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Abstract

Let U be a smooth affine curve over a number field K with a compactification X and let
L be a rank 2, geometrically irreducible lisse Q�-sheaf on U with cyclotomic determinant
that extends to an integral model, has Frobenius traces all in some fixed number field
E ⊂ Q�, and has bad, infinite reduction at some closed point x of X \ U . We show
that L occurs as a summand of the cohomology of a family of abelian varieties over U .
The argument follows the structure of the proof of a recent theorem of Snowden and
Tsimerman, who show that when E = Q, then L is isomorphic to the cohomology of
an elliptic curve EU → U .
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1. Introduction

To state our main result, we require the following definition and setup.

Definition 1.1. Let B/k be a smooth variety over a finitely generated field and let � �= char(k)
be a prime. An abelian scheme g : AB → B is said to be of SL2-type if there is a decomposition
of lisse Q�-sheaves on B:

R1g∗Q�
∼=

⊕
i

Lmi
i , (1.1)
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where each Li is a geometrically irreducible rank 2 lisse Q�-sheaf on B with cyclotomic
determinant

∧2 Li
∼= Q�(1).

Setup 1.2. Let K be a number field and let X/K be a smooth, proper, geometrically irre-
ducible curve. Let U ⊂ X be a Zariski open and dense subset of X with reduced complementary
divisor D. Assume that D is non-empty.

Let f : AU → U be a generically simple abelian scheme that is of SL2-type and has bad,
infinite reduction along some non-empty subset of D. Then the following statements hold for
each direct summand Li of R1f∗Q�.

(1) The summand Li is a geometrically irreducible, rank 2 lisse Q�-sheaf on U with cyclotomic
determinant:

∧2 Li
∼= Q�(1).

(2) There exists a proper smooth model X over OK [1/N ], an open subset U of X extending U ,
an �-adic local field M , and a lisse OM -sheaf Li on U such that

(Li ⊗OM
Q�)|U ∼= Li.

(3) There exists a number field E such that for each closed point x of U, the trace of Frobenius
on (Li)x is in E ⊂ Q�.

(4) The local (geometric) monodromy of Li is infinite around some non-empty subset of D.

In [ST18], Snowden and Tsimerman prove that when E = Q, the above four conditions charac-
terize those lisse Q�-sheaves coming from families of elliptic curves. More precisely, they prove
the following.

Theorem 1.3 (Snowden–Tsimerman). Let the notation be as in Setup 1.2 and let L be a lisse
Q�-sheaf on U satisfying the above conditions (1)–(4), with E = Q. Then there exists a family
of elliptic curves

f : AU → U

and an isomorphism L ∼= R1f∗(Q�).

In this article, we consider the situation where Frobenius traces are all contained in a fixed
number field E.

Theorem 1.4. Let the notation be as in Setup 1.2 and let L be a lisse Q�-sheaf on U satisfying
conditions (1)–(4). Then there exists an abelian scheme

f : AU → U

such that L is a summand R1f∗(Q�).

Remark 1.5. We view Theorem 1.4 as providing a bit of further evidence for the relative
Fontaine–Mazur conjecture, as in [LZ17, Conjecture, p. 292] or [Pet23, Conjecture 1].

An observation of Litt implies that for an arithmetic local system, condition (2) will auto-
matically hold: see step 2 of the proof of [Lit21, Theorem 1.1.3] or [Pet23, Theorem 6.1].
(See also the argument in [LZ17, Proposition 4.1].) Therefore, to prove the relative Fontaine–
Mazur conjecture for rank 2 local systems that have infinite monodromy around some point, it
suffices to bound the field generated by Frobenius traces. This task seems to be quite difficult in
general; for some progress on this question, see [Shi20].

Remark 1.6. We do not have any idea how to get around point (4). As will be explained in the
proof sketch, this is because we crucially use some of Drinfeld’s early work on the Langlands
correspondence for GL2 over function fields. More specifically, he is able to show that if L is
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an irreducible rank 2 lisse Q�-sheaf over a curve U/Fq with cyclotomic determinant and infinite
monodromy at ∞, then L comes from a family of abelian varieties over U . His proof finds such
an abelian scheme as an isogeny factor of a Drinfeld modular curve over Fq(U).1 When we do
not assume infinite monodromy at∞, then no such result is known; more specifically, the output
of his later work on the Langlands correspondence will imply that there exists an open subset
V ⊂ U × U and a smooth projective morphism f : S → V of relative dimension 2 such that
L � L∗|V is a summand of R2f∗Q�. See [Kri22, Remark 1.4, Question 9.1] and [KP21, § 1] for
related discussion.

Our argument largely follows [ST18], but we need several new ingredients. To explain this,
we quickly reprise their argument in the following remark.

Remark 1.7 (Sketch of [ST18]). For notational simplicity, assume that L corresponds to a
representation

ρ : π1(UK)→ GL2(Z�),

with the property that the mod �3 residual representation π1(UK)→ GL2(Z/�3Z) is trivial.

(1) Using Drinfeld’s first work on the Langlands correspondence over finite fields, for all
p� 0 they construct families of elliptic curves over Up with trivial �3 torsion whose monodromy
is isomorphic to ρ|Up . (This involves an implicit isogeny from what is produced by Drinfeld’s
theorem.) These families, in turn, induce maps

λp : Xp→ M̄1,1(�3)→ M̄1,1(�3)⊗OK/p,

where M̄1,1(�3) is the compactified moduli space of elliptic curve with full �3 level structure,
defined over Spec(Z[1/�]), and the final target is therefore a hyperbolic curve over OK/p.

(2) While the map λp is not a priori generically separable, they factor it through absolute
Frobenius to construct a new map, μp : Xp→ M̄1,1(�3)⊗OK/p which is generically separable.
Note that the induced elliptic curve over Up also has monodromy isomorphic to ρ|Up . Then
Riemann–Hurwitz applies, bounding the degree of the map μp by some number d, which is
crucially independent of p. We may replace λp with μp.

(3) At this point, consider the moduli space of maps:

H := Hom≤d
OK [1/N ](X,M̄1,1(�3)),

of morphisms of curves λ over OK [1/N ], with degree bounded by d. This moduli space is a
scheme of finite type over OK [1/N ] because we have put a bound on the degree.2 For each k, let
Hk denote the subset of H consisting of those maps λ such that:

• λ(U) ⊂M1,1(�3); and
• the induced elliptic curve EU → U has mod �k monodromy isomorphic to ρ mod �k.

Then Snowden and Tsimerman show that each the Hk is a closed subset and, hence, so is
H∞ := ∩Hk. The subset H∞ ⊂ H will parametrize those maps λ such that the monodromy rep-
resentation is integrally isomorphic to ρ. EquippingH∞ ⊂ H with the reduced induced subscheme
structure, they deduce thatH∞ is therefore a scheme of finite type overOK [1/N ]. As it has points

1 One crucial technique he uses is an equal-characteristic p rigid-analytic uniformization of the Drinfeld modular
curve at a cusp; indeed, the Drinfeld modular curve will be totally degenerating.
2 In fact, potentially at the cost of increasing N , this moduli space is finite flat over OK [1/N ]. However, this fact
is not used in their proof.
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modulo p for infinitely many primes p of OK , it follows that it has a point over a finite extension
field K ′/K. Then a Weil restriction argument, together with Faltings’ isogeny theorem, allows
one to conclude.

We now explain the new ingredients in turn, highlighting the additional difficulties.

Remark 1.8 (Sketch of the proof of Theorem 1.4). Again for notational simplicity, assume that
L corresponds to a representation:

ρ : π1(UK)→ GL2(Z�).

(Note that Q� contains number fields of infinitely large degree.) We further assume that ρ
has the property that the mod �3 residual representation π1(UK)→ GL2(Z/�3Z) is trivial.
(This last assumption will play no role, but we include it to see which additional technicalities
emerge.)

(1) Again using Drinfeld’s early work on the Langlands correspondence over finite fields, for each
p� 0, we may construct an abelian scheme over fp : Ap→ Up of dimension h := [E : Q], such
that L|Up injects as a summand of R1fp,∗Q�.

(a) Here we encounter our first complication: it is not necessarily true that we can choose
Ap[�3] to be the split étale cover of Up: unlike in the case [ST18], L|Up is not all of R1fp,∗Q�.
However, there exists a finite, connected cover ϕp : (Xp)′ → Xp (purely in characteristic p!)
of degree ≤ |GL2h(Z/�3Z)| such that:
• the map ϕp is finite étale over Up;
• if we set (Up)′ := ϕ−1

p (Up), the pullback A′ → (Up)′ has trivial �3-torsion;
• the abelian scheme f ′p : A′ → (Up)′ has semistable reduction at (Xp)′.
The key property of the cover ϕ : (Xp)′ → Xp is that the degree is bounded independent
of p. However, we emphasize that, as of yet, there is no preferred X ′ → X over K
that patches all of these modulo p covers together. At this point, we demand that
N > |GL2h(Z/�3Z)|, to ensure that any such ϕp is tamely ramified.

(b) We now encounter our next (minor) trouble. A priori, there is no bound on the degree of
the polarization of f ′p : A′

p→ (Up)′. This has a simple solution: Zarhin’s trick, which says
that B′

p := (A′
p× (A′

p)
t)4 has a principal polarization.

(c) There is a third trouble; unlike in the approach of Snowden and Tsimerman, we have not
yet nailed down the integral monodromy, and this is more subtle. There are several ways
one could address this. Our solution to this problem will be found in the construction of a
simple moduli space, Hk: see step (3).

We therefore get a map:

λ′p : (Xp)′ → A∗
8h,1,�3 → A∗

8h,1,�3 ⊗OK/p,

where A∗
8h,1,�3 is the Baily–Borel compactification of the fine moduli scheme A8h,1,�3 parametriz-

ing principally polarized abelian schemes of dimension 8h and trivial level �3 structure. This λ′p
has the following property: the pullback of the universal rank 16h lisse �-adic sheaf on A8h,1,�3

to Up has ρ as a rational summand.

(2) Our next goal is to somehow numerically bound λ′p. Recall that [ST18] do this by a com-
bination of Riemann–Hurwitz and factoring through some power of absolute Frobenius. In our
setting, this step is more tricky, and we chose to use an Arakelov-style inequality. More pre-
cisely, if fp : B̄′

p→ (Xp)′ is the Néron model of B′
p→ U′

p, then we will bound the degree of
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the Hodge vector bundle E1,0
(Xp)′ := R0fp∗Ω

1
B̄′

p/(Xp)′(log Δ), at least for many infinitely many p.

Set E0,1
(Xp)′ := R1fp∗OB̄′

p
. Then to bound the degree of E1,0

(Xp)′ , we will need to know that the
logarithmic Kodaira–Spencer map constructed by Faltings and Chai,

θ′p : E1,0
(Xp)′ → E0,1

(Xp)′ ⊗ Ω1
(Xp)′(logD),

is not only non-zero but is moreover an isomorphism at the generic point.3 In more detail:
for any p� 0 such that the underlying prime number p splits completely in E, the field gen-
erated by Frobenius traces, the induced p-divisible group on (Up)′ splits as the direct sum of
several copies of h (mutually non-isogenous) height 2, dimension 1 p-divisible groups G′

i and
their duals (G′

i)
t. We prove, using monodromy considerations, that they are generically ordinary

and have supersingular points. Applying a Frobenius untwisting lemma from the PhD thesis of
Jie Xia [Xia13], we conclude that we may ‘Frobenius untwist’ each of them until they are all
generically versally deformed.4 (In Appendix A, we provide a proof of Xia’s Frobenius untwisting
lemma in our context, and also give a second argument and perspective of the termination of
Frobenius untwisting stability techniques.) Once again using Zarhin’s trick, we will obtain an
isogenous, principally polarized abelian scheme over U′

p, which we relabel B′
p, with the Néron

model
fp : B̄′

p→ (Xp)′

and such that the logarithmic Kodaira–Spencer map is a generically injective map of coher-
ent sheaves on (Xp)′. By taking determinants, we deduce an Arakelov-style inequality, thereby
bounding the degree of the induced Hodge line bundle on (Xp)′ by some integer d, which is
crucially independent of p. The output of this is Lemma 2.7.

(3) To mimic the third step, we first construct some finite-type moduli spaces of OK [1/N ], and
then we use our argument as above to show it has points modulo p for infinitely many p. This
is, in greater detail, as follows.

(a) Fix d > 1 and set H to be the moduli of triples (X′, ϕ, λ):

X′ λ ��

ϕ

��

A∗
8h,1,�3 ⊗OK [1/N ]

X,

where:
• X′/OK [1/N ] is a smooth, proper, geometrically connected curve;
• ϕ is finite, of degree at most ≤ |GL16h(Z/�3Z)|, and étale over U;
• there exists some point ∞′ ∈ X′ that is sent to a 0-dimensional cusp in A ∗

8h,1,�3 ; and
• the degree of the pulled-back Hodge line bundle on X′

K is ≤ d.
Then H will be a Deligne–Mumford stack, of finite type over OK [1/N ]. (The stackiness
comes from the intervening Hurwitz space.) We further show that the generic fiber of H

3 The logarithmic Kodaira–Spencer map θ′p is the derivative of the period map λ′
p . We emphasize that knowing

that map λ′
p is generically separable (equivalently, θ′p being non-zero) is not sufficient for our application. Morally

speaking, we need to prove that the image of λ′
p is not contained in one of the natural foliations of the relevant

Hilbert modular variety. However, we chose to not work with good reductions of Hilbert modular varieties, as that
theory is more complicated than the bare theory of moduli of abelian varieties.
4 This mimics the elliptic modular setting for the following reason: the equal-characteristic universal deformation
space of a height 2, dimension 1 p-divisible group is one-dimensional.
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has dimension 0 (and is, in fact, reduced); while this is an immediate corollary of the PhD
thesis of Ben Moonen [Moo98], we argue following the work of Saito. This implies that,
after potentially further increasing N , the stack H/OK [1/N ] has relative dimension 0.5

(b) Recall that L is a lisse Z�-sheaf on U, whose generic fiber is an Z�-lattice inside of L. For
k ≥ 1, set Hk to be the subspace of H given by those (X′, ϕ, λ) (with induced abelian scheme
f : B′ → X′) such that there exists a map

ψ : ϕ∗(L)/�k → R1f∗Z�/�
k

of torsion locally constant étale sheaves with the following condition: the reduction modulo �
of ψ is non-zero. (This condition is crucial in our approach.)6 Then Hk ⊂ H will be a closed
substack, which we may equip with the reduced induced structure. Similarly, set H∞ to be
∩Hk, again with the reduced induced stack structure. Note that H∞ is then a finite-type
Deligne–Mumford stack over Spec(OK [1/N ]) for some N .

Unlike in the Snowden–Tsimerman approach, the relationship of the moduli space H∞
to Drinfeld’s theorem is not immediately apparent. However, in both approaches, the moduli
spaces involve extra maps of �k-torsion sheaves rather than lisse Z�-sheaves.

(c) By the careful choice of Hk and a crucial diagonalization argument on H∞ (contained in
Lemma 3.6), it will follow from the earlier steps that there exists an infinite set of primes
p such that H∞ has points modulo p. (Unlike the approach of Snowden and Tsimerman,
this does not require one to take an �-primary isogeny.) By the Nullstellensatz, one deduces
that H∞ has characteristic 0 points. A Weil restriction argument then yields the result.

Remark 1.9. Katz has shown that rigid local systems on the punctured projective line are motivic,
and Corlette and Simpson have shown that all rigid rank 2 local systems are motivic. Our main
theorem provides a new arithmetic approach to both Katz’s theorem in rank 2 and also the
Corlette–Simpson theorem, subject to an additional assumption analogous to condition (4). Here
is an outline of the proof. We emphasize that these approaches will critically rely on a quasi-
projective version of a deep theorem on projective varieties of Esnault and Groechenig [EG20];
this result was announced very recently [EG23].

First we assume that U is a curve. Let L be a cohomologically rigid local system of rank 2
on Uan

C with coefficients in Q�, trivial determinant and infinite monodromy around ∞. Suppose
that the local system L spreads out to an étale local system L with cyclotomic determinant over
a finitely generated spreading out U/S such that the stable Frobenius trace fields are bounded,
i.e. there exists a number field E such that for all closed points s, there exists a finite extension
s′/s such that the Frobenius trace field of L|Us′ is contained in E. Then, our argument applies
verbatim to prove that L over UC comes from a family of abelian varieties; we get mod p
points for infinitely many p� 0, and the relevant moduli space is of finite type and, in fact,
generically 0-dimensional, so by specialization of the prime-to-p fundamental group we may
conclude.

In fact, recent work [KL23] of the first-named author and Lam shows the following. If X/C
is a projective variety, and if L is a cohomologically rigid Q�-local system with trivial determi-
nant on Xan, then there exists a spreading out X/S and a number field E ⊂ Q� such that L

spreads out to an étale local system L on X with cyclotomic determinant such that the stable

5 By specialization of the prime-to-p fundamental group, the fact that H has relative dimension 0 over OK [1/N ]
will imply that the geometric local system L|UK̄

comes from a family of abelian varieties. This does not use any
of the more delicate moduli spaces Hk to come.
6 When the lisse Q�-sheaf has coefficients in an �-adic local field M , not necessarily assumed to be Q�, then we
instead demand that there exists such a ψ whose reduction modulo a fixed uniformizer πM is non-zero.
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Frobenius trace field is contained inside of E. In the quasi-projective case, which is what is
needed here, the arguments of [KL23] work mutatis mutandis, substituting in [EG23] for [EG20].
Indeed, in [KL23], the key p-adic fact we need is that rigid stable flat connections give rise to
F f -isocrystals on the relevant p-adic completions.

In general, when U is higher dimensional (i.e. U = X \D, where X is a smooth projective
variety and D is a simple normal crossings divisor), it is very plausible that one may simi-
larly deduce the analog of the Corlette–Simpson theorem here (again, subject to the restriction
that the local system is cohomologically rigid and that the local monodromy around one of the
boundary divisors is infinite). Here is a sketch of the argument. The main results of [EG23] in
fact output rank 2 filtered logarithmic F -crystals; as above, porting these objects into [KL23] as
above, one can deduce that cohomologically rigid rank 2 local systems will have spreading-outs
whose stable Frobenius trace field is bounded. A complete set of companions to the logarithmic
F -isocrystals so constructed will likely exist, as in the projective case this is shown in [EG20].
From these F -isocrystals, [KP22] will provide abelian schemes on open subsets of the mod p
fibers of bounded dimension7 and [KP21, Corollary 6.12] shows that, after possibly replac-
ing with an isogenous abelian scheme, the abelian schemes extend to the whole mod p fiber
of U. We can bound the degree of the Hodge line bundle for infinitely many p by Frobe-
nius untwisting, exactly as is done here. Finally, the appropriate Hom scheme will again be
0-dimensional, so by using specialization of the prime-to-p fundamental group one may again
conclude.

2. Drinfeld’s work on the Langlands correspondence for GL2 and some corollaries

A key ingredient in the proof of Theorem 1.4 is the following Theorem 2.2, which is a byprod-
uct of Drinfeld’s first work on the Langlands correspondence for GL2. We first record a
setup.

Setup 2.1. Let p be a prime number and let q = pa. Let C/Fq be a smooth, affine, geometrically
irreducible curve with smooth compactification C̄. Let Z := C̄ \ C be the reduced complementary
divisor.

Theorem 2.2 (Drinfeld). Let the notation be as in Setup 2.1 and let L be a rank 2 irreducible
Q� sheaf on C with determinant Q�(1). Suppose L has infinite local monodromy around some
point at ∞ ∈ Z. Then L comes from a family of abelian varieties in the following sense: let E
be the field generated by the Frobenius traces of L and suppose [E : Q] = h. Then there exists
an abelian scheme

πC : AC → C

of dimension h and an isomorphism E ∼= EndC(A)⊗Q, realizing AC as a SL2-type abelian
scheme, such that L occurs as a summand of R1(πC)∗Q�. Moreover, AC → C is totally degenerate
around ∞.

See [ST18, Proof of Proposition 19, Remark 20] for how to recover this result from Drinfeld’s
work. This amounts to combining [Dri83, Main Theorem, Remark 5] with [Dri77, Theorem 1].

We make some observations about the p-adic properties of the resulting abelian schemes.
In particular, our goal is to show that, in the context of Theorem 2.2, we can modify
AC → C with products, duals, and isogenies such that the resulting abelian scheme BC →
C that has especially nice (p-adic) properties; these will, in turn, allow us to prove an

7 The boundedness of the dimension comes from the boundedness of the stable Frobenius trace field.
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Arakelov-style inequality. First, we will give the following non-standard definition, which is
adapted for our purpose.

Definition 2.3. Maintain notation as in Setup 2.1. Let GC be a p-divisible group on C. We
say GC has strong strict semistable reduction along Z if:

• GC has semistable reduction along Z (see [Tri08, Definition 4.2]), which is based on semistable
reduction in the sense of de Jong [dJ98, Definition 2.2]; and

• if for every point ∞ ∈ C̄\C with local parameter z∞ the restricted p-divisible group

GC |Spec(Fq((z∞)))

over Spec(Fq((z∞))) does not extend to a p-divisible group over Spec(Fq[[z∞]]).

Definition 2.3 is useful as it concisely expresses the condition that GC have semistable
reduction and, moreover, that it does not extend as a p-divisible group across any of the cusps.

The next proposition will be critical for bounding degrees of maps to moduli spaces. In
Appendix A, we explain a second proof/perspective of the second part, which is based on a
destabilizing iteration argument due to Langer.

Proposition 2.4. Maintain notation as in Setup 2.1. Let GC be a height 2, dimension 1
p-divisible group on C with strong strict semistable reduction along Z. Suppose further that
D(GC)⊗Qp is an irreducible object of F-Isoc†(C)

Qp
. Then:

(1) GC is generically ordinary with a non-empty supersingular locus; and
(2) there exists an isogenous p-divisible group HC → GC that is generically versally deformed

(in the sense of [Kri22, Defintions 8.1, 8.2]).8

Before we begin the proof, we comment on the overconvergence assumption. If HC → C is
a p-divisible group, then F -isocrystal D(HC) is automatically a convergent F -isocrystal. In our
setting, the fact that we demand GC → C to be semistable around Z implies that D(GC) is,
in fact, overconvergent. Part of the hypothesis of Proposition 2.4 is then that D(GC)⊗Qp is
absolutely irreducible in F-Isoc†(C).

First proof of Proposition 2.4. As GC has height 2 and dimension 1, there are only two possible
Newton polygons, which correspond to the p-divisible group being ordinary or supersingular,
respectively. If GC were not generically ordinary, it would be everywhere supersingular. However,
supersingular p-divisible groups cannot be strictly semistable: as there is no multiplicative part,
the filtration in [dJ98, Definition 2.2], would have to be trivial, which would imply that GC

extends to a p-divisible group over C̄. This shows GC is generically ordinary.
Suppose that GC had no supersingular points: then GC is everywhere ordinary. Let HC be

the multiplicative sub-p-divisible group of GC , i.e. the height 1, dimension 1 p-divisible group
with Newton slope 1 everywhere. Let ∞ ∈ Z, with formal parameter z∞. Then the p-divisible
group GC |Spec(Fq((z∞))) has semistable reduction in the sense of [dJ98, Definition 2.2] and does
not extend to a p-divisible group over Spec(Fq[[z∞]]). Then, for the definition of semistability to

8 We briefly recall the notion here. Let GC → C be a height 2, dimension 1 p-divisible group. There is a
Kodaira–Spencer map: KS : TC → Ω∗ ⊗ Ψ, where Ω is the Hodge line bundle of GC and Ψ is the dual of the
Hodge line bundle of the Serre dual Gt

C . We say that GC → C is generically versally deformed if the above KS is
non-zero. After the work of Illusie [Ill85], this is equivalent to the following condition: there exists a closed point
c such that the map uc : C∧

c → Def(Gc) from the formal completion of C at c to the equal-characteristic universal
deformation space of Gc is a formally smooth map of formally smooth, 1-dimensional κ(c) schemes, i.e. uc is an
isomorphism.
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be satisfied, the only possible filtration is

Gμ
Spec(Fq((z∞))) = Gf

Spec(Fq((z∞))) = HC |Spec(Fq((z∞))).

(Here, the meaning of Gμ
Spec(Fq((z∞))) and Gf

Spec(Fq((z∞))) is given as in [dJ98, Definition 2.2].)
However, by the definition of semistability, HC |Spec(Fq((z∞))) therefore extends to a p-divisible

group over Spec(Fq[[z∞]]). Ranging over all points∞ ∈ Z, we see that D(HC)⊗Qp ∈ F-Isoc(C)
in fact extends to an F -isocrystal on F-Isoc(C̄): therefore, D(HC)⊗Qp ∈ F-Isoc†(C). However,
this yields a sub-object (in F-Isoc†(C)) of D(GC)⊗Qp, contradicting the absolute irreducibility
of the hypothesis. Therefore, GC has a non-empty supersingular locus.

Now, suppose that GC → C is not generically versally deformed, i.e. that KS = 0 identically
on C. Then by [Xia13, Theorem 6.1], there is a p-divisible group (G1)C → C such that (G1)

(p)
C
∼=

GC , i.e. the Frobenius twist of (G1)C is isomorphic to GC . The p-divisible groups GC and (G1)C

are isogenous. If the Kodaira–Spencer map for (G1)C is non-zero, we may stop. Otherwise,
we may apply [Xia13, Theorem 6.1] again to find a p-divisible group (G2)C → C such that
(G2)

(p)
C
∼= (G1)C . We claim this process must terminate at some point. Here is a simple proof

(also indicated in [Kri22, p. 253]). Let c be a closed point of C such that Gc is supersingular.
Then the (equal characteristic) deformation map:

uc : C∧
/c → Def(Gc) ∼= κ(c)[[t]]

is non-zero, because GC is generically ordinary. (In other words, if uc were 0, then the p-divisible
group over Spec(κ(c)[[zc]]) would be supersingular at both the closed and the generic point, which
is a contradiction: over the generic point, the p-divisible group is base-changed from Fq(C) along
the map Fq(C) ↪→ κ(c)[[zc]].)

The map KSc is simply the derivative of uc. In particular, KSc = 0 implies that u∗c(t) ∈
κ(c)[[zc]] is a power series in zp

c ; on the level of the universal deformation map uc, Frobenius
untwisting amounts to extracting a pth root of u∗c(t). As uc is not constant, this process must
terminate. �
Corollary 2.5. Let the notation be as in Theorem 2.2. Further, suppose the following.

• The lisse Q�-sheaf L has infinite, unipotent local monodromy around each point ∞ ∈ Z.
• Let E be the field generated by Frobenius traces of L. Suppose that p splits completely in E.

Then there exists an abelian scheme fC : AC → C satisfying all of the conclusions of Drinfeld’s
theorem 2.2, together with the further properties

AC [p∞] ∼=
⊕

i

GC,i,

where:

(1) the GC,i are all mutually non-isogenous;
(2) each GC,i is a height 2, dimension 1 p-divisible group on C; and
(3) each GC,i is generically versally deformed, generically ordinary, and has non-empty

supersingular locus.

Proof. We will first construct
⊕

iGC,i with the desired properties.
Let f : AC → C be an abelian scheme produced by Drinfeld’s theorem 2.2. By Grothendieck’s

monodromy criterion for semistable reduction, AC → C is totally degenerate around every
point of Z. The F -isocrystal E := D(AC [p∞])⊗Qp is a semi-simple object of F-Isoc†(C)
by [Pál22]. We claim that E is the companion to R1(πC)∗Q�. Indeed, a theorem of Zarhin
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[Mor85, Chapitre XII, Theorem 2.5, pp. 244–245] implies that R1(πC)∗Q� is semi-simple and
the characteristic polynomials of Frobenius agree at closed points by [KM74]. On the other
hand, there is a decomposition:

E
Qp

∼=
⊕

i

Ei, (2.1)

where Ei are irreducible objects of F-Isoc†(C)
Qp

.
It follows from [KP22, Remark 2.8] that every summand Ei is a companion of L.9 As the

relation of companions preserves ‘infinite monodromy at∞ ∈ Z’, each Ei has infinite monodromy
around every ∞ ∈ Z.

In addition, det(Ei) = Qp(1), again because the property ‘cyclotomic determinant’ is
preserved under the companions relation.

As p splits completely in E, it follows that E ⊗Qp
∼= ΠQp acts on E , and the images of the

idempotents are the Ei, i.e. the (absolutely) irreducible summands Ei are objects of F-Isoc†(C).
The slopes of each Ei are in between 0 and 1. Therefore, we may apply [KP21, Lemma 5.8]10

and [dJ95] to see that for each Ei, there exists a (non-canonical) p-divisible group GC,i with
D(GC,i)⊗Qp

∼= Ei. (Equivalently, note that Ei ∈ F-Isoc†(C), i.e. each Ei has coefficients in Qp,
by the hypothesis that p splits completely in E.)

The p-divisible groups AC [p∞] and
⊕

iGC,i are isogenous. At this point, we wish to claim
that each GC,i has strong strict semistable reduction along Z. First of all, note that AC [p∞] has
strong strict semistable reduction by [dJ98, 2.5].

As D(GC,i)⊗Qp is overconvergent, it follows from [Pál22, Theorem 2.22] that every GC,i

has semistable reduction along Z. Suppose for contradiction that GC,1 extended through some
cusp ∞ ∈ Z. Then E1 ∼= D(GC,1)⊗Qp also extends to an (overconvergent) F -isocrystal on the
curve C ∪ {∞} = C̄ \ {Z \∞}. As each of the Ei are companions, this implies that they all also
extend to C ∪ {∞}. Therefore, the �-adic companion also extends to C ∪ {∞}. This implies that
L also extends to a lisse Q�-sheaf on C ∪ {∞}, contradicting our assumption that L had infinite,
unipotent monodromy around ∞.

We may now apply Proposition 2.4 to replace each GC,i with an isogenous p-divisible group
that satisfies the two conclusions of the proposition. Note that we still have the relation AC [p∞]
is isogenous to

⊕
GC,i.

By [KP22, Lemma 2.13], it follows that we can replace AC by an isogenous abelian scheme
such that

AC [p∞] ∼=
⊕

i

GC,i,

where every GC,i is generically versally deformed, is generically ordinary, and has supersingular
points. Finally, each Gi will be mutually non-isogenous because the F -isocrystals D(Gi)⊗Qp

are a complete collection of p-adic companions of L (see [KP22, Remark 2.8]). �
Using the above, we will be able to extract all of the p-adic information we need from

Theorem 2.2 to prove Theorem 1.4. We need one final piece of notation.

Definition 2.6. Let N ≥ 1 be an integer prime to p and let g ≥ 1 be a positive integer. Then
Ag,1,N/Spec(Z[1/N ]) denotes the (fine) moduli space of principally polarized abelian varieties

9 Strictly speaking, the remark only states this for the �-adic companion, but the preceding sentence then follows
immediately from the theory of companions.
10 This is really due to Katz, see [Kat79, Theorem 2.6.1].
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with trivial full level N structure. This is a smooth, quasi-projective scheme over Spec(Z[1/N ]).
It has a compactification, A ∗

g,1,N/Spec(Z[1/N ]).11 This latter scheme has a natural ample line
bundle, the Hodge line bundle, which we denote by α.

Then the precise output we need from Drinfeld’s theorem 2.2 is given in the following lemma.

Lemma 2.7. Let the notation be as in Theorem 2.2. Suppose that p splits completely in E and
L has infinite, unipotent monodromy around every point of Z.

Then there exists a principally polarized abelian scheme abelian scheme f : BC → C, of SL2

type and dimension 8h, such that L occurs as a direct summand of R1f∗Q�, and the following
hold.

(1) The abelian scheme BC → C has semistable, infinite reduction along C̄\C. Call the Néron
model B̄C̄ → C̄.

(2) There exist h mutually non-isogenous p-divisible groups GC,i, each of height 2, dimension 1,
and generically versally deformed, such that there is a decomposition of p-divisible groups

BC [p∞] ∼=
⊕

i

(GC,i ×Gt
C,i)

4.

(3) After Kato and Trihan, to f̄ : B̄C̄ → C̄ there is an associated logarithmic F -crystal with
nilpotent residues (M,F ) in finite, locally free modules on the log pair (C̄, Z). Similarly,
there is a logarithmic Hodge vector bundle, which we write as ΩB̄/C̄ , a rank 8h vector bundle

on C̄. Then the following hold:
(i) ΩB̄/C̄ splits as the direct sum of 8h positive line bundles on C̄;
(ii) the log Kodaira–Spencer map (constructed in [FC90, Ch. III, Corollary 9.8]

θ : ΩB̄/C̄ → R1f̄∗(OB̄)⊗ ωC̄(Z),

where ωC̄ denotes the sheaf of differential one-forms on C̄, is an injective map of coherent
sheaves on C̄;

(iii) deg(ΩB̄/C̄) ≤ h/2 · (2g(C̄)− 2 + |Z|) = 4hχtop(C);
(iv) suppose N is an integer, coprime to p, such that BC [N ]→ C is a split étale cover; then

the induced moduli map C → A8h,1,N extends to a map

C̄ → A ∗
8h,1,N ,

where the latter denotes the Baily–Borel compactification; then the Hodge line bundle
α on A ∗

8h,1,N pulls back to det(ΩB̄/C̄).

Proof. Construct AC → C as in Corollary 2.5. Again, by Grothendieck’s criterion for semistable
reduction of abelian varieties, AC → C must have semistable reduction. Set BC := (AC ×At

C)4;
then by a result of Zarhin [Mor81, Chapitre IX, Lemme 1.1, p. 205], BC → C is principally
polarized. Moreover, it clearly has semistable reduction. From the construction, and the fact
that At

C [p∞] ∼= (AC [p∞])t, where the first transpose is ‘dual abelian scheme’ and the second is
‘Serre-dual p-divisible group’, it follows that part (2) holds.

We are left to prove part (3). To do this, we will make heavy use of [KP22, Setup A.10,
Proposition A.11]. First of all, each D(GC,i), a priori an Dieudonné crystal on C, extends
uniquely to logarithmic Dieudonné crystal (with nilpotent residues) on (C̄, Z). Indeed, existence
of the extension of D(BC [p∞]) follows from [KT03, (4.4)–(4.8)] and uniqueness from [KP22,

11 The moduli space Ag,1,N is not geometrically connected over Spec(Z[1/N ]). This is why some authors prefer to
work with the geometrically connected components, which are defined over Spec(Z[ζN , 1/N ]).
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Proposition A.11(3)]: name the extension (M,F, V ). These two results immediately imply the
desired existence and uniqueness for the extension of D(Gi) to a logarithmic F -crystal, which
we name (Mi, F, V ). The uniqueness implies that the (unique) extension of D(Gt

i) is isomorphic
to the dual logarithmic Dieudnné crystal (Mi, F, V )t by [KP21, (5.11) and (5.12)].

Set M(C̄,Z) to be the evaluation of M on the trivial thickening of (C̄, Z) and set Ω to be the
kernel of F on M(C̄,Z); then Ω is a vector bundle on C̄, called the Hodge vector bundle. (Kato
and Trihan obtain the dual version of this in [KT03, (5.1)], especially Lemma 5.3 of [KT03].)12

Similarly, we can construct the Hodge bundle Ωi of each (Mi, F ), which will be a line bundle
on C̄. Moreover, there is a short exact sequence

0→ Ωi → (Mi)(C̄,Z) → Ψ∗
i → 0,

where Ψi is the Hodge bundle of Gt
i. We have an isomorphism of vector bundles on C̄:

Ω ∼=
⊕

i

(Ωi ×Ψi)4

As each GC,i has non-empty supersingular locus, it follows that the Hasse invariant
associated to GC,i,

HasseGC,i
∈ H0(C̄,Ω⊗p−1

i ),

is non-zero, which implies that Ωi is a positive degree line bundle on C̄. As Gt
C,i is supersingular

exactly when GC,i is supersingular, we deduce that Ψi is also positive. Therefore, Ω = ΩB̄/C̄

splits as the direct sum of 8h positive line bundles. In particular, we have shown part (i). We
further note that Ω is isomorphic to the Hodge line bundle associated to the Néron model of
BC → C by [KP22, (A.11)] (this was first proven in [KT03]).

For the next step, Faltings and Chai have constructed the following Kodaira–Spencer map
[FC90, Ch. III, Corollary 9.8]:

ΩB̄/C̄ ⊗ ΩB̄t/C̄ → ωC̄(Z), (2.2)

extending the usual Kodaira–Spencer map over C. As B admits a principal polarization, we
have that BC

∼= Bt
C and, hence, B̄C̄

∼= B̄t
C̄ , as both are simply the respective Néron models.

Therefore, we may equivalently write (2.2) as

θ : ΩB̄/C̄ → Ω∗̄
B/C̄ ⊗ ωC̄(Z) ∼= Hom(ΩB̄/C̄ , ωC̄(Z)).

Under the decomposition

ΩB̄/C̄
∼=

⊕
(Ωi ⊕Ψi)4,

and after restricting to C, the above θ|C is just the sum of the Kodaira–Spencer maps for each
Gi and Gt

i:

Ωi|C →HomOC
((Ψi)|C , ωC),

Ψi|C →HomOC
((Ωi)|C , ωC).

These were constructed to be non-zero, as both Gi and Gt
i are generically versally deformed;

therefore, the Kodaira–Spencer map of sheaves is an injective map of coherent sheaves. Therefore,
part (ii) is shown.

12 See also [KP22, Remarks A.8 and A.9] for a discussion of these results and references for the compatibility with
the usual Hodge vector bundle associated to an abelian scheme.
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Fortunately, part (iii) is an easy corollary of part (ii). Indeed, taking degrees, we see that

deg(ΩB̄/C̄) ≤ deg(Hom(ΩB̄/C̄ , ωC̄(Z))) = 2g(C̄)− 2 + |Z| − deg(ΩB̄/C̄),

from which the inequality follows immediately.
Finally, let us prove part (iv). By moduli theory, we have a map C → A8h,1,N , where the

latter is a fine moduli scheme. As C̄ is a smooth curve and the Baily–Borel compactification
A ∗

8h,1,N is proper, it follows that we get an extension:

λ : C̄ → A ∗
8h,1,N .

Finally, the argument that the Hodge line bundle on A ∗
8h,1,N pulls back under λ to det(ΩB̄/C̄)

is given in the text surrounding [KP22, (3.4), (3.5)]. (While the argument in [KP22] is only
written for N = �, it generalizes verbatim to the matter at hand. Indeed, the argument is an
easy corollary of [FC90, Ch. V, Theorem 2.5].) �

3. The moduli spaces

We work in the following situation. Let K be number field, let N ≥ 1, set S := Spec(OK [1/N ]),
and let X/S be a smooth projective curve, let D ⊂ X be a relative reduced divisor, and let U

denote the open complement.
Let � be a prime number and let g ≥ 1 be an integer. We again denote by A ∗

g,1,�3 the
Baily–Borel compactification of Ag,1,�3 , which is defined over Spec(Z[1/�]). This moduli space
has a natural ample line bundle, the Hodge line bundle, which we denote by α.

Definition 3.1. Fix a positive integer b. Denote by H the following contravariant pseudo-
functor from the category of S schemes to the 2-category of groupoids. The value H(T ) for an
S-scheme T is the groupoid of triples (Y, ϕ, λ), that fit into a diagram

Y
λ ��

ϕ

��

A ∗
g,1,�3 × T

XT

where

• Y/T is a smooth, projective, geometrically connected curve;
• λ sends W := ϕ−1(U) ⊂ Y to Ag,1,�3 × T ⊂ A ∗

g,1,�3 × T ;
• ϕ is finite morphism, of degree ≤ |GL2g(Z/�3Z)|, and étale over U;
• there exists some cusp ∞ of Y(T ) (lying over a point of D(T ) of X(T )) that is sent to a

0-dimensional cusp of A ∗
g,1,�3 × T ; and

• the degree of the pulled-back Hodge line bundle λ∗(α) on every geometric fiber of Y is ≤ b;
with the natural notion of isomorphism that if (Y, ϕ, λ) and (Y′, ϕ′, λ′) are elements of H(T ),
then an isomorphism between them is an XT -isomorphism Y→ Y′ that intertwines ϕ and ϕ′ as
well as λ and λ′.

Colloquially, the functor H parameterizes finite covers Y of X equipped with a (principally
polarized) abelian scheme of dimension g with trivial �3 level structure, such that the induced
map Y→ A ∗

g,1,�3 has ‘degree’ bounded by b.

Proposition 3.2. After potentially increasing N (equivalently, replacing S by a non-empty
open subscheme), the functor H is represented by a finite-type Deligne–Mumford stack over S.
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Proof. By increasing N , we can assume that all covers ϕ : Y→ X that occur in the definition of
H are tamely ramified at the cusps. More precisely, this will hold for any N > |GL2g(Z/�3Z)|.

It follows from the theory of the Hilbert scheme that for any noetherian scheme T and
for any relative smooth proper curve Y/T with geometrically connected fibers, the functor
Hom≤b

T (Y,A ∗
g,1,�3) parametrizing maps λ such that the deg(λ∗(α)) ≤ b for every geometric fiber

is represented by a finite-type T -scheme. (In particular, this holds true even if T is not connected
and the genus of the fibers varies on different connected components.) It follows that if T is a
Deligne–Mumford stack, of finite type over S, and Y/T is a smooth, proper curve with geomet-
rically connected fibers, then the same functor Hom≤b

T (Y,A ∗
g,1,�3) is represented by a finite-type

Deligne–Mumford stack over T .
On the other hand, the theory of the Hurwitz scheme implies that the functor Covc

(X,D)/S

parametrizing finite tame covers Y→ X of degree ≤ c such that:

• Y/S has geometrically connected fibers; and
• Y→ X is étale over U := X \D

is represented by a finite-type Deligne–Mumford stack over S.
There is a natural map

Cov≤c
(X,D)/S →M :=

⊔
k bounded

Mk,

which is the map that sends a cover Y→ X to the underlying curve Y. Here, the notation Mk

stands for the moduli space of genus k curves. Denote by Ck →Mk the universal curve and by
C :=

⊔
Ck, which has a natural map C →M .

Then consider H , the open substack of the 2-fiber product:

Hom≤b
M (C ,A ∗

g,1,�3))×M Cov≤|GL2g(Z/�3Z)|
(X,D)/S ,

which corresponds to the condition that sends λ(ϕ−1(U)) ⊂ Ag,1,�3 , i.e. that ϕ−1(U) is sent inside
of the moduli space of abelian varieties. It follows that H is finite-type Deligne–Mumford stack
over S. By further imposing the condition that the map λ sends at least one point in the boundary
divisor to a zero-dimensional cusp of the Baily–Borel compactification, H is a closed substack of
H , which is again finite type. �

Now, let L be a lisse Q�-sheaf as in Theorem 1.4. There exists an �-adic local field M/Q�

such that the associated representation factors through the ring of integers OM :

ρ : π1(XOK [1/N ])→ GL2(OM ) ⊂ GL2(Q�).

Abusing notation, we call the induced lisse OM -sheaf L. Denote by πM the uniformizer of M
and κM the residue field of M .

Definition 3.3. Fix i ≥ 1 and a lattice L as above. Let H̃i denote the following contravariant
pseudo-functor from S-schemes to groupoids: the value H̃i(T ) on an S-scheme T is the collection
of quadruples (Y, ϕ, λ, ψ), where (Y, ϕ, λ) ∈ H(T ), and ψ is the following extra piece of data.
As λ : W := ϕ−1(U)→ Ag,1,�3 , there is a principally polarized abelian scheme f : AW→W (with
trivial �3-torsion). Then

ψ : ϕ∗(L/πi
M )→ R1f∗OM/π

i
M

is a map of étale torsion sheaves on W whose reduction modulo πM -reduction is non-zero.
In other words, im(ψ) �⊆ πM (R1f∗OM/π

i
M ). There is an obvious notion of isomorphism of two

such quadruples.
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The pseudo-functor H̃i is actually a stack in the étale topology. This follows from the following
two properties. Let T be a scheme.

• There exists an internal Hom in the category of torsion locally constant abelian étale sheaves
on T .

• If ψ : F → G is a map of torsion, locally constant étale sheaves of OM modules on T , then
the property that ψ(F) �⊂ πM (G) may be checked on an étale cover.

There are natural transformations of pseudo-functors H̃j → H̃i for any j > i. We claim that H̃i

represents a finite-type Deligne–Mumford stack over S. To prove this, it suffices to prove that
the natural transformation of pseudo-functors H̃i → H is representable by a scheme.

Let T be an S-scheme, and t := (Y, ϕ, λ) ∈ H(T ). Then we have the following pullback
square.

T ×H H̃i
��

��

H̃i

��
T

t �� H

Then T ×H H̃i has the following description. There are two natural �i-torsion étale sheaves
on Y: ϕ∗(L/�i) (which has OM/�

i-rank 2), and R1f∗OM/�
i (which has OM/�

i-rank 2g).
Then T ×H H̃i corresponds to the (finite) set of injective maps of sheaves of abelian groups:
ψ : ϕ∗(L/�i) ↪→ R1f∗OM/�

i. This finite set is canonically a scheme. It follows that H̃i → H is
relatively representable, and hence H̃i is represented by a Deligne–Mumford stack of finite type
over S.

Proposition 3.4. The natural map ‘forget ψ’: H̃i → H is finite.

Proof. It is obviously quasi-finite because, as argued above, if we fix i, then there are only finitely
many choices for ψ. To prove it is finite, we show that it is proper.

As both H̃i and H are of finite type over S = Spec(OK [1/N ]), it suffices to simply check
the valuative criterion for properness. Let R be a discrete valuation ring with fraction field F .
Suppose we have (Y, ϕ, λ) ∈ H(R) and (YF , ϕF , λF , ψF ) ∈ H̃i(F ). Therefore, we have a prin-
cipally polarized abelian scheme f ′ : AW→W (of dimension g, with trivial �3 torsion),
together with a map of torsion étale sheaves over WF whose reduction modulo πM is
non-trivial:

ψF : ϕ∗(L)/πi
M |WF

→ R1f ′∗OM/π
i
M |WF

.

Note the following. If one has two finite étale sheaves on an irreducible normal scheme, and a
morphism between them over the generic point, then that morphism uniquely extends to the
whole scheme. (Here, we are closely following [ST18, Proof of Lemma 23].) Therefore, ψF extends
to a ψ on all of U′

R, and we have verified the valuative criterion for properness. �

Definition 3.5. For i ≥ 1, set

Hi := Im(H̃i → H).

As H̃i → H is relatively representable and finite (Proposition 3.4), it is universally closed.
Therefore, Hi is a closed subset of |H|, which we may equip with the induced reduced substack
structure [Sta22, Tag 0508]. According the natural transformations H̃j → H̃i, the sequence of
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closed subsets are descending. Set
H∞ :=

⋂
j

Hj ,

which is also equipped with the reduced induced substack structure. Then Hi and H∞ are
Deligne–Mumford stacks of finite type over S = Spec(OK [1/N ]) for all i ≥ 1.

Lemma 3.6. Let T be an S-scheme and let (Y, ϕ, λ) ∈ H(T ). Then the following conditions are
equivalent:

(1) (Y, ϕ, λ) ∈ H∞(T );
(2) there exists an injection

ϕ∗(L) ↪→ R1f∗OM

of lisse OM -sheaves on T ;
(3) there is an injection τ : ϕ∗(L ⊗M) ↪→ R1f∗M of lisse M -sheaves on T .

Proof. (2) ⇒ (3) By applying −⊗OM
M to the injection ϕ∗(L) ↪→ R1f∗OM , we get the desired

injection. (Note that both are lisse OM -sheaves, so tensoring with M yields an injective map.)
(3)⇒ (2) Since R1f∗OM (respectively, L) is an OM -lattice in R1f∗M (respectively, L ⊗M),

there exists some integer ι such that

πι
M · τ

(
ϕ∗(L)

)
⊂ R1f∗OM .

Then the map πι
Mτ is an injection from ϕ∗(L) to R1f∗OM .

(2) ⇒ (1) Denote by ψ′ the injection in condition (2). It is clear there exists some integer λ
such that

im(ψ′) ⊂ πλ
MR

1f∗OM and im(ψ′) �⊂ πλ+1
M R1f∗OM .

Denote ψ = ψ′/πλ
M which is clearly an injection from ϕ∗(L) to R1f∗OM and satisfies

im(ψ) �⊂ πMR
1f∗OM .

This is equivalent to saying that the reduction modulo πM of ψ is nontrivial. Denote ψi =
ψ mod (πi

M ) for each i > 0,

ψi : ϕ∗(L)/πi
M → R1f∗OM/π

i
M .

Since ψi mod (πM ) = ψ mod (πM ) �= 0, the quadruple (Y, ϕ, λ, ψi) ∈ H̃i. Thus, (Y, ϕ, λ) ∈
∩∞i=1Hi = H∞.

(1) ⇒ (3) (This is the main content of the lemma.) Since (Y, ϕ, λ) ∈ H∞(T ), for each i > 0,
there exists a map

ψ′
i : ϕ

∗(L)/πi
M → R1f∗OM/π

i
M

which is non-trivial modulo πM . In general, the ψ′
i’s do not form a compatible sequence, i.e. it

is possible that there exists j > i with the following property: ψ′
j mod (πi

M) �≡ ψ′
i. Therefore, one

cannot directly take projective limits to find our desired map ϕ∗(L)→ R1f∗OM . However, we
claim we may derive a compatible sequence from ψ′

i as follows.
Consider the subset in the finite set

Σ1 = Hom(ϕ∗(L)/πM , R
1f∗OM/πM )

consisting of all modulo πM reductions of ψ′
i:

{ψ′
i mod (πM ) | i ≥ 1}.

By the pigeonhole principle, there exists a non-trivial map ψ1 ∈ Σ1 and an infinite subset N1 ⊂ N

such that ψ′
i mod (πM ) = ψ1 for any i ∈ N1.
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Suppose we have constructed a compatible sequence ψ1, ψ2, . . . , ψr and an infinite subset
Nr ⊂ N satisfying

ψ′
i mod (πj

M ) = ψj ∈ Hom(ϕ∗(L)/πj
M , R

1f∗OM/π
j
M )

for any i ∈ Nr and j ∈ {1, 2, . . . , r}. Then we consider the subset in the finite set

Σr+1 = {ρ ∈ Hom(ϕ∗(L)/πr+1
M , R1f∗OM/π

r+1
M ) | ρ mod πr

M = ψr}
consisting of all modulo πr+1

M reductions ψ′
i mod (πr+1

M ):

{ψ′
i mod (πr+1

M ) | i ∈ Nr}.
Again by the pigeonhole principle, there exists a non-trivial map ψr+1 ∈ Σr+1 and an infinite
subset Nr+1 ⊂ Nr such that ψ′

i mod (πr+1
M ) = ψr+1 for any i ∈ Nr+1.

Iteratively, we find a sequence ψ1, ψ2, . . . satisfying

ψj mod (πi
M ) = ψi

for each j > i. Taking projective limits and tensoring with M , one gets a non-zero map

ψ : ϕ∗(L ⊗M)→ R1f∗M.

Since L ⊗M is irreducible, ψ is injective. �

4. Rigidity

In this section, we prove the following. Recall that S = Spec(OK [1/N ]).

Lemma 4.1. Let H/S be as in § 3. Then, after potentially increasing N (equiva-
lently, replacing S by a non-empty Zariski open subset), the relative dimension of H/S
is 0.

Proof. We have shown that H/S is a finite-type Deligne–Mumford stack. To show the desired
result, it suffices to show that if K ↪→ C is an embedding, then HC has dimension 0. Equivalently,
we want to show that if AUC

→ UC is a principally polarized abelian scheme that is totally
degenerate at at least one cusp, then it is rigid. This immediately follows from Theorem 8.6
together with Lemma 3.4 and the following text of [Sai93]. �

5. The proof

Proof of Theorem 1.4. First, assume that L has bad, unipotent reduction around every cusp. Let
T1 be the set of those prime p of OK with the following properties: the underlying prime p splits
completely in E, and p > max(N, �3). This is an infinite set by the Cebotarev density theorem.
Let Lp be the restriction of L to Up. Then Lp is irreducible by exactly the same argument as
that of the first paragraph of [ST18, Proof of Lemma 24, p. 2053].

There are only finitely may subfields of E. It follows from the pigeonhole principle that there
exists a subfield F ⊂ E such that there exists infinitely many primes p ∈ T1 such that Lp has
Frobenius traces in F ⊂ E. Call the collection of such primes T2 ⊂ T1. Let H and H∞ be the
moduli spaces from § 3 with g = 8[F : Q] and b = 4hχtop(U). Note that, after increasing N , both
spaces have relative dimension 0 over OK [1/N ] by § 4.

First of all, note that for each p ∈ T2, H∞(κ(p)) �= ∅. This follows by Lemma 2.7, especially
part (3)(iv), together with Lemma 3.6. In more detail: Lemma 2.7 implies that we can find an
abelian scheme BUp → Up such that L4

p injects in the cohomology, that has semistable reduction
at infinity, and such that the Hodge bundle on Xp has bounded degree. Lemma 3.6 then implies
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that such an abelian scheme corresponds to a point βp in H∞(κ(p)) ⊂ H(κ(p)). Since T2 is
infinite and H∞/S is of finite type, it follows that there exists a finite field extension K ′/K and
a point β ∈ H(K ′). In fact, as H∞ has relative dimension 0, our point β may be chosen to be
compatible with infinitely many of the βp, where compatibility is defined in the obvious sense.
By definition of H∞, the point β ∈ H∞(K ′) corresponds to an abelian scheme BU ′

K′ → U ′
K′ such

that L|U ′
K′ injects into the integral OM cohomology. By taking a Weil restriction, we obtain an

abelian scheme AU → U (of dimension g[K ′ : K]) such that L injects into the cohomology of
AU → U . Using Faltings’ semi-simplicity theorem, we conclude that L is, in fact, a summand of
the cohomology, as desired.

In general, there exists a finite étale cover f : U ′ → U such that f∗L has the following
property. Let C ′ be the compactification of U ′, and set D′ to be the divisor at infinity. Then
for each ∞ ∈ D′, the lisse �-adic sheaf f∗L has either good reduction at ∞ or bad, unipotent
reduction at ∞. There then exists a curve U ′ ⊂ V ′ ⊂ C ′, where f∗L extends to a lisse �-adic
sheaf M′ on all of V ′ and, moreover, has bad, unipotent reduction around every point in C ′ \ V ′.
Then the above argument applies, producing an abelian scheme AV ′ → V ′ whose cohomology
has M′ as a summand. Restricting to U ′ and then applying a Weil restriction of scalars along
the finite étale map U ′/U , we obtain the desired result. �
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Appendix A. Frobenius untwisting and a second proof of Proposition 2.4(2)

In this appendix, we have two goals: we first provide a proof of [Xia13, Theorem 6.1] in the
context we need, which we use several times, and then we provide a second perspective on the
termination of the Frobenius untwisting process in the context of Proposition 2.4.

Before we begin the proofs, we need one preliminary claim. Let (C̄,Z) be a lift of (C̄, Z)
over W (k). Let (V,∇) be a vector bundle together with a logarithmic connection with nilpotent
residues on (C̄,Z)/W (k), such that ∇ is topologically quasi-nilpotent. (Therefore, (V,∇) is the
value of a logarithmic crystal (C,Z) on the particular thickening (C̄,Z)).
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Claim A.1. The following two properties hold for (V,∇).

(i) The logarithmic isocrystal (V,∇)⊗Qp over (C̄,Z)|W (k)[1/p] is semistable and of degree 0.
(ii) The degree of Vp = V ⊗ Fp, the restriction of the vector bundle V to C̄, is 0.

Proof of claim. To prove that V ⊗Qp has degree 0, it suffices to base change along a map
W (k)[1/p] ↪→ C. Then the result follows from a computation of Esnault and Viehweg [EV86,
Appendix B]. Now semistability follows easily. Indeed, any horizontal subsheaf of V ⊗Qp is
necessarily a bundle, which is therefore equipped with a logarithmic flat connection and has
nilpotent residues. By the first sentence, this implies that this horizontal subsheaf has degree 0,
validating semistability.

To prove the second statement, it suffices to note that degree, being the first Chern class,
is locally constant, see [KYZ20, § 6]; therefore, if the degree of V ⊗Qp is 0 on C̄, then so is the
degree of Vp on C̄. �

The third term in the following lemma is a special case of [Xia13, Theorem 6.1] that we need.
In particular, we work in the context of strictly semistable p-divisible groups on (C̄, Z), as this
allows us to discuss the destabilizing iteration.

Lemma A.2. Let GC → C be a strictly semistable height 2, dimension 1 p-divisible group on C.
Suppose the Kodaira–Spencer map of GC → C is 0.

(1) Let D(GC) be the Dieudonné module of GC . Then the Dieudonné crystal D(GC) canonically
extends to a logarithmic Dieudonné crystal on (C̄, Z).

(2) Set (M,∇, F, V ) denote the evaluation of the logarithmic extension of D(GC) on the log
pair (C̄,Z). Then the Hodge line bundle L in Mp =M⊗ Fp has positive degree, which is
the maximal destabilizing subbundle of (Mp,∇p).

(3) Then there exists an isogenous p-divisible group G′
C → C, such that the Frobenius pullback

G′
C

(p) is isomorphic to GC .

Proof. SinceGC is semistable, the first term follows from [Tri08, Corollary 3.14]. The second term
follows from the existence of supersingular points as in Proposition 2.4(1) via the Hasse–Witt
map. Consider the Kodaira–Spencer map

θ : L→Mp/L⊗ Ω1
C̄(logZ).

By assumption θ = 0, thus L ⊂ (Mp,∇p) is a horizontal subbundle. Since degMp = 0 and
degL > 0, the line bundle L is just the maximal destabilizing subbundle of (Mp,∇p).

For the third term, We mainly follows Xia’s original proof. Set (M′,∇′) to be the kernel of
the following composition map

(M,∇) π−−−−→ (Mp,∇p)→ (Mp,∇p)/(L,∇p) =: (N,∇p),

where π : (M,∇)→ (Mp,∇p) is the reduction modulo p map. In particular, one has

pM⊂M′, π(M′) =M′/pM = L, and N =M/M′. (A.1)

The crucial point is to show the Frobenius structure and the Verschiebung extend; if we show
this, then we will obtain a new logarithmic Dieudonné module (M′,∇′, F ′, V ′).

Locally, over an affine open subset U = Spec(R), we choose a lifting Φ: R̂→ R̂ of the absolute
Frobenius map σ : R/pR→ R/pR. Then the Frobenius structure and Verschiebung structure are
given by

F : M(U)Φ →M(U) and V : M(U)→M(U)Φ.

727

https://doi.org/10.1112/S0010437X23007728 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007728


R. Krishnamoorthy, J. Yang and K. Zuo

Recall [dJ95, Proposition 2.5.2], L is the unique subbundle ofMp such that

(L)σ = im(Vp) = ker(Fp). (A.2)

In particular,

π
(
F (M′(U)Φ)

)
= Fp

(
π(M′(U)Φ)

)
= Fp

(
π(M′(U))σ

) (A.4)
= Fp((L(U))σ)

(A.2)
= 0.

This implies that
F (M′(U)Φ) ⊆ pM(U) ⊆M′(U)

and that the Frobenius structure F can be restricted onto (M′,∇′), denoted by F ′. Similarly,

π
(
V (M′(U))

)
⊆ π

(
V (M(U))

)
= im(Vp)(U)

(A.2)
= (L)σ. (A.3)

This implies that

V (M′(U)) ⊆ π−1((L)σ)
(A.4)
= M′(U)Φ

and that the Verschiebung structure V can be restricted onto (M′,∇′), denoted by V ′. The
module (M,∇, F, V )′ is the realization of the D(G′

C) of a p-divisible group G′
C which satisfies

G′
C

(p) = G by de Jong’s fundamental theorem. �
Second proof of Proposition 2.4(2). Recall that a p-divisible group is called generically ver-
sally deformed if the corresponding Kodaira–Spencer map is non-zero. From the third term
in Lemma A.2, one may construct inductively:

(1) an infinite sequence of p-divisible groups over C

G0
C = GC , G

1
C , G

2
C , . . .

such that (Gi+1
C )(p) = Gi

C for all i ≥ 0 and whose Kodaira–Spencer maps are all zero; or
(2) a finite sequence of p-divisible groups

G0
C = GC , G

1
C , . . . , G

r
C

such that (Gi+1
C )(p) = Gi

C , the Kodaira–Spencer maps of Gi
C are zero for all

i ∈ {0, . . . , r − 1}, and the Kodaira–Spencer map of Gr
C is non-zero.

To prove the second term of Proposition 2.4, one only need to show that the first case does not
appear. Suppose we are in the first case. By a method of Langer in [Lan14, Theorem 5.1], we
will construct a contradiction.

Let (Mi,∇i, F i, V i) be the logarithmic Dieudonné module associated to Gi
C and let Li be

the Hodge line bundle inMi
p. According the construction of Gi

C as in the proof of Lemma A.2,
one has

(M0,∇0, F 0, V 0) � (M1,∇1, F 1, V 1) � (M2,∇2, F 2, V 2) � · · · ,
where (Mi+1,∇i+1) to be the kernel of the following composition map

(Mi,∇i) π−−−−→ (Mi
p,∇i

p)→ (Mi
p,∇i

p)/(L
i,∇i

p) =: (N i,∇i
p),

where π : (Mi,∇i)→ (Mi
p,∇i

p) is the reduction modulo p map. In particular, one has

pMi ⊂Mi+1, π(Mi+1) =Mi+1/pMi = Li, and N i =Mi/Mi+1. (A.4)

Denote
(Mm

,∇m
, F

m
, V

m) := lim←−
n≥m

(M,∇, F, V )m/(M,∇, F, V )n.
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In the following, we show that the generic fiber Mm ⊗K of Mm is a destabilizing quotient of
Mm ⊗K =MK for sufficiently large m� 0; this will contradict semistability ofMK .

From (A.4) and the construction of the sequence, one has exact sequences of OXp -modules

0→ Ln →Mn
p → Nn → 0

and

0→ Nn p−→Mn+1
p → Ln → 0.

Denote by Cn the kernel of the composition Ln+1 →Mn+1
p → Ln. By the same reason as in

the proof of [Lan14, Theorem 5.1], Cn = 0 for sufficient large n. By eliminating the first finitely
many terms, we may assume Cn = 0 for all n ≥ 0. Thus, one gets injections

L0 ⊇ L1 ⊇ L2 ⊇ · · · and N0 ⊆ N1 ⊆ N2 ⊆ · · · .

Since the slope of Ln is non-increasing and also non-negative, the sequence Ln stabilizes to
some L. Since degLn + degNn = degMn

p = 0, the sequence Nn stabilizes to some N . Once
again, by eliminating the first finitely many terms, we may assume Ln = L and Nn = N for all
n ≥ 0. In particular, the composition map

Mn/Mn+1 = Nn p−→Mn+1
p → Nn+1 =Mn+1/Mn+2

is an isomorphism for all n ≥ 0. Thus,

Mn+1 = pMn +Mn+2 (A.5)

and

pMn+1 = pMn ∩Mn+2 (A.6)

for each n ≥ 0. We show that Mi = piM0 +Mn for any 0 ≤ i ≤ n and pMn−1 = pM0 ∩Mn

as follows:

Mi (A.5)
= pMi−1 +Mi+1 (A.5)

= pMi−1 + pMi+1 +Mi+2

(A.5)
= pMi−1 + pMi+1 + · · ·+ pMn−1 +Mn = pMi−1 +Mn, (A.7)

Mi (A.7)
= pMi−1 +Mn = p(p(· · · p(p︸ ︷︷ ︸

i

M0 +Mn) +Mn) · · ·+Mn) +Mn

= piM0 +Mn, (A.8)

and

pMn−1 (A.6)
= pMn−2 ∩Mn (A.6)

= (pMn−3 ∩Mn−1) ∩Mn

(A.6)
= ((· · · (pM0 ∩M1) ∩ · · · ) ∩Mn−1) ∩Mn = pM0 ∩Mn. (A.9)

In particular, there is an Wn = W (k)/pn module structure onM0/Mn. Consider

(M0/Mn)⊗Wn (pWn/p
nWn) ∼= (M0/Mn)⊗Wn Wn/p

n−1

=M0/(pn−1M0 +Mn) =M0/Mn−1

∼= pM0/pMn−1 = pM0/(pM0 ∩Mn)

∼= (pM0 +Mn)/Mn =M1/Mn,
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where the map can be easily checked to be given by m⊗ a �→ am for any m ∈M0 and any a ∈ p.
One also has

(M0/Mn)⊗Wn k =M0/(pM0 +Mn) =M0/M1,

which implies the following sequence is exact

0→ (M0/Mn)⊗W (k) pWn/p
n → (M0/Mn)⊗W W (k)/pn → (M0/Mn)⊗OK

k → 0.

Thus, TorW/pn
(k,M0/Mn) = 0 and M0/Mn is flat over Wn. It follows that M̃0 =

lim←−n≥0
M0/Mn is a W (k)-flat coherent OC̄-module having a filtration with quotients isomorphic

to N . Thus, M̃0 ⊗W (k)[1/p] is a destabilizing quotient of M0 ⊗W (k)[1/p], which contradicts
the semistability of M0 ⊗W (k)[1/p]. �
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