hyperplane 𝑥 [𝑖+1, 𝑗 ] = 𝑓 [𝑖+1, 𝑗 ] . We say that a digraph T on [𝑛] is noncrossing if,
when the graph is drawn inside a circle with the vertices [𝑛] arranged in clockwise order, there are no
intersections in the interior of the circle. We say that a digraph T on [𝑛] is alternating if no vertex has
both incoming and outgoing edges.

Lemma 6.15. Suppose E is an edge of an alcoved polytope P, with a noncrossing graph 𝑇𝐸 . Then E is
parallel to 𝑒𝑖 − 𝑒 𝑗 for some i and j.

Proof. Let us take a minimal subgraph 𝑇 ⊂ 𝑇𝐸 , such that the corresponding (𝑛 − 2) facets still define
(the affine span of) E. We claim that T is a forest with two components. It is enough to show that the
underlying undirected graph of T has no cycles. A cycle in T would correspond to a linear dependence in
the equations defining E, contradicting the minimality of T. For the remainder of the proof, it is enough
to think of T as an undirected forest.

Let the two components of T be 𝑇1 and 𝑇2. By the noncrossing assumption, it is clear that 𝑇1 and 𝑇2
are induced subgraphs of T on cyclic intervals [𝑖, 𝑗 − 1] and [ 𝑗 , 𝑖 − 1].

Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) lie on E. We claim that if 𝑘 ∉ {𝑖, 𝑗}, then 𝑥𝑘 is fixed (that is, constant on E). For
simplicity, we shall assume that 𝑥𝑘 lies in a component 𝑇1 of T which is an induced subgraph on a usual
interval (no wraparound). First, note that an edge of the form (𝑟, 𝑟 +1) ∈ 𝑇1 completely determines 𝑥𝑟+1.
Also, if (𝑟, 𝑠) ∈ 𝑇 is an edge, and all but one of the coordinates {𝑥𝑟+1, 𝑥𝑟+2, . . . , 𝑥𝑠} is determined, then
the last coordinate is also determined. By induction on the length of edges, we thus see that for each edge
(𝑟, 𝑠) ∈ 𝑇1, all of {𝑥𝑟+1, 𝑥𝑟+2, . . . , 𝑥𝑠} are determined, proving our claim that 𝑥𝑘 is fixed for 𝑘 ∉ {𝑖, 𝑗}.

Thus, only the coordinates 𝑥𝑖 and 𝑥 𝑗 vary on E. Since 𝐸 ∈ 𝐻, we deduce that E is parallel to 𝑒𝑖−𝑒 𝑗 . �

Remark 6.16. The converse of Lemma 6.15 is false. For example, consider an alcoved polytope P in
𝐻 = {𝑥 ∈ R5 | 𝑥1 + 𝑥2 + · · · + 𝑥5 = 0}, where 𝑥2 ≤ 0, 𝑥2 + 𝑥3 ≤ 0, and 𝑥3 + 𝑥4 ≥ 0 are all facets,
and so that 𝑥2 = 𝑥2 + 𝑥3 = 𝑥3 + 𝑥4 = 0 defines an edge E of P. Then 𝑇𝐸 contains the directed edges
(1→ 2), (1→ 3), (2→ 4) and is alternating but not noncrossing. However, the edge E is clearly in the
direction 𝑒1 − 𝑒5.

Let us say that a Coxeter necklace (𝑣 (1) , . . . , 𝑣 (𝑛) ) is generic if every coordinate of 𝑣 (𝑖+1) − 𝑣 (𝑖) is
nonzero, for every i. This is equivalent to saying that all the nonloop edges of the graph 𝐺 (v) are nonzero.

Lemma 6.17. Let (𝑣 (1) , . . . , 𝑣 (𝑛) ) be a generic Coxeter necklace in H. Then any face F of the alcoved
polytope 𝑄 =

⋂
𝑖∈Z/𝑛Z(𝑣 (𝑖) + 𝐶𝑖) has a noncrossing and alternating graph 𝑇𝐹 .

Proof. Let F be a face, such that 𝑇𝐹 is either not noncrossing or not alternating.
Suppose [𝑟, 𝑠] and [𝑟 ′, 𝑠′] are cyclic intervals so that the corresponding directed edges (𝑟 − 1) → 𝑠

and (𝑟 ′ − 1) → 𝑠′ in 𝑇𝐹 are either crossing or form a directed path (𝑟 − 1) → 𝑠 = (𝑟 ′ − 1) → 𝑠′. In the
crossing case, we may assume that 𝑟 < 𝑟 ′ ≤ 𝑠 < 𝑠′ < 𝑟 (interpreted in a cyclic manner). We have the
following equations and inequalities

𝑥 [𝑟 ,𝑠] = 𝑣 (𝑟 )[𝑟 ,𝑠] (6.4)

𝑥 [𝑟 ′,𝑠′ ] = 𝑣 (𝑟
′)
[𝑟 ′,𝑠′ ] (6.5)

𝑥 [𝑟 ,𝑠′ ] ≤ 𝑣 (𝑟 )[𝑟 ,𝑠′ ] (6.6)

𝑥 [𝑟 ′,𝑠] ≤ 𝑣 (𝑟
′)
[𝑟 ′,𝑠] (6.7)

https://doi.org/10.1017/fms.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.11


16 T. Lam and A. Postnikov

for points 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) on the face F. By (6.4) and (6.7), we have

𝑥 [𝑟 ,𝑟 ′−1] = 𝑥 [𝑟 ,𝑠] − 𝑥 [𝑟 ′,𝑠] ≥ 𝑣 (𝑟 )[𝑟 ,𝑠] − 𝑣 (𝑟
′)
[𝑟 ′,𝑠] ,

and by (6.5) and (6.6), we have

𝑥 [𝑟 ,𝑟 ′−1] = 𝑥 [𝑟 ,𝑠′ ] − 𝑥 [𝑟 ′,𝑠′ ] ≤ 𝑣 (𝑟 )[𝑟 ,𝑠′ ] − 𝑣 (𝑟
′)
[𝑟 ′,𝑠′ ] .

Equating the two expressions for 𝑥 [𝑟 ,𝑟 ′−1] , we obtain

𝑣 (𝑟 )[𝑠+1,𝑠′ ] ≥ 𝑣 (𝑟
′)
[𝑠+1,𝑠′ ] .

This is impossible because v is generic balanced, implying that the coordinates in the positions [𝑠+1, 𝑠′]
of 𝑣 (𝑟

′) − 𝑣 (𝑟 ) are all positive. �

6.5. Proof of Theorem 6.12

Let v = (𝑣 (1) , . . . , 𝑣 (𝑛) ) be a Coxeter necklace in H. We show that 𝑄(v) is a polypositroid. First, suppose
that v is generic. Then by Lemmas 6.15 and 6.17, 𝑄(v) is a generalized permutohedron, and thus a
polypositroid.

Now suppose that v is not generic, and let 𝐺 (v) be the balanced digraph under the bijection of
Lemma 6.10. Let 𝐺 𝜀 be obtained from 𝐺 (v) by adding 𝜀 > 0 to every nonloop edge. It is immediate
that 𝐺 (𝜀) is again a balanced digraph, and we define the Coxeter necklace v𝜀 by 𝐺 (v𝜀) = 𝐺 𝜀 . Then
v = lim𝜀→0 v𝜀 is a limit of the generic balanced sequences v𝜀 . For sufficiently small but nonzero 𝜀, the
combinatorial type of the polytope 𝑄(v𝜀) corresponding to v𝜀 does not change. The alcoved polytope
Q is thus a deformation of such a 𝑄(v𝜀), in the sense of moving facets. Since 𝑄(v𝜀) is a generalized
permutohedron, so is 𝑄(v) (see, for example [CL]).

Now suppose P is a polypositroid with vertices 𝑣𝑤 . Since P is a generalized permutohedron, by
Proposition 6.5 and Lemma 5.1, v = (𝑣id, 𝑣𝑐 , 𝑣𝑐2 , . . . , 𝑣𝑐𝑛−1 ) is balanced, and we have env(𝑃) = 𝑄(v).
But P is also alcoved, so we have 𝑃 = env(𝑃) = 𝑄(v). Thus, the map v ↦→ 𝑄(v) is surjective. Finally,
it follows from Lemma 6.4 that v ↦→ 𝑄(v) is injective. This proves the equivalence of (1) and (2) in
Theorem 6.12.

6.6. Proof of Theorem 4.8

The following result follows immediately from Proposition 6.5(1) and Theorem 6.12.

Proposition 6.18. The alcoved envelope of a generalized permutohedron is a generalized permutohe-
dron, and thus a polypositroid.

Recall that 𝜋I denotes the composition of the restriction map 𝑓𝑃 ↦→ 𝑓𝑃 |I with the transformation
(3.4) from 𝑓 [𝑟 ,𝑠]-coordinates to 𝑎𝑖 𝑗 coordinates. Let P be a generalized permutohedron and 𝑓𝑃 |2[𝑛] ∈ Csub
be its support function. Then 𝜋I ( 𝑓𝑃) represents the alcoved polytope env(𝑃). By Proposition 6.18, we
thus have 𝜋𝐼 (Csub) ⊆ Cpol. But if P is a polypositroid, then env(𝑃) = 𝑃. It follows that 𝜋I (Csub) = Cpol.

7. Components of a polypositroid

A noncrossing partition 𝜏 = (𝜏1 |𝜏2 | · · · |𝜏ℓ) of [𝑛] is a partition of [𝑛], such that there do not exist
1 ≤ 𝑖 < 𝑗 < 𝑘 < 𝑙 ≤ 𝑛, such that 𝑖, 𝑘 ∈ 𝜏𝑎 and 𝑗 , 𝑙 ∈ 𝜏𝑏 for 𝑎 ≠ 𝑏. Let G be a graph on [𝑛]. Then there
exists a finest noncrossing partition 𝜏(𝐺) = (𝜏1 |𝜏2 | · · · |𝜏ℓ) of [𝑛], such that G is the disjoint union of
the induced subgraphs 𝐺 |𝜏𝑎 , 𝑎 = 1, 2, . . . , ℓ. Note that the graphs 𝐺 |𝜏𝑎 need not be connected.
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If 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R𝑛, then 𝑥 |𝜏𝑎 ∈ R𝜏𝑎 denotes the vector obtained by projecting x to the
components indexed by 𝜏𝑎. Given v = (𝑣 (1) , . . . , 𝑣 (𝑛) ) and 𝜏𝑎 = {𝑖1, 𝑖2, . . . , 𝑖𝑡 }, we define

v|𝜏𝑎 := (𝑣 (𝑖1) |𝜏𝑎 , 𝑣 (𝑖2) |𝜏𝑎 , . . . , 𝑣 (𝑖𝑡 ) |𝜏𝑎 ).

The following result should be compared to [ARW16, Theorem 7.6] in the positroid case.

Lemma 7.1. Let v be a Coxeter necklace, and let 𝜏(𝐺 (v)) = (𝜏1 |𝜏2 | · · · |𝜏ℓ). Then v|𝜏𝑎 , 𝑎 = 1, 2, . . . , 𝑘
are Coxeter necklaces satisfying 𝐺 (v|𝜏𝑎 ) = 𝐺 |𝜏𝑎 , and we have

𝑄(v) = 𝑄(v|𝜏1 ) ×𝑄(v|𝜏2 ) × · · · ×𝑄(v|𝜏ℓ ),

where 𝑄(v|𝜏𝑎 ) lies inside R𝜏𝑎 .

Proof. The lemma holds more generally for 𝜏 any noncrossing partition, such that G is the disjoint union
of the induced subgraphs 𝐺 |𝜏𝑎 , that is, 𝜏 need not be chosen finest. The sums 𝑘𝑎 := 𝑣

( 𝑗)
𝜏𝑎 =

∑
𝑖∈𝜏𝑎 𝑣

( 𝑗)
𝑖

(not to be confused with the projection 𝑣 ( 𝑗) |𝜏𝑎 ) do not depend on 𝑗 ∈ [𝑛]. It follows that 𝑄(v) lies in
the hyperplane

∑
𝑖∈𝜏𝑎 𝑥𝑖 = 𝑘𝑎, and 𝑄(v𝜏𝑎 ) lies in the same hyperplane intersected with R𝜏𝑎 .

The first statement of the lemma is straightforward. For the second statement, we may assume by
induction that 𝜏 = (𝜏1 |𝜏2), where 𝜏𝑎 are cyclic intervals. The polytope 𝑄(v) is cut out by the inequalities
𝑥 [𝑟 ,𝑠] ≤ 𝑣 (𝑟 )[𝑟 ,𝑠] . Suppose that [𝑟, 𝑠] ∩𝜏1 and [𝑟, 𝑠] ∩𝜏2 are both nonempty. For simplicity, we suppose that
[𝑟, 𝑠] ∩ 𝜏1 = [𝑟, 𝑡] and [𝑟, 𝑠] ∩ 𝜏2 = [𝑡 + 1, 𝑠]. The assumption that there are no edges in 𝐺 (v) between
𝜏1 and 𝜏2 implies that 𝑣 (𝑟 ) |[𝑡+1,𝑠] = 𝑣 (𝑡+1) |[𝑡+1,𝑠] . Thus, 𝑣 (𝑟 )[𝑟 ,𝑠] = 𝑣 (𝑟 )[𝑟 ,𝑡 ] + 𝑣 (𝑡+1) |[𝑡+1,𝑠] . It follows that
the inequality 𝑥 [𝑟 ,𝑠] ≤ 𝑣 (𝑟 )[𝑟 ,𝑠] is implied by the inequalities 𝑥 [𝑟 ,𝑡 ] ≤ 𝑣 (𝑟 )[𝑟 ,𝑡 ] and 𝑥 [𝑡+1,𝑠] ≤ 𝑣 (𝑡+1) |[𝑡+1,𝑠] .
The latter inequalities are among those cutting out 𝑄(v𝜏1) and 𝑄(v𝜏2 ), respectively. It follows that
𝑄(v) = 𝑄(v𝜏1) ×𝑄(v𝜏2 ). �

Proposition 7.2. Let v be a Coxeter necklace. The dimension of the polypositroid 𝑄(v) is equal to
𝑛 − #{parts in 𝜏(𝐺)}.

Proof. By induction and Lemma 7.1, it suffices to show dim(𝑄(v)) = 𝑛 − 1 whenever 𝜏(𝐺) = ([𝑛])
has a single part.

Assume that 𝜏(𝐺) = ([𝑛]) and that 𝑄(v) has dimension less than 𝑛 − 1. Then since 𝑄(v) is alcoved,
it must lie in some hyperplane (ℎ𝑖 − ℎ 𝑗 ) (𝑥) = 𝑎𝑖 𝑗 . This implies that 𝑣

( 𝑗+1)
[ 𝑗+1,𝑖 ] = 𝑎𝑖 𝑗 = 𝑣 (𝑖+1)[ 𝑗+1,𝑖 ] . But

(𝑣 (𝑖+1) − 𝑣 ( 𝑗+1) )[ 𝑗+1,𝑖 ] =
∑

𝑘∈[ 𝑗+2,𝑖+1]
(𝑣 (𝑘) − 𝑣 (𝑘−1) )[ 𝑗+1,𝑖 ] ≤ 0

with equality if and only if there are no edges in 𝐺 (v) from the vertices [ 𝑗 + 1, 𝑖] to [𝑖 + 1, 𝑗]. The same
argument shows that there are no edges from [𝑖 + 1, 𝑗] to [ 𝑗 + 1, 𝑖], so 𝜏(𝐺) must be a refinement of the
partition 𝜏 = ([𝑖 + 1, 𝑗] | [ 𝑗 + 1, 𝑖]), contradicting our assumption. �

8. Normal fans of polypositroids

8.1. Normal fans to generic simple alcoved polytopes

Recall that we say that an alcoved polytope is generic if every inequality (ℎ𝑖 − ℎ 𝑗 ) (𝑥) ≤ 𝑎𝑖 𝑗 determines
a facet. The f -vector ( 𝑓0, 𝑓1, . . . , 𝑓𝑑) of a d-dimensional polytope P is given by

𝑓𝑖 := #{𝑖-dimensional faces of 𝑃}.
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Theorem 8.1. The f-vectors of any two generic simple alcoved polytopes 𝑃 ⊂ R𝑛 are the same. The face
numbers are given by

𝑓𝑖 =

(
𝑛 − 1

𝑖

) (
2𝑛 − 𝑖 − 2

𝑛 − 1

)
for 𝑖 = 0, 1, . . . , 𝑛 − 1. (8.1)

The root polytope R is the convex hull of the vectors {ℎ𝑖 − ℎ 𝑗 | 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}}, which we think
of as lying inside (R𝑛)∗/ℎ𝑛. If T is a directed tree on [𝑛] (or, more generally, a directed graph on [𝑛]),
we let Δ𝑇 ⊂ (R𝑛)∗ denote the convex hull of the points {ℎ𝑖 − ℎ 𝑗 | 𝑗 → 𝑖 is an edge of 𝑇} ∪ {0}. A local
triangulation of R is a triangulation, such that every simplex is one of the Δ𝑇 .

Let P be a generic simple alcoved polytope. The normal fan F𝑃 of P lies in (R𝑛)∗/ℎ𝑛. The condition
that P is generic implies that every root ℎ𝑖 − ℎ 𝑗 ≠ 0 is an edge of F𝑃 . The condition that P is simple
implies that each maximal cone 𝐶𝑣 of P is spanned by (𝑛 − 1) roots. Thus, the collection of maximal
cones of F𝑃 induces a local triangulation of P. Let 𝐶𝑇 := span≥0Δ𝑇 be the cone spanned by Δ𝑇 .

Proof of Theorem 8.1. The f -vector of P is given by counting the number of cones of each dimension
of F𝑃 , which is the same as counting the number of simplices (with the origin as a vertex) of each
dimension in the corresponding local triangulation of the root polytope R.

We claim that every local triangulation of R has the same number of simplices of each dimension. To
see this, we note that since the type A root system is unimodular, every simplex Δ𝑇 has the same volume
(in fact, normalized volume 1). The number #{Int(𝑚Δ) ∩ Z𝑟 } of integer points lying in the interior of
an integer scalar multiple of a normalized volume 1 simplex Δ with integer coordinates depends only
on the scalar multiple m and the dimension dim(Δ) of the simplex.

It follows easily from this that the Ehrhart polynomial of R can be written in terms of, and in
fact determines, the number of simplices (with the origin as a vertex) in each dimension of a local
triangulation. But clearly, the Ehrhart polynomial of R does not depend on the triangulation of R.

The cyclohedron (defined in (3.5)) is a generic and simple polypositroid. Thus, every generic simple
polypositroid has the same f -vector as the cyclohedron. According to [Sim], the f -vector of the cyclo-
hedron is given by (8.1). For example, the 2-dimensional cyclohedron is a hexagon with face numbers
( 𝑓0, 𝑓1, 𝑓2) = (6, 6, 1). �

8.2. Matching ensembles

Let P be a generic simple alcoved polytope. Recall that in Section 6.4, we have defined the graph 𝑇𝐹 for
any face F of P. When 𝐹 = 𝑣 is a vertex of P, the graph 𝑇𝑣 is a tree that we call a vertex tree. Let T (𝑃)
denote the set of vertex trees of P. The data of T (𝑃) are equivalent to the knowledge of the normal fan
F𝑃 . Thus, the fan F𝑃 is complete, and the maximal cones 𝐶𝑣 of F𝑃 are indexed by vertices v, such that
𝐶𝑣 is the positive span of the vectors ℎ𝑖 − ℎ 𝑗 for 𝑗 → 𝑖 an edge of 𝑇𝑣 .

The first part of the following result is similar to [Po09, Lemma 13.2].
Lemma 8.2. Let P be a generic simple alcoved polytope, and v a vertex of P. Then the tree 𝑇𝑣 is
alternating. Furthermore, if P is a polypositroid, then 𝑇𝑣 is in addition noncrossing.
Proof. If 𝑗 → 𝑖 and 𝑘 → 𝑗 both belong to 𝑇𝑣 , then ℎ𝑖 − ℎ𝑘 ∈ 𝐶𝑣 and is not one of the edges of 𝐶𝑣 ,
contradicting the assumption that all roots are edges of F𝑃 . We conclude that 𝑇𝑣 is alternating.

Now suppose that P is a polypositroid. Since P is generic and simple, the polytope 𝑃′ obtained from
a small perturbation of the facets of P will have the same combinatorial type as P. We can pick such
a 𝑃′ to be a polypositroid 𝑄(v) for a generic Coxeter necklace v. It follows from Lemma 6.17 that the
trees 𝑇𝑣 are noncrossing. �

Suppose T is an alternating tree [𝑛]. A matching of (𝐼, 𝐽) in T is a collection of edges of T which form
a matching of I with J, such that vertices in I are sources, and the vertices in J are sinks. Say that two
directed alternating trees 𝑇, 𝑇 ′ on [𝑛] are compatible if there do not exist disjoint subsets 𝐼, 𝐽 ⊂ [𝑛] of
the same cardinality, such that both T and 𝑇 ′ contain matchings of (𝐼, 𝐽), and these matchings disagree.
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Lemma 8.3 (cf. [Po09, Lemma 12.6]). Let 𝑇, 𝑇 ′ be distinct directed alternating trees on [𝑛]. The
intersection 𝐶𝑇 ∩ 𝐶𝑇 ′ is a common face of both 𝐶𝑇 and 𝐶𝑇 ′ if and only if T and 𝑇 ′ are compatible.
Proof. Suppose T and 𝑇 ′ are not compatible. Let 𝐼, 𝐽 ⊂ [𝑛] be disjoint, such that T (respectively, 𝑇 ′)
contains a matching M (respectively, 𝑀 ′) from I to J, such that 𝑀 ≠ 𝑀 ′. We assume that I and J are
chosen to be minimal, so that 𝑀 ∩ 𝑀 ′ = ∅. Let

𝑥 =
∑
𝑗∈𝐽

ℎ 𝑗 −
∑
𝑖∈𝐼

ℎ𝑖 =
∑

(𝑖→ 𝑗) ∈𝑀
ℎ 𝑗 − ℎ𝑖 =

∑
(𝑖→ 𝑗) ∈𝑀 ′

ℎ 𝑗 − ℎ𝑖 .

Clearly, 𝑥 ∈ 𝐶𝑇 ∩𝐶𝑇 ′ . The minimal face of 𝐶𝑇 containing x is 𝐶𝑀 . The minimal face of 𝐶𝑇 ′ containing
x is 𝐶𝑀 ′ . Since 𝑀 ≠ 𝑀 ′, we conclude that 𝐶𝑇 ∩ 𝐶𝑇 ′ is not a common face.

Conversely, suppose that T and 𝑇 ′ are compatible. Let 𝐹 = 𝑇 ∩ 𝑇 ′ be the intersection, a directed
forest on [𝑛]. Define a partial order ≺ on the connected components (denoted A) of F, by letting 𝐴 ≺ 𝐴′

if there is a (necessarily unique) sequence 𝐴 = 𝐴0, 𝐴1, . . . , 𝐴ℓ = 𝐴′ of distinct components of F, such
that T has a (unique) directed edge 𝑓𝑖 joining 𝐴𝑖 to 𝐴𝑖+1 for 𝑖 ∈ [0, ℓ − 1]. Similarly, define ≺′ using 𝑇 ′.
We claim that 𝐴 ≺ 𝐴′ if and only if 𝐴′ ≺′ 𝐴. Assuming otherwise, the sequence of components from A
to 𝐴′ for T and from 𝐴′ to A for 𝑇 ′ can be assumed to be distinct except for A and 𝐴′. Using the directed
edges 𝑓𝑖 ∈ 𝑇 from A to 𝐴′ and 𝑔𝑖 ∈ 𝑇 ′ from 𝐴′ to A, together with some of the edges in F, one obtains an
alternating cycle of even length, such that (picking an orientation) the clockwise edges belong to T, and
the counterclockwise edges belong to 𝑇 ′. This immediately contradicts the compatibility of T and 𝑇 ′.

Now, let 𝑓 : [𝑛] → R be a function with the following properties: it is constant with value 𝑓 (𝐴) on
the components A of F, and such that 𝑓 (𝐴) < 𝑓 (𝐴′) if and only if 𝐴 ≺ 𝐴′ if and only if 𝐴′ ≺′ 𝐴. Assume
that 𝑓 (𝑛) = 0. Then f extends to a linear function 𝜙 𝑓 : (R𝑛)∗/ℎ𝑛 ↦→ R, by setting ℎ𝑖 ↦→ 𝑓 (𝑖). It follows
by construction that 𝜙 𝑓 (𝐶𝑇 ) ≥ 0, 𝜙 𝑓 (𝐶𝑇 ′ ) ≤ 0, and 𝜙 𝑓 (𝐶𝐹 ) = 0. It follows that 𝐶𝑇 ∩ 𝐶𝑇 ′ = 𝐶𝐹 is a
common face of both cones. �

A matching field on [𝑛] is a collection E = {𝑀𝐼 ,𝐽 } of matchings, one for each pair (𝐼, 𝐽) of disjoint
subsets of [𝑛] of equal size, such that for each 𝐼 ′ ⊂ 𝐼 and 𝐽 ′ ⊂ 𝐽, where 𝐼 ′ is matched to 𝐽 ′ in 𝑀𝐼 ,𝐽 ,
we have 𝑀𝐼 ′,𝐽 ′ is the restriction of 𝑀𝐼 ,𝐽 to (𝐼 ′, 𝐽 ′). If 𝑀𝐼 ′,𝐽 ′ is a restriction of 𝑀𝐼 ,𝐽 , we shall say that
𝑀𝐼 ,𝐽 contains 𝑀𝐼 ′,𝐽 ′ .

We shall call a matching field noncrossing, if every matching 𝑀𝐼 ,𝐽 is noncrossing when drawn on
the circle.
Theorem 8.4. For each generic simple alcoved polytope P, there is a unique matching field E (𝑃), such
that E (𝑃) and the set of vertex trees T (𝑃) are related by the condition: 𝑇 ∈ T (𝑃) if and only if all
matchings in T belong to the E (𝑃).

Furthermore, if P is a polypositroid, then E (𝑃) consists of noncrossing trees.
Proof. Let P be a generic simple alcoved polytope, and T (𝑃) be its set of vertex trees. We claim that for
each pair (𝐼, 𝐽) of disjoint subsets of [𝑛] of equal cardinality, some tree 𝑇 ∈ T (𝑃) contains a matching
of (𝐼, 𝐽). To see this, consider the point 𝑥𝐼 ,𝐽 =

∑
𝑗∈𝐽 ℎ 𝑗 −

∑
𝑖∈𝐼 ℎ𝑖 . Since {𝐶𝑇 | 𝑇 ∈ T (𝑃)} are the

maximal cones of a complete fan, it belongs to 𝐶𝑇 for some 𝑇 ∈ T (𝑃). But T is alternating by Lemma
8.2, and it follows that T contains a unique matching of (𝐼, 𝐽). It follows from Lemma 8.3 that T (𝑃)
determines a unique matching ensemble E (𝑃). Furthermore, T (𝑃) is exactly the set of trees T, such
that all matchings in T belong to E (𝑃): if 𝑇 ′ is another tree satisfying this condition, then, by Lemma
8.3, 𝐶𝑇 ′ can be added to the complete fan {𝐶𝑇 | 𝑇 ∈ T (𝑃)}, which is a contradiction.

The last sentence follows from Lemma 8.2. �

Definition 8.5 (cf. [OY, SZ]). Let E be a matching field. Then we say that E satisfies the linkage axiom if
1. for any disjoint (𝐼, 𝐽) of equal size, and 𝑗 ′ ∈ [𝑛] \ (𝐼 ∪ 𝐽), there is an edge (𝑖, 𝑗) ∈ 𝑀𝐼 ,𝐽 , such that

the matching 𝑀 ′𝐼 ,𝐽 ′ := 𝑀𝐼 ,𝐽 \ {(𝑖, 𝑗)} ∪ {(𝑖, 𝑗 ′)} belongs to E , where 𝐽 ′ = 𝐽 \ { 𝑗} ∪ { 𝑗 ′};
2. for any disjoint (𝐼, 𝐽) of equal size, and 𝑖′ ∈ [𝑛] \ (𝐼 ∪ 𝐽), there is an edge (𝑖, 𝑗) ∈ 𝑀𝐼 ,𝐽 , such that

the matching 𝑀 ′𝐼 ′,𝐽 := 𝑀𝐼 ,𝐽 \ {(𝑖, 𝑗)} ∪ {(𝑖′, 𝑗)} belongs to E , where 𝐼 ′ = 𝐼 \ {𝑖} ∪ {𝑖′};
If E satisfies the linkage axiom, we say that E is a matching ensemble.
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Proposition 8.6. Let P be a generic simple alcoved polytope, and let E (𝑃) be the appearing in Theorem
8.4. Then E (𝑃) satisfies the linkage axiom, and is a matching ensemble.

Proof. Let 𝑘 = |𝐼 | = |𝐽 |. Consider the vector

𝑥 =

(
1 + 1

𝑘

) ∑
𝑖∈𝐼

ℎ𝑖 +
∑

𝑗∈𝐽∪{ 𝑗′ }
ℎ 𝑗 .

Then x lies in the cone 𝐶𝑇 for some 𝑇 ∈ T (𝑃). Let 𝑇 = 𝑇 |𝐼∪𝐽∪{ 𝑗′ } denote the induced subgraph on
𝐼∪ 𝐽∪{ 𝑗 ′}. It is not difficult to see that 𝑇 must be connected, and thus itself a tree. Let 𝐴1, 𝐴2, . . . , 𝐴𝑟 ⊂
𝐼 ∪ 𝐽 be the (vertex sets of the) connected components of the forest 𝑇 \ { 𝑗 ′} obtained by removing 𝑗 ′.
Looking at the coefficients of ℎ𝑡 , 𝑡 ∈ 𝐴𝑠 in x, we deduce that |𝐴𝑠∩ 𝐼 | = |𝐴𝑠∩𝐽 | for each 𝑠 = 1, 2, . . . , 𝑟 . It
follows that the matching 𝑀𝐼 ,𝐽 ∈ E (𝑃) restricts to a matching on (𝐴𝑠∩ 𝐼, 𝐴𝑠∩𝐽) for each 𝑠 = 1, 2, . . . , 𝑟 .

Now let 𝑖 ∈ (𝐴1 ∩ 𝐼) be the vertex in 𝐴1 connected to 𝑗 ′ and let (𝑖, 𝑗) ∈ 𝑀𝐼 ,𝐽 be the edge of 𝑀𝐼 ,𝐽

incident to i. Then T also contains the matching 𝑀𝐼 ,𝐽 \ {(𝑖, 𝑗)} ∪ {(𝑖, 𝑗 ′)}, and, by Theorem 8.4, so
does E (𝑃). This establishes condition (1) of the linkage axiom for E (𝑃). Condition (2) is similar. �

Conjecture 8.7. Every noncrossing matching ensemble appears as E (𝑃) for some generic simple
polypositroid P.

Remark 8.8. In some way, matching ensembles are analogous to matroids, and matching ensembles of
the form E (𝑃) are analogous to realizable matroids. So Conjecture 8.7 is similar in spirit to the result
of [ARW17] that positive oriented matroids are positroids, that is, they are realizable.

The following examples support Conjecture 8.7.

Example 8.9. Let 𝑛 = 3. In this case, every alcoved polytope is automatically a polypositroid. Indeed,
there is a single matching field on {1, 2, 3}, it satisfies the linkage axiom, and it is noncrossing. Thus,
there is only one possible normal fan for a generic simple polypositroid.

Example 8.10. Let 𝑛 = 4. Let P be a generic simple polypositroid. We use Theorem 8.4 to understand the
possible choices for T (𝑃). By the noncrossing condition, a matching field E (𝑃) is uniquely determined
except for matchings on (𝐼, 𝐽) = ({1, 3}, {2, 4}) and (𝐼, 𝐽) = ({2, 4}, {1, 3}), each of which there are
two choices of matchings, giving four possibilities for E (𝑃), all of which satisfy the linkage axiom. By
an explicit calculation, for example, by computing whether putative vertices 𝑣𝑇 lie inside P, we find
that the matching 𝑀{1,3}, {2,4} (respectively, 𝑀{2,4}, {1,3}) depends on the sign of 𝑎41 + 𝑎23 − 𝑎43 − 𝑎21
(respectively, 𝑎12 + 𝑎34 − 𝑎14 − 𝑎32) (if 𝑎41 + 𝑎23 − 𝑎43 − 𝑎21 = 0, then P is not simple). Suppose that P
arises from the balanced graph G via Theorem 6.12. Then we have

𝑎41 + 𝑎23 − 𝑎43 − 𝑎21 = 𝑚43 + 𝑚13 − 𝑚24 − 𝑚34

𝑎12 + 𝑎34 − 𝑎14 − 𝑎32 = 𝑚14 + 𝑚24 − 𝑚31 − 𝑚41
(8.2)

(using (6.2), the right hand side (RHS) can be written in a number of equivalent ways). It is easy to
construct generic balanced G, such that the RHS has any of the four possible ordered pairs of signs. For
example, a balanced directed cycle (1 → 4 → 3 → 1) (respectively, (4 → 3 → 2 → 4)) makes the
first (respectively, second) quantity in (8.2) positive and the second (respectively, first) 0. It follows that
there are exactly four normal fans of generic simple polypositroids for 𝑛 = 4.

We consider the cyclohedron defined in (3.5).

Proposition 8.11. Let P be a cyclohedron. Then the set T (𝑃) of vertex trees of P is the set of noncrossing,
alternating trees on [𝑛] with the following additional property: there is a cyclic rotation 𝑖 ≺ 𝑖 + 1 ≺
· · · ≺ 𝑛 ≺ 1 ≺ · · · ≺ 𝑖 − 1 of the usual order on [𝑛], such that every edge (𝑖, 𝑗) of 𝑇𝑣 satisfies 𝑖 ≺ 𝑗 .

Proof. Let 𝑟, 𝑠, 𝑟 ′, 𝑠′ be four indices in cyclic order. Then it follows from (3.6) that 𝑓 [𝑟 ,𝑠] + 𝑓 [𝑟 ′,𝑠′ ] >
𝑓 [𝑟 ,𝑠′ ] + 𝑓 [𝑟 ′,𝑠] − 𝑘 , so that in any vertex tree 𝑇𝑣 , the directed edges (𝑟 − 1) → 𝑠 and (𝑟 ′ − 1) → 𝑠′
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Figure 1. Noncrossing, decreasing, alternating trees on {1, 2, 3, 4}.

cannot both be present. The set of trees satisfying this condition is exactly the set of trees stated in the
proposition. To complete the proof, it suffices to note from (8.1) that the cyclohedron has

(2𝑛−2
𝑛−1

)
vertices,

and that the number of noncrossing, decreasing (every edge (𝑖 → 𝑗) satisfies 𝑗 < 𝑖), alternating trees
on [𝑛] is equal to the Catalan number 1

𝑛

(2𝑛−2
𝑛−1

)
(see [Po09] or Remark 8.21 below). �

For example, let 𝑛 = 4. Then the cyclohedron has 20 vertices, and each vertex tree is a rotation of
one of the trees in Figure 1.

Remark 8.12. The decomposition in Proposition 8.11 of T (𝑃) into the n cyclic rotations of the set
of noncrossing, alternating, decreasing trees has the following geometric interpretation: the cones
𝐶, 𝑐(𝐶), 𝑐2 (𝐶), . . . , 𝑐𝑛−1 (𝐶) cover all of 𝐻0 and intersect in lower-dimensional faces.

8.3. Proof of Theorem 4.9

Proposition 8.13. Let P be a generic simple alcoved polytope given by the inequalities (3.2). Then P is
a polypositroid if and only if, for any four indices 𝑖, 𝑗 , 𝑘, 𝑙 in cyclic order, we have 𝑎𝑖𝑘 + 𝑎 𝑗𝑙 > 𝑎𝑖𝑙 + 𝑎 𝑗𝑘 .

Proof. Suppose P is a generic simple polypositroid. By the uniqueness part of Theorem 8.4 (or directly
from the proof), there is a vertex tree 𝑇𝑣 of P, which contains a noncrossing matching of ({𝑘, 𝑙}, {𝑖, 𝑗}).
Since 𝑖, 𝑗 , 𝑘, 𝑙 are in cyclic order, the matching must match i with l and match j with k. We thus have

𝑎𝑖𝑙 + 𝑎 𝑗𝑘 = (ℎ𝑖 − ℎ𝑙) (𝑣) + (ℎ 𝑗 − ℎ𝑘 ) (𝑣)
= (ℎ𝑖 − ℎ𝑘 ) (𝑣) + (ℎ 𝑗 − ℎ𝑙) (𝑣)
≤ 𝑎𝑖𝑘 + 𝑎 𝑗𝑙 .

Equality cannot occur, for otherwise, 𝑇𝑣 will contain a cycle. Conversely, if P is a generic simple alcoved
polytope and 𝑎𝑖𝑘 + 𝑎 𝑗𝑙 > 𝑎𝑖𝑙 + 𝑎 𝑗𝑘 holds for any four indices 𝑖, 𝑗 , 𝑘, 𝑙 in cyclic order, then we deduce
that E (𝑃) is noncrossing, so T (𝑃) consists of noncrossing trees, and, by Lemma 6.15, we conclude that
P is a polypositroid. �

Now, the inequalities 𝑎𝑖𝑘 + 𝑎 𝑗𝑙 > 𝑎𝑖𝑙 + 𝑎 𝑗𝑘 define an open subcone C of Calc, each point of which
represents a generic alcoved polytope. It follows from Proposition 8.11 that the cyclohedron is a
generic simple polypositroid and thus C is nonempty. An open dense subset of 𝐶 ′ ⊆ 𝐶 corresponds
to generic alcoved polytopes that are simple. Applying Proposition 8.13, we see that these polytopes are
generic simple polypositroids. The closure of 𝐶 ′ is the closed cone cut out by (4.3). The correspond-
ing limits of generic simple polypositroids are nonempty (possibly not generic, possibly not simple)
polypositroids, finishing the proof of the Theorem 4.9.

8.4. Duality for alternating trees

A noncrossing tree T on [𝑛] is called circular-alternating if for each vertex v, the edges incident to v
alternate between incoming and outgoing as they are read in order when 𝑇𝑣 is drawn on a circle. Thus,
for example, if v is incident to 𝑢1, 𝑢2, 𝑢3, 𝑢4 with 𝑢1 < 𝑣 < 𝑢2 < 𝑢3 < 𝑢4, then the edges (𝑣, 𝑢1), (𝑣, 𝑢4),
(𝑣, 𝑢3), (𝑣, 𝑢2) alternate in direction.

Let Talt denote the set of alternating, noncrossing trees, and let Tcir denote the set of noncrossing,
circular-alternating trees. For 𝑇 ∈ Talt, let 𝑇 ′ be obtained from T as follows: place the numbers
1′, 1, 2′, 2, . . . , 𝑛′, 𝑛 in clockwise order around a circle, and draw T using the numbers 1, 2, . . . , 𝑛. Then
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Figure 2. The bijection of Proposition 8.14: when T is the graph consisting of the solid arrows,
𝑇 ′ = 𝜑(𝑇) is the graph consisting of the dashed arrows.

𝑇 ′ is the unique tree on the numbers 1′, 2′, . . . , 𝑛′, such that each directed edge 𝑐′ → 𝑑 ′ of 𝑇 ′ intersects
a unique directed edge 𝑎 → 𝑏 of T, and furthermore, 𝑎, 𝑑 ′, 𝑏, 𝑐′ are in clockwise order.

Proposition 8.14. The map 𝑇 ↦→ 𝑇 ′ gives a bijection 𝜑 : Talt → Tcir.

Proof. The tree T cuts the disk up into n pieces, each containing exactly one of 1′, 2′, . . . , 𝑛′. Let D be
one of these components. Then D is bounded by an arc of the circle and a number of edges of T. When
read in order around the boundary of D, these edges of T alternate in direction. It follows that 𝑇 ′ ∈ Tcir.

In the other direction, let 𝐷 ′ be one of the components that 𝑇 ′ ∈ Tcir divides the disk into. Then
the edges of 𝑇 ′ along the boundary of 𝐷 ′ are all in the same direction. It follows that there is unique
𝑇 ∈ Talt, such that 𝜑(𝑇) = 𝑇 ′. �

For a tree T, let 𝐶 ′𝑇 denote the cone in R𝑛 spanned by 𝑒𝑖 − 𝑒 𝑗 for each directed edge 𝑗 → 𝑖 in T.

Proposition 8.15. For 𝑇 ∈ Talt, the cones 𝐶𝑇 and 𝐶 ′
𝜑 (𝑇 ) are dual cones.

Proof. We have

(ℎ𝑏 − ℎ𝑎) (𝑒𝑑 − 𝑒𝑐) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 𝑎𝑏 and 𝑑 ′𝑎′ are noncrossing,
1 if 𝑎, 𝑑 ′, 𝑏, 𝑐′ are in clockwise order,
−1 if 𝑎, 𝑑 ′, 𝑏, 𝑐′ are in anticlockwise order.

The result then follows from the definition of 𝜑. �

Example 8.16. A noncrossing alternating tree 𝑇 ∈ Talt and the corresponding noncrossing, circular-
alternating tree T ′ = 𝜑(𝑇) is given in Figure 2. One can check that the cones 𝐶𝑇 = span≥0 (ℎ3− ℎ4, ℎ2−
ℎ4, ℎ2 − ℎ6, ℎ2 − ℎ1, ℎ5 − ℎ6) and 𝐶 ′𝑇 ′ = span≥0(𝑒3 − 𝑒4, 𝑒5 − 𝑒3, 𝑒1 − 𝑒5, 𝑒2 − 𝑒1, 𝑒5 − 𝑒6) are dual, in
agreement with Proposition 8.15.

Let T be a directed tree on [𝑛]. An edge is directed away from n if it is directed away from n as part
of some path connected to n. Define two statistics on T by

up(𝑇) = #{edges directed away from 𝑛}
des(𝑇) = #{edges 𝑖 → 𝑗 with 𝑖 > 𝑗}.

The edges counted by des(𝑇) are called descent edges.
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Proposition 8.17. Let 𝑇 ∈ Talt and 𝑇 ′ = 𝜑(𝑇) ∈ Tcir. Suppose that 𝑒 ∈ 𝑇 is the unique edge intersecting
𝑒′ ∈ 𝑇 ′. Then e is directed away from n in T if and only if 𝑒′ is a descent edge in 𝑇 ′. In particular, we
have up(𝑇) = des(𝑇 ′).

Let P be a generic simple polypositroid. Let T (𝑃) = {𝑇𝑣 } be the collection of its vertex trees: by
Lemma 8.2, T (𝑃) ⊂ Talt.

We now describe the 1-skeleton of P in terms of the trees 𝑇𝑣 . Suppose 𝐸 = (𝑣, 𝑣′) is an edge of P.
The forest 𝑇𝐸 has two components and one has 𝑇𝑣 = 𝑇𝐸 ∪ {𝑒} and 𝑇𝑣′ = 𝑇𝐸 ∪ {𝑒′} for distinct directed
edges 𝑒, 𝑒′. The graph 𝑇𝐸 ∪ {𝑒, 𝑒′} has a unique (nondirected) cycle containing both e and 𝑒′.

Lemma 8.18. The edges e and 𝑒′ have the same direction along this cycle.

Proof. The edges e and 𝑒′ correspond to facets intersecting the edge E, and the direction corresponds
to a choice of one infinite direction along the affine span of E, which we assume to be parallel to 𝑒𝑖 − 𝑒 𝑗 .
The direction is determined by which of the two components 𝑇1 and 𝑇2 of 𝑇𝐸 the source (and hence
sink) of e (respectively, 𝑒′) lies in. Indeed, if e goes from 𝑇1 to 𝑇2, and 𝑖 ∈ 𝑇1 while 𝑗 ∈ 𝑇2, then the facet
corresponding to e bounds the coordinate 𝑥 𝑗 above. It follows that the ray in the direction of 𝑣′ emitting
from v goes in the direction R≥0 (𝑒𝑖 − 𝑒 𝑗 ).

But the two infinite directions corresponding to e and 𝑒′ are opposite, so e must go from 𝑇1 to 𝑇2
(without loss of generality), and 𝑒′ must go from 𝑇2 to 𝑇1. But this implies that e and 𝑒′ have the same
direction along the cycle containing them both. �

For a vertex v of a generalized permutohedron P, define the tree 𝑇 ′𝑣 as follows (cf. [PRW]): 𝑇 ′𝑣 has a
directed edge 𝑗 → 𝑖 if there is an edge incident with v which goes in the direction R≥0(𝑒𝑖 − 𝑒 𝑗 ). When
P is a polypositroid, we thus have two directed trees 𝑇𝑣 and 𝑇 ′𝑣 on [𝑛] for each vertex 𝑣 ∈ 𝑃.

Theorem 8.19. Let P be a generic simple polypositroid. Then for each vertex v of P, we have 𝑇 ′𝑣 = 𝜑(𝑇𝑣 ).

Proof. Suppose 𝑒 = (𝑎 → 𝑏) is a directed edge of 𝑇𝑣 , such that 𝑇𝑣\{𝑒} has two components 𝑇1 � 𝑎
and 𝑇2 � 𝑏. Let c be the cyclic minimum of 𝑇1 and d the cyclic minimum of 𝑇2. It follows from the
discussion in the proof of Lemma 8.18 that 𝑇 ′𝑣 has a directed edge from 𝑐′ to 𝑑 ′. One can check that
𝑐′ → 𝑑 ′ intersects only 𝑎 → 𝑏, and that the four vertices are in the stated order. �

Let ℎ𝑃 (𝑡) denote the h-polynomial of a simple d-dimensional polytope P. It is given by the equality∑𝑑
𝑖=0 𝑓𝑖 (𝑃)𝑡𝑖 = ℎ𝑃 (𝑡 + 1).

Corollary 8.20. Suppose P is a generic simple polypositroid. The h-polynomial of P is

ℎ𝑃 (𝑡) =
∑

𝑇 ′𝑣 ∈T (𝑃)
𝑡des(𝑇 ′𝑣 ) =

∑
𝑇𝑣 ∈T (𝑃)

𝑡up(𝑇𝑣 ) .

Proof. The first equality is shown in [PRW, Theorem 4.2], and the second follows from Proposition
8.17, or it can be proved in the same way as the first. �

Remark 8.21. The bijection of Theorem 8.19 gives a bijection between noncrossing, decreasing, alter-
nating trees on [𝑛], and rooted plane binary trees on [𝑛] equipped with the depth-first search labeling.

8.5. Coarsenings of braid arrangements

Recall that the braid arrangement B𝑛 ⊂ (R𝑛)∗/ℎ𝑛 is the central arrangement which is the union of all
hyperplanes of the form 𝑦𝑖 − 𝑦 𝑗 = 0, 𝑖 ≠ 𝑗 ∈ [𝑛], where 𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) is identified with the
linear function 𝑦1𝑥1 + 𝑦2𝑥2 + · · · + 𝑦𝑛𝑥𝑛 ∈ (R𝑛)∗. We shall consider the hyperplane arrangement B𝑛 as
a complete fan, the braid fan. The maximal cones of B𝑛 are indexed by 𝑤 ∈ 𝑆𝑛:

𝐶𝑤 = {𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ (R𝑛)∗ | 𝑦𝑤 (1) ≤ 𝑦𝑤 (2) ≤ · · · ≤ 𝑦𝑤 (𝑛) }.

and the rays of B𝑛 are the ℎ𝑆 =
∑
𝑖∈𝑆 𝑥𝑖 ∈ (R𝑛)∗/ℎ𝑛 for 𝑆 ∈ 2[𝑛] − {∅, [𝑛]}.
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The normal fan to the permutohedron 𝑃𝑛 ⊂ 𝐻 is the braid fan B𝑛. More generally, any generalized
permutohedron P that is sufficiently generic has B𝑛 as its normal fan (see [PRW, Proposition 3.2]).

Now, let P be a generic simple polypositroid and F = F (𝑃) ⊂ (R𝑛)∗/ℎ𝑛 be its normal fan. The rays
of F are the ℎ [𝑟 ,𝑠] , [𝑟, 𝑠] ∈ I. While there are many possibilities for F , as we saw in Theorem 8.1, all
such F have the same f -vector. By definition, P is a generalized permutohedron, so F is a coarsening of
the fan B𝑛. In particular, each maximal cone 𝐶𝑇 , 𝑇 ∈ T (𝑃) in F is a union of a number of the cones 𝐶𝑤 .

Proposition 8.22. Let 𝑇 ∈ Talt and 𝑤 ∈ 𝑆𝑛. We have 𝐶𝑤 ⊂ 𝐶𝑇 if and only if for each edge 𝑗 → 𝑖 of
𝑇 ′ = 𝜑(𝑇), we have 𝑤−1 (𝑖) > 𝑤−1 ( 𝑗).

Proof. By Proposition 8.15, the inclusion 𝐶𝑤 ⊂ 𝐶𝑇 is equivalent to the condition that for all 𝑦 ∈ 𝐶𝑤
and 𝑥 ∈ 𝐶 ′𝑇 ′ we have 𝑦(𝑥) ≥ 0. This is equivalent to the condition that 𝑦(𝑒𝑖 − 𝑒 𝑗 ) = 𝑦𝑖 − 𝑦 𝑗 ≥ 0 for
edges 𝑗 → 𝑖 of 𝑇 ′. �

Corollary 8.23. Let 𝑇 ∈ Talt. We have 𝐶𝑇 = 𝐶𝑤 for some 𝑤 ∈ 𝑆𝑛 if and only if 𝜑(𝑇) ∈ Tcir is a path.
Furthermore, for such T, we have 𝑇 ∈ T (𝑃) for any generic simple polypositroid.

Proof. Let 𝑇 ′ ∈ Tcir. If the underlying graph of 𝑇 ′ is a path, then 𝑇 ′ itself is a directed path. In such a
case, the condition of Proposition 8.22 uniquely determines 𝑤 ∈ 𝑆𝑛, and conversely, w being uniquely
determined implies that 𝑇 ′ is a directed path. The last sentence follows from Theorem 8.4: the sources
(respectively, the sinks) of T form cyclic intervals when 𝑇 ′ is a path. �

Example 8.24. Let 𝑛 = 3. In this case, the normal fan of a generic simple polypositroid is the braid
arrangement. There are six trees in Talt:

and six in Tcir:

.

Since the underlying graph of every 𝑇 ′ ∈ Tcir is a path, there is a unique 𝑤 = 𝑤𝑇 ′ ∈ 𝑆𝑛 satisfying the
condition of Proposition 8.22. This gives a bijection between Talt and 𝑆𝑛, identifying 𝐶𝑇 , 𝑇 ∈ Talt, and
𝐶𝑤 , 𝑤 ∈ 𝑆𝑛.

Example 8.25. Let 𝑛 = 4. We have |Talt | = 24, consisting of 8 trees that are stars and 16 trees that are
paths. For a generic simple polypositroid P, we have |T (𝑃) | = 𝑓0(𝑃) =

(6
3
)
= 20 by Theorem 8.1. There

are 16 trees in 𝑇 ∈ Talt, such that 𝜑(𝑇) is a directed path. By Corollary 8.23, these trees belong to T (𝑃),
for any P.

There are eight trees in Talt, such that 𝜑(𝑇) is a (circular-alternating) star. These eight trees are the
four cyclic rotations of the following two trees

(2→ 1← 4→ 3) and (3→ 4← 1→ 2).

For each of these trees, 𝐶𝑇 is a union of two of the cones 𝐶𝑤 . For example, take 𝑇 = (2→ 1← 4→ 3)
with dual tree 𝑇 ′ = (2, 4→ 3→ 1). According to Proposition 8.22, we have 𝐶2→1←4→3 = 𝐶2431∪𝐶4231.
Similarly, we obtain

𝐶4→3←2→1 = 𝐶4213 ∪ 𝐶2413, 𝐶4→1←2→3 = 𝐶2413 ∪ 𝐶2431, 𝐶2→3←4→1 = 𝐶4213 ∪ 𝐶4231.

Thus, we have

𝐶2→1←4→3 ∪ 𝐶4→3←2→1 = 𝐶4→1←2→3 ∪ 𝐶2→3←4→1.
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Each T (𝑃) contains either both (2→ 1← 4→ 3) and (4→ 3← 2→ 1) or both (4→ 1← 2→ 3)
and (2 → 3 ← 4 → 1). Switching between these two choices corresponds to switching the matching
𝑀{2.4}, {1,3} in E (𝑃).

9. Integer points in polypositroids

We assume in this section that 𝐻 = {𝑥 ∈ R𝑛 | 𝑥1 + 𝑥2 + · · · + 𝑥𝑛 = 𝑘}, where k is an integer. A polytope
𝑃 ⊂ 𝐻 is an integer polytope if its vertices have integer coordinates. By translating P and H, we may
and will assume that 𝑆 := 𝑃 ∩ Z𝑛 ⊂ N𝑛, so that to each integer point 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛) ∈ 𝑃, one
may associate a multiset 𝐼𝑝 of size k which contains 𝑝1 1’s, 𝑝2 2’s, and so on. Thus, if P is the matroid
polytope of a matroid M, then the multisets 𝐼𝑝 are honest sets, equal to the bases of M.

If 𝐼 = {𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑘 } and 𝐽 = { 𝑗1 ≤ 𝑗2 ≤ · · · ≤ 𝑗𝑘 } are two multisets consisting of elements in
{1, 2, . . . , 𝑛}, we define two multisets sort1 (𝐼, 𝐽) and sort2 (𝐼, 𝐽) of the same size as follows. Let 𝐼 ∪ 𝐽 =
{𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎2𝑘 }. Then sort1 (𝐼, 𝐽) := {𝑎1, 𝑎3, . . . , 𝑎2𝑘−1} and sort2(𝐼, 𝐽) := {𝑎2, 𝑎4, . . . , 𝑎2𝑘 }.
For example, suppose 𝐼 = {1, 1, 3, 4, 4, 5} and 𝐽 = {1, 2, 2, 2, 3, 4}. Then sort1(𝐼, 𝐽) = {1, 1, 2, 3, 4, 4}
and sort2(𝐼, 𝐽) = {1, 2, 2, 3, 4, 5}.

The following characterization of integer alcoved polytopes is given in [LP07].

Theorem 9.1 [LP07, Theorem 3.1]. Suppose 𝑃 ⊂ 𝐻 is an integer polytope, such that 𝑆 := 𝑃∩Z𝑛 ⊂ N𝑛.
Then P is an alcoved polytope if and only if for any 𝑝, 𝑝′ ∈ 𝑆, there exist 𝑞, 𝑞′ ∈ 𝑆 so that 𝐼𝑞 =
sort1(𝐼𝑝 , 𝐼𝑝′ ) and 𝐼𝑞′ = sort2 (𝐼𝑝 , 𝐼𝑝′ ).

If a collection S of nonnegative integer points satisfies the condition in Theorem 9.1, then we call S
sort-closed.

Murota [Mur] studies certain collections of lattice points called M-convex sets, which are essentially
equivalent to the discrete polymatroids of Herzog and Hibi [HH]. We use the terminology of the latter.
A base polymatroid is a generalized permutohedron P, such that all the values 𝑓𝑃 (𝑆) of the support
function are nonnegative (see, for example [CL, Section 3]). Any generalized permutohedron can be
translated so that the nonnegativity condition holds. A discrete (base) polymatroid is a collection of
multisubsets of [𝑛] = {1, 2, . . . , 𝑛} satisfying an exchange criterion. The exchange criterion can be
formulated in the language of generalized permutohedra as follows.

Theorem 9.2 [HH, Theorem 2.3]. Suppose 𝑃 ⊂ 𝐻 is an integer polytope. Let 𝑆 := 𝑃 ∩ Z𝑛. Then P is a
generalized permutohedron if and only if for any 𝑝, 𝑞 ∈ 𝑆, we have:

whenever 𝑝𝑖 > 𝑞𝑖 , we can find j, so that 𝑝 𝑗 < 𝑞 𝑗 and 𝑝𝑖 − 𝑒𝑖 + 𝑒 𝑗 ∈ 𝑆.

If a collection S of integer points satisfies the condition in Theorem 9.2, we say S satisfies the
Exchange Lemma. Combining Theorems 9.1 and 9.2, we obtain the following characterization of integer
polypositroids:

Theorem 9.3. Suppose 𝑃 ⊂ 𝐻 is an integer polytope, such that 𝑆 := 𝑃 ∩Z𝑛 ⊂ N𝑛. Then P is an integer
polypositroid if and only if S is sort-closed, and S satisfies the Exchange Lemma.

Example 9.4. Let 𝑃 = 𝑃(v) for the Coxeter necklace v of Example 6.11. Then the set 𝑆 := 𝑃 ∩ Z4

consists of the integer vectors (𝑝1, 𝑝2, 𝑝3, 𝑝4) satisfying 0 ≤ 𝑝𝑖 ≤ 3 and 1 ≤ 𝑝𝑖 + 𝑝𝑖+1 ≤ 5, with indices
taken modulo 4. In particular, the integer points (3, 0, 3, 0) and (0, 3, 0, 3) belong to S. If we removed
these two integer points from S, the Exchange Lemma would still be satisfied. However, S would not be
sort-closed, for example, by considering 𝑝 = (3, 1, 2, 0) and 𝑞 = (2, 0, 3, 1).

In the case that P consists of 0-1 vectors, Theorem 9.3 characterizes positroids as those collections
𝑀 ⊂

( [𝑛]
𝑘

)
of k-element subsets that are both sort-closed and satisfies the Exchange Lemma.

Corollary 9.5. Positroids are exactly the sort-closed matroids.
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Remark 9.6. Corollary 9.5 can also be deduced directly from the characterization of positroids as
matroids associated to points 𝑋 ∈ Gr(𝑘, 𝑛)≥0 in the totally nonnegative Grassmannian. Namely, the
Plücker coordinates Δ 𝐼 (𝑋) of such a point satisfy inequalities that give a sort-closed matroid (see [Lam,
Proposition 8.7]).

Part II Coxeter polypositroids

Generalized permutohedra are defined by specifying the possible directions of edges. Alcoved polytopes
are defined by specifying the possible directions of normal vectors to facets. The set of allowed edge
directions and the set of allowed facet normal directions are related by the linear transformation 𝑒𝑖 ↦→ ℎ𝑖 .
We give this linear transformation a root-system theoretic interpretation, and develop the theory of
Coxeter polypositroids.

10. Coxeter elements

10.1. Root systems

First, we recall some terminology and a few well-known facts related to root systems and Weyl groups
(see [Bou, Hum] for more details).

Let 𝑉 � R𝑟 be a vector space of dimension 𝑟 ≥ 2 equipped with a symmetric positive definite bilinear
form (𝑥, 𝑦). Let 𝑅 ⊂ 𝑉 be an irreducible and reduced crystallographic root system of rank r. For a root
𝛼 ∈ 𝑅, the corresponding coroot is 𝛼∨ = 2𝛼/(𝛼, 𝛼), and the reflection 𝑠𝛼 ∈ 𝐺𝐿(𝑉) with respect to 𝛼 is
given by

𝑠𝛼 : 𝑥 ↦→ 𝑥 − (𝛼∨, 𝑥) 𝛼, for 𝑥 ∈ 𝑉.

The Weyl group 𝑊 ⊂ 𝐺𝐿(𝑉) is the group generated by the reflections 𝑠𝛼, 𝛼 ∈ 𝑅. Let us fix a choice of
positive roots 𝑅+ ⊂ 𝑅 and the corresponding choice of simple roots 𝛼1, . . . , 𝛼𝑟 in R and simple coroots
𝛼∨1 , . . . , 𝛼∨𝑟 . The Cartan matrix 𝐴 = (𝐴𝑖 𝑗 ) is given by

𝐴𝑖 𝑗 = (𝛼∨𝑖 , 𝛼 𝑗 ) ∈ Z. (10.1)

Let 𝑠𝑖 = 𝑠𝛼𝑖 be the simple reflections. It is well-known that all possible choices of positive roots are
conjugate to each other by the action of the Weyl group W.

Let 𝜔1, . . . , 𝜔𝑟 ∈ 𝑉 be the basis of V dual to the basis of simple coroots 𝛼∨1 , . . . , 𝛼∨𝑟 , that is,
(𝛼∨𝑗 , 𝜔𝑖) = 𝛿𝑖 𝑗 for any 𝑖, 𝑗 ∈ {1, . . . , 𝑟}. The vectors 𝜔1, . . . , 𝜔𝑟 are called fundamental weights. Let
Λ ⊂ 𝑉 denote the weight lattice spanned by 𝜔1, . . . , 𝜔𝑟 .

Remark 10.1. Many of our results hold even for noncrystallographic root systems. However, for the
connections to cluster algebras in Section 18, we must use a crystallographic root system.

10.2. Coxeter elements

A standard Coxeter element 𝑐 = 𝑠𝑖1 𝑠𝑖2 · · · 𝑠𝑖𝑟 ∈ 𝑊 is the product of the simple reflections 𝑠1, . . . , 𝑠𝑟
written in some order 𝑠𝑖1 , . . . , 𝑠𝑖𝑟 . More generally, a Coxeter element 𝑐′ = 𝑠′𝑖1 𝑠′𝑖2 · · · 𝑠

′
𝑖𝑟
∈ 𝑊 is a similar

product for some (possibly different) choice of simple reflections 𝑠′1, . . . , 𝑠′𝑟 . In other words, Coxeter
elements are Weyl group conjugates 𝑐′ = 𝑤𝑐𝑤−1, 𝑤 ∈ 𝑊 , of standard Coxeter elements c. Moreover,
any two Coxeter elements are conjugates of each other. Thus, all Coxeter elements have the same order,
called the Coxeter number h.

The eigenvalues of a Coxeter element are 𝑒2𝜋
√
−1𝑚𝑖/ℎ , where 𝑚1, . . . , 𝑚𝑟 ∈ {1, . . . , ℎ − 1} are the

exponents of the root system. In particular, 1 is not an eigenvalue of c. This implies the following claim.
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Lemma 10.2. For any Coxeter element c, the transformation 𝐼 − 𝑐 is an invertible element of 𝐺𝐿(𝑉),
and the inverse is given by (𝐼 − 𝑐)−1 = − 1

ℎ

∑ℎ−1
𝑗=1 𝑗 𝑐 𝑗 .

Proof. Since all eigenvalues of c are h-th roots of unity, not including the identity, we have 𝐼 + 𝑐 + 𝑐2 +
· · · + 𝑐ℎ−1 = 0. Thus

(𝐼 − 𝑐) (
ℎ−1∑
𝑗=1

𝑗 𝑐 𝑗 ) = (
ℎ−1∑
𝑗=1

𝑐 𝑗 ) − (ℎ − 1)𝐼 = −ℎ𝐼.
�

We say that a choice of positive roots 𝑅+ is compatible with c if c is a standard Coxeter element with
respect to 𝑅+.

Let Γ = {1, 𝑐, 𝑐2, . . . , 𝑐ℎ−1} ⊂ 𝑊 be the subgroup generated by c. Given 𝑅+ compatible with c, and
a reduced factorization 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 , we obtain a total ordering of the root system R: set 𝛽1 = 𝛼1,
𝛽2 = 𝑠1𝛼2, . . ., 𝛽𝑟 = 𝑠1𝑠2 · · · 𝑠𝑟−1𝛼𝑟 . Then define 𝛽𝑖 for 𝑖 ∈ Z recursively by 𝛽𝑖+𝑟 := 𝑐𝛽𝑖 . For each
𝑖 = 1, 2, . . . , 𝑟 , the roots 𝛽𝑖 , 𝛽𝑖+𝑟 , . . . , 𝛽𝑖+(ℎ−1)𝑟 is a Γ-orbit in R.

Proposition 10.3.

1. The set of ℎ · 𝑟 vectors {𝛽𝑖 | 1 ≤ 𝑖 ≤ ℎ𝑟} is exactly the set of all roots in R without repetitions. In
particular, |𝑅 | = ℎ𝑟 .

2. For each 𝑖 = 1, 2, . . . , 𝑟 , there exists a unique integer 𝑀 (𝑖) ∈ [1, ℎ − 1], such that

𝛽𝑖 , 𝑐𝛽𝑖 , . . . , 𝑐𝑀 (𝑖)−1𝛽𝑖 ∈ 𝑅+, and 𝑐𝑀 (𝑖) 𝛽𝑖 , 𝑐𝑀 (𝑖)+1𝛽𝑖 , . . . , 𝑐ℎ−1𝛽𝑖 ∈ 𝑅−.

Proof. Follows from [Bou, Chapter VI, Section 1, n◦ 11, Proposition 33]. �

The first part of the following result is [KiTh, Theorem 3.6]. It is stated there for simply-laced Weyl
groups but holds in the multiply-laced types as well.

Proposition 10.4. Let 𝑅+1 and 𝑅+2 be two positive systems compatible with c. Then 𝑅+1 and 𝑅+2 are related
by a sequence of elementary transformations 𝑅+ ↦→ (𝑅+)′ of the following form: suppose 𝑠𝑖 is a simple
generator for 𝑅+ and c has a reduced factorization either starting or ending in 𝑠𝑖 , then set (𝑅+)′ = 𝑠𝑖 ·𝑅+.

If 𝑐 = 𝑠1 · · · 𝑠𝑟 and (𝑅′)+ = 𝑠1𝑅+, then the total ordering of R coming from ((𝑅′)+, 𝑐) is the cyclic
shift (𝛽2, 𝛽3, . . . , 𝛽ℎ𝑟 , 𝛽1).

For the remainder of this section, we fix a Coxeter element c and a choice of positive roots 𝑅+

compatible with c. We extend the definition of the fundamental weights 𝜔𝑖 by defining 𝜔𝑖 for 𝑖 ∈ Z
recursively by 𝜔𝑖+𝑟 := 𝑐𝜔𝑖 .

Proposition 10.5. We have (𝐼 − 𝑐)𝜔𝑖 = 𝛽𝑖 for all 𝑖 ∈ Z.

Proof. According to the definitions, 𝑠 𝑗 (𝜔𝑖) = 𝜔𝑖 − 𝛿𝑖 𝑗 𝛼 𝑗 . Repeatedly applying the simple reflections
𝑠𝑟 , 𝑠𝑟−1, . . . , 𝑠1 to 𝜔𝑖 , we get 𝑐(𝜔𝑖) = 𝑠1 · · · 𝑠𝑟 (𝜔𝑖) = 𝜔𝑖 − 𝑠1 · · · 𝑠𝑖−1(𝛼𝑖). Thus

(𝐼 − 𝑐) (𝜔𝑖) = 𝑠1 · · · 𝑠𝑖−1(𝛼𝑖) = 𝛽𝑖 , for 𝑖 = 1, . . . , 𝑟 .

The statement now follows from Proposition 10.3. �

For convenience, when 𝛽 ∈ 𝑅, we use the notation 𝛽 to denote (𝐼 − 𝑐)−1𝛽 ∈ 𝑅̃. Thus, 𝜔𝑖 = 𝛽𝑖 for
𝑖 = 1, 2, . . . , ℎ𝑟 .

Let 𝑤0 ∈ 𝑊 be the longest element, and let 𝑖 ↦→ 𝑖★ denote the bijection on {1, 2, . . . , 𝑟}, determined
by 𝑤0𝛼𝑖 = −𝛼𝑖★ . Recall that for 𝑖 = 1, 2, . . . , 𝑟 , we have defined a positive integer 𝑀 (𝑖) in Proposition
10.3.

Lemma 10.6. Fix 𝑘 ∈ 𝐼. We have

1. (𝑐𝑚𝛽∨𝑖 , 𝜔𝑘 ) ≥ 0, for 0 ≤ 𝑚 < 𝑀 (𝑘★) and any 𝑖 = 1, . . . , 𝑟;
2. (𝑐𝑚𝛽∨𝑖 , 𝜔𝑘 ) = 0, if 𝑀 (𝑖) < 𝑀 (𝑘★) and 𝑀 (𝑖) ≤ 𝑚 < 𝑀 (𝑘★);
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3. (𝑐𝑚𝛽∨𝑖 , 𝜔𝑘 ) = 0, if 𝑀 (𝑘★) ≤ 𝑀 (𝑖) and 𝑀 (𝑘★) ≤ 𝑚 < 𝑀 (𝑖);
4. (𝑐𝑚𝛽∨𝑖 , 𝜔𝑘 ) ≤ 0, for 𝑀 (𝑘★) ≤ 𝑚 < ℎ and any 𝑖 = 1, . . . , 𝑟 .

Define 𝑖 ≺𝑐 𝑗 if i and j are connected in the Dynkin diagram, and 𝑠𝑖 precedes 𝑠 𝑗 in c. Orient the
Coxeter diagram of W so that an edge (𝑖, 𝑗) is oriented 𝑗 → 𝑖 if 𝑖 ≺𝑐 𝑗 . We will use the following
formulae from [YZ].

Lemma 10.7. We have

1. 𝑐𝑀 (𝑖) 𝛽𝑖 = −𝛽𝑖∗;
2. 𝑀 (𝑖) + 𝑀 (𝑖★) = ℎ;
3. If 𝑗 → 𝑖, then we have

𝑀 (𝑖) − 𝑀 ( 𝑗) =
{

1 if 𝑖★→ 𝑗★

0 if 𝑗★→ 𝑖★
.

Proof of Lemma 10.6. Fix i and j. We prove (𝑐𝑚𝛽∨𝑖 , 𝜔 𝑗 ) ≥ 0 for 0 ≤ 𝑚 < 𝑀 ( 𝑗★). If 𝑚 < 𝑀 (𝑖), then
by definition, 𝑐𝑚𝛽𝑖 ∈ 𝑅+, so 𝑐𝑚𝛽∨𝑖 ∈ (𝑅∨)+, and the inequality is clear. Thus, we may assume that
𝑀 (𝑖) < 𝑀 ( 𝑗★) and 𝑀 (𝑖) ≤ 𝑚 < 𝑀 ( 𝑗★). In particular, we are assuming that 𝑖 ≠ 𝑗 .

Define the support 𝑆(𝛽∨) ⊆ 𝐼 of a coroot 𝛽∨ ∈ 𝑅∨ to be the (positive or negative) simple coroots
that occur in the expansion of 𝛽∨ into simple coroots. For a nonnegative integer a, let 𝑃𝑎 (𝑖) ⊆ 𝐼 be the
set of vertices 𝑗 ∈ 𝐼 that can be reached from 𝑖 ∈ 𝐼 by a path where at most a edges are in the wrong
direction. One can check that

𝑆(𝛽∨𝑘 ) ⊂ 𝑃0 (𝑘)

and by induction on a, we have for 𝑎 ≥ 0,

𝑆(𝑐𝑎𝛽∨𝑘 ) ⊂ 𝑃𝑎 (𝑘).

By Lemma 10.7(1), it follows that we have

𝑆(𝑐𝑚𝛽∨𝑖 ) ⊂ 𝑃𝑚−𝑀 (𝑖) (𝑖★)

for 𝑚 ≥ 𝑀 (𝑖). But, by Lemma 10.7(3), 𝑀 ( 𝑗★) −𝑀 (𝑖) is bounded above by the number of edges directed
in the wrong direction on the path from 𝑖★ to j. Thus, if 𝑚 < 𝑀 ( 𝑗★), we have 𝑗 ∉ 𝑃𝑚−𝑀 (𝑖) (𝑖★) and
(𝑐𝑚𝛽∨𝑖 , 𝜔 𝑗 ) = 0 ≥ 0. This proves statements (1) and (2). Statements (3) and (4) are similar. �

Example 10.8. We consider the root system of type 𝐴𝑛−1. Let 𝑉 = 𝐻0 = {𝑥 | 𝑥1+𝑥2+· · ·+𝑥𝑛 = 0} ⊂ R𝑛
and 𝑅 = {𝑒𝑖 − 𝑒 𝑗 | 𝑖 ≠ 𝑗}. Then W is the symmetric group 𝑆𝑛. We take as positive simple roots
𝛼𝑖 = 𝑒𝑖+1 − 𝑒𝑖 . Then the linear functional (·, 𝜔𝑘 ) : 𝑉 → R can be identified with the function
ℎ𝑛 − ℎ𝑘 ∈ (R𝑛)∗.

Now choose the Coxeter element 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑛−1, which coincides with our choice in Section 5.
The Dynkin diagram is oriented as follows:

1← 2← · · · ← (𝑛 − 1).

We have 𝛽𝑖 = 𝑠1 · · · 𝑠𝑖−1(𝑒𝑖+1 − 𝑒𝑟 ) = 𝑒𝑖+1 − 𝑒1 for 𝑖 = 1, 2, . . . , 𝑛 − 1. We have 𝑐(𝑒𝑖) = 𝑒𝑖+1, where
𝑒𝑛+1 := 𝑒1. We compute that 𝑖★ = 𝑛 − 𝑖 = 𝑀 (𝑖). It is straightforward to verify Lemma 10.6 directly,
noting also that for 𝑅 = 𝐴𝑛−1, we have 𝛽 = 𝛽∨.

Example 10.9. We consider the root system of type 𝐵𝑟 with 𝑉 = R𝑟 and simple roots 𝛼1 = 𝑒1− 𝑒2, 𝛼2 =
𝑒2 − 𝑒3, . . . , 𝛼𝑟−1 = 𝑒𝑟−1 − 𝑒𝑟 , 𝛼𝑟 = 𝑒𝑟 , and Coxeter element 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 . Thus, 𝛽1 = 𝑒1 − 𝑒2, 𝛽2 =
𝑒1 − 𝑒3, . . . , 𝛽𝑟−1 = 𝑒1 − 𝑒𝑟 , 𝛽𝑟 = 𝑒1. We have 𝑐(𝑒1) = 𝑒2, 𝑐(𝑒2) = 𝑒3, . . ., and 𝑐(𝑒𝑟 ) = −𝑒1. We have
𝑀 (𝑖) = 𝑟 for all i and 𝑖★ = 𝑖. Thus, 𝑀 (𝑖) + 𝑀 (𝑖★) = 2𝑟 = ℎ, the Coxeter number. Since all 𝑀 (𝑖) = 𝑟
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are equal, Lemma 10.6 follows immediately from 𝑐𝑚𝛽∨𝑖 ∈ (𝑅+)∨ for 0 ≤ 𝑚 < 𝑟 and 𝑐𝑚𝛽∨𝑖 ∈ (𝑅−)∨ for
𝑛 ≤ 𝑚 < 2𝑟 = ℎ.

11. Generalized W-permutohedra

A W-permutohedron P is a convex polytope in the space V which is the convex hull of an orbit 𝑊 (𝑥)
of the Weyl group W, for some 𝑥 ∈ 𝑉 not lying in any of the hyperplanes 𝐻𝛼 := {𝑥 ∈ 𝑉 | (𝑥, 𝛼) = 0},
𝛼 ∈ 𝑅. One key property of W-permutohedra is that every edge of P is parallel to some coroot 𝛼∨ ∈ 𝑅∨.
Definition 11.1. A generalized W-permutohedron P is a convex polytope in the space V, such that every
edge [𝑢, 𝑣] of P is parallel to a coroot 𝛼∨ ∈ 𝑅∨, that is, 𝑢 − 𝑣 = 𝑎𝛼∨, for some 𝑎 ∈ R>0.

Note that the notion of a generalized W-permutohedron is unchanged when we replace the root system
R by the dual root system 𝑅∨. Furthermore, the class of generalized W-permutohedra is preserved by
the action of W.

The normal fan to a W-permutohedron is the W-Coxeter fan, the fan associated to the hyperplane
arrangement consisting of all hyperplanes 𝐻𝛼 as 𝛼 ∈ 𝑅 varies. The maximal cones of the W-Coxeter fan
are indexed by 𝑤 ∈ 𝑊 . The 1-dimensional cones, or rays, of the W-Coxeter fan are generated by the set
𝑊 · {𝜔1, . . . , 𝜔𝑟 } of vectors lying in the W-orbit of a fundamental weight. Generalized W-permutohedra
can be equivalently defined as convex polytopes whose normal fan refines the W-Coxeter fan (see, for
example [PRW, Theorem 15.3]). In particular, any facet of a generalized W-permutohedron has a normal
vector that lies in the W-orbit of a fundamental weight. Thus, a generalized W-permutohedron is given
by a collection of inequalities

(𝑥, 𝜔) ≤ 𝑎𝜔 , 𝜔 ∈ 𝑊 · {𝜔1, . . . , 𝜔𝑟 }, (11.1)

where we always assume that 𝑎𝜔 has been taken minimal. Let C𝑊sub = {(𝑎𝜔)} denote the cone of vectors
(𝑎𝜔) arising from generalized W-permutohedra. This cone is studied in [ACEP].

Let the dominant cone

𝐶 = R≥0
〈
𝛼∨1 , . . . , 𝛼∨𝑟

〉
⊂ 𝑉 (11.2)

be the cone of nonnegative linear combinations of the simple (equivalently, positive) roots in R. For
example, with 𝑅 = 𝐴𝑛−1 and the conventions of Example 10.8, this agrees with the cone (5.1), intersected
with 𝐻0 � 𝑉 . The cone C is the dual of the dominant Weyl chamber 𝐷 = R≥0〈𝜔1, . . . , 𝜔𝑟 〉. Namely,
𝐷 = {𝑦 ∈ 𝑉 | (𝑥, 𝑦) ≥ 0 for any 𝑥 ∈ 𝐶} and 𝐶 = {𝑥 ∈ 𝑉 | (𝑥, 𝑦) ≥ 0 for any 𝑦 ∈ 𝐷}. The following
result follows from the statement that the normal fan of a generalized W-permutohedra is a refinement
of the W-Coxeter fan.
Theorem 11.2. A polytope P is a generalized W-permutohedron if and only if it has the following form

𝑃 =
⋂
𝑤 ∈𝑊
(𝑣𝑤 + 𝑤(𝐶)),

where 𝑣𝑤 ∈ 𝑉 , 𝑤 ∈ 𝑊 , is a collection of points in V, such that, for any 𝑢, 𝑤 ∈ 𝑊 ,

𝑣𝑢 ∈ 𝑣𝑤 + 𝑤(𝐶), or, equivalently, 𝑣𝑢 − 𝑣𝑤 ∈ 𝑤(𝐶) ∩ (−𝑢(𝐶)).

The points 𝑣𝑤 , 𝑤 ∈ 𝑊 are exactly all vertices of the polytope P (possibly with repetitions).
Define the dominance order ≤𝐶 as the partial order on points V given by 𝑥 ≤𝐶 𝑦 if 𝑦 − 𝑥 ∈ 𝐶.

Similarly, for 𝑤 ∈ 𝑊 , the w-dominance order ≤𝑤 (𝐶) is the partial order on V given by 𝑥 ≤𝑤 (𝐶) 𝑦 if
𝑦 − 𝑥 ∈ 𝑤(𝐶), for 𝑤 ∈ 𝑊 . The following result easily follows from Theorem 11.2.
Corollary 11.3. A polytope P is a generalized W-permutohedron if and only if for each 𝑤 ∈ 𝑊 , P has
a unique minimum element 𝑣𝑤 ∈ 𝑃 in the w-dominance order ≤𝑤 (𝐶) .
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[PRW, Theorem 15.3] also implies that the condition on the points 𝑣𝑤 , 𝑤 ∈ 𝑊 can be reformulated, as
follows. It is enough to require the condition 𝑣𝑢−𝑣𝑤 ∈ 𝑤(𝐶)∩(−𝑢(𝐶)) only for the pairs 𝑢, 𝑤 ∈ 𝑊 , such
that 𝑢 = 𝑤 𝑠𝑖 , for a simple reflection 𝑠𝑖 . In this case, the cone 𝑤(𝐶) ∩ (−𝑤 𝑠𝑖 (𝐶)) is the 1-dimensional
cone spanned by the coroot 𝑤(𝛼∨𝑖 ):

𝑤(𝐶) ∩ (−𝑤 𝑠𝑖 (𝐶)) = R≥0
〈
𝑤(𝛼∨𝑖 )

〉
.

Theorem 11.4. A polytope P is a generalized W-permutohedron if and only if it has the following form

𝑃 =
⋂
𝑤 ∈𝑊
(𝑣𝑤 + 𝑤(𝐶)),

where 𝑣𝑤 ∈ 𝑉 , 𝑤 ∈ 𝑊 is a collection of points in V, such that, for any 𝑤 ∈ 𝑊 and 𝑖 = 1, . . . , 𝑟 ,

𝑣𝑤 − 𝑣𝑤𝑠𝑖 = 𝑎 𝑤(𝛼∨𝑖 ) for 𝑎 ∈ R≥0.

12. Twisted (𝑊, 𝑐)-alcoved polytopes

In [LP18], we studied the W-alcoved polytopes: polytopes in V with the property that all facet normals
belong to R. Here, we introduce a twisted variant of W-alcoved polytopes that depends on the choice of
a Coxeter element c.

12.1. Coxeter twisted roots

Definition 12.1. Define the c-twisted root system 𝑅̃ as the image 𝑅̃ = (𝐼 − 𝑐)−1(𝑅) of the root system
R under the transformation (𝐼 − 𝑐)−1. We call the elements of 𝑅̃ the c-twisted roots, or simply twisted
roots if the Coxeter element is understood.

We have that 𝑅̃ = −𝑅̃. Note also that 𝑅̃ does not depend on the choice of positive system 𝑅+.
According to Lemma 10.5, the twisted root system 𝑅̃ is exactly the set of weights that lie in the

Γ-orbits of the vectors 𝜔1, 𝜔2, . . . , 𝜔𝑟 :

𝑅̃ = (𝐼 − 𝑐)−1(𝑅) = {𝑐𝑡 (𝜔𝑖) | 𝑡 = 0, . . . , ℎ − 1; 𝑖 = 1, . . . , 𝑟} = {𝜔𝑖 | 𝑖 = 1, . . . , ℎ𝑟}. (12.1)

Note that 𝑅̃ = Γ · {𝜔1, . . . , 𝜔𝑟 } ⊂ 𝑊 · {𝜔1, . . . , 𝜔𝑟 }.

Definition 12.2. A (𝑊, 𝑐)-twisted alcoved polytope is a polytope 𝑃 ⊂ 𝑉 whose facets are normal to
twisted roots. More precisely, P is a nonempty set with the presentation

𝑃 = 𝑃(𝑎𝜔) = {𝑥 ∈ 𝑉 | (𝑥, 𝜔) ≤ 𝑎𝜔 for 𝜔 ∈ 𝑅̃}.

Here, 𝑎𝜔 are arbitrary real numbers which we always assume to be chosen minimal.

Example 12.3. We continue Example 10.8. Applying Lemma 10.2, the twisted roots are given by

𝑅̃ =

{
−1

𝑛

(
𝑛−1∑
𝑘=1

𝑘 (𝑒𝑖+𝑘 − 𝑒 𝑗+𝑘 )
)
| 𝑖 ≠ 𝑗

}
⊂ 𝑉.

For example, (𝐼 − 𝑐)−1𝛼1 = 1
5 (−4, 1, 1, 1, 1). In (R𝑛)∗/ℎ𝑛, this is equal to ℎ𝑛 − ℎ1 = (0, 1, 1, 1, 1).

Identifying 𝑅̃ with a subset of (R𝑛)∗/ℎ𝑛, we get 𝑅̃ = {ℎ𝑖 − ℎ 𝑗 | 𝑖 ≠ 𝑗}. The notion of (𝑊, 𝑐)-twisted
alcoved polytope here agrees with our notion of alcoved polytope in Definition 3.3.

If W and c are understood to be fixed, we may simply use the name “twisted alcoved polytope.”
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Remark 12.4. Suppose that c and 𝑐′ are two Coxeter elements. Then there exists 𝑤 ∈ 𝑊 so that
𝑐′ = 𝑤𝑐𝑤−1. The c-twisted roots 𝑅̃𝑐 and the 𝑐′-twisted roots 𝑅̃𝑐′ are related by 𝑅̃𝑐′ = 𝑤 · 𝑅̃𝑐 . We have
that 𝑃 ⊂ 𝑉 is a (𝑊, 𝑐′)-twisted alcoved polytope if and only if 𝑤 · 𝑃 ⊂ 𝑉 is a (𝑊, 𝑐)-twisted alcoved
polytope.

Definition 12.5. For a compact subset 𝑄 ⊂ 𝑉 , the (𝑊, 𝑐)-twisted alcoved envelope env(𝑄) is the
smallest (𝑊, 𝑐)-twisted alcoved polytope containing Q.

Clearly, env(𝑃) = 𝑃 if and only if P is a (𝑊, 𝑐)-twisted alcoved polytope. Note that the intersection
of generalized W-permutohedra may not be a generalized W-permutohedron. Thus, the “generalized
W-permutohedron envelope” is not a well-defined operation.

Recall that the dominant cone C was defined in (11.2). Let 𝑄 ⊂ 𝑉 be a compact subset. For
𝑖 = 0, 1, . . . , ℎ−1, let 𝑣𝑖 ∈ 𝑉 be the minimum point in dominance order ≤𝑐𝑖 (𝐶) , such that 𝑄 ⊂ 𝑣𝑖+𝑐𝑖 (𝐶).
Thus, every facet of 𝑣𝑖 + 𝑐𝑖 (𝐶) touches Q.

Proposition 12.6. The (𝑊, 𝑐)-twisted alcoved envelope of Q is given by the following intersection:

env(𝑄) = env𝑐 (𝑄) =
ℎ−1⋂
𝑖=0
(𝑣𝑖 + 𝑐𝑖 (𝐶)).

Proof. Since Q is compact, for each 𝜔 ∈ 𝑅̃, there is a minimal number 𝑎𝜔 , such that Q belongs to
the half space 𝐻+𝜔 := {𝑥 ∈ 𝑉 | (𝑥, 𝜔) ≤ 𝑎𝜔}. Then env(𝑄) =

⋂
𝜔∈𝑅̃ 𝐻+𝜔 . The convex cone C has

inward pointing normals given by 𝜔1, 𝜔2, . . . , 𝜔𝑟 . Thus, 𝑣0 + 𝐶 =
⋂𝑟
𝑗=1 𝐻+−𝜔 𝑗

, and similarly, we have
𝑣𝑖 + 𝑐𝑖 (𝐶) =

⋂𝑟
𝑗=1 𝐻+−𝑐𝑖𝜔 𝑗

. The claim follows from (12.1) and the fact that 𝑅̃ = −𝑅̃. �

12.2. Faces of twisted alcoved polytopes

We call a (𝑊, 𝑐)-twisted alcoved polytope P generic if it is full-dimensional and every twisted root
𝜔 ∈ 𝑅̃ defines a facet 𝐹 = {(𝑥, 𝜔) = 𝑎𝜔} ∩ 𝑃 of P.

Now let P be a (𝑊, 𝑐)-twisted alcoved polytope and F a face of P. Let 𝑆(𝐹) ⊂ 𝑅̃ be the set of twisted
roots 𝜔, such that F lies on the hyperplane (𝑥, 𝜔) = 𝑎𝜔 and P lies in the halfspace (𝑥, 𝜔) ≤ 𝑎𝜔 . The set
𝑆(𝐹) is a (𝑊, 𝑐)-analogue of the graph 𝑇𝐹 of Section 6.4.

Suppose that 𝛽 and 𝛽′ are two distinct roots. We say that 𝛽 and 𝛽′ are alternating if (𝛽, 𝛽′) ≥ 0.
Note that 𝛽 and 𝛽′ are alternating if and only if −𝛽 and −𝛽′ are. Also note that this notion of alternating
agrees with the notion used in the definition of alternating trees in Section 6.4. Suppose that 𝜔, 𝜔′ ∈ 𝑅̃
are distinct twisted roots. Then we say that 𝜔 and 𝜔′ are alternating if (𝐼 − 𝑐)𝜔 and (𝐼 − 𝑐)𝜔′ are.

Lemma 12.7. Suppose that P is a generic simple (𝑊, 𝑐)-twisted alcoved polytope and v a vertex of P.
Then 𝑆(𝑣) ⊂ 𝑅̃ is a basis of V and that consists of pairwise alternating twisted roots.

Proof. That 𝑆(𝑣) is a basis follows from the assumption that P is generic and simple. Suppose 𝛽, 𝛽′ ∈
𝑆(𝑣) are not alternating. Then (𝛽, 𝛽′) < 0 so there is a root of the form 𝛽′′ = 𝑏𝛽 + 𝑐𝛽′ with 𝑏, 𝑐 ∈ R>0.
Thus, there is a twisted root of the form 𝛽′′ = 𝑏𝛽 + 𝑐𝛽′. Clearly, 𝑎𝛽′′ = max𝑥∈𝑃 (𝑥, 𝛽′′) ≤ 𝑏𝑎𝛽 + 𝑐𝑎𝛽′ .
We have

𝑎𝛽′′ ≥ (𝑣, 𝛽′′) = (𝑣, 𝑏𝛽 + 𝑐𝛽′) = 𝑏𝑎𝛽 + 𝑐𝑎𝛽′ ≥ 𝑎𝛽′′ ,

implying that (𝑣, 𝛽′′) ∈ 𝑎𝛽′′ and thus 𝛽′′ ∈ 𝑆(𝑣), contradicting the statement that 𝑆(𝑣) is a basis. �

13. (𝑊, 𝑐)-polypositroids

Definition 13.1. A convex polytope 𝑃 ⊂ 𝑉 is called a (𝑊, 𝑐)-polypositroid if it is both a generalized
W-permutohedron and a (𝑊, 𝑐)-twisted alcoved polytope. In other words, we require that
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(1) every edge [𝑢, 𝑣] of P is parallel to a coroot 𝛼∨ ∈ 𝑅∨, i.e., 𝑢 − 𝑣 = 𝑎𝛼∨, 𝑎 ∈ R>0;
(2) every facet of P is orthogonal to a twisted root (𝐼 − 𝑐)−1(𝛽) ∈ 𝑅̃, 𝛽 ∈ 𝑅.

By Example 12.3, Definition 13.1 agrees with the notion of “polypositroid in 𝐻0” of Definition 3.8
with the choices of Example 10.8. If W and c are understood to be fixed, we may simply use the name
“polypositroid.” Let us hasten to point out that the notion of a (𝑊, 𝑐)-polypositroid does not depend on
a choice of 𝑅+.

Remark 13.2. Suppose c and 𝑐′ are two Coxeter elements. Then there exists 𝑤 ∈ 𝑊 so that 𝑐′ = 𝑤𝑐𝑤−1.
We have that P is a (𝑊, 𝑐′)-polypositroid if and only if 𝑤 · 𝑃 is a (𝑊, 𝑐)-polypositroid.

Remark 13.3. The notion of (𝑊, 𝑐)-polypositroid is unchanged if the root and coroot vectors are
dilated by scalars. In particular, the notion of (𝑊, 𝑐)-polypositroid is identical for a root system R and its
dual 𝑅∨.

14. Coxeter necklaces

Consider the cone

𝐴 := R≥0
〈
𝛽∨1 , 𝛽∨2 , . . . , 𝛽∨𝑟

〉
.

Since for 𝑖 = 1, 2, . . . , 𝑟 we have 𝛽∨𝑖 ∈ 𝑅+ and 𝑐−1 (𝛽∨𝑖 ) ∈ 𝑅−, we have 𝐴 ⊆ 𝐶∩ (−𝑐(𝐶)). But, in general,
these two cones are not equal to each other. Note also that A depends only on c and 𝑅+, and not on the
choice of reduced factorization of c (though the enumeration of the set {𝛽∨1 , 𝛽∨2 , . . . , 𝛽∨𝑟 } does depend
on the reduced factorization).

Definition 14.1. A (𝑊, 𝑅+, 𝑐)-Coxeter necklace is a sequence (𝑣0, 𝑣1, . . . , 𝑣ℎ−1) of points in V, such
that for any 𝑖 = 1, . . . , ℎ,

𝑣𝑖 − 𝑣𝑖−1 ∈ 𝑐𝑖 (𝐴).

Here, we set 𝑣𝑖+ℎ := 𝑣𝑖 and thus, 𝑣ℎ := 𝑣0.

With the choices made in Example 10.8, Definition 14.1 agrees with the notion of Coxeter necklace
in Definition 6.1.

Proposition 14.2. Suppose that v = (𝑣0, 𝑣1, . . . , 𝑣ℎ−1) is a (𝑊, 𝑅+, 𝑐)-Coxeter necklace. Then each
point 𝑣𝑖 is a vertex of the (𝑊, 𝑐)-twisted alcoved polytope

𝑄(v) :=
ℎ−1⋂
𝑖=0
(𝑣𝑖 + 𝑐𝑖 (𝐶)).

In particular, env𝑐 (v) = 𝑄(v).

Proof. It suffices to show that 𝑣𝑖 ∈ 𝑄(v), or equivalently, 𝑣 𝑗 − 𝑣𝑖 ∈ 𝑐𝑖 (𝐶), for any 𝑖, 𝑗 ∈ {0, . . . , ℎ − 1}.
Rotating by a power of c, it is enough to show that 𝑣 𝑗 − 𝑣0 ∈ 𝐶. Equivalently, we need to show that
(𝑣 𝑗 − 𝑣0, 𝜔𝑘 ) ≥ 0, for any j and any k.

We have 𝑣 𝑗 − 𝑣0 = (𝑣1 − 𝑣0) + (𝑣2 − 𝑣1) + · · · + (𝑣 𝑗 − 𝑣 𝑗−1). The vector 𝑣𝑚+1 − 𝑣𝑚 is a nonnegative
linear combination of the coroots 𝑐𝑚 𝛽∨𝑖 , for 𝑖 = 1, . . . , 𝑟 . According to Lemma 10.6, if 𝑗 ≤ 𝑀 (𝑘★), then
(𝛽∨, 𝜔𝑘 ) ≥ 0, for all coroots 𝛽∨ involved in the expression of 𝑣𝑚+1 − 𝑣𝑚, for 𝑚 = 𝑗 − 1, 𝑗 − 2, . . . , 0.
This implies that (𝑣 𝑗 − 𝑣0, 𝜔𝑘 ) ≥ 0.

On the other hand, if 𝑗 ≥ 𝑀 (𝑘★), we can express 𝑣 𝑗 − 𝑣0 in a different way as 𝑣 𝑗 − 𝑣0 = 𝑣 𝑗 − 𝑣ℎ =
−((𝑣 𝑗+1−𝑣 𝑗 ) + (𝑣 𝑗+2−𝑣 𝑗+1) + · · ·+ (𝑣ℎ−𝑣ℎ−1)). Now, according to Lemma 10.6, we have (𝛽∨, 𝜔𝑘 ) ≤ 0,
for any coroot 𝛽∨ involved in the expression of 𝑣𝑚+1 − 𝑣𝑚, for 𝑚 = 𝑗 , 𝑗 + 1, . . . , ℎ − 1. Thus, again, we
get (𝑣 𝑗 − 𝑣0, 𝜔𝑘 ) ≥ 0. �

https://doi.org/10.1017/fms.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.11


Forum of Mathematics, Sigma 33

Lemma 14.3. Let 𝑅+1 and 𝑅+2 be two choices of positive roots for R compatible with c. Then there is
a bijection v ↦→ v′ between (𝑊, 𝑅+1 , 𝑐)-Coxeter necklaces and (𝑊, 𝑅+2 , 𝑐)-Coxeter necklaces, such that
𝑄(v) = 𝑄(v′).

Proof. By Proposition 10.4, we may assume that 𝑅+2 = 𝑠1 · 𝑅+1 , and 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 is a reduced
factorization in 𝑅+1 . Letting 𝑠′𝑖 = 𝑠1𝑠𝑖𝑠1 be the simple generators of 𝑅+2 , we have 𝑐 = 𝑠′2 · · · 𝑠

′
𝑟 𝑠′1. Let

𝛽1, 𝛽2, . . . be the enumeration of R associated to the factorization 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 . Then the enumeration
of R associated to 𝑐 = 𝑠′2 · · · 𝑠

′
𝑟 𝑠′1 is 𝛽2, 𝛽3, . . ..

Let 𝑣′𝑖 = 𝑣𝑖 + [𝛽∨𝑖𝑟+1] (𝑣𝑖+1 − 𝑣𝑖), where [𝛽∨𝑖𝑟+1] (𝑣𝑖+1 − 𝑣𝑖) denotes the coefficient of 𝛽∨𝑖𝑟+1 in the
vector 𝑣𝑖+1 − 𝑣𝑖 which lies in the cone 𝑐𝑖 (𝐴) spanned by 𝛽∨𝑖𝑟+1, 𝛽∨𝑖𝑟+2, . . . , 𝛽∨(𝑖+1)𝑟 . It is clear that
v ↦→ v′ is a bijection from (𝑊, 𝑅+1 , 𝑐)-Coxeter necklaces to (𝑊, 𝑅+2 , 𝑐)-Coxeter necklaces. We claim
that 𝑄(v) = 𝑄(v′). It suffices to show that each 𝑣′𝑗 belongs to 𝑄(v), and we can reduce to showing that
𝑣′𝑗 − 𝑣0 = (𝑣 𝑗 − 𝑣0) + 𝑎𝛽∨𝑗𝑟+1 ∈ 𝐴, where 𝑎 ∈ R≥0. The proof is identical to that of Proposition 14.2,
using Lemma 10.6. �

Lemma 14.4. Let c and 𝑐′ = 𝑤𝑐𝑤−1 be two Coxeter elements. Then v is a (𝑊, 𝑅+, 𝑐)-Coxeter necklace
if and only if 𝑤 · v is a (𝑊, 𝑤 · 𝑅+, 𝑐′)-Coxeter necklace. We have 𝑤 · 𝑄(v) = 𝑄(𝑤 · v), where 𝑄(v)
denotes a (𝑊, 𝑐)-twisted alcoved polytope and 𝑄(𝑤 · 𝑣) denotes a (𝑊, 𝑐′)-twisted alcoved polytope.

Proof. Clear from the definitions. �

We call a Coxeter necklace v = (𝑣0, 𝑣1, . . . , 𝑣ℎ−1) generic if each difference 𝑣𝑖 − 𝑣𝑖−1 belongs to the
interior of the cone 𝑐𝑖 (𝐴).

Lemma 14.5. Suppose that v is a generic (𝑊, 𝑅+, 𝑐)-Coxeter necklace. Then for each twisted root 𝜔,
the face {𝑥 ∈ 𝑄(v) | (𝑥, 𝜔) = 0} contains at most one of the vertices 𝑣0, 𝑣1, . . . , 𝑣ℎ−1. In particular,
𝑄(v) is a generic (𝑊, 𝑐)-twisted alcoved polytope.

Proof. By acting with c, we may assume that 𝜔 = 𝜔𝑘 , where 𝑘 ∈ {1, 2, . . . , 𝑟}. In the proof of
Proposition 14.2, we note that we have the strict inequalities (𝛽∨𝑘 , 𝜔𝑘 ) > 0 and (𝛽∨𝑘−𝑟 , 𝜔𝑘 ) < 0. �

Whereas Theorem 11.2 describes a generalized W-permutohedron as an intersection of |𝑊 | cones,
our next result describes a (𝑊, 𝑐)-polypositroid as an intersection of h cones.

Proposition 14.6. Fix a Coxeter element c. Suppose P is a W-generalized permutohedron. Then for any
choice of 𝑅+, we have

env𝑐 (𝑃) = 𝑄(v) =
ℎ−1⋂
𝑖=0
(𝑣𝑖 + 𝑐𝑖 (𝐶)),

where v = (𝑣0, . . . , 𝑣ℎ−1) is a (𝑊, 𝑅+, 𝑐)-Coxeter necklace. In particular, this holds for P a (𝑊, 𝑐)-
polypositroid, in which case, env𝑐 (𝑃) = 𝑃.

Proof. By Proposition 12.6, any (𝑊, 𝑐)-twisted alcoved polytope has the form 𝑃 =
⋂ℎ−1
𝑖=0 (𝑣𝑖 + 𝑐𝑖 (𝐶))

for some uniquely determined points 𝑣𝑖 , and thus this holds for env𝑐 (𝑃).
Since P is also a W-generalized permutohedron, by Corollary 11.3, we must have 𝑣𝑖 = 𝑣𝑐𝑖 , the vertex

of P that is the minimum in 𝑐𝑖 (𝐶)-dominance order. Let us show that the conditions 𝑣𝑖 − 𝑣𝑖−1 ∈ 𝑐𝑖 (𝐴)
hold. It is enough to show this for 𝑖 = 0 (the general case is obtained by the action of 𝑐𝑖). Consider the
following sequence of vertices that connect 𝑣0 = 𝑣𝑖𝑑 with 𝑣1 = 𝑣𝑐:

𝑣𝑖𝑑 , 𝑣𝑠1 , 𝑣𝑠1𝑠2 , . . . , 𝑣𝑠1𝑠2 · · ·𝑠𝑟 = 𝑣𝑐 .

According to Theorem 11.4, 𝑣𝑠1𝑠2 · · ·𝑠𝑖 − 𝑣𝑠1𝑠2 · · ·𝑠𝑖−1 = 𝑎𝑖 𝑠1 · · · 𝑠𝑖−1(𝛼∨𝑖 ), for 𝑎𝑖 ∈ R≥0. Thus, 𝑣1 − 𝑣0 =∑𝑟
𝑖=1 𝑎𝑖 𝛽∨𝑖 ∈ 𝐴. We conclude that v = (𝑣0, 𝑣1, . . . , 𝑣ℎ−1) is a Coxeter necklace, as required. �
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15. Balanced arrays

Definition 15.1. A W-balanced array is a collection (𝑚𝛼)𝛼∈𝑅 of nonnegative real numbers satisfying
the equality ∑

𝛼

𝑚𝛼𝛼∨ = 0. (15.1)

A W-balanced pair is a pair ((𝑚𝛼), 𝑧) consisting of a W-balanced array (𝑚𝛼) and a vector 𝑧 ∈ 𝑉 .

Now let 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 be a standard Coxeter element with respect to 𝑅+ and 𝛽1, 𝛽2, . . . , be the
corresponding ordering of roots. We define a Coxeter necklace

v((𝑚𝛼), 𝑧) = (𝑣0, 𝑣1, . . . , 𝑣ℎ−1, 𝑣ℎ = 𝑣0)

by setting 𝑣0 = 𝑧 and

𝑣𝑖 = 𝑣𝑖−1 +
𝑖𝑟∑

𝑘=(𝑖−1)𝑟+1
𝑚𝛽𝑘 𝛽∨𝑘 (15.2)

for 𝑖 = 1, 2, . . . , ℎ − 1. The equality 𝑣ℎ = 𝑣0 follows from (15.1) and Proposition 10.3.

Proposition 15.2. The map ((𝑚𝛼), 𝑧) ↦→ v((𝑚𝛼), 𝑧) is a bijection between W-balanced pairs and
(𝑊, 𝑅+, 𝑐)-Coxeter necklaces, for any choice of (𝑅+, 𝑐).

Proof. In (15.2), the 𝑚𝛽 can be recovered from v((𝑚𝛼), 𝑧) because {𝛽∨(𝑖−1)𝑟+1, . . . , 𝛽∨𝑖𝑟 } is a basis. The
result easily follows. �

Proposition 15.3. Fix a W-balanced pair ((𝑚𝛼), 𝑧). Then the (𝑊, 𝑅+, 𝑐)-Coxeter necklace v((𝑚𝛼), 𝑧)
depends on (𝑅+, 𝑐) and not on the reduced word of c.

Proof. Changing the reduced word of c replaces {𝛽1, . . . , 𝛽𝑟 } by a permutation of the same set. �

For a balanced pair ((𝑚𝛼), 𝑧), we also define a Coxeter belt

u((𝑚𝛼), 𝑧) := (𝑢0, 𝑢1, . . . , 𝑢ℎ𝑟−1, 𝑢ℎ𝑟 = 𝑢0)

by setting 𝑢0 = 𝑧 and

𝑢𝑖 = 𝑢𝑖−1 + 𝑚𝛽𝑖 𝛽
∨
𝑖

for 𝑖 = 1, 2, . . . , ℎ𝑟 − 1. Note that given ((𝑚𝛼), 𝑧), the Coxeter belt depends on 𝑅+, on c, and on a
reduced word for c.

Suppose 𝑅+ has simple roots 𝛼1, . . . , 𝛼𝑟 . Then 𝑠1𝑅+ is also a positive system, and its simple roots
are −𝛼1, 𝑠1𝛼2, . . . , 𝑠1𝛼𝑟 .

Proposition 15.4. The (𝑊, 𝑅+, 𝑐)-Coxeter belt for the W-balanced pair ((𝑚𝛼), 𝑧) with respect to
(𝑅+, 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 ) is the same, up to a cyclic shift, as the (𝑊, 𝑠1𝑅+, 𝑐)-Coxeter belt for the balanced
pair ((𝑚𝛼), 𝑧′ = 𝑢1) with respect to (𝑠1𝑅+, 𝑐 = (𝑠1𝑠2𝑠1) · · · (𝑠1𝑠𝑟 𝑠1)𝑠1).

Proof. Follows from Proposition 10.4. �

Given a balanced pair ((𝑚𝛼), 𝑧), let 𝑄((𝑚𝛼), 𝑧) := 𝑄(v((𝑚𝛼), 𝑧)).

Corollary 15.5. Let ((𝑚𝛼), 𝑧) be a balanced pair. Then env𝑐 (u((𝑚𝛼), 𝑧)) = 𝑄((𝑚𝛼), 𝑧), and each
point of the Coxeter belt u((𝑚𝛼), 𝑧) is a vertex of 𝑄((𝑚𝛼), 𝑧).
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Proof. By Proposition 14.2, we have env𝑐 (v((𝑚𝛼), 𝑧)) = 𝑄((𝑚𝛼), 𝑧). Since the Coxeter necklace
v((𝑚𝛼), 𝑧) is a subset of the Coxeter belt u((𝑚𝛼), 𝑧), we have env𝑐 (u((𝑚𝛼), 𝑧)) ⊇ env𝑐 (v((𝑚𝛼), 𝑧)).
To establish equality, it suffices to show that each 𝑢𝑖 belongs to 𝑄((𝑚𝛼), 𝑧). By combining the action
of c with Proposition 15.4, it suffices to show that 𝑢1 ∈ 𝑄(v((𝑚𝛼), 𝑧)). This follows from Lemma 14.3.

The claim that every point on the Coxeter belt is a vertex of 𝑄((𝑚𝛼), 𝑧) follows from applying
Proposition 14.2 to the (𝑊, 𝑠1𝑅+, 𝑐)-Coxeter necklace appearing in Proposition 15.4. �

Definition 15.6. A (𝑊, 𝑐)-balancedtope is a polytope of the form 𝑄((𝑚𝛼), 𝑧).

By Propositions 15.3 and 15.4 and Corollary 15.5, up to changing z (or equivalently, up to a
translation), the (𝑊, 𝑐)-balancedtope 𝑄((𝑚𝛼), 𝑧) does not depend on the choice of reduced word of c,
or on the choice of 𝑅+.

16. Prepolypositroids

Let R𝑅̃ = {(𝑎𝜔)𝜔∈𝑅̃} denote the vector space whose coordinates are labeled by the set 𝑅̃ of twisted
roots. Let C𝑊 ,𝑐

pre ⊂ R𝑅̃ denote the cone cut out by the inequalities

𝑎𝑐𝑚−1𝜔𝑘
+ 𝑎𝑐𝑚𝜔𝑘 ≥

∑
𝑘→𝑖
−𝐴𝑖𝑘𝑎𝑐𝑚𝜔𝑖 +

∑
𝑖→𝑘
−𝐴𝑖𝑘𝑎𝑐𝑚−1𝜔𝑖

(16.1)

for 𝑘 ∈ Z and 1 ≤ 𝑚 ≤ 𝑟 . Recall that 𝑗 → 𝑖 if i and j are connected in the Dynkin diagram and i
occurs before j in all reduced words of c. The twisted roots appearing in (16.1) all belong to the set
{𝑐𝑚−1𝜔𝑘 = 𝛽𝑘+(𝑚−1)𝑟 , 𝛽𝑘+(𝑚−1)𝑟+1, . . . , 𝛽𝑘+𝑚𝑟 = 𝑐𝑚𝜔𝑘 }.

Proposition 16.1. The inequalities (16.1) depend on c and not on the choice of reduced word of c, or
on the choice of 𝑅+.

Proof. That the inequalities (16.1) do not depend on the reduced word of c is apparent. For the
second part, using Proposition 10.4, we need to check what happens if we replace 𝑅+ by 𝑠1𝑅+, where
𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 . If 𝑗 →𝑐,𝑅+ 𝑖, then we also have 𝑗 →𝑐,𝑠1𝑅+ 𝑖 unless one of 𝑖, 𝑗 is equal to 1, in which case,
the relation reverses. This is exactly the required condition for the inequalities (16.1) to be preserved
when 𝑅+ is changed to 𝑠1𝑅+. �

Example 16.2. Let us take (𝑊, 𝑅+, 𝑐), as in Examples 10.8 and 12.3. In the notation of Part I, we have
𝑎𝑖 𝑗 = 𝑎ℎ𝑖−ℎ 𝑗 . The inequalities (16.1) are of three types: (1) 𝑎𝑖,𝑖+1+𝑎𝑖+1,𝑖+2 ≥ 𝑎𝑖,𝑖+2, (2) 𝑎𝑖+1,𝑖 +𝑎𝑖+2,𝑖+1 ≥
𝑎𝑖+2,𝑖 , and (3) 𝑎𝑖, 𝑗 + 𝑎𝑖+1, 𝑗+1 ≥ 𝑎𝑖, 𝑗+1 + 𝑎 𝑗 , 𝑗+1, where 𝑖, 𝑖 +1, 𝑗 , 𝑗 +1 are distinct. The inequalities (1) and
(2) are special cases of the triangle inequality (4.2), while (3) is a special case of (4.3). It will follow
from Theorem 17.3, and can be verified directly, that the inequalities (4.2) and (4.3) are consequences
of the smaller set of inequalities (16.1). Indeed, the 𝑛(𝑛 − 1) = |𝑅 | inequalities in (16.1) are exactly the
facet inequalities appearing in Corollary 6.13.

Example 16.3. Let us take (𝑊, 𝑅+, 𝑐) as in Example 10.9. Using Proposition 10.5, we have 𝜔1 =
𝑒1, 𝜔2 = 𝑒1 + 𝑒2, . . . , 𝜔𝑟−1 = 𝑒1 + 𝑒2 + · · · + 𝑒𝑟−1, and 𝜔𝑟 = 1

2 (𝑒1 + 𝑒2 + · · · + 𝑒𝑟 ). The inequalities (16.1)
are:

𝑎𝑐𝑚−1𝜔1 + 𝑎𝑐𝑚𝜔1 ≥ 𝑎𝑐𝑚−1𝜔2

𝑎𝑐𝑚−1𝜔𝑖
+ 𝑎𝑐𝑚𝜔𝑖 ≥ 𝑎𝑐𝑚𝜔𝑖−1 + 𝑎𝑐𝑚−1𝜔𝑖+1 for 𝑖 = 2, . . . , 𝑟 − 2

𝑎𝑐𝑚−1𝜔𝑟−1 + 𝑎𝑐𝑚𝜔𝑟−1 ≥ 𝑎𝑐𝑚𝜔𝑟−2 + 𝑎𝑐𝑚−1𝜔𝑟

𝑎𝑐𝑚−1𝜔𝑟
+ 𝑎𝑐𝑚𝜔𝑟 ≥ 2𝑎𝑐𝑚𝜔𝑟−1 .

Definition 16.4. A (𝑊, 𝑐)-prepolypositroid is a (𝑊, 𝑐)-twisted alcoved polytope cut out by the halfspaces
(𝑥, 𝜔) ≤ 𝑎𝜔 , 𝜔 ∈ 𝑅̃, where 𝑎𝜔 ∈ C𝑊 ,𝑐

pre .

We call C𝑊 ,𝑐
pre the cone of (𝑊, 𝑐)-prepolypositroids.
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Theorem 16.5. There are natural isomorphisms between the following three cones:

1. the cone of (𝑊, 𝑐)-prepolypositroids.
2. the cone of W-balanced pairs ((𝑚𝛼), 𝑧);
3. the cone of (𝑊, 𝑅+, 𝑐)-Coxeter necklaces for any choice of 𝑅+.

Furthermore, if a (𝑊, 𝑐)-prepolypositroid P arises from (𝑎𝜔) ∈ C𝑊 ,𝑐
pre , then each 𝑎𝜔 ∈ R is minimal,

that is, is a value of the support function of P.

Proposition 15.2 gives the isomorphism between (2) and (3). For the remainder of this section,
our aim is to show that ((𝑚𝛼), 𝑧) ↦→ 𝑄((𝑚𝛼), 𝑧) is a bijection between balanced pairs and (𝑊, 𝑐)-
prepolypositroids.

Proposition 16.6. We have

𝑐𝑚−1𝜔𝑘 + 𝑐𝑚𝜔𝑘 =
∑
𝑘→𝑖
−𝐴𝑖𝑘𝑐𝑚𝜔𝑖 +

∑
𝑖→𝑘
−𝐴𝑖𝑘𝑐𝑚−1𝜔𝑖 (16.2)

for any k and any m.

Proof. By Proposition 16.1, to verify the claim, we can assume that 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 and verify the
equality

𝜔1 + 𝑐𝜔1 =
∑
𝑗

−𝐴 𝑗1𝜔 𝑗 ,

where the sum is over all j connected to 1 in the Dynkin diagram. The left hand side is equal to 2𝜔1−𝛼1,
and we check that

(𝛼∨𝑗 , 2𝜔1 − 𝛼1) =
{
−𝐴 𝑗1 if 𝑗 is connected to 𝑖 in the Dynkin diagram
0 otherwise. �

Given a (𝑊, 𝑐)-balancedtope 𝑄((𝑚𝛼), 𝑧), we define a collection (𝑎𝜔) of real numbers, one for each
twisted root 𝜔 ∈ 𝑅̃ by

𝑎𝜔 = 𝑎𝜔 (𝑄((𝑚𝛼), 𝑧)) := max((𝑥, 𝜔) | 𝑥 ∈ 𝑄((𝑚𝛼), 𝑧)). (16.3)

Proposition 16.7. For any (𝑊, 𝑐)-balancedtope 𝑄((𝑚𝛼), 𝑧), the collection (𝑎𝜔) satisfies the inequali-
ties (16.1).

Proof. It follows from Lemma 10.7 that the inequalities (16.1) are equivalent to the set of “negated”
inequalities

𝑎−𝑐𝑚−1𝜔𝑘
+ 𝑎−𝑐𝑚𝜔𝑘 ≥

∑
𝑘→𝑖
−𝐴𝑖𝑘𝑎−𝑐𝑚𝜔𝑖 +

∑
𝑖→𝑘
−𝐴𝑖𝑘𝑎−𝑐𝑚−1𝜔𝑖

(16.4)

for all k and m. By Proposition 16.1, to verify the claim, we can assume that 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 and verify
just one of the inequalities (16.4), say

𝑎−𝜔1 + 𝑎−𝑐𝜔1 ≥
∑
𝑗

−𝐴 𝑗1𝑎−𝜔 𝑗 ,

where the sum is over all j connected to 1 in the Dynkin diagram. By Proposition 16.6, the claim is
translation invariant. Thus, we may assume that 𝑣0 = 0, that is, 𝑧 = 0.

The maximum of −𝜔1, . . . ,−𝜔𝑟 on 𝑄((𝑚𝛼), 𝑧) occurs at the vertex 𝑣0. The maximum of −𝑐𝜔1
occurs at vertex 𝑣1, where the value taken is greater than or equal to (−𝑐𝜔1, 𝑣0) = 0. The required
inequality now follows from 𝑎−𝑐𝜔1 ≥ 0. �
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By Proposition 16.7, we have an injective and linear map ((𝑚𝛼), 𝑧) ↦→ (𝑎𝜔) from the cone of W-
balanced pairs to the cone C𝑊 ,𝑐

pre of (𝑊, 𝑐)-prepolypositroids. The cone of balanced pairs has exactly
|𝑅 | facets, given by 𝑚𝛼 = 0, for 𝛼 ∈ 𝑅. Each equality 𝑎−𝑐𝑚−1𝜔𝑘

+ 𝑎−𝑐𝑚𝜔𝑘 =
∑
𝑘→𝑖 −𝐴𝑖𝑘𝑎−𝑐𝑚𝜔𝑖 +∑

𝑖→𝑘 −𝐴𝑖𝑘𝑎−𝑐𝑚−1𝜔𝑖
defines a face of C𝑊 ,𝑐

pre .

Lemma 16.8. The map ((𝑚𝛼), 𝑧) ↦→ (𝑎𝜔) sends the facet {𝑚𝛼 = 0} of the cone of W-balanced pairs to
the face {𝑎−𝑐𝑚−1𝜔𝑘

+ 𝑎−𝑐𝑚𝜔𝑘 =
∑
𝑘→𝑖 −𝐴𝑖𝑘𝑎−𝑐𝑚𝜔𝑖 +

∑
𝑖→𝑘 −𝐴𝑖𝑘𝑎−𝑐𝑚−1𝜔𝑖

} of C𝑊 ,𝑐
pre , where 𝛼 satisfies

𝛼̃ = (𝐼 − 𝑐)−1𝛼 = 𝑐𝑚−1𝜔𝑘 .

Proof. In the end of the proof of Proposition 16.7, it suffices to note that 𝑎−𝑐𝜔1 = 𝑚𝛼1 . Indeed, for
𝑖 ∈ [2, 𝑟], we have

(𝛽∨𝑖 , 𝑐𝜔1) = (𝑐−1𝑠1𝑠2 · · · 𝑠𝑖−1𝛼∨𝑖 , 𝜔1) = (𝑠𝑟 · · · 𝑠𝑖𝛼∨𝑖 , 𝜔1) = 0,

but (𝛽∨1 , 𝑐𝜔1) = (𝛼∨1 , 𝜔1 − 𝛼1) = −1. �

It follows that each equality {𝑎−𝑐𝑚−1𝜔𝑘
+𝑎−𝑐𝑚𝜔𝑘 =

∑
𝑘→𝑖 −𝐴𝑖𝑘𝑎−𝑐𝑚𝜔𝑖+

∑
𝑖→𝑘 −𝐴𝑖𝑘𝑎−𝑐𝑚−1𝜔𝑖

} defines
a facet of C𝑊 ,𝑐

pre .

Proof of Theorem 16.5. We compare (1) and (2). It follows from Lemma 16.8 that each equality
𝑎−𝑐𝑚−1𝜔𝑘

+ 𝑎−𝑐𝑚𝜔𝑘 =
∑
𝑘→𝑖 −𝐴𝑖𝑘𝑎−𝑐𝑚𝜔𝑖 +

∑
𝑖→𝑘 −𝐴𝑖𝑘𝑎−𝑐𝑚−1𝜔𝑖

defines a facet of the cone of (𝑊, 𝑐)-
prepolypositroids. It then follows from the same lemma that the map ((𝑚𝛼), 𝑧) ↦→ (𝑎𝜔) is a linear
isomorphism, completing the proof of the isomorphism between the three cones.

The last sentence of Theorem 16.5 follows from (16.3). �

17. From prepolypositroids to polypositroids

17.1. Alcoved envelope of generalized W-permutohedra

Theorem 17.1.

1. The cone of generalized W-permutohedra C𝑊sub projects to the cone of (𝑊, 𝑐)-prepolypositroids C𝑊 ,𝑐
pre

by projecting the vector (𝑎𝑤𝜔𝑖 ) ∈ R𝑊 ·{𝜔1 ,...,𝜔𝑟 } of (11.1) to (𝑎𝑐𝑚𝜔𝑖 ) ∈ R𝑅̃.
2. The (𝑊, 𝑐)-twisted alcoved envelope of a generalized W-permutohedron is a (𝑊, 𝑐)-prepolypositroid.
3. The vertices (𝑣id, 𝑣𝑐 , 𝑣𝑐2 , . . . , 𝑣𝑐ℎ−1 ) of a generalized W-permutohedron are a (𝑊, 𝑐)-Coxeter neck-

lace.

Proof. (3) was established in the proof of Proposition 14.6. (1) and (2) thus follow from Theorem
16.5. �

Conjecture 17.2. The maps in Theorem 17.1(1) are surjective.

17.2. Type A

Theorem 17.3. Suppose R is of type A. Then every (𝑊, 𝑐)-prepolypositroid is also a generalized
W-permutohedron. Thus, the class of (𝑊, 𝑐)-prepolypositroids is identical to the class of (𝑊, 𝑐)-
polypositroids.

Proof. Let c be the Coxeter element of Example 10.8. Then by Theorems 16.5 and 6.12, the class of
(𝑊, 𝑐)-prepolypositroids is exactly the class of polypositroids. Thus, the result holds in this case. Now,
let 𝑐′ = 𝑤𝑐𝑤−1 be an arbitrary Coxeter element. Since the class of generalized W-permutohedra is
preserved under the action of W, the result holds by Remark 13.2. �

It follows from Theorem 17.3 that Conjecture 17.2 holds in type A.
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17.3. A prepolypositroid that is not a polypositroid

We give an example of a (𝑊, 𝑐)-prepolypositroid that is not a (𝑊, 𝑐)-polypositroid. Let 𝑅 = 𝐷4. We
take as positive simple roots

𝛼1 = (1,−1, 0, 0), 𝛼2 = (0, 1,−1, 0), 𝛼3 = (0, 0, 1,−1), 𝛼4 = (0, 0, 1, 1),

and let 𝑐 = 𝑠1𝑠2𝑠3𝑠4, so that the Dynkin diagram is oriented

1 2

4

3

The ordering of the 24 roots of R is given by (here, 𝑟 = 4 and ℎ = 6)

(1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1), (1, 0, 0, 1),
(0, 1,−1, 0), (1, 1, 0, 0), (0, 1, 0, 1), (0, 1, 0,−1),
(1, 0, 1, 0), (0, 1, 1, 0), (0, 0, 1,−1), (0, 0, 1, 1),
(−1, 1, 0, 0), (−1, 0, 1, 0), (−1, 0, 0, 1), (−1, 0, 0,−1),
(0,−1, 1, 0), (−1,−1, 0, 0), (0,−1, 0,−1), (0,−1, 0, 1),
(−1, 0,−1, 0), (0,−1,−1, 0), (0, 0,−1, 1), (0, 0,−1,−1),

and we see that 𝑀 (𝑘) = 3 for 𝑘 = 1, 2, 3, 4. The twisted roots 𝑅̃ are, in the same order,

(1, 0, 0, 0), (1, 1, 0, 0), ( 1
2 , 1

2 , 1
2 ,− 1

2 ), ( 1
2 , 1

2 , 1
2 , 1

2 ),
(0, 1, 0, 0), (0, 1, 1, 0), (− 1

2 , 1
2 , 1

2 , 1
2 ), (− 1

2 , 1
2 , 1

2 ,− 1
2 ),

(0, 0, 1, 0), (−1, 0, 1, 0), (− 1
2 ,− 1

2 , 1
2 ,− 1

2 ), (− 1
2 ,− 1

2 , 1
2 , 1

2 ),
(−1, 0, 0, 0), (−1,−1, 0, 0), (− 1

2 ,− 1
2 ,− 1

2 , 1
2 ), (− 1

2 ,− 1
2 ,− 1

2 ,− 1
2 ),

(0,−1, 0, 0), (0,−1,−1, 0), ( 1
2 ,− 1

2 ,− 1
2 ,− 1

2 ), ( 1
2 ,− 1

2 ,− 1
2 , 1

2 ),
(0, 0,−1, 0), (1, 0,−1, 0), ( 1

2 , 1
2 ,− 1

2 , 1
2 ), ( 1

2 , 1
2 ,− 1

2 ,− 1
2 ).

We consider the Coxeter necklace

v = (𝑣0 = (0, 0, 0, 0), 𝑣1 = 𝑣2 = (1, 0, 0, 1), 𝑣3 = 𝑣4 = (1, 1, 1, 1), 𝑣5 = (0, 0, 1, 1)).

The polytope 𝑄(v) is a (𝑊, 𝑐)-prepolypositroid, and the 𝑎𝜔 are given by

(1, 2, 1, 2, 1, 2, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0)

in the same order as 𝑅̃. The inequalities (16.1) can be verified directly. For example, we have

2 + 2 = 𝑎 (1,1,0,0) + 𝑎 (0,1,1,0) ≥ 𝑎
( 12 ,

1
2 ,

1
2 ,−

1
2 )
+ 𝑎
( 12 ,

1
2 ,

1
2 ,

1
2 )
+ 𝑎 (0,1,0,0) ≥ 1 + 2 + 1.

1 + 1 = 𝑎
( 12 ,

1
2 ,

1
2 ,−

1
2 )
+ 𝑎
(− 1

2 ,
1
2 ,

1
2 ,

1
2 )
≥ 𝑎 (0,1,1,0) = 2.

Now, one computes (for example, by [GJ]) that 𝑄(v) has seven vertices

{(0, 0, 1, 1), (1, 0, 1, 2), (1, 0, 0, 1), (1, 1, 1, 1), (1, 0, 1, 0), (0, 0, 0, 0), (0, 1, 0, 1)}
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and that there is an edge connecting (1, 0, 1, 2) and (1, 0, 1, 0). Indeed, one can check that this edge is
the intersection of the three facets indexed by (1, 0, 0, 0), (0, 0, 1, 0), and (0,−1, 0, 0). This edge is in the
direction (0, 0, 0, 1), which is not a root direction. Thus, 𝑄(v) is not a generalized W-permutohedron.

It turns out that 𝑄(v) is the (𝑊, 𝑐)-twisted alcoved envelope of a generalized permutohedron, namely,
one with vertices

{(0, 0, 1, 1), (1, 0, 0, 1), (1, 1, 1, 1), (1, 0, 1, 0), (0, 0, 0, 0), (0, 1, 0, 1)},

consistent with Conjecture 17.2.

18. Prepolypositroids and finite type cluster algebras

We briefly recall some basic facts concerning finite type cluster algebras, following [YZ]. Let
A(𝑊, 𝑅+, 𝑐) denote the finite type cluster algebra with principal coefficients of type R and associated to
a compatible pair (𝑅+, 𝑐). Usually, the choice of positive system 𝑅+ is not made explicit in the theory
of cluster algebras, but for our purposes, it is necessary.

The cluster algebra A(𝑊, 𝑅+, 𝑐) is a commutative subring of the field of rational functions
C(𝑥1, 𝑥2, . . . , 𝑥𝑟 , 𝑦1, 𝑦2, . . . , 𝑦𝑟 ), where 𝑥𝑖 (respectively, 𝑦𝑖) are called initial mutable cluster variables
(respectively, coefficient variables). The choice of c determines an initial exchange matrix B, given by
the formula [YZ, (1.4)]. The cluster algebra A(𝑊, 𝑅+, 𝑐) contains a distinguished set of cluster vari-
ables, and associated to each cluster variable is a g-vector which belongs to V.

Theorem 18.1 [YZ, Theorems 1.4 and 1.10]. The cluster variables2 𝑥𝛽 of A(𝑊, 𝑅+, 𝑐) are labeled by
the set

Π(𝑐) := {𝑐𝑚𝜔𝑖 | 𝑖 = 1, 2, . . . , 𝑟 and 0 ≤ 𝑚 ≤ 𝑀 (𝑖)},

where 𝑀 (𝑖) is defined in Proposition 10.3. Furthermore, 𝛽 is the g-vector of 𝑥𝛽 .

It follows from Lemma 10.7 that ±𝜔𝑖 ∈ Π(𝑐). The cluster variables 𝑥𝛽 are arranged into clusters. We
say that 𝛽 and 𝛾̃ (or 𝑥𝛽 and 𝑥𝛾̃) are (𝑅+, 𝑐)-compatible, or simply compatible, if they belong to the same
cluster; the clusters are exactly the collections of r pairwise-compatible cluster variables. The (𝑊, 𝑅+, 𝑐)-
cluster fan (also called the c-Cambrian fan) is the complete fan in V with cones span≥0(𝛾̃1, 𝛾̃2, . . . , 𝛾̃𝑠),
where {𝛾̃1, 𝛾̃2, . . . , 𝛾̃𝑠} ⊂ Π(𝑐) is a set of pairwise (𝑅+, 𝑐)-compatible vectors. A polytope with normal
fan equal to the (𝑊, 𝑅+, 𝑐)-cluster fan is called a (𝑊, 𝑅+, 𝑐)-generalized associahedron. The following
result combines work of Hohlweg et al. [HLT], Reading and Speyer [RS], and Yang and Zelevinsky
[YZ, Remark 6.1].

Theorem 18.2. The (𝑊, 𝑅+, 𝑐)-cluster fan is a refinement of the W-Coxeter fan. Furthermore,
(𝑊, 𝑅+, 𝑐)-generalized associahedra exist and are generalized W-permutohedra.

The W-Coxeter fan has maximal cones 𝐶𝑤 labeled by Weyl group elements 𝑤 ∈ 𝑊 . By Theorem 18.2,
every maximal cone of the (𝑊, 𝑅+, 𝑐)-cluster fan is a union of the cones 𝐶𝑤 . A (𝑊, 𝑅+, 𝑐)-singleton
[HLT] is a Weyl group element w, such that 𝐶𝑤 is itself a maximal cone of the (𝑊, 𝑅+, 𝑐)-cluster
fan. Hohlweg et al. [HLT, Theorem 1.2] characterize the set of (𝑊, 𝑅+, 𝑐)-singletons as prefixes (up to
commutation relations) of a particular reduced word of 𝑤0 that depends on 𝑅+ and c.

The following result should be compared with Corollary 8.23.

Proposition 18.3. Let P be a generic simple (𝑊, 𝑐)-polypositroid. For any choice of 𝑅+, and any
(𝑊, 𝑅+, 𝑐)-singleton w, the cone 𝐶𝑤 is a maximal cone of the normal fan N (𝑃).
Proof. By definition, the normal fan N (𝑃) is a coarsening of the W-Coxeter fan. It follows that there
exists a maximal cone C of N (𝑃) that contains the simplicial cone 𝐶𝑤 . But each generating ray of 𝐶𝑤

2The cluster variables in [YZ] are denoted 𝑥𝛾;𝑐 . We have suppressed the dependence on c in our notation and use 𝛽 instead of 𝛾.
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must be a generating ray of C, for otherwise, P would not be generic. But then we must have 𝐶 = 𝐶𝑤 ,
since both are simplicial cones. �

The cluster variables are related by exchange relations. A distinguished subset of the exchange
relations are called primitive exchange relations in [YZ].

Theorem 18.4 [YZ, Theorem 1.5]. The primitive exchange relations of A(𝑊, 𝑅+, 𝑐) are of the form

𝑥−𝜔𝑘 𝑥𝜔𝑘 = 𝑦𝑘
∏
𝑘→𝑖

𝑥−𝐴𝑖𝑘
𝜔𝑖

∏
𝑖→𝑘

𝑥−𝐴𝑖𝑘
−𝜔𝑖
+ 1; (18.1)

for 𝑘 = 1, 2, . . . , 𝑟 and

𝑥𝑐𝑚−1𝜔𝑘
𝑥𝑐𝑚𝜔𝑘 =

∏
𝑘→𝑖

𝑥−𝐴𝑖𝑘
𝑐𝑚𝜔𝑖

∏
𝑖→𝑘

𝑥−𝐴𝑖𝑘

𝑐𝑚−1𝜔𝑖
+ 𝑌, (18.2)

for 𝑘 = 1, 2, . . . , 𝑟 and 1 ≤ 𝑚 ≤ 𝑀 (𝑘), where Y is some monomial in the 𝑦𝑖 .

The relations (18.1) and (18.2) are homogeneous with respect to the g-vector grading. In particular,
we have for each 𝑘 = 1, 2, . . . , 𝑟 ,

−𝜔𝑘 + 𝜔𝑘 = 0; (18.3)

and for each 1 ≤ 𝑚 ≤ 𝑀 (𝑘),

𝑐𝑚−1𝜔𝑘 + 𝑐𝑚𝜔𝑘 =
∑
𝑘→𝑖
−𝐴𝑖𝑘𝑐𝑚𝜔𝑖 +

∑
𝑖→𝑘
−𝐴𝑖𝑘𝑐𝑚−1𝜔𝑖 . (18.4)

The latter we recognize as a special case of Proposition 16.7.
More generally, we say that 𝛽, 𝛾̃ ∈ Γ(𝑐) are an exchangeable pair if we have a (necessarily unique)

exchange relation that exchanges 𝑥𝛽 for 𝑥𝛾̃ . This exchange relation takes the form

𝑥𝛽𝑥𝛾̃ =
∏

𝛿∈𝐸 (𝛽,𝛾̃)

𝑥
𝑐𝛽,𝛾;𝛿

𝛿
+ other monomial, (18.5)

where 𝑐𝛽,𝛾;𝛿 > 0, and 𝐸 (𝛽, 𝛾) ⊂ Π(𝑐) consists of elements that are pairwise compatible, and com-
patible with both 𝛽 and 𝛾̃. Here, the key point is that one of the two monomials on the RHS of the
exchange relation (18.5) does not involve any of the coefficient variables, known as sign-coherence. For
a description of all the exchange relations in a principal coefficient finite-type cluster algebra, see [ST].
Note that in type A, any incompatible pair (𝛽, 𝛾̃) is automatically exchangeable, but this is not the case
in general type.

The following is the main result of this section.

Theorem 18.5. Let P be a (𝑊, 𝑐)-prepolypositroid defined by the inequalities (𝑥, 𝜔) ≤ 𝑎𝜔 , where
(𝑎𝜔) ∈ C𝑊 ,𝑐

pre . Then for any choice of 𝑅+ compatible with c, and any pair (𝑥𝛽 , 𝑥𝛾̃) of exchangeable
cluster variables, we have

𝑎𝛽 + 𝑎 𝛾̃ ≥
∑

𝛿∈𝐸 (𝛽,𝛾̃)

𝑐𝛽,𝛾;𝛿𝑎𝛿 , (18.6)

where 𝐸 (𝛽, 𝛾̃) and 𝑐𝛽,𝛾;𝛿 are defined in (18.5).

Proof. We begin by noting that (18.5) is homogeneous with respect to the g-vector grading, so

𝛽 + 𝛾̃ =
∑

𝛿∈𝐸 (𝛽,𝛾̃)

𝑐𝛽,𝛾;𝛿𝛿 (18.7)
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(see [ST, P4]). In [P4, Proposition 2.22], it is shown that any linear dependence (18.7) is a positive sum
of linear dependencies of the form (18.4). Replacing a linear dependence (18.4) by the corresponding
inequality (16.1), we deduce that the inequality (18.6) is a positive sum of the inequalities (16.1). �

Example 18.6. Pick (𝑊, 𝑅+, 𝑐) as in Example 10.8. Then the inequalities (18.7) are all of the form (4.2)
or (4.3).

The following is a variant of the noncrossing condition of Lemma 8.2.

Corollary 18.7. Let P be a generic simple (𝑊, 𝑐)-prepolypositroid and F be a face of P. Let 𝑆(𝐹) ⊂ 𝑅̃
be as defined in Section 12.2. Then for any choice of 𝑅+ compatible with c, and any exchangeable pair
(𝛽, 𝛾) ∈ Γ(𝑐), we have that 𝑆(𝐹) can contain at most one of 𝛽 and 𝛾̃.

Proof. Suppose we have an exchangeable pair 𝛽, 𝛾̃ ∈ 𝑆(𝐹). Let 𝑥 ∈ 𝐹. Then, by (18.7), we have

𝑎𝛽 + 𝑎 𝛾̃ = (𝑥, 𝛽 + 𝛾̃) = (𝑥,
∑

𝛿∈𝐸 (𝛽,𝛾̃)

𝑐𝛽,𝛾;𝛿𝛿) ≤
∑

𝛿∈𝐸 (𝛽,𝛾̃)

𝑐𝛽,𝛾;𝛿𝑎𝛿 .

By (18.6), we must have equality, giving 𝛿 ∈ 𝑆(𝐹) for 𝛿 ∈ 𝐸 (𝛽, 𝛾̃). But then 𝑆(𝐹) contains twisted
roots that are not linearly independent, contradicting the assumption that P is generic simple. �

Corollary 18.7 has the following defect: while (𝑊, 𝑐)-prepolypositroids depend only on the choice
of c, the notion of an exchangeable pair (𝛽, 𝛾̃) depends additionally on a choice of 𝑅+. We thus pose the
following question:

Question 18.8. Which pairs of c-twisted roots are exchangeable for some choice of 𝑅+ compatible with
c?

Corollary 18.9. Let P be a generic simple (𝑊, 𝑐)-prepolypositroid, and 𝑅+ be a positive system com-
patible with c. Then removing the facets (𝑥, 𝜔) ≤ 𝑎𝜔 indexed by facet normals 𝜔 ∉ Π(𝑐) gives a
(𝑊, 𝑅+, 𝑐)-generalized associahedron.

Proof. Removing the stated facets gives the polytope cut out by the inequalities (𝑥, 𝜔) ≤ 𝑎𝜔 for
𝜔 ∈ Π(𝑐). These 𝑎𝜔 satisfy

𝑎𝑐𝑚−1𝜔𝑘
+ 𝑎𝑐𝑚𝜔𝑘 >

∑
𝑘→𝑖
−𝐴𝑖𝑘𝑎𝑐𝑚𝜔𝑖 +

∑
𝑖→𝑘
−𝐴𝑖𝑘𝑎𝑐𝑚−1𝜔𝑖

, (18.8)

for each 1 ≤ 𝑚 ≤ 𝑀 (𝑘). According to [P4, Theorem 2.23], these inequalities cut out the deformation cone
of the (𝑊, 𝑅+, 𝑐)-generalized associahedron. In other words, the inequalities (𝑥, 𝜔) ≤ 𝑎𝜔 , 𝜔 ∈ Π(𝑐)
define a (𝑊, 𝑅+, 𝑐)-generalized associahedron. �

On the other hand, not every maximal cone in the normal fan of a generic simple (𝑊, 𝑐)-
prepolypositroid P is a maximal cone in some (𝑊, 𝑅+, 𝑐)-cluster fan, as the following example shows.

Example 18.10. We continue the example from Section 17.3. By slightly perturbing the W-balanced
pair associated to v, we obtain a generic simple (𝑊, 𝑐)-prepolypositroid 𝑄(v′) whose normal fan is a
refinement of that of 𝑄(v) but not a refinement of the W-Coxeter fan. There is a vertex v of 𝑄(v′) with
𝑆(𝑣) given by

𝑆(𝑣) = {(1, 0, 0, 0), (0, 0, 1, 0), (− 1
2 ,− 1

2 , 1
2 ,− 1

2 ), (0,−1, 0, 0)}.

The roots in 𝑆(𝑣) are pairwise c-noncrossing in the sense of Section 19.1. The dual cone is spanned by
the vectors

{(0,−1, 0, 1), (1, 0, 0,−1), (0, 0, 1, 1), (0, 0, 0,−2)},
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the last of which is not in a direction of a root. Since the (𝑊, 𝑅+, 𝑐)-cluster fan is a refinement of the
W-Coxeter fan (Theorem 18.2), the vertex cone 𝐶𝑣 in the normal fan of P is not a maximal cone for any
cluster fan associated to (𝑊, 𝑐).

19. Normal fans of (𝑊, 𝑐)-prepolypositroids

19.1. Coxeter noncrossing roots

Recall that a pair of distinct roots (𝛽, 𝛾) ∈ 𝑅 is said to be alternating if (𝛽, 𝛾) = (𝛾, 𝛽) ≥ 0. Let us
say that (𝛽, 𝛾) ∈ 𝑅 are c-noncrossing if either (𝛾∨, 𝛽) = 0 or (𝛽∨, 𝛾̃) = 0. We say that (𝛽, 𝛾̃) ∈ 𝑅̃
are alternating (respectively, c-noncrossing) if (𝛽, 𝛾) ∈ 𝑅 are. It is straightforward to see that with the
choices in Example 10.8, “alternating” and “c-noncrossing” agrees with the corresponding notions in
Part I.

Lemma 19.1. Two roots 𝛽, 𝛾 are alternating (respectively, c-noncrossing) if and only if 𝑐𝛽, 𝑐𝛾 are
alternating (respectively, c-noncrossing).

Lemma 19.2. Let c be a Coxeter element and 𝑐′ = 𝑤𝑐𝑤−1. Then (𝛽, 𝛽′) are c-noncrossing if and only
if (𝑤𝛽, 𝑤𝛽′) are 𝑐′-noncrossing.

Conjecture 19.3. Let P be a generic simple (𝑊, 𝑐)-prepolypositroid, and suppose that (𝛽, 𝛾̃) ∈ 𝑅̃ span
a 2-dimensional face of the normal fan of P. Then (𝛽, 𝛾) must be alternating and c-noncrossing.

By Lemma 12.7, the alternating part of Conjecture 19.3 holds. By Lemma 8.2, Conjecture 19.3
holds when R is of type A. We will show in Proposition 19.12 that the condition “alternating and c-
noncrossing” is essentially the same as cluster compatibility. Thus, Conjecture 19.3 is consistent with
Corollary 18.7, since exchangeable pairs of cluster variables are incompatible (and the converse holds
in type A).

Remark 19.4. The notion of c-noncrossing depends only on the choice of c, and not of 𝑅+. Furthermore,
(𝛽, 𝛾) is c-noncrossing if and only if (−𝛽, 𝛾), (𝛽,−𝛾), and (−𝛽,−𝛾) are. This is consistent with our
usage of “noncrossing” in type A for directed edges: two directed edges are noncrossing if the underlying
undirected edges are.

19.2. Reflection factorizations

For 𝑤 ∈ 𝑊 , write ℓ𝑅 (𝑤) for the length of the shortest factorization of w into reflections 𝑠𝛾 ∈ 𝑊 , 𝛾 ∈ 𝑅.
We define a partial order ≤𝑅 on W by

𝑢 ≤ 𝑣 ⇔ ℓ𝑅 (𝑣) = ℓ𝑅 (𝑢) + ℓ𝑅 (𝑣𝑢−1).

Note that ℓ𝑅 and ≤𝑅 do not depend on the choice of 𝑅+. It is wellknown that for any Coxeter element c,
we have ℓ𝑅 (𝑐) = 𝑟 . We refer the reader to [Bes, BW] for general background on reflection factorizations
and reflection order.

19.3. Bipartite positive systems

We say that (𝑅+, 𝑐) is bipartite, or c (respectively, 𝑅+) is bipartite with respect to 𝑅+ (respectively, c),
if 𝑅+ is compatible with c, and, in addition,

𝑐 = 𝜏+𝜏−, 𝜏+ = 𝑠𝑖1 · · · 𝑠𝑖𝑡 , and 𝜏− = 𝑠𝑖𝑡+1 · · · 𝑠𝑖𝑟 , (19.1)

where the partition 𝐼 = {1, 2, . . . , 𝑟} = 𝐼+ � 𝐼−, with 𝐼+ := {𝑖1, . . . , 𝑖𝑡 } and 𝐼− := {𝑖𝑡+1, . . . , 𝑖𝑟 } makes
the Dynkin diagram bipartite.
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Lemma 19.5. Let c be a fixed Coxeter element. Then a choice of 𝑅+ bipartite with respect to c exists.
There are exactly 2ℎ bipartite (𝑅′)+ with respect to c, and they are of the form 𝜏+𝜏−𝜏+ · · · 𝜏−𝜏+𝑅+ or
𝜏−𝜏+ · · · 𝜏−𝜏+𝑅+.

Proof. There are exactly two orientations of the Dynkin diagram that correspond to bipartite (𝑅+, 𝑐).
The claim thus follows from [KiTh, Theorem 3.6]. This theorem is stated for simply-laced root systems,
but the statement and proof are valid also for multiply-laced Weyl groups. �

When (𝑅+, 𝑐) is bipartite, the ordering of Proposition 10.3 induces an ordering of R of the form
(𝐴1 ≺ 𝐴2 ≺ · · · ≺ 𝐴2ℎ = 𝐴0), where |𝐴𝑖 | = 𝑡 or |𝐴𝑖 | = 𝑟 − 𝑡 depending on whether i is odd or i is even.
The ordering within each 𝐴𝑖 depends on the choice of a reduced word of c, but the sets 𝐴𝑖 themselves
do not. We have

𝑅+ =
ℎ⊔
𝑖=1

𝐴𝑖 𝑅− =
2ℎ⊔

𝑖=ℎ+1
𝐴𝑖 𝑅≥−1 =

ℎ+1⊔
𝑖=0

𝐴𝑖 .

By Lemma 19.5, the ordering of R corresponding to another bipartite (𝑅′)+ is of the form (𝐴𝑘 ≺ 𝐴𝑘+1 ≺
𝐴𝑘+2 ≺ · · · ≺ 𝐴𝑘−1).

We say that 𝛽, 𝛾 ∈ 𝑅 are c-opposed if 𝛽 ∈ 𝐴𝑖 and 𝛾 ∈ 𝐴𝑖+ℎ for some choice of bipartite 𝑅+ with
respect to c. The notion of c-opposed does not depend on the choice of bipartite 𝑅+.

If 𝑅+ and c are fixed, we write 𝛼 ≺𝑅+ ,𝑐 𝛼′ (or simply 𝛼 ≺ 𝛼′) if 𝛼 precedes 𝛼′ in the ordering of R
from Proposition 10.3.

Lemma 19.6 [BW, Lemma 3.9]. Suppose that 𝛽 ≺𝑅+ ,𝑐 𝛾 are distinct positive roots. Then the following
are equivalent:

1. 𝑠𝛽𝑠𝛾 ≤𝑅 𝑐−1;
2. (𝛽∨, 𝛾̃) = 0.

Lemma 19.7 [BW, Lemma 5.6]. Suppose that 𝛽 ≺𝑅+ ,𝑐 𝛾 are distinct positive roots. Then:

1. if 𝑠𝛽𝑠𝛾 ≤𝑅 𝑐−1, we have (𝛽, 𝛾) ≥ 0;
2. if 𝑠𝛾𝑠𝛽 ≤𝑅 𝑐−1, we have (𝛽, 𝛾) ≤ 0.

Lemma 19.8. Suppose that 𝛽, 𝛾 ∈ 𝑅 are c-opposed and 𝛽 ≠ −𝛾. Then:

1. (𝛽, 𝛾) = (𝛾∨, 𝛽) = (𝛽∨, 𝛾̃) = 0;
2. 𝑠𝛽𝑠𝛾 = 𝑠𝛾𝑠𝛽 ≤𝑅 𝑐−1.

Proof. We have 𝐴𝑖+ℎ = −𝐴𝑖 . Suppose that 𝛽 and 𝛾 are c-opposed. Then we may choose bipartite 𝑅+

so that 𝛽 ∈ 𝐴1 and 𝛾 ∈ 𝐴1+ℎ . Then 𝛽 = 𝛼𝑖 and 𝛾 = −𝛼 𝑗 , where 𝑖, 𝑗 ∈ 𝐼+. Since 𝑖, 𝑗 are not adjacent,
(𝛽, 𝛾) = 0 follows. Also, 𝛽 = 𝜔𝑖 and 𝛾̃ = −𝜔 𝑗 , so (1) follows. (2) is also clear from (19.1). �

Proposition 19.9. Let (𝑅+, 𝑐) be bipartite and 𝛽 ≺𝑅+ ,𝑐 𝛾 be distinct positive roots. Then 𝑠𝛽𝑠𝛾 ≤𝑅 𝑐−1

if and only if 𝛽, 𝛾 are alternating c-noncrossing.

Proof. If 𝑠𝛽𝑠𝛾 ≤𝑅 𝑐−1, then by Lemma 19.7, we have (𝛽, 𝛾) ≥ 0, and by Lemma 19.6, we have
(𝛽∨, 𝛾̃) = 0. Thus, (𝛽, 𝛾) is alternating c-noncrossing.

Conversely, suppose that (𝛽, 𝛾) is alternating and c-noncrossing. If (𝛽∨, 𝛾̃) = 0, then by Lemma
19.6, we have 𝑠𝛽𝑠𝛾 ≤ 𝑐−1, and we are done. Next, suppose that we have (𝛾∨, 𝛽) = 0. We claim that
(𝛽, 𝛾) = 0. To see this, we assume that 𝑅+ has been chosen so that 𝛽 ∈ 𝐴1 while 𝛾 ∈

⋃ℎ
𝑖=1 𝐴𝑖 . Thus,

𝛽 = 𝛼𝑖 and 𝛽 = 𝜔𝑖 . The condition (𝛾∨, 𝜔𝑖) = 0 implies that (𝛾∨, 𝛼𝑖) ≤ 0, and the alternating condition
gives (𝛾∨, 𝛼𝑖) ≥ 0. Thus, (𝛽, 𝛾) = 0, establishing our claim.

We are thus in the situation that (𝛾∨, 𝛽) = 0 and (𝛽, 𝛾) = 0. If 𝛽, 𝛾 ∈ 𝐴𝑖 for some i (that is, they
are close together in the ordering), then by Lemma 19.16, we have

∏
𝛿∈𝐴𝑖

𝑠𝛿
∏

𝛿′ ∈𝐴𝑖+1 𝑠𝛿′ = 𝑐−1, so we
know that 𝑠𝛽𝑠𝛾 ≤ 𝑐−1, and we are done. Now, if 𝛽 ∈ 𝐴𝑖 , then −𝛽 ∈ 𝐴𝑖+ℎ . Thus, we may find a different
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positive system (𝑅′)+, bipartite with respect to c, so that 𝛾 ≺(𝑅′)+ ,𝑐 −𝛽, and 𝛾,−𝛽 ∈ (𝑅′)+. By Lemma
19.6, we have 𝑠𝛾𝑠𝛽 ≤ 𝑐−1, and since 𝑠𝛾𝑠𝛽 = 𝑠𝛽𝑠𝛾 , we are done. �

Corollary 19.10. Suppose that 𝛽, 𝛾 are distinct roots, such that 𝛽 ≠ −𝛾. Then the following are
equivalent:

1. 𝛽 and 𝛾 are c-noncrossing;
2. either 𝑠𝛽𝑠𝛾 ≤𝑅 𝑐−1 or 𝑠𝛾𝑠𝛽 ≤𝑅 𝑐−1.

Proof. Suppose (1) holds. Replacing 𝛾 by −𝛾 does not change either of the conditions (1) or (2). Thus,
we may assume that 𝛽, 𝛾 are alternating c-noncrossing. If 𝛽, 𝛾 are c-opposed, we apply Lemma 19.8.
Otherwise, we pick any bipartite 𝑅+ containing 𝛽 and 𝛾 and apply Proposition 19.9.

Conversely, suppose (2) holds, for concreteness, let us assume that 𝑠𝛽𝑠𝛾 ≤𝑅 𝑐−1. If 𝛽, 𝛾 are c-
opposed, we apply Lemma 19.8. Otherwise, we can find 𝑅+, such that either 𝛽 ≺𝑅+ ,𝑐 𝛾 are both positive
roots, or −𝛽 ≺𝑅+ ,𝑐 𝛾 are both positive roots. By Proposition 19.9, in both cases, (2) holds. �

19.4. Cluster compatibility and Coxeter noncrossing

Let

𝑅≥−1 := 𝑅+ ∪ {−𝛼1, . . . ,−𝛼𝑟 }

denote the set of almost simple roots. The notion of (cluster) compatibility of a pair of almost simple
roots 𝛽, 𝛽′ ∈ 𝑅≥−1 is defined in [FZ03], and it is related to the notion of compatibility of a pair
𝜔, 𝜔′ ∈ Π(𝑐) by [YZ, (5.6)]. Namely, let 𝜓 : Π(𝑐) → 𝑅≥−1 be defined by

𝜓(𝜔) =
{
−𝛼𝑖 if 𝜔 = 𝜔𝑖 for some 𝑖 = 1, 2, . . . , 𝑟

𝑐−1𝜔 − 𝜔 = 𝑐−1 (𝐼 − 𝑐)𝜔 otherwise.
(19.2)

Then

𝜔, 𝜔′ ∈ Π(𝑐) are compatible if and only if 𝜓(𝜔), 𝜓(𝜔′) ∈ 𝑅≥−1 are.

Theorem 19.11 [BW, Theorem 8.3]. Suppose that 𝛽 ≺𝑅+ ,𝑐 𝛾 are two distinct positive roots. Then (𝛽, 𝛾)
are (𝑊, 𝑅+, 𝑐)-compatible if and only if 𝑠𝛽𝑠𝛾 ≤𝑅 𝑐−1.

Proposition 19.12. Suppose that (𝑅+, 𝑐) is bipartite and 𝛽, 𝛾 ∈ 𝑅+. Then (𝛽, 𝛾) is alternating c-
noncrossing if and only if they are (𝑊, 𝑅+, 𝑐)-compatible.

Proof. Let us suppose that 𝛽 ≺ 𝛾. By Theorem 19.11, we must show that 𝛽, 𝛾 are alternating c-
noncrossing if and only if 𝑠𝛽𝑠𝛾 ≤𝑅 𝑐−1. This follows from Proposition 19.9. �

Proposition 19.12 says that the condition “alternating and c-noncrossing” is an approximation to the
notion of cluster compatibility that does not depend on a choice of 𝑅+.

19.5. Coxeter noncrossing trees

An r-tuple 𝑇 = (𝛾1, . . . , 𝛾𝑟 ) of roots is called a tree if they form a basis of V.

Definition 19.13. A c-noncrossing tree is an ordered sequence 𝑇 = (𝛾1, . . . , 𝛾𝑟 ) of roots, such that

𝑠𝛾1 𝑠𝛾2 · · · 𝑠𝛾𝑟 = 𝑐−1.

Let T𝑊 ,𝑐 denote the set of c-noncrossing trees.

The terminology is justified by the following result.
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Lemma 19.14. A c-noncrossing tree 𝑇 = (𝛾1, . . . , 𝛾𝑟 ) is an ordered basis of V.
Proof. Suppose the roots 𝛾1, . . . , 𝛾𝑟 span a proper subspace 𝑊 � 𝑉 . Then any vector in the orthogonal
complement 𝑊⊥ ⊂ 𝑉 (with respect to (·, ·)) will be invariant under 𝑐−1. This contradicts the fact that
𝑐−1 does not have the eigenvalue one (see Lemma 10.2). �

Remark 19.15. For a c-noncrossing tree 𝑇 = (𝛾1, . . . , 𝛾𝑟 ), define the operation of i-th sign reversal

𝑇 ↦→ (𝛾1, . . . , 𝛾𝑟 );

and the operation of j-th conjugation

𝑇 ↦→ (𝛾1, . . . , 𝛾 𝑗−1, 𝑠𝛾 𝑗 (𝛾 𝑗+1), 𝛾 𝑗 , 𝛾 𝑗+2, . . . , 𝛾𝑟 ).

These operations transform c-noncrossing trees into c-noncrossing trees. It follows from the results of
Deligne [Del] and Bessis [Bes] that any two c-noncrossing trees are related by repeated application of
sign reversal and conjugation. Furthermore, the conjugation actions give an action of the braid group.
Lemma 19.16. Let (𝛽1, 𝛽2, . . . , 𝛽ℎ𝑟 ) denote the ordering of R of Proposition 10.3. Then for any i, we
have that (𝛽𝑖 , 𝛽𝑖+1, . . . , 𝛽𝑖+𝑟−1) is a c-noncrossing tree.
Proof. By Proposition 10.4, it suffices to show this for 𝑖 = 1. Suppose 𝑐 = 𝑠1𝑠2 · · · 𝑠𝑟 . We calculate

𝑠𝛽1 · · · 𝑠𝛽𝑟 = 𝑠1(𝑠1𝑠2𝑠1) (𝑠1𝑠2𝑠3𝑠2𝑠1) · · · (𝑠1 · · · 𝑠𝑟 · · · 𝑠1) = 𝑠𝑟 𝑠𝑟−1 · · · 𝑠1 = 𝑐−1. �

According to Corollary 19.10, the “c-noncrossing” condition characterizes when a pair of roots can
belong to a c-noncrossing tree. However, in general, this pairwise condition is insufficient to characterize
c-noncrossing trees.
Example 19.17. Let 𝑅 = 𝐵3 with simple roots 𝛼1 = (1,−1, 0), 𝛼2 = (0, 1,−1), and 𝛼3 = (0, 0, 1), and
choose 𝑐 = 𝑠1𝑠2𝑠3, as in Example 10.9. Take the three roots

𝛾1 = (−1, 0,−1), 𝛾2 = (−1, 1, 0), 𝛾3 = (0, 1,−1),

with corresponding c-twisted roots

𝛾̃1 = (0, 0,−1), 𝛾̃2 = (−1, 0, 0), 𝛾̃3 = (0, 1, 0).

The roots 𝛾1, 𝛾2, 𝛾3 are pairwise c-noncrossing (and also alternating). However, all three roots are long,
so no ordering of them can give a reflection factorization of 𝑐−1.
Definition 19.18. Let 𝑇 = (𝛾1, . . . , 𝛾𝑟 ) be a c-noncrossing tree. Then the dual tree 𝑇 ′ = 𝜑(𝑇) is given by

𝑇 ′ := (𝑠𝛾1 · · · 𝑠𝛾𝑟−1 𝛾𝑟 , . . . , 𝑠𝛾1 𝛾2, 𝛾1).

Also, define 𝑇 ′′ = 𝜑−1(𝑇) by

𝑇 ′′ := (𝛾𝑟 , 𝑠𝛾𝑟 𝛾𝑟−1, . . . , 𝑠𝛾𝑟 · · · 𝑠𝛾2 𝛾1).

Proposition 19.19. Let T be a c-noncrossing tree. Then the trees 𝑇 ′ = 𝜑(𝑇) and 𝑇 ′′ = 𝜑−1(𝑇) are
c-noncrossing tree. The maps 𝜑 and 𝜑−1 are inverse bijections from T𝑊 ,𝑐 to T𝑊 ,𝑐 .
Proof. Let 𝑇 = (𝛾1, . . . , 𝛾𝑟 ) and 𝑇 ′ = (𝛾′1, . . . , 𝛾′𝑟 ). We have

𝑐−1 = 𝑠𝛾1 𝑠𝛾2 · · · 𝑠𝛾𝑟 = 𝑠𝛾2 (𝑠𝛾2 𝑠𝛾1 𝑠𝛾2)𝑠𝛾3 · · · 𝑠𝛾𝑟 = · · · = 𝑠𝛾′1 · · · 𝑠𝛾′𝑟 .

The proof for 𝑇 ′′ is similar, and it is straightforward to see that 𝜑 and 𝜑−1 are inverse. �
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For a tree 𝑇 = (𝛾1, . . . , 𝛾𝑟 ), let 𝐶𝑇 ⊂ 𝑉 denote the cone spanned by 𝛾̃1, . . . , 𝛾̃𝑟 , and let 𝐶 ′𝑇 ⊂ 𝑉
denote the cone spanned by 𝛾∨1 , . . . , 𝛾∨𝑟 . The following result is a general root-system theoretic version
of Proposition 8.15.

Proposition 19.20. Let T be a c-noncrossing tree and 𝑇 ′ = 𝜑(𝑇). Then the two cones 𝐶𝑇 and 𝐶 ′𝑇 ′ are
dual.

Proof. Let 𝑇 ′ = (𝛿1, . . . , 𝛿𝑟 ), and let 𝜅1, 𝜅2, . . . , 𝜅𝑟 be the dual basis to 𝛿∨1 , . . . , 𝛿∨𝑟 , that is, (𝛿∨𝑖 , 𝜅 𝑗 ) = 𝛿𝑖 𝑗 .
Then

𝑐 · 𝜅 𝑗 = 𝑠𝛿𝑟 · · · 𝑠𝛿1 · 𝜅 𝑗 = 𝜅 𝑗 − 𝑠𝛿𝑟 · · · 𝑠𝛿 𝑗+1 𝛿 𝑗 .

Thus, (𝐼 − 𝑐)𝜅 𝑗 = 𝑠𝛿𝑟 · · · 𝑠𝛿 𝑗+1 𝛿 𝑗 , so the dual cone to 𝐶 ′𝑇 ′ is given by 𝐶𝜑−1 (𝑇 ′) . �

Corollary 19.21. Suppose that P is a simple (𝑊, 𝑐)-twisted alcoved polytope, and all maximal cones
of the normal fan of P are of the form 𝐶𝑇 for a c-noncrossing tree T. Then P is a generalized W-
permutohedron and thus a (𝑊, 𝑐)-polypositroid.

Question 19.22. Let P be a generic simple (𝑊, 𝑐)-polypositroid. Are all maximal cones of the normal
fan of P of the form 𝐶𝑇 for a c-noncrossing tree T?

Question 19.22 has an affirmative answer in type A (see Section 19.7).

19.6. Cluster cones

A (𝑊, 𝑐)-cluster cone is a maximal cone 𝐶 ⊂ 𝑉 in the (𝑊, 𝑅+, 𝑐)-cluster fan, for some choice of positive
roots 𝑅+ ⊂ 𝑅. It follows from the results of Brady-Watt [BW] that some cluster cones are of the form
𝐶𝑇 for a c-noncrossing tree T, though we do not know whether this is true in general.

Proposition 19.23. Suppose that (𝑅+, 𝑐) is bipartite. Let 𝐶 = span(𝛾̃1, . . . , 𝛾̃𝑟 ) be a cluster cone,
such that {𝛾̃1, . . . , 𝛾̃𝑟 } ∩ {𝜔1, . . . , 𝜔𝑟 } = ∅. Then there is an ordering of (𝛾̃1, . . . , 𝛾̃𝑟 ) that gives a
c-noncrossing tree T.

Proof. As a simplicial complex on the set of rays, the (𝑊, 𝑅+, 𝑐)-cluster fan is isomorphic, via the
bijection (19.2) to the cluster complex of [FZ03] defined on the set of almost positive roots 𝑅≥−1. The
condition {𝛾̃1, . . . , 𝛾̃𝑟 } ∩ {𝜔1, . . . , 𝜔𝑟 } = ∅ is equivalent to the condition that the almost positive roots
𝜓(𝛾̃𝑖) are positive.

According to [BW, Note 4.2 and Theorem 8.3], a sequence 𝛿1 ≺ 𝛿2 · · · ≺ 𝛿𝑟 of positive roots forms a
simplex in the cluster complex if and only if (𝛿1, . . . , 𝛿𝑟 ) is a c-noncrossing tree. The claim follows. �

Remark 19.24. Reading and Speyer [RS] have found a linear isomorphism from the cluster fan of
[FZ03] (with rays the almost positive roots), to the (𝑊, 𝑅+, 𝑐)-cluster fan, called the g-vector fan in
[RS].

19.7. Type A

We make explicit the relation between reflection factorizations of 𝑐−1 and noncrossing trees (in type A).

Lemma 19.25. Let T be a noncrossing (undirected) tree on [𝑛]. Then there is an ordering 𝑒1, . . . , 𝑒𝑛−1
of the edges so that 𝑠𝑒1 · · · 𝑠𝑒𝑛−1 = 𝑐 = (12 · · · 𝑛). Varying the possible orderings gives the same reduced
factorization of c up to commutation relations.

Proof. Let us draw T in the interior of a disk with the vertices arranged in clockwise order on the
boundary. Let 𝑓 (𝑖)1 , 𝑓 (𝑖)2 , . . . , 𝑓 (𝑖)𝑠 be edges incident to the vertex i, in counterclockwise order. An
ordering 𝑒1, . . . , 𝑒𝑛−1 of all the edges of T satisfies 𝑠𝑒1 · · · 𝑠𝑒𝑛−1 = 𝑐 if and only if { 𝑓 (𝑖)1 , . . . , 𝑓 (𝑖)𝑠 } appear
in the same order in 𝑒1, . . . , 𝑒𝑛−1 for any vertex i. Since T contains no cycles, it is not difficult to see
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that such an ordering 𝑒1, . . . , 𝑒𝑛−1 exists. The last statement follows from: 𝑠𝑒 and 𝑠𝑒′ commute if they
have no vertex in common. �

Example 19.26. Let T be the (solid) tree of Figure 2, with the five edges

(1, 2), (2, 4), (2, 6), (3, 4), (5, 6).

Then around the vertices 2, 4, and 6, we obtain the counterclockwise orderings

(1, 2) < (2, 6) < (2, 4), (3, 4) < (2, 4), (5, 6) < (2, 6).

One may check that

(123456) = (56) (12) (26) (34) (24) = (12) (56) (26) (34) (24) = (56) (12) (34) (26) (24) = · · · ,

consistent with Lemma 19.25.

Part III Membranes

In this part, we discuss membranes, which are certain triangulated 2-dimensional surfaces embedded
into R𝑛. They can be viewed as a polypositroidal version of the plabic graphs from [Po06].

20. Root loops and root membranes

Let R be an irreducible reduced crystallographic root system of rank r in a Euclidean vector space
𝑉 � R𝑟 . We identify the weight lattice Λ ⊂ 𝑉 with Λ � Z𝑟 (see Section 10.1).
Definition 20.1. A plane graph is a planar graph with a particular drawing on the plane without crossing
edges, considered up to a homeomorphism.

A cactus G is a finite connected undirected plane graph with at least two vertices, such that every face
of G (except the outer face) is a triangle, that is, every face has exactly three distinct vertices connected
by three edges. In other words, a cactus is either a single edge, a triangulated disk, or a wedge of smaller
cacti along their boundary vertices.

If a cactus G is a wedge of smaller cacti, then we say that G is decomposable. Otherwise, we say that
G is indecomposable.

For a cactus G, there is a unique (up to a cyclic shift) sequence 𝐵 = (𝑏1, . . . , 𝑏𝑚) of boundary
vertices connected by boundary edges {𝑏1, 𝑏2}, {𝑏2, 𝑏3}, . . . , {𝑏𝑚, 𝑏1} obtained by walking along the
boundary of G in the clockwise direction.

An example of a (decomposable) cactus G is shown in Figure 5.
Remark 20.2. If G is a decomposable cactus, then the sequence B has repeated entries. The way a
cactus decomposes into indecomposable cacti is given by a noncrossing set partition of [𝑚] without
singleton blocks. Blocks of this noncrossing set partition correspond to boundary vertices of connected
components of the dual plane graph 𝐺∗, cf. Remark 21.3.
Definition 20.3. (1) An R-loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) is a sequence of weights 𝜆 (𝑎) ∈ Λ, cyclically
indexed by elements 𝑎 ∈ Z/𝑚Z, such that 𝜆 (𝑎+1) − 𝜆 (𝑎) ∈ 𝑅, for any 𝑎 ∈ Z/𝑚Z.

(2) An R-membrane 𝑀 = (𝐺, f ) with boundary loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) is a cactus G on a vertex set
Vert with the sequence of boundary edges 𝐵 = (𝑏1, . . . , 𝑏𝑚) together with a (not necessarily injective)
embedding map f : Vert→ Λ, such that,
◦ f (𝑢) − f (𝑣) ∈ 𝑅, for any edge {𝑢, 𝑣} of G, and
◦ f (𝑏𝑎) = 𝜆 (𝑎) , for any 𝑎 ∈ Z/𝑚Z
(in particular, we require that 𝑓 (𝑢) ≠ 𝑓 (𝑣) for any edge {𝑢, 𝑣} of G).
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Equivalently, an R-membrane is a cactus G together with a graph homomorphism3 f from G to the
graph on the vertex set Λ with edges {𝜆, 𝜇} for 𝜆 − 𝜇 ∈ 𝑅.

(3) An R-line segment is a line segment conv(𝜆, 𝜇) ⊂ 𝑉 , where 𝜆 − 𝜇 ∈ 𝑅 and an R-triangle is a
triangle conv(𝜆, 𝜇, 𝜈) ⊂ 𝑉 , where 𝜆, 𝜇, 𝜈 ∈ Λ, such that 𝜆 − 𝜇, 𝜇 − 𝜈, 𝜈 − 𝜆 ∈ 𝑅.

Example 20.4. The sequence 𝐿 = (𝜔1, 𝜔2 − 𝜔1, 𝜔3 − 𝜔1, 𝜔3, 2𝜔4, 𝜔1 + 𝜔3 − 𝜔2) is a
𝐵4-loop, in the notation of Examples 10.9 and 16.3. Let G have boundary vertices
𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6 arranged clockwise, interior vertex b, and triangular (clockwise-oriented) faces
(𝑏, 𝑏1, 𝑏2), (𝑏, 𝑏2, 𝑏3), (𝑏, 𝑏3, 𝑏6), (𝑏, 𝑏6, 𝑏1), (𝑏3, 𝑏4, 𝑏6), (𝑏4, 𝑏5, 𝑏6). Let f (𝑏𝑖) = 𝜆 (𝑖) and f (𝑏) =
𝜔3 − 𝜔2. Then (𝐺, f ) is a 𝐵4-membrane.

An R-loop L can be viewed as a closed piecewise-linear curve 〈𝐿〉 in V, and R-membranes M with
boundary loop L can be viewed as 2-dimensional simplicial complexes embedded into V as surfaces
〈𝑀〉 composed of R-triangles and R-line segments with a given boundary curve 〈𝐿〉, as follows.

For an R-loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ), let 〈𝐿〉 ⊂ 𝑉 be the closed piecewise-linear curve given by the
union of R-line segments

〈𝐿〉 :=
⋃

𝑎∈Z/𝑚Z
[𝜆 (𝑎) , 𝜆 (𝑎+1) ] .

Let 𝑀 = (𝐺, f ) be an R-membrane with boundary loop L. For a face Δ of G with vertices 𝑢, 𝑣, 𝑤, let
〈Δ〉 := conv(f (𝑢), f (𝑣), f (𝑤)) ⊂ 𝑉 be the corresponding R-triangle. The triangulated surface 〈𝑀〉 ⊂ 𝑉
associated with the membrane M is given by the union

〈𝑀〉 := 〈𝐿〉 ∪
⋃

Δ face of 𝐺
〈Δ〉 .

Definition 20.5. Let val : {𝑅-triangles} → R>0 be any positive real function, or valuation,4 on the set
of all R-triangles. We say that an R-membrane M with boundary loop L is minimal, with respect to the
valuation val, if its surface area

Area 𝑀 :=
∑

Δ face of 𝐺
val〈Δ〉

has minimal possible value among all membranes with the same boundary loop L.

Remark 20.6. Our membranes should not to be confused with those of Keel and Tevelev [KeTe]
appearing in the study of the Chow quotient of the Grassmannian.

Remark 20.7. The famous Plateau’s problem originally raised by Lagrange is the problem in geo-
metric measure theory concerning the existence of a minimal surface with a given boundary. It was
solved by Jesse Douglas [Dou] and Tibor Radó [Rad]. We view the problem about characterization
of minimal membranes M with a given boundary loop L as a discrete version of Plateau’s problem.
Unlike the situation with its continuous counterpart, the existence of a minimal membrane is trivial.
There can be many minimal membranes with a given boundary. However, we think that the charac-
terization of minimal membranes might provide a better understanding of the continuous Plateau’s
problem.

3A graph homomorphism 𝑓 : 𝐺1 → 𝐺2 from a graph𝐺1 = (𝑉1 , 𝐸1) to another graph𝐺2 = (𝑉2 , 𝐸2) is a map 𝑓 : 𝑉1 → 𝑉2,
such that, for any edge {𝑢, 𝑣 } ∈ 𝐸1, we have { 𝑓 (𝑢) , 𝑓 (𝑣) } ∈ 𝐸2.

4There are several natural valuations on R-triangles. For example, val〈Δ 〉 can be the Euclidean area of triangle 〈Δ 〉 ⊂ 𝑉 , it
can be the area of the projection of 〈Δ 〉 to some plane, or it can be val〈Δ 〉 = 1 for all R-triangles.
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21. Membranes of type A

Let us now specialize the definitions from the previous section to type 𝐴. Let

𝑅 = {𝑒𝑖 − 𝑒 𝑗 | 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗} ⊂ R𝑛

be the 𝐴𝑛−1 root system embedded in R𝑛, and let Λ � Z𝑛 ⊂ R𝑛. These are the root and weight lattices of
GL(𝑛). Recall that 𝑒1, . . . , 𝑒𝑛 denote the standard coordinate vectors in Z𝑛. We assume the valuation5

of any R-triangle is val〈Δ〉 = 1.
In this case, we call R-loops and R-membranes simply loops and membranes. Let us formulate their

definitions.
Definition 21.1. A loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) is a cyclically ordered sequence of integer vectors 𝜆 (𝑎) ∈
Z𝑛, such that 𝜆 (𝑎+1) −𝜆 (𝑎) = 𝑒𝑖𝑎 −𝑒 𝑗𝑎 , for 𝑎 ∈ Z/𝑚Z, for some sequence of roots 𝑒𝑖1 −𝑒 𝑗1 , . . . , 𝑒𝑖𝑚 −𝑒 𝑗𝑚 .

A membrane 𝑀 = (𝐺, f ) with boundary loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) is a cactus G on a vertex set Vert
with the sequence of boundary vertices 𝐵 = (𝑏1, . . . , 𝑏𝑚) together with a map 𝑓 : Vert→ Z𝑛, such that
◦ for any edge {𝑢, 𝑣} of G, there exists indices 𝑖 ≠ 𝑗 , such that f (𝑢) − f (𝑣) = 𝑒𝑖 − 𝑒 𝑗 ,
◦ f (𝑏𝑎) = 𝜆 (𝑎) , for any 𝑎 ∈ Z/𝑚Z.

Let 〈𝐿〉, 〈𝑀〉 ⊂ R𝑛 denote the images of a loop L and a membrane M in R𝑛.
Note that here we do not require m and n to be equal. Also note that the embedding 〈𝑀〉 ⊂ R𝑛

of a membrane lies on some affine hyperplane 𝐻 = 𝐻𝑘 := {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 | 𝑥1 + · · · + 𝑥𝑛 =
𝑘}, where 𝑘 ∈ Z. Clearly, a loop L is determined (up to affine translation) by a sequence of roots
𝑒𝑖1 − 𝑒 𝑗1 , . . . , 𝑒𝑖𝑚 − 𝑒 𝑗𝑚 with equal multisets of indices {𝑖1, . . . , 𝑖𝑚} = { 𝑗1, . . . , 𝑗𝑚}.

All faces Δ in a membrane are of one of the following two types:
◦ black triangles embedded into R𝑛 as triangles 〈Δ〉 of the form conv(−𝑒𝑖 ,−𝑒 𝑗 ,−𝑒𝑘 ), up to an affine

translation; and
◦ white triangles embedded as triangles 〈Δ〉 of the form conv(𝑒𝑖 , 𝑒 𝑗 , 𝑒𝑘 ), up to an affine translation.

For a membrane 𝑀 = (𝐺, 𝑓 ), let 𝐺∗ be the graph, which is the plane dual of the cactus G. The graph
𝐺∗ is drawn in a disk so that
1. There are m marked points on the boundary of the disk (labelled 1, . . . , 𝑚 clockwise) to which

boundary edges of 𝐺∗ are attached. Only one edge of 𝐺∗ can be attached to a marked point on the
disk. But it is allowed that both ends of an edge are attached to two different marked points on the
boundary. (The marked point on the boundary of the disk labelled a corresponds to the boundary
edge {𝑏𝑎, 𝑏𝑎+1} of the cactus G. Note that we do not regard these m marked boundary points as
vertices of 𝐺∗. The vertices of 𝐺∗ are located strictly inside the disk.)

2. The vertices of 𝐺∗ are 3-valent. The vertices of 𝐺∗ are colored in two colors: black and white. (The
vertices of 𝐺∗ correspond to triangles of the membrane M. They are colored according to the colors
of triangles in M. Note that the m marked boundary points of the disk are not colored.)

3. The faces 𝐹𝑣 of 𝐺∗ (associated with vertices v of G) are labelled by the vectors 𝑓 (𝑣) ∈ Z𝑛. For a
pair of faces 𝐹𝑢 and 𝐹𝑣 sharing an edge, we have 𝑓 (𝑢) − 𝑓 (𝑣) = 𝑒𝑖 − 𝑒 𝑗 , for some 𝑖 ≠ 𝑗 .
Plane graphs 𝐺∗ satisfying conditions (1), (2) above are plabic graphs in the sense of [Po06, Section

11], that are additionally 3-valent6.
Definition 21.2. A plabic graph is the plane dual 𝐺∗ of a cactus G with all vertices colored in two
colors: black and white (this graph may contain edges between vertices of the same color).

A Z𝑛-labelled plabic graph is a pair (𝐺∗, 𝑓 ), where 𝐺∗ is the plane dual of a cactus G, such
that 𝑀 = (𝐺, 𝑓 ) is a membrane. Equivalently, a Z𝑛-labelled plabic graph is a pair (𝐺∗, 𝑓 ) satisfying
conditions (1), (2), and (3) above.

5In type A, the Euclidean area of any R-triangle equals
√

3. It is convenient to rescale it to 1.
6“Plabic” is an abbreviation for “planar bicolored.” In this work, we will consider only 3-valent plabic graphs without boundary

leaves, which we simply call “plabic graphs.” The study of more general plabic graphs can be reduced to these.
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Clearly, by the definition, membranes 𝑀 = (𝐺, 𝑓 ) are in bijection with Z𝑛-labelled plabic graphs
(𝐺∗, 𝑓 ).

Remark 21.3. For a membrane 𝑀 = (𝐺, 𝑓 ), the cactus G is indecomposable if and only if the plabic
graph 𝐺∗ is connected.

Let us give another description of membranes and Z𝑛-labelled plabic graphs. We recall the definition
of strands (or trips) in plabic graphs.

Definition 21.4 [Po06, Section 13]. For a plabic graph 𝐺∗, a strand in 𝐺∗ is a directed walk along the
edges of 𝐺∗ that satisfies the following “rules of the road”:

◦ Turn right at a black vertex.
◦ Turn left at a white vertex.

Each strand is either a walk between two marked points on the boundary of the disk, or a closed walk.
The strand permutation 𝜋 : [𝑚] → [𝑚] of a plabic graph 𝐺∗ is given by 𝜋(𝑠) = 𝑡, if the strand that

starts at the marked point s on the boundary of the disk ends at the marked point t.

Let Strand(𝐺∗) be the set of all strands in 𝐺∗. For every edge {𝑎, 𝑏} of 𝐺∗, there are two strands in
Strand(𝐺∗) that pass through the edge: one passing in the direction 𝑎 → 𝑏 and the other passing in the
direction 𝑏 → 𝑎. We call such a pair of strands an intersecting pair of strands. If these two intersecting
strands happen to be the same strand, we call it a self-intersecting strand.

Theorem 21.5. Let 𝐺∗ be a fixed plabic graph, and let 𝐹0 be a fixed reference face of 𝐺∗. The set of all
Z𝑛-labelled plabic graphs (𝐺∗, 𝑓 ), and thus all membranes (𝐺, 𝑓 ), are in bijection with the following
data:

1. An integer vector in Z𝑛, which is the label of the reference face 𝐹0.
2. A map 𝑔 : Strand(𝐺∗) → {1, . . . , 𝑛} that satisfies the condition:

𝑔(𝑆) ≠ 𝑔(𝑇), for any pair of intersecting strands 𝑆 and 𝑇. (21.1)

Explicitly, the strand labelling g is obtained from the face labelling f by the following condition: if
𝑆 ∈ Strand(𝐺∗) is the strand passing through some edge {𝑎, 𝑏} of 𝐺∗ in the direction 𝑎 → 𝑏, and 𝐹𝑢
and 𝐹𝑣 are the two adjacent faces of 𝐺∗ located, respectively, to the left and to the right of the edge
𝑎 → 𝑏, and if 𝑓 (𝑢) − 𝑓 (𝑣) = 𝑒𝑖 − 𝑒 𝑗 , then 𝑔(𝑆) = 𝑖.

In particular, (21.1) implies that, for any membrane (𝐺, 𝑓 ), the plabic graph 𝐺∗ cannot have self-
intersecting strands. Changing the label of the reference face 𝐹0 accounts for affine translations of
membranes in R𝑛. Up to affine translations, membranes correspond just to the strand labelling g
satisfying condition (2).

Proof. First, it is easy to check, using the rules of the road, that the description of the strand labelling
g in terms of face labelling f is locally consistent, that is, for any vertex of 𝐺∗, the label of some strand
passing through this vertex obtained using its incoming edge to the vertex coincides with the label
obtained using its outgoing edge. This implies the global consistence of the strand labelling g: For any
strand S, the label 𝑔(𝑆) obtained using any edge of S does not depend on a choice of the edge.

Condition (2) for the strand labelling g follows from the fact, that, for a pair of strands S and T
intersecting at an edge of 𝐺∗ with two faces 𝐹𝑢 and 𝐹𝑣 adjacent to the edge, we have 𝑔(𝑆) = 𝑖 and
𝑔(𝑇) = 𝑗 , where 𝑓 (𝑢) − 𝑓 (𝑣) = 𝑒𝑖 − 𝑒 𝑗 ≠ 0.

Conversely, let 𝑣0 be the vertex of the cactus G corresponding to the reference face 𝐹0 of 𝐺∗. Let
𝑓 (𝑣0) ∈ Z𝑛 be any integer vector, and let g be any strand labelling satisfying condition (2). For any
vertex v of the cactus G, we can construct the vector 𝑓 (𝑣) ∈ Z𝑛 by picking a path P in G from 𝑣0 to v
and using the relationship between f and g, for all edges of the path P. The rules of the road imply that
the label 𝑓 (𝑣) does not change if we locally modify the path P along a (triangular) face of the cactus G.
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(I) (II) (III)

Figure 3. Moves of plabic graphs: (I) contraction-uncontraction of black vertices, (II) square move,
and (III) contraction-uncontraction of white vertices.

This implies the independence of this construction for 𝑓 (𝑣) from a choice of path P. Clearly, this
function f, constructed from 𝑓 (𝑣0) and g, gives a valid membrane (𝐺, 𝑓 ). �

By Theorem 21.5, the strands of a Z𝑛-labeled plabic graph are not self-intersecting.

Corollary 21.6. The strand permutation 𝜋 of a Z𝑛-labeled plabic graph is a derangement, that is, a
permutation in 𝑆𝑚, such that 𝜋(𝑠) ≠ 𝑠 for any 𝑠 ∈ [𝑚].

In [Po06], strand permutations were decorated permutations with two types of fixed points (see
Section 2). Here, we do not allow plabic graphs to have boundary leaves, so their strand permutations
do not have fixed points.

22. Moves of plabic graphs and membranes

In [Po06, Section 12], the three types of local moves of plabic graphs were defined, which are shown
below on Figure 3.

It is easy to see from the rules of the road that we have:

Lemma 22.1 [Po06, Lemma 13.1]. Any two plabic graphs connected with each other by a sequence of
local moves of types (I), (II), or (III) have the same strand permutations.

The local moves of plabic graphs can be converted into local moves of membranes, as follows.

Lemma 22.2. Let 𝑀 = (𝐺, 𝑓 ) be a membrane. Let 𝐹𝑢 be a square face of 𝐺∗ with vertices
of alternating colors as we go around 𝐹𝑢 , that is, a face of 𝐺∗ on which one can perform a
square move (II). Let 𝐹𝑣 , 𝐹𝑤 , 𝐹𝑧 , 𝐹𝑡 be the four adjacent faces of 𝐺∗ in the clockwise order. Then
conv( 𝑓 (𝑢), 𝑓 (𝑣), 𝑓 (𝑤), 𝑓 (𝑧), 𝑓 (𝑡)) is a square pyramid in R𝑛, such that

◦ The pyramid has one square face (the base) and four faces given by equilateral triangles. All edges
of the pyramid have equal lengths.

◦ 𝑓 (𝑢) is the apex of the pyramid.
◦ The base is the square, conv( 𝑓 (𝑣), 𝑓 (𝑤), 𝑓 (𝑧), 𝑓 (𝑡)) with vertices arranged as we go around the base.

For a pyramid, as in the lemma above, let �𝑓 (𝑢) ∈ R𝑛 be the reflection of 𝑓 (𝑢) with respect to the
affine plane containing the points 𝑓 (𝑣), 𝑓 (𝑤), 𝑓 (𝑧), 𝑓 (𝑡), that is, it is given by

�𝑓 (𝑢) + 𝑓 (𝑢) = 𝑓 (𝑣) + 𝑓 (𝑧) = 𝑓 (𝑤) + 𝑓 (𝑡). (22.1)

Clearly, conv(�𝑓 (𝑢), 𝑓 (𝑢), 𝑓 (𝑣), 𝑓 (𝑤), 𝑓 (𝑧), 𝑓 (𝑡)) is an octahedron, which is the union of two square
pyramids. The following lemma follows from the definitions.

Lemma 22.3. Let 𝑀 = (𝐺, 𝑓 ) be a membrane, and let 𝐺∗ → 𝐺̃∗ be any local move of the plabic graph
𝐺∗ of type (I), (II), or (III). Let 𝐺̃ be the plane dual of the plabic graph 𝐺̃∗. The vertex set ˜Vert of 𝐺̃ can
be naturally identified with the vertex set Vert of G. Let 𝑓 : ˜Vert→ Z𝑛 be the map defined, as follows.

◦ For a move of type (I) or (III), assume that

𝑓 (𝑢) ≠ 𝑓 (𝑤), (22.2)
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(I) and (III) (II)

Figure 4. Moves of plabic graphs (top) and membranes (bottom): tetrahedron moves (left), and octa-
hedron move (right).

where 𝐹𝑢 and 𝐹𝑤 are two of the four faces 𝐹𝑢 , 𝐹𝑣 , 𝐹𝑤 , 𝐹𝑧 of 𝐺∗ involved in the move, which are not
adjacent faces of 𝐺∗. Then define 𝑓 := 𝑓 .

◦ For a square move (II), let 𝐹𝑢 , 𝐹𝑣 , 𝐹𝑤 , 𝐹𝑧 , 𝐹𝑡 be the faces of 𝐺∗ involved in the move, labelled as in
Lemma 22.2, then set 𝑓 (𝑢) := �𝑓 (𝑢), given by (22.1). For all other 𝑥 ≠ 𝑢, set 𝑓 (𝑥) := 𝑓 (𝑥).

Then 𝑀̃ := (𝐺̃, 𝑓 ) is a valid membrane with the same boundary loop L as M.

Definition 22.4. Local moves of membranes of types (I), (II), or (III) are the moves 𝑀 → 𝑀̃ in
Lemma 22.3.

Moves of types (I) and (III) correspond to tetrahedron moves of membranes, where we replace two
triangles on the surface of a tetrahedron by the other two triangles. Moves of type (II) correspond to
octahedron moves of membranes, where we replace four triangles forming a half of the surface of an
octahedron by the four triangles on the other half of the surface of the octahedron, as shown in Figure 4
(see also [FP]).

Remark 22.5. There is only one situation when there is a valid move 𝐺∗ → 𝐺̃∗ of plabic graphs, but
there is no corresponding move of membranes 𝑀 → 𝑀̃ . This happens if the move of plabic graphs is
of type (I) or (III) and condition (22.2) fails. In this case, in the picture shown on the bottom left of
Figure 4, the two triangles before the move coincide with each other. The move would transform them
into two “degenerate triangles”, that is, line segments, which we do not allow in a membrane (recall that
we require that 𝑓 (𝑢) ≠ 𝑓 (𝑣) for any edge {𝑢, 𝑣} of G).

However, for any membrane 𝑀 = (𝐺, 𝑓 ) and any square move (II) of the plabic graph 𝐺∗, there is
always the associated valid octahedron move of the membrane M.

Remark 22.6. According to [Po18], the three types of moves of plabic graphs correspond to the three 3-
dimensional hypersimplices: Δ14 (tetrahedron), Δ24 (octahedron), and Δ34 (upside down tetrahedron).
Moves of certain 3-dimensional membranes were used in [FP, Section 12.6] to graphically describe
“chain reactions” on plabic graphs.

Clearly, Area(𝑀) is preserved under the local moves of membranes, and the boundary loop L does
not change. So the class of minimal membranes with a given boundary loop L is invariant under these
three types of moves of membranes.

Remark 22.7. The exceptional case when condition (22.2) fails and the move of membranes is not
defined (see Remark 22.5) can never happen in a minimal membrane. Indeed, in this case, the two
coinciding triangles in the picture on the bottom left of Figure 4 can be removed from the membrane
M, so that we get a membrane with a smaller area but with the same boundary loop L.

23. Minimal membranes and reduced plabic graphs

We recall the notion of reducedness for plabic graphs. The following definition is equivalent to [Po06,
Definition 12.5] by [Po06, Theorem 13.2].
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Definition 23.1. A plabic graph 𝐺∗ is reduced if it satisfies the conditions:
1. 𝐺∗ has no self-intersecting strands.
2. 𝐺∗ has no closed strands.
3. 𝐺∗ has no pair of strands 𝑆, 𝑇 with a bad double crossing, which means, that S and T intersect at two

edges {𝑎, 𝑏} and {𝑐, 𝑑} and both strands are directed from {𝑎, 𝑏} to {𝑐, 𝑑}.
Theorem 23.2 [Po06, Theorem 13.4]. For any two reduced plabic graphs with the same number of
marked points on the disk, the graphs have the same strand permutations if and only if they can be
obtained from each other by a sequence of local moves of types (I), (II), and (III).

Let us discuss a relationship between minimal membranes and reduced plabic graphs.
Theorem 23.3. If 𝑀 = (𝐺, 𝑓 ) is a minimal membrane, then 𝐺∗ is a reduced plabic graph. Moreover,
for a minimal membrane 𝑀 = (𝐺, 𝑓 ) with boundary loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) (where 𝜆 (𝑎+1) − 𝜆 (𝑎) =
𝑒𝑖𝑎 − 𝑒 𝑗𝑎 , for 𝑎 ∈ Z/𝑚Z), one can recover the strand labelling g (and thus the face labelling f) from
the plabic graph 𝐺∗ and loop L as follows: If 𝑆 ∈ Strand(𝐺∗) is a strand in 𝐺∗ connecting two marked
points labelled s (the source of S) and t (the target of S) on the boundary of the disk, then we have

𝑔(𝑆) = 𝑖𝑠 = 𝑗𝑡 .

Proof. Suppose that 𝑀 = (𝐺, 𝑓 ) is a minimal membrane, but 𝐺∗ is not a reduced plabic graph.
According to [Po06, Sections 12, 13], one can apply a sequence of moves (I), (II), and (III) to 𝐺∗ and
obtain a plabic graph with a double edge. By Remark 22.7, if 𝑀 = (𝐺, 𝑓 ) is a minimal membrane, then,
for any sequence of local moves of plabic graphs starting with 𝐺∗, there is an associated sequence of
local moves of membranes. So we get some minimal membrane whose plabic graph has a double edge.
However, we have:
1. There is no membrane (minimal or not) whose plabic graph has a double edge with vertices of

different colors. Indeed, such a plabic graph would have a self-intersecting strand, which contradicts
Theorem 21.5.

2. If the plabic graph of a membrane has a double edge with vertices of the same color, then the
membrane is not minimal, because we can remove two triangles from it (corresponding to the two
vertices of the plabic graph connected by the double edge), and get a membrane of smaller area with
the same boundary loop.

In both cases, we get a contradiction, which proves the first part of the theorem.
The second part follows from the fact that a reduced plabic graph 𝐺∗ cannot contain a closed strand.

So any strand S of 𝐺∗ connects two marked points s (source) and t (target) on the boundary of the disk.
Applying Theorem 21.5 (that relates the strand labelling g to the face labelling of f of a plabic graph)
to the first and the last edges of the strand S, that is, the edges of S connected to the marked points s and
t on the boundary of the disk, we get exactly the needed equality 𝑔(𝑆) = 𝑖𝑠 = 𝑗𝑡 . �

In general, a nonminimal membrane 𝑀 = (𝐺, 𝑓 ) can give rise to a reduced plabic graph 𝐺∗. However,
for a special class of loops, minimality of M is equivalent to reducedness of 𝐺∗.

Recall that a sequence (𝑐1, . . . , 𝑐𝑚) of real numbers is unimodal if 𝑐1 ≤ · · · ≤ 𝑐𝑘 ≥ 𝑐𝑘+1 ≥ · · · ≥ 𝑐𝑚,
for some 𝑘 ∈ [𝑚]. Let us say that a sequence (𝑐1, . . . , 𝑐𝑚) is cyclically unimodal if it is unimodal up to
a possible cyclic shift, that is, if (𝑐𝑟 , 𝑐𝑟+1, . . . , 𝑐𝑚, 𝑐1, . . . , 𝑐𝑟−1) is unimodal for some 𝑟 ∈ [𝑚].
Definition 23.4. We say that a loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) is unimodal if each of its coordinate sequences
(𝜆 (1)𝑖 , . . . , 𝜆 (𝑚)𝑖 ), for 𝑖 ∈ [𝑛], is a cyclically unimodal sequence.

Equivalently, a loop L (with 𝜆 (𝑎+1) − 𝜆 (𝑎) = 𝑒𝑖𝑎 − 𝑒 𝑗𝑎 , for 𝑎 ∈ Z/𝑚Z) is unimodal if there is no
4-tuple of indices 𝑎 < 𝑏 < 𝑐 < 𝑑 in [𝑚], such that 𝑖𝑎 = 𝑗𝑏 = 𝑖𝑐 = 𝑗𝑑 or 𝑗𝑎 = 𝑖𝑏 = 𝑗𝑐 = 𝑖𝑑 .

Consider a disk with m marked points on its boundary labelled 1, . . . , 𝑚 in the clockwise order. For
𝑠, 𝑡 ∈ [𝑚], let |𝑠, 𝑡 | denote the chord in the disk that connects two marked boundary points labelled s and
t. We say that two chords |𝑠, 𝑡 | and |𝑠′, 𝑡 ′| are noncrossing if they do not intersect each other in the disk.
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Definition 23.5. For a unimodal loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) (with 𝜆 (𝑎+1) −𝜆 (𝑎) = 𝑒𝑖𝑎−𝑒 𝑗𝑎 for 𝑎 ∈ Z/𝑚Z),
define 𝜋 = 𝜋𝐿 as the unique permutation 𝜋 : [𝑚] → [𝑚], such that

◦ For any 𝑠 ∈ [𝑚], we have 𝑖𝑠 = 𝑗𝜋 (𝑠) .
◦ If 𝑖𝑠 = 𝑖𝑠′ , for some 𝑠 ≠ 𝑠′ ∈ [𝑚], then the two chords |𝑠, 𝜋(𝑠) | and |𝑠′, 𝜋(𝑠′) | are noncrossing.

Explicitly, the permutation 𝜋 = 𝜋𝐿 is given, as follows. For any 𝑖 ∈ [𝑛], let 𝑠1, . . . , 𝑠𝑝 be all indices,
such that 𝑖𝑠1 = 𝑖𝑠2 = · · · = 𝑖𝑠𝑝 = 𝑖; and let 𝑡1, . . . , 𝑡𝑝 be all indices, such that 𝑗𝑡1 = 𝑗𝑡2 = · · · = 𝑗𝑡𝑝 = 𝑖. Since
L is unimodal, we may assume that these indices are arranged as 𝑠1 < 𝑠2 < · · · < 𝑠𝑝 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑝
(up to a cyclic shift). Then we have 𝜋(𝑠1) = 𝑡𝑝 , 𝜋(𝑠2) = 𝑡𝑝−1, . . . , 𝜋(𝑠𝑝) = 𝑡1.

Theorem 23.6. Fix a unimodal loop L. The map 𝑀 = (𝐺, 𝑓 ) ↦→ 𝐺∗ gives a bijection between the
following two sets:

◦ The set of minimal membranes M with boundary loop L.
◦ The set of reduced plabic graphs 𝐺∗ with strand permutation 𝜋𝐿 .

All minimal membranes with boundary loop L are connected by local moves of membranes of types (I),
(II), and (III).

Proof. Let 𝑀 = (𝐺, 𝑓 ) be a minimal membrane with boundary loop L. According to Theorem 21.5, two
strands S and T of 𝐺∗ that have the same strand label 𝑔(𝑆) = 𝑔(𝑇) cannot intersect each other. For 𝑖 ∈ [𝑛],
let 𝑠1, . . . , 𝑠𝑝 , 𝑡1, . . . , 𝑡𝑝 be sequence of sources and targets as in Definition 23.5. These sources should
be connected with the targets by strands 𝑆1, . . . , 𝑆𝑝 that all have the same label 𝑔(𝑆1) = · · · = 𝑔(𝑆𝑝) = 𝑖.
Since the sources and the targets are separated from each other on the boundary of the disk, there exists
a unique matching between them, given by a collection of pairwise noncrossing strands. Namely, the
strand 𝑆𝑎 starting at the source 𝑠𝑎 should end at the target 𝑡𝑝+1−𝑎, for 𝑎 = 1, . . . , 𝑝. Thus, the strand
permutation of 𝐺∗ is exactly the permutation 𝜋𝐿 given by Definition 23.5. Since we know that all reduced
plabic graphs with the same strand permutation are connected with each other by the local moves, and
there are corresponding local moves of membranes, we deduce all the claims of the theorem. �

Let us give explicit expressions for the surface area and the number of lattice points of a minimal
membrane using the results of [Po06].

Definition 23.7 [Po06, Section 17]. Let 𝜋 : [𝑚] → [𝑚] be a derangement, that is, a permutation, such
that 𝜋(𝑎) ≠ 𝑎, for any a. Define:

◦ The number of antiexceedances in 𝜋

𝑘 (𝜋) := #{𝑎 ∈ [𝑚] | 𝜋(𝑎) < 𝑎}.

◦ The number of alignments in 𝜋

𝐴(𝜋) :=
{
(𝑎, 𝑏) ∈ [𝑚]2 | 𝑎 < 𝑏 < 𝜋(𝑏) < 𝜋(𝑎), or 𝜋(𝑎) < 𝑎 < 𝑏 < 𝜋(𝑏), or

𝜋(𝑏) < 𝜋(𝑎) < 𝑎 < 𝑏, or 𝑏 < 𝜋(𝑏) < 𝜋(𝑎) < 𝑎

}
.

Recall that the surface area Area(𝑀) of a membrane 𝑀 = (𝐺, 𝑓 ) is the number of faces (triangles) Δ
of the cactus G, or, equivalently, the number of vertices of the plabic graph 𝐺∗. Also denote the number
of lattice points of M by

LatticePoints(𝑀) := #(〈𝑀〉 ∩ Z𝑛) = #{vertices of 𝐺} = #{faces of 𝐺∗}.
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Proposition 23.8 (cf. [Po06, Proposition 17.10]). Let L be a unimodal loop, and let 𝜋 = 𝜋𝐿 : [𝑚] → [𝑚]
be the associated permutation (see Definition 23.5). The number of lattice points and the surface area
of a minimal membrane M with boundary loop L are equal to

LatticePoints(𝑀) = 𝑘 (𝜋) (𝑚 − 𝑘 (𝜋)) − 𝐴(𝜋) + 1,

Area(𝑀) = 2(𝑘 (𝜋) (𝑚 − 𝑘 (𝜋)) − 𝐴(𝜋)) − 𝑚.

Proof. For a membrane 𝑀 = (𝐺, 𝑓 ), the number LatticePoints(𝑀) equals the number of faces of the
plabic graph 𝐺∗. The needed expression for the number of faces of a reduced plabic graph was given
in [Po06, Proposition 17.10]. Area(𝑀) equals the number of vertices of the plabic graph 𝐺∗. Using
Euler’s formula together with the fact that 𝐺∗ is a 3-valent graph, we deduce

Area(𝑀) = 2(LatticePoints 𝑀 − 1) − 𝑚,

which gives the stated expression for Area(𝑀). �

In the following sections, we will discuss several special classes of unimodal loops and membranes
that have special properties:{

positroid
loops

}
⊂

{
polypositroid

loops

}
⊂

{
𝑗-increasing

loops

}
⊂

{
unimodal

loops

}
.

They are described in terms of the associated sequences of roots 𝑒𝑖1 − 𝑒 𝑗1 , . . . , 𝑒𝑖𝑚 − 𝑒 𝑗𝑚 ∈ Z𝑛, by
the following conditions:
◦ Positroid loops: 𝑚 = 𝑛; 𝑖1, . . . , 𝑖𝑛 is a permutation of 1, . . . , 𝑛; and 𝑗𝑎 = 𝑎, for 𝑎 = 1, . . . , 𝑛.
◦ Polypositroid loops: 𝑗1 ≤ · · · ≤ 𝑗𝑚; and if 𝑗𝑎 = 𝑗𝑎+1, then 𝑖𝑎+1 ∈ {𝑖𝑎 − 1, 𝑖𝑎 − 2, . . . , 𝑗𝑎 + 1} (a cyclic

interval in [𝑛]).
◦ j-increasing loops: 𝑗1 ≤ · · · ≤ 𝑗𝑚.

For example, we’ll see that positroid loops (considered up to affine translations) are in bijection with
positroids, and polypositroid loops are in bijection with integer polypositroids.

24. Positroid membranes

We now discuss the distinguished class of loops and membranes related to positroids. Assume (in the
notations of Section 21), that L is a loop, such that 𝑚 = 𝑛 and {𝑖1, . . . , 𝑖𝑛} = { 𝑗1, . . . , 𝑗𝑛} = [𝑛] are
usual sets. Moreover, by permuting the coordinates in R𝑛, we assume that 𝑗𝑎 = 𝑎, for 𝑎 = 1, . . . , 𝑛. Such
loops L (up to affine translations) correspond to Grassmann necklaces associated with positroids.

Let M ⊂
( [𝑛]
𝑘

)
be a positroid and I = (𝐼1, . . . , 𝐼𝑛) be the associated Grassmann necklace (see

Section 2). To simplify the presentation, we shall assume that M has no loops or coloops, and thus,
𝐼𝑎+1 ≠ 𝐼𝑎 for any a. We have 𝐼𝑎+1 = (𝐼𝑎 \ {𝑎}) ∪ {𝑖𝑎}, for 𝑎 ∈ Z/𝑛Z, where 𝜋 = 𝜋M : 𝑎 → 𝑖𝑎 is a
certain permutation (derangement) of size n.

Consider the loop 𝐿 = 𝐿M := (𝑒𝐼1 , . . . , 𝑒𝐼𝑛 ) (recall that 𝑒𝐼 :=
∑
𝑖∈𝐼 𝑒𝑖). It corresponds to the

sequence of roots 𝑒𝑖1 − 𝑒1, . . . , 𝑒𝑖𝑛 − 𝑒𝑛.
Theorem 24.1. Minimal membranes M with boundary loop 𝐿M are in bijection with reduced plabic
graphs with strand permutations 𝜋M. The bijection is given by 𝑀 = (𝐺, 𝑓 ) ↦→ 𝐺∗.

Moreover, for any such minimal membrane M, its embedding 〈𝑀〉 ⊂ R𝑛 is contained in the positroid
polytope 𝑃M := conv(𝑒𝐼 | 𝐼 ∈M).
Proof. Clearly, the loop 𝐿M is unimodal. The first part of the above theorem follows from
Theorem 23.6.

For such a minimal positroid membrane 𝑀 = (𝐺, 𝑓 ), the vectors 𝑓 (𝑣) ∈ Z𝑛 are related to the face
labels 𝐼 (𝐹) ∈

( [𝑛]
𝑘

)
of the corresponding plabic graph 𝐺∗, which were studied in [OPS], as follows:
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𝑓 (𝑣) = 𝑒𝐼 (𝐹𝑣 ) , for any face 𝐹𝑣 of 𝐺∗. Indeed, in the case of positroid membranes, the relationship
between f and the strand labelling g (given in Theorem 21.5) specializes to the definition of face labels
of reduced plabic graphs.

The second claim of the above theorem now follows from the result proved in [OPS] that any face
label 𝐼 (𝐹) of a reduced plabic graph 𝐺∗ associated with a positroid M belongs to the positroid:
𝐼 (𝐹) ∈M. �

25. Polypositroid membranes

We now discuss the class of loops and membranes related to integer polypositroids, which includes
positroid loops and membranes from Section 24. Recall that in Section 6, we gave bijections between
polypositroids 𝑃 ⊂ R𝑛, Coxeter necklaces v = (𝑣 (1) , . . . , 𝑣 (𝑛) ), and balanced digraphs. If P is an integer
polypositroid, then the 𝑣 (𝑖) are integer vectors, and the edge weights 𝑚𝑖 𝑗 of the balanced digraph are
nonnegative integers.

Define the perimeter7 of a membrane M with boundary loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) by Perim 𝑀 = 𝑚.

Definition 25.1. Let 𝑃 ⊂ R𝑛 be an integer polypositroid, and let v = (𝑣 (1) , . . . , 𝑣 (𝑛) ) be its Coxeter
necklace. We say that a membrane M is a minimal P-membrane if

1. The boundary loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) of M contains the points 𝑣 (1) , . . . , 𝑣 (𝑛) in this particular
cyclic order.

2. The membrane M has minimal possible perimeter Perim 𝑀 among all membranes satisfying condi-
tion (1).

3. The membrane M has minimal possible surface area Area 𝑀 among all membranes satisfying
conditions (1) and (2).

Remark 25.2. In the above definition, it is important to first minimize the perimeter of M, and only after
that minimize the surface area. If we skip condition (2), we can always find a membrane M satisfying
(1), whose surface area Area 𝑀 equals zero.

Define the standard root order as the total order < on all roots 𝑒𝑖 − 𝑒 𝑗 , 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 :

(𝑒𝑛 − 𝑒1) < (𝑒𝑛−1 − 𝑒1) < (𝑒𝑛−2 − 𝑒1) < · · · < (𝑒2 − 𝑒1) <
< (𝑒1 − 𝑒2) < (𝑒𝑛 − 𝑒2) < (𝑒𝑛−1 − 𝑒2) < · · · < (𝑒3 − 𝑒2) <
< (𝑒2 − 𝑒3) < (𝑒1 − 𝑒3) < (𝑒𝑛 − 𝑒3) < · · · < (𝑒4 − 𝑒3) <

· · · · · · · · · · · ·
< (𝑒𝑛−1 − 𝑒𝑛) < (𝑒𝑛−2 − 𝑒𝑛) < (𝑒𝑛−3 − 𝑒𝑛) < · · · < (𝑒1 − 𝑒𝑛).

(25.1)

In other words, we have 𝑒𝑖 − 𝑒 𝑗 < 𝑒𝑖′ − 𝑒 𝑗′ whenever 𝑗 < 𝑗 ′, or ( 𝑗 = 𝑗 ′ and 𝑖′ ∈ {𝑖 − 1, 𝑖 − 2, . . . , 𝑗 + 1}),
where elements of the interval are considered modulo n.

Remark 25.3. The total order (25.1) differs from the one in Example 10.8: instead, it arises from the
simple system {𝑒𝑛 − 𝑒1, 𝑒𝑛−1 − 𝑒𝑛, . . . , 𝑒2 − 𝑒3} and Coxeter element 𝑐 = 𝑠0𝑠𝑛−1𝑠𝑛−2 · · · 𝑠2, where
𝑠0 := (1𝑛) is the reflection associated to the root 𝑒𝑛 − 𝑒1.

Definition 25.4. A polypositroid loop is a loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ), with 𝜆 (𝑎) ∈ Z𝑛, such that
𝜆 (𝑎+1) − 𝜆 (𝑎) , 𝑎 = 1, . . . , 𝑚, is a weakly increasing sequence of roots in the standard root order.

The following two lemmas easily follow from the definitions.

Lemma 25.5. Any polypositroid loop is unimodal.

Let 𝑃 ⊂ R𝑛 be an integer polypositroid with Coxeter necklace v = (𝑣 (1) , . . . , 𝑣 (𝑛) ), and let 𝑚𝑖 𝑗 be the
edge multiplicities of the associated balanced digraph. Define the loop 𝐿𝑃 = (𝜆 (1) , . . . , 𝜆 (𝑚) ), such that

7Perim𝑀 equals the usual Euclidean length of the perimeter of 〈𝑀 〉 divided by
√

2.
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𝜆 (1) = 𝑣 (1) , and the sequence of roots 𝜆 (𝑎+1) − 𝜆 (𝑎) , 𝑎 = 1, . . . , 𝑚, is the weakly increasing sequence of
roots (in the standard root order), such that each root 𝑒 𝑗 − 𝑒𝑖 is repeated 𝑚𝑖 𝑗 times. Note that m equals
the total number of edges of the balanced bigraph.

Lemma 25.6. (1) The map 𝑃 → 𝐿𝑃 is a bijection between integer polypositroids 𝑃 ⊂ R𝑛 and poly-
positroid loops in R𝑛.

(2) The Coxeter necklace v is a subsequence of the associated polypositroid loop 𝐿𝑃 . Explictly,
𝑣 (𝑖+1) = 𝜆 (1+𝑑1+𝑑2+···+𝑑𝑖) , for 𝑖 = 0, . . . , 𝑛; here, 𝑑𝑖 = −(𝑣 (𝑖+1) − 𝑣 (𝑖) )𝑖 =

∑
𝑗≠𝑖 𝑚𝑖 𝑗 , is the outdegree (or

the indegree) of vertex i of the associated balanced digraph.

Recall that, for a unimodal loop L, we defined the permutation 𝜋𝐿 : [𝑚] → [𝑚] (see Definition 23.5).

Theorem 25.7. Let 𝑃 ⊂ R𝑛 be an integer polypositroid, and let 𝐿 = 𝐿𝑃 be the corresponding poly-
positroid loop. The following two sets coincide:

◦ the set of minimal P-membranes,
◦ the set of minimal membranes with boundary loop L.

Each of these sets is in bijection (via 𝑀 = (𝐺, 𝑓 ) ↦→ 𝐺∗) with

◦ the set of reduced plabic graphs with strand permutation 𝜋𝐿 .

All minimal P-membranes are connected with each other by a sequence of local moves of types (I),
(II), and (III).

Proof. Let us show that the boundary loop L of any minimal P-membrane is exactly the polypositroid
loop 𝐿𝑃 . Indeed, by Definition 25.1, for each 𝑖 = 1, . . . , 𝑛, the loop L contains the points 𝑣 (𝑖) and 𝑣 (𝑖+1)

connected by a shortest possible piecewise-linear curve with line segments given some roots. Thus,
this portion of the loop L between the points 𝑣 (𝑖) and 𝑣 (𝑖+1) should contain exactly 𝑚𝑖 𝑗 copies of the
root 𝑒 𝑗 − 𝑒𝑖 , for all 𝑗 ≠ 𝑖, cf. formulas (6.1) and (6.3) in Section 6. Note that any way to arrange these
roots (in each portion of L between 𝑣 (𝑖) and 𝑣 (𝑖+1) ) would produce a unimodal loop. So the surface
area of the membrane M is given by Proposition 23.8 in terms of the number of alignments and the
number of antiexceedances of the permutation 𝜋 associated with L (see Definitions 23.5 and 23.7). The
number of antiexceedances of 𝜋 equals 𝑘 (𝜋) =

∑
𝑖> 𝑗 𝑚𝑖 𝑗 . In order to minimize the surface area of M,

we need to maximize the number of alignments 𝐴(𝜋) of 𝜋. This maximum is achieved if and only if
𝐿 = 𝐿𝑃 . The theorem now follows from Theorem 23.6. �

For a balanced digraph on the vertex set [𝑛] with edge multiplicities 𝑚𝑖 𝑗 , 𝑖, 𝑗 ∈ [𝑛] define the number
m of edges, the number k of antiexceedances, and the number A of alignments, as follows:

𝑚 :=
∑
𝑖≠ 𝑗

𝑚𝑖 𝑗 , 𝑘 :=
∑
𝑖> 𝑗

𝑚𝑖 𝑗 ,

𝐴 :=
∑

𝑖 < 𝑖′ < 𝑗′ < 𝑗, or
𝑖′ < 𝑗′ < 𝑗 < 𝑖, or
𝑗′ < 𝑗 < 𝑖 < 𝑖′, or
𝑗 < 𝑖 < 𝑖′ < 𝑗′

𝑚𝑖 𝑗 𝑚𝑖′ 𝑗′ +
∑
𝑖, 𝑗< 𝑗′

(𝑚𝑖 𝑗𝑚𝑖 𝑗′ + 𝑚 𝑗𝑖𝑚 𝑗′𝑖) +
∑
𝑖≠ 𝑗

(
𝑚𝑖 𝑗

2

)

(notice that we regard a pair of edges of the digraph with the same initial points and/or the same end-
points as an alignment). Proposition 23.8 implies the following formulae.

Corollary 25.8. The number of lattice points and the surface area of any minimal P-membrane M are
equal to

LatticePoints(𝑀) = 𝑘 (𝑚 − 𝑘) − 𝐴 + 1,

Area(𝑀) = 2(𝑘 (𝑚 − 𝑘) − 𝐴) − 𝑚,
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Figure 5. The cactus graph G.

where m is the number of edges, k is the number of antiexceedances, and A is the number of alignments
of the balanced digraph associated with P.

Example 25.9. Let 𝑛 = 4. Then 𝐿 =

((3, 2, 1, 0), (2, 2, 1, 1), (1, 2, 2, 1), (0, 3, 2, 1), (1, 2, 2, 1), (1, 1, 2, 2),
(1, 0, 3, 2), (1, 1, 2, 2), (2, 1, 1, 2), (2, 1, 0, 3), (2, 1, 1, 2), (2, 2, 1, 1))

is a polypositroid loop, associated to the balanced digraph, where 𝑚𝑖 𝑗 = 1 for all 𝑖 ≠ 𝑗 , studied in
Example 6.11. The permutation 𝜋𝐿 : [12] → [12] is given by

(12, 8, 4, 3, 11, 7, 6, 2, 10, 9, 5, 1),

and we have 𝑘 (𝜋𝐿) = 6. We have 𝐴 = 28, and thus for a minimal membrane M, we have
LatticePoints(𝑀) = 9 and Area(𝑀) = 4. Let us give an example of a minimal membrane 𝑀 = (𝐺, f ).
Let G (shown in Figure 5) have boundary vertices {𝑏1, . . . , 𝑏12} arranged clockwise, with repetitions
𝑏2 = 𝑏12, 𝑏3 = 𝑏5, 𝑏6 = 𝑏8, 𝑏9 = 𝑏11, and a single nonboundary vertex b. The edges of G are the bound-
ary edges {𝑏𝑖 , 𝑏𝑖+1} and the edges of the four faces (𝑏, 𝑏2, 𝑏3), (𝑏, 𝑏5, 𝑏6), (𝑏, 𝑏8, 𝑏9), (𝑏, 𝑏11, 𝑏12). We
define f (𝑏𝑖) = 𝜆 (𝑖) and f = (2, 1, 2, 1).

26. Positroid lifts

For a membrane 𝑀 = (𝐺, 𝑓 ) and a vertex v of G, let 𝑓 (𝑣)𝑖 denote the i-th coordinate of the vector
𝑓 (𝑣) ∈ Z𝑛.

Lemma 26.1. Let 𝑀 = (𝐺, 𝑓 ) be a minimal membrane, and let 𝑖 ∈ [𝑛]. The minimal/maximal value of
the i-th coordinate 𝑓 (𝑣)𝑖 over all vertices v of G is achieved on some boundary vertex 𝑏 𝑗 of G.

Proof. Suppose that this is not true, and the minimal value of the i-th coordinate is achieved on some
internal vertex v of G, and it is strictly less than 𝑓 (𝑏 𝑗 )𝑖 for all boundary vertices 𝑏 𝑗 . Let 𝐹𝑣 be the face
of the plabic graph 𝐺∗ that corresponds to the vertex v of G. The i-th coordinate might take the same
minimal value on some other vertices of G that correspond to other faces of 𝐺∗ adjacent to 𝐹𝑣 . Let R be
the maximal connected region formed by such faces of the plabic 𝐺∗. By our assumption, the region R
does not include any boundary regions of 𝐺∗, thus the region R is bounded by a closed curve C formed
by some edges of 𝐺∗. Assume that C is oriented clockwise. For any other face of 𝐺∗ adjacent to R, the
i-th coordinate is strictly greater. This mean that, for any edge 𝑎 → 𝑏 of 𝐺∗ on the curve C (oriented in
same the clockwise direction), the strand S that passes through the edge 𝑎 → 𝑏 has label 𝑔(𝑆) = 𝑖; see
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Theorem 21.5. Since any two intersecting strands cannot have the same label, we conclude that all edges
on the closed curve C belong to the same strand S. This means that the strand S is either self-intersecting
or closed. Since the membrane M is minimal, the plabic graph 𝐺∗ is reduced (see Theorem 23.3).
However, by Definition 23.1, a reduced plabic graph cannot contain self-intersecting or closed strands.
We obtain a contradiction. The proof of the claim about the maximal value of 𝑓 (𝑣)𝑖 is analogous. �

Let d = (𝑑1, . . . , 𝑑𝑛) be a nonnegative integer vector. We say that a loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) ∈
(Z𝑛)𝑚 is d-boxed if min 𝑗∈[𝑚] 𝜆

( 𝑗)
𝑖 = 0 and max 𝑗∈[𝑚] 𝜆

( 𝑗)
𝑖 = 𝑑𝑖 , for all 𝑖 ∈ [𝑛]. In other words, the curve

〈𝐿〉 lies in the box [0, 𝑑1] × · · · × [0, 𝑑𝑛] ⊂ R𝑛 and has points on each facet of the box.
According to Lemma 26.1, for any minimal membrane M with a d-boxed boundary loop L, we

have 〈𝑀〉 ⊂ [0, 𝑑1] × · · · × [0, 𝑑𝑛]. Moreover, both 〈𝐿〉 and 〈𝑀〉 belong to the intersection of the box
[0, 𝑑1] × · · · × [0, 𝑑𝑛] with some affine hyperplane 𝑥1 + · · · + 𝑥𝑛 = 𝑘 .
Definition 26.2. Let 𝑑 = 𝑑1 + · · · + 𝑑𝑛. For an integer vector 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ [0, 𝑑1] × · · · × [0, 𝑑𝑛],
let lift(𝜆) be the 0-1-vector in Z𝑑 given by

lift(𝜆) := (0𝑑1−𝜆1 , 1𝜆1 , 0𝑑2−𝜆2 , 1𝜆2 , . . . , 0𝑑𝑛−𝜆𝑛 , 1𝜆𝑛 ) ∈ {0, 1}𝑑 ,

where 𝑎𝑟 denotes a repeated r times.
Let 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) ∈ (Z𝑛)𝑚 be a d-boxed loop. The lift of L is the loop lift(𝐿) :=

(lift(𝜆 (1) ), . . . , lift(𝜆 (𝑚) )) ∈ (Z𝑑)𝑚.
For a minimal membrane 𝑀 = (𝐺, 𝑓 ) with boundary loop L, the lift of M is the membrane

lift(𝑀) := (𝐺, lift( 𝑓 )), where lift( 𝑓 ) : 𝑣 ↦→ lift( 𝑓 (𝑣)) ∈ Z𝑑 , for a vertex v of G.
Let proj : R𝑑 → R𝑛 be the map8 given by

proj : (𝑥1, . . . , 𝑥𝑑) ↦→ (𝑥1 + 𝑥2 + · · · + 𝑥𝑑1 , 𝑥𝑑1+1 + · · · + 𝑥𝑑1+𝑑2 , · · · , 𝑥𝑑1+···+𝑑𝑛−1+1 + · · · + 𝑥𝑑).

For a membrane 𝑀̃ = (𝐺, 𝑓 ), where 𝑓 : Vert→ Z𝑑 , define proj(𝑀̃) := (𝐺, proj( 𝑓 )).
Proposition 26.3. Let 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ) ∈ (Z𝑛)𝑚 be a d-boxed unimodal loop. Then 𝑚 = 𝑑 :=
𝑑1 + · · · + 𝑑𝑛. The sequence of roots 𝑒𝑖𝑎 − 𝑒 𝑗𝑎 = lift(𝜆 (𝑎+1) ) − lift(𝜆 (𝑎) ) ∈ Z𝑚, 𝑎 = 1, . . . , 𝑚, associated
with the loop lift(𝐿) satisfies the condition: both sequences 𝑖1, . . . , 𝑖𝑚 and 𝑗1, . . . , 𝑗𝑚 are permutations
of 1, . . . , 𝑚.

The following three sets are in bijection with each other:
◦ Minimal membranes M with boundary loop L.
◦ Minimal membranes 𝑀̃ with boundary loop lift(𝐿).
◦ Reduced plabic graphs 𝐺∗ with strand permutation 𝜋𝐿 (see Definition 23.5).
Explicitly, the bijections are given by the maps (which form a commutative diagram): 𝑀 ↦→ 𝑀̃ = lift(𝑀),
𝑀̃ ↦→ 𝑀 = proj(𝑀̃), 𝑀 = (𝐺, 𝑓 ) ↦→ 𝐺∗, 𝑀̃ = (𝐺, 𝑓 ) ↦→ 𝐺∗.

The loop lift(𝐿) is obtained from a positroid loop in Z𝑚 by a permutation of coordinates in Z𝑚. This
is exactly the positroid whose permutation is equal to 𝜋𝐿 . Thus, the lifted membranes 𝑀̃ are permuted
positroid membranes.

Proof. The first claim easily follows from the definitions. The claim about bijections between the sets
of membranes M, 𝑀̃ , and reduced plabic graphs 𝐺∗ follows from Theorem 23.6. Indeed, both loops L
and lift(𝐿) correspond to the same permutation 𝜋𝐿 = 𝜋lift(𝐿) (see Definition 23.5). �

Let us specialize this construction to polypositroid loops. As in the previous section, let 𝑃 ⊂ R𝑛
be an integer polypositroid. Assume that P belongs to the positive orthant R𝑛≥0 and has points on each
coordinate plane in R𝑛. Let 𝑚𝑖 𝑗 be the edge multiplicities of the balanced digraph associated with P,
let 𝑚 :=

∑
𝑖, 𝑗 𝑚𝑖 𝑗 be the total number of edges of the digraph, let 𝑘 =

∑
𝑖> 𝑗 𝑚𝑖 𝑗 be its number of

8The map proj is a projection if all 𝑑𝑖’s are positive.
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antiexceedances, and let 𝑑𝑖 :=
∑
𝑗 𝑚𝑖 𝑗 , 𝑖 ∈ [𝑛], be the outdegrees (or the indegrees) of the balanced

digraph. Clearly, we have 𝑚 = 𝑑1 + · · · + 𝑑𝑛. Let d = (𝑑1, . . . , 𝑑𝑛).
Corollary 26.4. For a polypositroid P as above, the polypositroid loop 𝐿 = 𝐿𝑃 is d-boxed. Its lift
lift(𝐿) is a positroid loop in Z𝑚.

The maps lift : 𝑀 ↦→ 𝑀̃ and proj : 𝑀̃ ↦→ 𝑀 give a bijection between minimal membranes M with
boundary loop L minimal positroid membranes 𝑀̃ with boundary loop lift(𝐿).

The first claims in this statement are straightforward from the definitions, the last claim is a special
case of Proposition 26.3.
Example 26.5. Consider the polypositroid loop L in Example 25.9. Then L is d = (3, 3, 3, 3)-boxed, and

lift(𝐿) =((1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0), (0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1),
(0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1), (0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1), . . .).

Let M ⊂
( [𝑚]
𝑘

)
be the positroid associated with the positroid loop lift(𝐿), and let 𝑃M := conv(𝑒𝐼 |

𝐼 ∈M} ⊂ R𝑚 be the positroid polytope of the positroid M.
Lemma 26.6. Under the map proj : R𝑚 → R𝑛, we have proj(𝑃M) ⊆ 𝑃.
Proof. The positroid polytope 𝑃M, being an alcoved polytope in R𝑚, is given by inequalities of the
form 𝑥𝑖 + 𝑥𝑖+1 + · · · + 𝑥 𝑗 ≤ 𝑐𝑖 𝑗 for all cyclic intervals [𝑖, 𝑗] in [𝑚]. Similarly, the polytope P, being an
alcoved polytope in R𝑛, is given by inequalities of the form 𝑦𝑎 + 𝑦𝑎+1 + · · · + 𝑦𝑏 ≤ 𝑑𝑎𝑏 for all cyclic
intervals [𝑎, 𝑏] in [𝑛]. One can check from the definitions that the inequalities for 𝑃M corresponding
to cyclic intervals [𝑖, 𝑗] that consist of unions of blocks {1, . . . , 𝑑1}, {𝑑1 + 1, . . . , 𝑑1 + 𝑑2}, etc., project
exactly to the inequalities defining the polytope P. �

Theorem 24.1 now implies the following claim.
Corollary 26.7. For any minimal P-membrane M, the embedding 〈𝑀〉 ⊂ R𝑛 belongs to the poly-
positroid: 〈𝑀〉 ⊂ 𝑃.
Remark 26.8. The same plabic graph 𝐺∗ can appear in different membranes 𝑀 = (𝐺, 𝑓 ) of different
dimensions. For any reduced plabic graph 𝐺∗ with m boundary edges, there is always the associated
positroid membrane of dimension 𝑚 − 1 that lies in a hyperplane {𝑥1 + · · · + 𝑥𝑚 = 𝑘} ⊂ R𝑚. But there
might also be other lower dimensional membranes with the same plabic graph, which are obtained by
projections of this positroid membrane.

Define the essential dimension of a reduced plabic graph 𝐺∗ as the minimal dimension of a minimal
membrane whose plabic graph is equal to 𝐺∗.
Proposition 26.9. For a reduced plabic graph 𝐺∗ with m boundary edges, the essential dimension
equals 𝑚 − 1 if and only if 𝐺∗ is a plabic graph for the top positroid cell in Gr(𝑘, 𝑚)≥0 for some
𝑘 ∈ [𝑚 − 1], that is, if its strand permutation is 𝜋 : 𝑖 ↦→ 𝑖 + 𝑘 (mod 𝑚).
Proof. If a graph 𝐺∗ has a maximal possible essential dimension 𝑚 − 1, then its strand permutation
𝜋 does not have alignments. Indeed, if 𝜋 has an alignment (𝑖, 𝑗), then we can project the positroid
membrane for 𝐺∗ to a lower-dimensional membrane by mapping (𝑥𝑖 , 𝑥 𝑗 ) ↦→ 𝑥𝑖 + 𝑥 𝑗 and leaving all
other coordinates. The only permutations with no alignments are permutations given by 𝜋 : 𝑖 ↦→ 𝑖 + 𝑘
(mod 𝑚), for some k.

Assume now that 𝐺∗ is a plabic graph for the top positroid cell in Gr(𝑘, 𝑚)≥0 and 𝑀 = (𝐺, 𝑓 ) is a
minimal membrane with 𝑓 : Vert → Z𝑛. If 𝑛 < 𝑚, then we can find two different strands S and T in
𝐺∗, with the same label 𝑔(𝑆) = 𝑔(𝑇) (see Theorem 21.5). According to Theorem 21.5, the strands S
and T can not intersect in the plabic graph 𝐺∗. It is not hard to show, using the techniques of [Po06],
that for any i and j, there is some plabic graph for the top cell in Gr(𝑘, 𝑚)≥0 whose i-th and j-th strands
intersect. Also, according to Theorem 23.2 ([Po06, Theorem 13.4]), all plabic graphs for the top cell are
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connected with each other by local moves. This means that even if the strands S and T do not intersect
in 𝐺∗, one can always find a sequence of local moves that result in a plabic graph, where the pair strands
with the same sources and targets as S and T intersect each other. Since local moves preserve minimal
membranes, we deduce that for two different strands, we cannot have 𝑔(𝑆) = 𝑔(𝑇). Thus, 𝑛 = 𝑚. �

Reduced plabic graphs of essential dimension 2 are the bipartite plabic graphs that can be drawn on
the plane as subgraphs of the regular hexagonal lattice.

27. Semisimple membranes

Recall (e.g., see [Hum]), that for a Coxeter element 𝑐 ∈ 𝑊 in the Weyl group associated with root system
𝑅 ⊂ 𝑉 � R𝑟 , there exists a unique 2-dimensional plane 𝑃 ⊂ 𝑉 , 𝑃 � R2, called the Coxeter plane, such
that P is c-invariant, and the Coxeter element c acts on P by rotations by 2𝜋/ℎ. Note that the Coxeter
element c defines an orientation on the Coxeter plane P, assuming that c acts on P by a clockwise
rotation. Let 𝑝 : 𝑉 → 𝑃 be the orthogonal projection onto the Coxeter plane.

Definition 27.1. Fix a Coxeter element 𝑐 ∈ 𝑊 . We say that an R-membrane M is semisimple if the
projection 𝑝 : 〈𝑀〉 → 𝑝(〈𝑀〉) onto the Coxeter plane is a bijective map between 〈𝑀〉 and 𝑝(〈𝑀〉)
and each component of the projection 𝑝(〈𝐿〉) of the boundary loop L of M is oriented clockwise in the
Coxeter plane.

Equivalently, an R-membrane 𝑀 = (𝐺, 𝑓 ) is semisimple if the orientation of any triangle Δ in the
cactus G agrees with the orientation of the projection 𝑝(〈Δ〉) in the Coxeter plane.

Example 27.2. Consider the 𝐵4-membrane in Example 20.4. This membrane is not semisimple: the
two faces (𝑏, 𝑏2, 𝑏3), (𝑏, 𝑏3, 𝑏6) are oppositely oriented in the Coxeter plane. Here, the Coxeter plane
can be taken to be the span of the real and imaginary parts of 𝑣 = (1, 𝜂, 𝜂2, 𝜂3), where 𝜂 is a primitive
8-th root of unity.

Remark 27.3. A simple membrane M is a semisimple membrane, such that 〈𝑀〉 � 𝑝(〈𝑀〉) is homeo-
morphic to a disk (or to a line segment when 𝑚 = 2). A semisimple membrane is simple if and only if the
graph 𝐺∗ is connected. Any semisimple membrane is obtained by taking wedges of simple membranes
along their boundary vertices.

Let us now discuss the type A case. Assume that 𝑐 = (12 · · · 𝑛) ∈ 𝑆𝑛 is the standard long cycle in 𝑆𝑛,
which is a Coxeter element in type A case. We can identify the corresponding Coxeter plane with R2

and assume that

𝑝 : R𝑛 → R2, 𝑝 : 𝑒𝑖 ↦→ 𝑢𝑖 , for 𝑖 = 1, . . . , 𝑛,

is the projection that sends the coordinate vectors 𝑒1, . . . , 𝑒𝑛 in R𝑛 to the vertices 𝑢1, . . . , 𝑢𝑛 of a regular
n-gon in R2 centered at the origin 0 arranged in the clockwise order.

Recall that a loop 𝐿 = (𝜆 (1) , . . . , 𝜆 (𝑚) ), with 𝜆 (𝑎+1) − 𝜆 (𝑎) = 𝑒𝑖𝑎 − 𝑒 𝑗𝑎 , for 𝑎 ∈ Z/𝑚Z, is called
j-increasing if 𝑗1 ≤ 𝑗2 ≤ · · · ≤ 𝑗𝑚. In particular, any polypositroid loop is j-increasing.

Theorem 27.4. Let L be any j-increasing polypositroid loop. A membrane M with boundary loop L is
minimal if and only if M is semisimple.

Proof. Let 𝑀 = (𝐺, 𝑓 ) be a minimal membrane with boundary loop L. So the plabic graph 𝐺∗ is
reduced. Let Δ be any triangle in the cactus G, let d be the corresponding vertex in the plabic graph 𝐺∗,
and let 𝑆1, 𝑆2, 𝑆3 be the three strands in 𝐺∗ that pass through the three edges of 𝐺∗ adjacent to the vertex
d in the directions away from d arranged, respectively, in the clockwise order. Since 𝐺∗ is a reduced
plabic graph, the segments of these three strands between the vertex d and their target points 𝑡1, 𝑡2, 𝑡3
on the boundary of the disk cannot intersect each other. So the three target points 𝑡1, 𝑡2, 𝑡3 of the strands
𝑆1, 𝑆2, 𝑆3, respectively, are arranged in the clockwise order on the boundary of the disk. Thus, the labels
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𝑔(𝑆1), 𝑔(𝑆2), 𝑔(𝑆3) ∈ [𝑛] of these three strands (which are 𝑗𝑡1 , 𝑗𝑡2 , 𝑗𝑡3 , respectively; see Theorem 21.5)
are ordered as 𝑔(𝑆1) < 𝑔(𝑆2) < 𝑔(𝑆3) (up to a cyclic shift).

The triangle Δ is embedded into R𝑛 either as conv(−𝑒𝑔 (𝑆1) ,−𝑒𝑔 (𝑆2) ,−𝑒𝑔 (𝑆3) ) or as
conv(𝑒𝑔 (𝑆1) , 𝑒𝑔 (𝑆2) , 𝑒𝑔 (𝑆3) ) (up to a parallel translation) depending on the color of the triangle. In both
cases, the rules of the road imply that the orientation of the triangle Δ in the cactus G agrees with
the orientation of the projection 𝑝(〈Δ〉) onto the Coxeter plane. This implies that the membrane M is
semisimple.

On the other hand, let us now assume that M is a semisimple membrane and deduce that it should
be a minimal membrane. Whenever we apply a local move to M, it remains semisimple. Indeed, for a
square move (II), that is, an octahedron move shown on Figure 4, if the upper half of the surface of
the octahedron projects bijectively onto the Coxeter plane, then the lower part of the surface projects
bijectively onto the Coxeter plane. For a tetrahedron move, that is, a move of type (I) or (III) shown on
Figure 4, observe that the four vertices of the two triangles involved in the move project onto the Coxeter
plane as some points 𝑢𝑖 + 𝑣, 𝑢 𝑗 + 𝑣, 𝑢𝑘 + 𝑣, 𝑢𝑙 + 𝑣. Since 𝑢1, . . . , 𝑢𝑛 are vertices of a convex n-gon, it
is impossible that one of these four points lies in the convex hull of the three other points. Thus, if the
union of two triangles involved in a move of type (I) or (III) projects bijectively onto the Coxeter plane,
then the same remains true after the move.

If M is not minimal, then we can find a sequence of local moves that results in a plabic graph with
a pair of parallel edges and a membrane with two coinciding triangles 〈Δ〉 = 〈Δ ′〉. However, in a
semisimple membrane, two triangles cannot coincide. Thus, M should be a minimal membrane. �

Remark 27.5. For a positroid M, projections of minimal membranes with boundary loop 𝐿M onto the
Coxeter plane are related to the plabic tilings of Oh et al. [OPS]. Plabic tilings are certain subdivisions
(or tilings) of a polygon on the plane into smaller polygons (or tiles) colored in two colors. The tiles are
not necessarily triangles. A plabic tiling corresponds to an equivalence class under moves of types (I)
and (III) of projections of minimal membranes with boundary loop 𝐿M onto the Coxeter plane. In other
words, a plabic tiling is obtained from a projection of a membrane by combining its adjacent triangles
colored in the same color into tiles.

28. Higher octahedron recurrence and cluster algebras

Consider the collection of variables 𝑥𝜆, labelled by integer vectors 𝜆 ∈ Z𝑛, that satisfy the following
higher octahedron relations:

𝑥𝑒𝑖+𝑒𝑘+𝜆 · 𝑥𝑒 𝑗+𝑒𝑙+𝜆 = 𝑥𝑒𝑖+𝑒 𝑗+𝜆 · 𝑥𝑒𝑘+𝑒𝑙+𝜆 + 𝑥𝑒𝑖+𝑒𝑙+𝜆 · 𝑥𝑒 𝑗+𝑒𝑘+𝜆 , (28.1)

for any 𝑖 < 𝑗 < 𝑘 < 𝑙 in [𝑛], and any 𝜆 ∈ Z𝑛. We will call the recurrence (28.1) the higher octahedron
recurrence. The polytope conv(𝑒𝑖 + 𝑒𝑘 , 𝑒 𝑗 + 𝑒𝑙 , 𝑒𝑖 + 𝑒 𝑗 , 𝑒𝑘 + 𝑒𝑙 , 𝑒𝑖 + 𝑒𝑙 , 𝑒 𝑗 + 𝑒𝑘 ) is an octahedron in R𝑛,
which explains the name of the above relations.

Clearly, each relation (28.1) involves only the variables 𝑥𝜆, for 𝜆 in an affine hyperplane {𝜆1+· · ·+𝜆𝑛 =
Const}. So, essentially, (28.1) is a recurrence relation on variables corresponding to points of the (𝑛−1)-
dimensional integer lattice. For 𝑛 = 4, this recurrence on Z3 is equivalent to the octahedron recurrence
(see, for example [Spe]).

Let us now define algebras generated by certain finite subsets of variables 𝑥𝜆 satisfying the octahedron
relations.

Definition 28.1. For a loop 𝐿 ⊂ Z𝑛, define its cloud as the union of integer lattice points of 〈𝑀〉 over
all minimal membranes M with boundary loop L:

cloud(𝐿) :=
⋃

𝑀=(𝐺, 𝑓 ) min. membr. with bound. 𝐿
{ 𝑓 (𝑣) | 𝑣 is vertex of 𝐺}.
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Remark 28.2. According to Corollary 26.7, for a polypositroid loop 𝐿 = 𝐿𝑃 , cloud(𝐿𝑃) belongs to the
set 𝑃 ∩ Z𝑛 of lattice points of the polypositroid P. For some (poly)positroids, cloud(𝐿𝑃) = 𝑃 ∩ Z𝑛. For
example, the equality holds if 𝑃 = 𝑃M, where M =

( [𝑛]
𝑘

)
is the uniform matroid. In this case, P is the

hypersimplex Δ (𝑘, 𝑛) and cloud(𝐿𝑃) = {𝑒𝐼 | 𝐼 ∈
( [𝑛]
𝑘

)
} is the set of all lattice points of Δ (𝑘, 𝑛).

However, in general, cloud(𝐿𝑃) is not equal to 𝑃 ∩ Z𝑛. For example, if the loop L is a wedge of line
segments, then any minimal membrane with boundary L has no triangles. In this case, cloud(𝐿) = 𝐿.
Apart from some trivial cases, this set cannot be equal to the set of lattice points of the polypositroid P,
which is a convex polytope.

For the case 𝑛 = 3, a generic polypositroid is a hexagon, and the associated cloud is a triangle with
line segments attached to its vertices.

Definition 28.3. For a loop L, let Octa𝐿 := C[𝑥𝜆, 𝑥−1
𝜇 ]𝜆∈cloud(𝐿) ,𝜇∈𝐿 be the commutative algebra over C

generated by the variables 𝑥𝜆, for 𝜆 ∈ cloud(𝐿), and 𝑥−1
𝜇 for 𝜇 ∈ 𝐿, modulo the octahedron relations

(28.1). We call Octa𝐿 the octahedron algebra of the loop L.

Recall that, for any finite quiver (i.e., a directed graph) Q with a chosen subset of vertices B, there is
a cluster algebra, whose initial cluster variables correspond to vertices of Q and frozen cluster variables
correspond to the subset of vertices B (see [FZ02]). By convention, we will assume that the inverses of
frozen cluster variables belong to the cluster algebra.

Definition 28.4. For a membrane 𝑀 = (𝐺, 𝑓 ), define the quiver of M as the directed graph 𝑄(𝑀) on the
same set of vertices Vert as the cactus G, whose edges 𝑢 → 𝑣 are the edges of G that separate triangles
of different colors, directed so that the adjacent black triangle is on the right of the edge 𝑢 → 𝑣 and the
adjacent white triangle is on the left of the edge 𝑢 → 𝑣.

Let A𝑀 denote the cluster algebra over C given by the quiver 𝑄(𝑀) of the membrane M with frozen
variables corresponding to the boundary vertices 𝑏𝑖 ∈ Vert of G.

Theorem 28.5. Let L be any j-increasing loop (in particular, L can be any polypositroid loop). Let
𝑀 = (𝐺, 𝑓 ) be any minimal membrane with boundary loop L, and let Vert be the vertex set G.

For any other minimal membrane 𝑀 ′ with the same boundary loop L, the quivers 𝑄(𝑀) and 𝑄(𝑀 ′)
are mutation equivalent, and we have a canonical isomorphism A𝑀 � A𝑀 ′ . The octahedron algebra
Octa𝐿 is a (finitely generated) subalgebra of the cluster algebra A𝑀 .

More explicitly, let us identify the collection of variables {𝑥 𝑓 (𝑣) | 𝑣 ∈ Vert} with the initial cluster
of A𝑀 . We have

1. The collection of variables {𝑥 𝑓 (𝑣) | 𝑣 ∈ Vert} is an algebraically independent set in Octa𝐿 . Any
other 𝑥𝜆, for 𝜆 ∈ cloud(𝐿) is expressed in terms of these variables by Laurent polynomials with
positive integer coefficients.

2. Local moves of membranes of types (I) and (III) (tetrahedron moves) do not change the set of variables
{𝑥 𝑓 (𝑣) | 𝑣 ∈ Vert}, and they do not change the quiver 𝑄(𝑀) of M and the cluster algebra A𝑀 .

3. Local moves of membranes of type (II) (octahedron moves) change exactly one element in the set
{𝑥 𝑓 (𝑣) | 𝑣 ∈ Vert}. They correspond to (a certain class of) mutations of the cluster algebra A𝑀 .

4. Any minimal membrane 𝑀 ′ = (𝐺 ′, 𝑓 ′) with the same boundary loop L is obtained from M by a
sequence of local moves. The collection of variables {𝑥 𝑓 ′ (𝑣′) | 𝑣′ ∈ Vert′} (where Vert′ is the set of
vertices of 𝐺 ′) is a cluster of the cluster algebra A𝑀 .

5. The isomorphism 𝜇𝑀,𝑀 ′ : A𝑀 → A′𝑀 given by the composition of mutations coming from a
sequence of local moves connecting the membranes M and 𝑀 ′ depends only on the membranes M
and 𝑀 ′, and it does not depend on a choice of a sequence of local moves connecting the membranes.

6. The octahedron algebra Octa𝐿 is the subalgebra of the cluster algebra A𝑀 generated by all cluster
variables from all clusters of A𝑀 (and inverses of frozen variables) that correspond to minimal
membranes 𝑀 ′ with the same boundary loop L.

Proof. Part (2) is clear, because tetrahedron moves of membranes do not change the set of points
{ 𝑓 (𝑣) | 𝑣 ∈ Vert}, and they do not change the quiver Q of a membrane.
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Observe that, if we apply a move 𝑀 → 𝑀̃ of type (II) (an octahedron move), that is, apply a square
move of the associated plabic graph 𝐺∗, then the labels 𝑖, 𝑗 , 𝑘, 𝑙 of the four strands (arranged clockwise)
going out of the vertices of the square are ordered as 𝑖 < 𝑗 < 𝑘 < 𝑙 (up to a cyclic shift) (see the
argument in the proof of Theorem 27.4). One easily checks that the quiver 𝑄(𝑀̃) is a mutation of the
quiver 𝑄(𝑀). This move results in replacing one element 𝑥𝑒𝑖+𝑒𝑘+𝜆 of the set {𝑥 𝑓 (𝑣) | 𝑣 ∈ Vert} by
𝑥𝑒 𝑗+𝑒𝑙+𝜆. One checks from the definitions that the transformation:

𝑥𝑒𝑖+𝑒𝑘+𝜆 → 𝑥𝑒 𝑗+𝑒𝑙+𝜆 = (𝑥𝑒𝑖+𝑒 𝑗+𝜆 · 𝑥𝑒𝑘+𝑒𝑙+𝜆 + 𝑥𝑒𝑖+𝑒𝑙+𝜆 · 𝑥𝑒 𝑗+𝑒𝑘+𝜆)/𝑥𝑒𝑖+𝑒𝑘+𝜆,

is exactly the cluster mutation of the associated variable in the initial cluster of A𝑀 . So we get part (3).
Part (4) follows from Theorem 23.6 and the fact the that loop L is unimodal.
Part (1) now follows from general results on cluster algebras, namely, Fomin-Zelevinsky’s Laurent

phenomenon [FZ03] and the positivity result of Lee-Schiffler [LS].
Part (5) follows from the observation that each element of the initial seed of the cluster algebra A𝑀 ′

corresponds to some variable 𝑥 𝑓 ′ (𝑣′) , 𝑣′ ∈ Vert′. By part (1), this element is expressed by a Laurent
polynomial in terms of the variables 𝑥 𝑓 (𝑣) , 𝑣 ∈ Vert, corresponding to the initial seed of A𝑀 . This
Laurent expression depends only on the membrane M and the integer vector 𝑓 ′(𝑣′) ∈ Z𝑛, and it does
not depend on a choice of a sequence of local moves connecting the membranes M and 𝑀 ′.

Part (6) is clear from the above discussion. �

For a j-increasing loop L, we denote by A𝐿 the cluster algebra A𝑀 for a minimal membrane M
with boundary loop L. The quiver 𝑄(𝑀), and thus the cluster algebra A𝑀 , of a minimal membrane
𝑀 = (𝐺, 𝑓 ) depends only on the reduced plabic graph 𝐺∗. Since every reduced plabic graph appears in a
minimal positroid membrane, the class of cluster algebras A𝐿 is as general as its subclass corresponding
to positroid loops. However, the description of these cluster algebras in terms of the higher octahedron
recurrence allows us to associate some cluster variables with points of the integer lattice Z𝑛 and some
clusters with membranes, which provides an additional geometrical intuition into the structure of these
cluster algebras.

Let M be a positroid, and let A𝐿M be the cluster algebra for the positroid loop 𝐿M (see Section 24).
The cluster algebra A𝐿M implicitly appeared in [Po06]. It was shown in [GL] that the cluster algebra
A𝐿M is isomorphic to the coordinate ring C[Π̊M] of an open positroid variety Π̊M [KLS], confirming
conjectures of Muller–Speyer [MS] and Leclerc [Lec].

Remark 28.6. Suppose that 𝐿1 and 𝐿2 are two j-increasing loops, and 𝑀1 = (𝐺1, 𝑓1) and 𝑀2 = (𝐺2, 𝑓2)
are minimal membranes with boundary loops 𝐿1 and 𝐿2, respectively. If the reduced plabic graphs 𝐺∗1
and 𝐺∗2 are connected by the local moves (I), (II), and (III), then it follows from the above remarks that
cloud(𝐿1) and cloud(𝐿2) are naturally in bijection.

Remark 28.7. The cluster algebra A𝐿 is typically a cluster algebra of infinite type, with infinitely many
cluster variables. On the other hand, cloud(𝐿) is a finite set, corresponding to a finite subset of the
cluster variables of A𝐿 , and thus the octahedron algebra Octa𝐿 is a finitely generated subalgebra of the
cluster algebra A𝐿 . However, even when A𝐿 is of infinite type, we may have Octa𝐿 = A𝐿 . For example,
this holds when the reduced plabic graph 𝐺∗ corresponds to the top positroid cell of Gr(𝑘, 𝑛). In this
case, A𝐿 is isomorphic to the homogeneous coordinate ring of the Grassmannian with the cyclic minors
Δ12· · ·𝑘 ,Δ23· · · (𝑘+1) , . . . inverted. The equality Octa𝐿 = A𝐿 follows from the fact that the homogeneous
coordinate ring of the Grassmannian is generated by Plücker coordinates Δ 𝐼 .

29. Asymptotic cluster algebra

As we discussed in Section 28, membranes are closely related to a class of cluster algebras generated
by some collections of variables satisfying the higher octahedron recurrence. Minimal membranes
correspond to certain clusters in these algebras, and local moves of membranes correspond to cluster
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mutations. It would be interesting to investigate the asymptotic behavior of these structures under
dilations of the boundary loop.

We can call this area of research the “Asymptotic Cluster Algebra.” We anticipate that many results
from statistical physics and from asymptotic representation theory (e.g., the study of asymptotics
properties of representations of symmetric groups), will have their analogs in the asymptotic cluster
algebra.

Under dilations of the boundary loop L, minimal membranes might approach a certain limit surface S.
Let Memb(𝐿) be the set of all minimal membranes with boundary loop L. For 𝑡 ∈ Z>0, let 𝑡𝐿 denote

the loop L dilated t times.

Conjecture 29.1. Let L be a unimodal loop. For a positive integer t, consider the uniform distribution
on the set Memb(𝑡𝐿).

There exists a unique surface 𝑆 ⊂ R𝑛 (with boundary 〈𝐿〉), such that, for any 𝜖 > 0, there exists
𝑁 > 0, such that, for any 𝑡 ≥ 𝑁 , the probability that 1

𝑡 〈𝑀〉, for 𝑀 ∈ Memb(𝑡𝐿), belongs to the
𝜖-neighborhood of S is greater than 1 − 𝜖 .

A related conjecture can be formulated in terms of measures. For a loop L, consider the measure 𝜇𝐿
on the set cloud(𝐿) ⊂ Z𝑛 given by

𝜇𝐿 (𝑎) =
#{𝑀 ∈ Memb(𝐿) such that 𝑎 ∈ 〈𝑀〉}

#Memb(𝐿) × #(lattice points in any 𝑀 ∈ Memb(𝐿)) ,

for 𝑎 ∈ Z𝑛. Clearly,
∑
𝑎∈Z𝑛 𝜇𝐿 (𝑎) = 1, so 𝜇𝐿 is a probability distribution.

Equivalently, 𝜇𝐿 (𝑎) is the probability that a random (uniformly chosen) minimal membrane with
boundary L contains a lattice point a. In other words, 𝜇𝐿 is the density of a random membrane.

For a positive integer t, let 𝜇𝐿,𝑡 (𝑎) := 𝜇𝑡𝐿 (𝑡𝑎). The measure (probability distribution) 𝜇𝐿,𝑡 is
supported on a certain subset of the lattice ( 1

𝑡 Z)
𝑛.

Conjecture 29.2. Let L be a unimodular loop. As 𝑡 →∞, the measures 𝜇𝐿,𝑡 converge to a certain limit
measure

𝜇𝐿,∞ := lim
𝑡→∞

𝜇𝐿,𝑡

supported on a certain limit surface 𝑆 ⊂ R𝑛.

Remark 29.3. For 𝑛 = 4, semisimple membranes are related to the 6-vertex and 8-vertex models [Bax],
whose asymptotic properties have been extensively studied.

Remark 29.4. It would be interesting to investigate a relationship between the “limit membrane” S and
Plateau’s problem (see Remark 20.7).
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