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Abstract

Objectives: According to the Procedural Deficit Hypothesis, abnormalities in corticostriatal pathways could account for the
language-related deficits observed in developmental dyslexia. The same neural network has also been implicated in the
ability to learn contingencies based on trial and error (i.e., reinforcement learning [RL]). On this basis, the present study
tested the assumption that dyslexic individuals would be impaired in RL compared with neurotypicals in two different tasks.
Methods: In a probabilistic selection task, participants were required to learn reinforcement contingencies based on
probabilistic feedback. In an implicit transitive inference task, participants were also required to base their decisions on
reinforcement histories, but feedback was deterministic and stimulus pairs were partially overlapping, such that participants
were required to learn hierarchical relations. Results: Across tasks, results revealed that although the ability to learn from
positive/negative feedback did not differ between the two groups, the learning of reinforcement contingencies was poorer in
the dyslexia group compared with the neurotypicals group. Furthermore, in novel test pairs where previously learned
information was presented in new combinations, dyslexic individuals performed similarly to neurotypicals. Conclusions:
Taken together, these results suggest that learning of reinforcement contingencies occurs less robustly in individuals with
developmental dyslexia. Inferences for the neuro-cognitive mechanisms of developmental dyslexia are discussed.

Keywords: Developmental dyslexia, Probabilistic selection task, Procedural learning, Reinforcement learning, Transfer,
Implicit transitive inference task

INTRODUCTION

Developmental dyslexia is one of the most common neurode-
velopmental disorders, characterized by a selective impairment
in reading skill acquisition despite conventional instruction,
adequate intelligence, and sociocultural opportunity. The dom-
inant hypothesis as to the etiology of dyslexia proposes a deficit
in direct access to, and manipulation of, phonemic language
units retrieved from long-term declarative memory as the
underlying cause of dyslexia (Snowling, 2000). Yet, bur-
geoning research indicates that people with dyslexia have
a wide range of nonlinguistic deficits that are difficult to
explain by a phonological impairment (Farmer & Klein,
1995; Fawcett & Nicolson, 2019; Lum, Ullman, &
Conti-Ramsden, 2013).

Procedural Learning Dysfunction in Dyslexia

Recent conceptualizations of dyslexia implicate domain-
general procedural learning systems in its etiology.

According to the Procedural Deficit Hypothesis (PDH), dys-
lexia is characterized by a selective disruption of procedural
learning and memory systems that leads to difficulties in the
acquisition and automaticity of reading and writing skills
(Fawcett & Nicolson, 2019; Krishnan, Watkins, & Bishop,
2016; Nicolson & Fawcett, 2011; Ullman, 2004; Ullman,
Earle, Walenski, & Janacsek, 2020). The procedural memory
impairment in dyslexia is also hypothesized to lead to a
greater dependence on the declarative memory system and/
or enhanced functioning of that system (Nicolson &
Fawcett, 1990; Ullman, 2016; Ullman & Pullman, 2015).
Consistent with this framework, neuroimaging studies have
revealed structural and functional abnormalities in core
structures of the procedural memory systems, such as the cer-
ebellum (Alvarez & Fiez, 2018; Finch, Nicolson, & Fawcett,
2002; Rae et al., 1998) and the basal ganglia (Brunswick,
McCrory, Price, Frith, & Frith, 1999; Kita et al., 2013;
Richlan, Kronbichler, & Wimmer, 2011; Wang et al.,
2019) among individuals with dyslexia. Furthermore, indi-
viduals with dyslexia were found to be impaired in tasks that
engage the procedural memory system, such as the Serial
Reaction Time Task (Gabay, Schiff, & Vakil, 2012a,
2012b; Lum et al., 2013), Artificial Grammar Learning
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(Kahta & Schiff, 2016; Pavlidou & Williams, 2014;
Pavlidou, Williams, & Kelly, 2009), the Weather
Prediction Task (WPT; Gabay, Vakil, Schiff, & Holt,
2015), and statistical learning (Gabay, Thiessen, & Holt,
2015; Singh, Walk, & Conway, 2018), including visual
(Sperling, Lu, &Manis, 2004) and auditory category learning
(Gabay & Holt, 2015). Notably, most studies examining the
PDH in dyslexia have focused on the acquisition of motor,
perceptual, or linguistic skills, but less attention has been paid
to other types of learning subserved by this system, such as
reinforcement learning (RL).

Reinforcement Learning

RL is the process by which individual learn by trial and error
to make choices which will exploit the likelihood of rewards
and minimize the occurrence of penalties (Sutton & Barto,
1998). The learner is not told explicitly which action to take,
but instead must discover which actions yield the highest
reward by trying them out. RL has been shown to be critically
dependent on the basal ganglia (Daw, Niv, & Dayan,
2005; Schultz, Dayan, & Montague, 1997; Schultz, 1999).
Frank, Seeberger, and O’reilly (2004) suggested a neuro-
computational model in which dopamine levels play a signifi-
cant role in RL. According to their model, the basal ganglia
acts as a gating system that reinforces neural firing in the fron-
tal cortex, which is interconnected to appropriate actions
while suppressing actions that are less appropriate. The gating
function of the basal ganglia is suggested to be modulated by
the dopaminergic system. In order to test their model, Frank
et al. employed two procedural RL tasks in patients with
Parkinson’s who either received or did not receive dopamine
medications. In the Probabilistic Selection (PS) Task
employed by Frank et al., participants are required to choose
one of two presented stimuli, based on reinforcing feedback.
The feedback is probabilistic, such that participants need to
learn which is the most frequent rewarded outcome based on
reinforcement histories. Several stimuli are more strongly
associated with positive feedback and others with negative
feedback (for instance, the stimulus A is associated 80% of
the time with positive feedback, whereas stimulus B is asso-
ciated 20% of the time with positive feedback). Participants
are therefore required to learn to choose A over B depending
on either positive or negative feedback or both. In a test
phase, participants are presented with novel pairs in which
the original stimulus is paired with a new one. Examination
of participants’ performance during this test enables one to
assess whether participants are more inclined to use positive
(will choose A in all combinations that contain A) or neg-
ative (will avoid B in all combinations that contain b) learn-
ing strategies.

The other task employed by Frank et al. is an implicit
Transitive Inference Task (TI). Although transitive inference
(choosing A over C based on knowing that A is better than B
and that B is better than C) is assumed to reflect a declarative
logical inference process, it is also possible to learn such

hierarchal relations implicitly based on associative learning.
In a typical TI problem, the reinforcement for each stimulus is
deterministic but stimulus pairs partially overlap. In particu-
lar, participants are trained on a series of simultaneous
discrimination problems (AþB−, BþC−, CþD−,
DþE−, EþF−) where “þ” and “−” refer to the rewarded
and non-rewarded choices, respectively. A hierarchy (A >
B > C > D > E) is learned, whereby stimuli close to the
top of the hierarchy develop a net positive associative
strength, and those near the bottom develop a net negative
associative strength.

Consistent with their model, Frank et al. observed that
Parkinson’s patients off medication were better at learning
to avoid choices that lead to negative outcomes than at learn-
ing from positive outcomes across both the PS and TI tasks.
Furthermore, medications designed to increase the level of
striatal dopamine reversed this bias. In a later study, Frank,
O’Reilly, and Curran (2006) showed that a drug aimed at
blocking hippocampal function did not impair learning in
either the PS or TI tasks, implying that these processes are
independent of hippocampal function. Notably, Smith and
Squire (2005) observed that patients with hippocampal dam-
age were impaired in novel test pairs that were not encoun-
tered during the training phase (e.g. the transitive pair BD),
suggesting that a mixture of associative and relational
processes occurs in the TI task. Since Frank’s seminal study,
the PS and TI tasks were tested in many special (Frank,
Santamaria, O’Reilly, & Willcutt, 2007; Lee & Tomblin,
2012; Solomon, Frank, Smith, Ly, & Carter, 2011;
Solomon et al., 2015; Solomon, Smith, Frank, Ly, & Carter,
2011) and patient populations (Titone, Ditman, Holzman,
Eichenbaum, & Levy, 2004; Waltz, Frank, Robinson, &
Gold, 2007) but not among individuals with dyslexia.

The PDH suggests that developmental dyslexia
arises from a selective dysfunction in the corticostriatal
network, whereas medial temporal lobe (MTL) structures
are hypothesized to be intact or even enhanced (Krishnan
et al., 2016; Ullman et al., 2020). Therefore, one could
hypothesize that RL would be impaired in dyslexia.
Here, we tested this hypothesis by examining the PS
and TI tasks among individuals and with dyslexia and
typical readers.

METHODS

Participants

The sample consisted of 40 university students, 20 individ-
uals with dyslexia and 20 typical readers. All were native
speakers of Hebrewwith no history of neurological disorders,
psychiatric disorders, or attention deficits (according to the
American Psychiatric Association, 2000). In addition, all par-
ticipants had normal or corrected-to-normal vision and had
normal hearing. The dyslexia group was recruited from the
Yael Learning Disabilities Center at the University of
Haifa, Israel. A documented diagnosis of a comorbid learning
disability such as Attention Deficit Hyperactivity Disorder
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(ADHD) or Specific Language Impairment (SLI) or any sen-
sory or neurological impairment served as exclusion criteria.
The inclusion criteria for the dyslexia group were (1) a formal
diagnosis of dyslexia by a qualified psychologist; (2) a score
of at least one standard deviation below the average of the
local norms in tests of phonological decoding (non-word
reading). Since there are no standardized reading tests for
adults in Hebrew, selection was based on local norms, using
similar criteria to other studies conducted on Hebrew readers
with dyslexia (Gabay, Najjar, & Reinisch, 2019; Weiss,
Katzir, & Bitan, 2016; Yael, Tami, & Tali, 2015). Scores
of one standard deviation below the mean of the local norms
were chosen following the standard practice in the Hebrew
literature (Breznitz & Misra, 2003; Shany & Breznitz,
2011). The control group consisted of individuals with no
reading problems (i.e., above the inclusion criteria of the dys-
lexia group on the non-word reading test) and the same level
of cognitive ability. The study was approved by the
Institutional Review Board of the University of Haifa and
was conducted in accordance with the Declaration of
Helsinki. Written informed consent was obtained from all
participants, who were compensated for their participation
in the study (120 new Israeli shekels, approximately $30).

All participants performed a series of cognitive tests to
evaluate general cognitive ability, verbal working memory,
rapid automatized naming reading skills, and phonological
awareness. Details about these tasks are presented in

Table 1. As indicated by results shown in Table 2, the groups
did not differ in age or cognitive ability. However, compared
to the control group, the dyslexia group displayed a profile of
reading disability compatible with the symptomatology of
dyslexia.

Experimental Procedure

Two RL tasks were used following the exact same procedure
conducted by Frank, Seeberger and O’reilly (2004). A pre-
vious study demonstrated good test–retest reliability for
similar learning tasks (Weidinger, Gradassi, Molleman, &
van den Bos, 2019).

Probabilistic Selection Task

Three different stimulus pairs (AB, CD, and EF) were pre-
sented randomly in the PS task (see Figure 1a). For each pair,
participants were required to learn to choose one of the two
stimuli. After the participant’s choice, probabilistic feedback
followed to indicate whether the choice was correct or incor-
rect. In 80% of AB trials, a choice of stimulus A led to correct
(positive) feedback, whereas only in 20% of these trials, the
B choice led to a positive feedback. CD and EF pairs were less
reliable: Stimulus C was correct in 70% of CD trials, whereas
E was correct in 60% of EF trials. Participants practiced the
task until they reach a performance criterion in order to ensure

Table 1. Psychometric tests

The following tests were administered according to the test manual instructions:
1. Block Design subtest. Non-verbal intelligence was assessed by the Block Design subtest from the Wechsler Intelligence test for
adults (Wechsler, 1997). The Block Design subtest first requires breaking down each design presented into logical units and then a
reasoned manipulation of blocks to reconstruct the original design from separate parts. Task administration is discontinued after a
failure of two blocks.
2. Digit Span Subtest. Verbal working memory was assessed by the Digit Span subtest from the Wechsler Intelligence test for adults
(Wechsler, 1997). In this task, participants are required to recall the names of the digits presented auditorily in the order they appeared
with a maximum of total raw score 28. Task administration is discontinued after a failure to recall two trials with a similar length of
digits. Test reliability coefficient is .9
3. Rapid Automatized Naming - Naming skills were assessed by the Rapid Automatized Naming task (RAN) (Breznitz, 2003). The
tasks require oral naming of rows of visually-presented exemplars drawn from a constant category (RAN colors, RAN categories,
RAN numerals, and RAN letters). It requires not only the retrieval of a familiar phonological code for each stimulus but also
coordination of phonological and visual (color) or orthographic (alphanumeric) information quickly in time.
4. The One Minute Test of Words (Shatil, 1995b) and the One Minute Test of Non-words (Shatil, 1995a), which assessed the number
of words and non-words accurately read aloud within one minute. The One Minute Test of Words contains 168 non-vowelized words
of an equivalent level of difficulty, listed in columns. Both accuracy (number of correct words read per minute) and speed (number of
items read per minute) were measured. The One Minute Test of Non-words contains 86 successively difficult vowelized non-words,
listed in seven columns. Both accuracy (number of correct words read per minute) and speed (number of items read per minute) were
measured.
5. The Phoneme Deletion test (Breznitz & Misra, 2003) and Spoonerism Test (developed by Peleg and Ben-Dror) were used to assess
phonological awareness. The Phoneme Deletion test contains 25 non-words. In this test, the experimenter read a word and a specific
phoneme, and the participant was required to repeat the word without that phoneme. In the Spoonerism Test, the participant is
required to switch the first syllables of a word pair and then to synthesize the segments to provide new words, for example, the word
pair brown sugar becomes srown bugar. For both tests, both accuracy (number of correct letters/objects read per minute) and time
(the time that participants need to complete the task) were measured. A Hebrew version of this test was used in the present study
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that all participants reached the same level of performance
before moving to the test phase. Since the structure of the task
was probabilistic, a different criterion was used for each pair
stimulus (65% A in AB, 60% C in CD, 50% E in EF; evalu-
ated after each training block of 60 trials). After reaching this
criterion, participants performed the test phase in which they
were tested on the same training pairs and on all novel com-
binations of stimuli. The novel combinations of stimulus
pairs involved either an A (AC, AD, AE, AF) or a B (BC,
BD, BE, BF). During this test phase, no feedback was pro-
vided to participants. Each test pair was presented 4 times
(for a total number of 60 trials).

Implicit Transitive Inference Task

In this task, the reinforcement for each stimulus pair was
deterministic, but stimulus pairs partially overlapped.
Four pairs of stimuli were presented: AþB−, BþC−,
CþD−, and DþE−, where þ and – indicate positive and
negative feedback, respectively (See Figure 1b). The train-
ing session was composed of 4 phases of blocked trials fol-
lowed by a fifth phase of interleaved trials. Meeting a
performance criterion of at least 75% correct choices across
all trials was required for each phase. If the criterion was not
met, the phase was repeated. Initially, stimulus pairs were
presented in pure blocks of six trials (six trials of AB fol-
lowed by six trials of BC and so on). Then, the blocks were
shortened in the second phase (four successive trials of each
pair per block). The third phase had three trials per block,
whereas the fourth had two trials per block. However, in
the fifth phase, all pairs were randomly interleaved for a

total of 24 trials (six repetitions for each pair) before cri-
terion performance was measured. If the criterion was not
met, the random sequence was repeated. The test phase
was similar to the fifth training phase, in that all pairs were

Table 2. Pyschometric results of the dyslexia and control groups

Measurement Control Std. Deviation Dyslexia Std. Deviation t value p

Age (in years) 25.7 2.885 27.25 4.54 −1.288 0.206
Decoding
Oral words recognition accuracy 122.55 14.258 76.5 19.634 8.486 0.000
Oral words recognition speed 124.1 14.563 80 24.38 6.944 0.000
Oral non-words recognition accuracy 63.8 11.936 28 11.135 9.807 0.000
Oral non-words recognition* speed 68.1 11.201 41.05 12.479 7.214 0.000
Naming skills
Naming letters 20.35 2.455 24.75 3.958 −4.224 0.000
Naming objects 32.35 5.07 39.55 4.729 −4.643 0.000
Naming numbers 17.2 2.61 21.85 3.77 4.534 0.001
Naming colors 27.25 5.77 31.65 4.76 2.632 0.05
Phonological processing
Phoneme deletion (time) 71.65 19.13 170.75 64.52 6.585 0.001
Phoneme deletion (accuracy) 23.7 0.923 20.55 3.845 3.562 0.001
Spoonerism (time) 112.6 36.74 289.65 149.63 5.14 0.001
Spoonerism (accuracy) 19.05 1.14 16.85 3.76 2.5 0.02
Short verbal working memory
Digit spana 13.8 2.33 9.8 2.015 5.805 0.000
Intellectual ability
Block designa 14.35 2.323 13.3 3.045 1.225 0.228

*Mean Z scores (based on local norms) of the oral non-word recognition speed measure were 0.48 and −1.41 for the control and dyslexia groups, respectively.
a Standard scores (whereby smaller numbers are expected for the dyslexia group); other scores are raw scores.

Fig. 1. (a) Examples of stimulus pairs used in the Probabilistic
Selection and (b) the Transitive Inference tasks.
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randomly interleaved and each was presented 6 times (for a
total of 36 trials). However, no feedback was provided, and
two transitive pairs (BD and AE) were added to the mix of
randomly ordered pairs.

Procedure

Participants were invited to three sessions. In the first
session, participants completed a battery of tests to assess
multiple indicators of language skills and general cognitive
abilities. In the following two sessions, they either
performed the PS or the TI task. The order of the two
tasks was counterbalanced across participants, and the
second and third sessions were separated by one week.
Participants were seated approximately 40 cm in front
of a 24 inch computer screen with a resolution of
1920 × 1200 on which the visual paired stimuli were pre-
sented in black over a white background (2° height and
2° width). They were instructed to press keys (i.e., either
the number 1 or 2 key on the keyboard) to indicate which
of the paired stimuli they thought was correct. Visual feed-
back was immediately provided after participants’ choice
for a duration of 1.5 s. If the computer did not detect a
response, the words ‘No Response Detected’ in red print
appeared at the center of the screen. Participants could take
a brief break between two consecutive blocks if needed.
Each task lasted approximately 15–25 min, depending on
the number of blocks participants performed during the
acquisition phase. Stimulus presentation and the recording
of response time and accuracy were controlled by E-prime
(Schneider, Eschman, & Zuccolotto, 2002).

Statistical Analysis

The power of the study was calculated by G*Power software
(Faul, Erdfelder, Lang, & Buchner, 2007; See supplementary
materials). The following analyses were conducted for both
PS and TI tasks. We first examined whether the learning of

the training pairs during the acquisition phase differed signifi-
cantly between the two groups. For this purpose, we con-
ducted 1) two-sample t tests to compare the number of
training trials required for participants to reach a criterion dur-
ing the training phase beforemoving to the test phase, and 2) a
mixed ANOVA test to examine group differences for each
training pair in the first training block/during the first acquis-
ition phase. (3) For the PS task, we also employed two-sam-
ple t tests to examine the influence of reinforcement feedback
on rapid early acquisition (see Supplementary materials).
Next, the learning of stimulus pairs was assessed by using
a mixed ANOVA test to examine group differences during
the post-acquisition test phase. Finally, in order to test for
possible differences in the ability to learn from positive or
negative feedback, we used a mixed ANOVA test. For the
TI task, we also examined the performance of both groups
on novel test pairs.

RESULTS1

Probabilistic Selection Task

Acquisition of Training Pairs

There was no difference in the number of trials required by
the two groups to reach criterion.

An ANOVA test was conducted, using training pairs (AB,
CD, EF) as a within-subject factor, group (Dyslexia vs.
Control) as a between-subject factor, and mean proportion
of correct responses during the first block of the acquisition
phase as the dependent variable (see results in Figure 2a).
Only the main effect of training pairs was significant,
F (2, 76)= 3.58, p = .03; ηp2 = .08. Further analyses sug-
gested that that difficult reward contingencies (EF) were
harder to learn compared with the other easier reward

Fig. 2. Acquisition of probabilistic contingencies of the Dyslexia (bright bars) and Control (dark bars) groups. (a) In block 1. (b) Performance
on training pairs during the post-acquisition test. The proportion of correct responses was defined as the proportion of trials in which the most
frequently reinforced stimulus was chosen. Error bars represent standard error of the mean.

1We examined whether the data contained outliers for which the criteria was based
on 2.5 SD above/below the mean (calculated for each group separately). No outliers
were detected in the PS task. In the TI task one control participant performed signifi-
cantly below the mean (Z = −3.65) and was excluded from the analysis.
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contingencies (AB and CD), F (2, 76)= 7.92, p = .007;
ηp² = .17, whereas no significant differences were observed
between easy (AB) vs. medium (CD) pairs, F (1, 38) = .005,
p = .93; ηp² = .0001 (with a p value less than the Bonferroni-
corrected significant value of 0.025 (0.05/2) considered to be
significant).

Post-Acquisition Test of Training Pairs

Data Filtering

Following the approach of Frank et al. (2004), participants
who did not perform better than chance during the test phase
in the easiest training pair conditions were not included in
the analysis. Based on this criterion, three participants with
dyslexia and one control participant were excluded from
the analysis.

Post-Test Acquisition

An ANOVA was conducted, using training pair (AB, CD,
EF) as the within-subject factor, group (Dyslexia vs.
Controls) as the between-subject factor, and mean proportion
of correct responses during the test phase as the dependent
variable (see results in Figure 2b). The main effect of the
group was significant, F(1, 34)= 4.34, p = .04; ηp2 = .11,
suggesting that in general the dyslexia group was impaired
in learning reinforcement contingencies compared to the con-
trol group (M = .74, S.E. = .03, M = .85, S.E. = .03 for
the dyslexia and control groups, respectively). The main
effect of the reward contingency was significant as well,
F(2, 68)= 25.78, p = .001; ηp2 = .43, suggesting that
participants performed worse when tested on complex
reinforcement contingencies (EF) compared to the easier
reinforcement contingencies (CD and AB), F(1, 34)= 35.56,
p = .001; ηp2 = .51. Furthermore, participants performed
worse when tested on medium reinforcement contingencies
(CD) compared with easy reinforcement contingencies
(AB), F (1, 34)= 6.87, p = .001; ηp2 = .16 (with a p value
less than the Bonferroni-corrected significant value of

0.025 (0.05/2) considered to be significant). No other effects
were significant, and the groups did not differ in the critical
AB pair alone.

Performance on Transfer Measures

A mixed design ANOVA was conducted, with group
(Dyslexia vs. Controls) as the between-subject factor, learn-
ing strategy (choose A in novel pairs vs. avoid B in novel
pairs) as the within-subject factor, and mean proportion of
correct responses during the test phase as the dependent var-
iable (see results in Figure 3a). No significant effects were
detected.

Transitive Inference Task

Acquisition of Training Pairs

There was no difference in the number of trials required by
the two groups to reach criterion.

An ANOVA test was conducted, using training pairs (AB,
BC, DC, DE) as within-subject factors, group (Dyslexia vs.
Controls) as the between-subject factor, and mean proportion
of correct responses during the test phase as the dependent
variable (see results in Figure 4a). Only the main effect of
the training pair was significant, F(3, 111)= 2.68, p = .04;
ηp2 = .06. Further analysis revealed that performance on
DC, DE avoid pairs was significantly better than with AB,
BC choose pairs, F (1, 37)= 6.89, p = .012; ηp2 = .15 and
there were no differences between inner and outer pairs
within each pair group, F< 1 (with a p value less than the
Bonferroni-corrected significant value of 0.016 (0.05/3) con-
sidered to be significant).

Post-Acquisition Test of Training Pairs

An ANOVA test was conducted, with training pairs as
within-subject factors, group (Dyslexia vs. Controls) as the
between-subject factor, and mean proportion of correct
responses during the test phase as the dependent variable
(see results in Figure 4b). The main effect of group was

Fig. 3. Performance of the Dyslexia (bright bars) and Control (dark bars) groups on novel test pairs (a) in the PS and (b) TI tasks. Error bars
represent standard error of the mean.
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significant, F (1, 37)= 8.73, p = .005; ηp2 = .19, indicating
that participants with dyslexia were overall less accurate com-
pared with controls. Amain effect for training pair was found,
F (3, 111)= 5.36, p = .001; ηp2 = .12. Planned comparisons
(with a p value less than the Bonferroni-corrected significant
value of .016 (0.05/3) considered to be significant) indicated
that outer anchor pairs were significantly easier to learn
compared to inner training pairs, F(1, 37)= 8.43, p = .006;
ηp2 = .15, whereas no significant differences were observed
between pairs of each pair group. No other effects were
significant.

Novel Test Pairs Results of the TI Task

An ANOVA test was conducted using novel pairs (AE
vs. BD) as within-subject factors, group (Dyslexia vs.
Controls) as the between-subject factor, and mean proportion
of correct responses during the test phase as the dependent
variable (see results in Figure 3b). A significant difference
was found between training pairs, such that participants
performed better on the AE pair compared with the BD pair,
F(1, 37)= 11.52, p = .002, ηp2 = .23. No other effects were
detected. Further analyses were conducted to investigate
whether accuracy for novel test pairs was above chance level
(50%). Single-sample t tests indicated that both groups per-
formed above chance on the end-anchor probe pair (AE)
[t(20)= 9.72, p= .001, t(19)= 8.28, p= .001 for the dyslexia
and control groups], yet only the dyslexia group performed
significantly above chance on the transitive probe pair
(BD) [t(20)= 3.06, p = .006, t(20) = 2.047, p = .055, for
the dyslexia group and the control group, respectively] (with
a p value less than the Bonferroni-corrected significant value
of 0.0125 (0.05/4) considered to be significant).

Assessment of Learning Strategies

An ANOVA test was conducted with group (Dyslexia vs.
Controls) as the between-subject variable, learning strategy
[choose A (ABþBC) vs. avoid B (CDþDE)] as the

within-subject factor, and mean proportion of correct
responses during the test phase as the dependent variable.
A main effect of group was found, F (1, 37)= 8.72,
p = .005; ηp2 = .19, demonstrating that the control group out-
performed the dyslexia group (M = .95, S.E. = .02,M = .85,
S.E. = .02 for the control and dyslexia groups, respectively).
A main effect was also detected for learning strategy such
that, in general, participants learned more from negative feed-
back compared to positive feedback, F(1, 37)= 6.68,
p = .013; ηp2 = .15. No other effects were significant.

DISCUSSION

In the present study, we examined the assumption that RL is
impaired in dyslexia using two well-studied RL tasks. A sim-
ilar pattern of results was obtained from both the PS and TI
tasks. During the acquisition phase, participants with dyslexia
did not differ significantly from the control group in the num-
ber of trials required to reach criterion and performance did
not differ significantly between the two groups during the
first phase of learning. Consistently, win-stay and lose-shift
scores in the PS task (see supplementary material) were com-
parable across the two groups. However, results from the
post-acquisition test phase indicated reduced learning of
reinforcement contingencies in the dyslexia group compared
with the control group. This pattern was confined to trained
items, as the ability to generalize from repeated exposure to
negative/positive outcomes was comparable across the two
groups.

The observation that participants with dyslexia were
impaired at the post-acquisition phase of the PS task but
not early in training should be considered within the context
of Frank’s model of RL. According to Frank and Claus
(2006), the PS task involves two RL types. The first involves
the ability to represent and integrate feedback online to rap-
idly learn contingencies that depend on the orbitofrontal cor-
tex, whereas the second reflects the gradual, habit-like
acquisition of contingencies, largely dependent on the basal
ganglia. According toWaltz et al. (2007), performance on the

Fig. 4. TI task performance of the Dyslexia (bright bars) and Control (dark bars) groups (a) during early acquisition. (b) Performance on
training pairs during the post-acquisition test. Error bars represent standard error of the mean.
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post-acquisition test items is likely to reflect the gradual,
habit-like acquisition of contingencies, largely dependent
on the BG, whereas performance during the early acquisition
phase reflects prefrontal cortex-based processes. In the
present study, early acquisition (win-stay and lose-shift
scores) in the PS task was comparable across the two groups
(see supplementarymaterial), but post-test acquisition perfor-
mance was reduced in the dyslexia group. Therefore, it may
be the case that participants with dyslexia were still capable of
maintaining intact performance during the early acquisition
phase by updating working memory representations neces-
sary for representing differences in relative magnitude of
reinforcement online but later, when slower habit-like acquis-
ition of contingencies came into play, group differences
emerged.

It should be noted that a U-shaped serial position curve
was observed in the test phase of the TI task, such that anchor
pairs were learned better compared to the other pairs and bet-
ter performance was observed on the AE test compared with
the BD test. These results are consistent with an account pos-
iting that in the TI task, participants learn hierarchal relations
based on associative learning mechanisms as opposed to an
explicit reasoning account, since there are strength advan-
tages for the end-anchor pairs that comprise items that
are unambiguously reinforced (Frank et al., 2006; Frank,
Rudy, Levy, & O’Reilly, 2005; Vasconcelos, 2008). In
addition, an explicit reasoning account would predict that
performance should be equal and robust across all test pairs.
Then again, an associative learning account predicts a graded
outcome, with the strongest evidence of transitive behavior
observed in the AE test and the weakest evidence in the
BD test (Frank et al., 2005). Notwithstanding, a mixture of
declarative and non-declarative processes may have come
into play in the TI task. In the study of Smith and Squire
(2005) neurotypicals who became aware of the hierarchy,
unaware participants and patients with hippocampal damage,
all exhibited above chance performance in the end-anchor
probe pair AE, whereas only aware participants performed
above chance in the transitive probe pair BD. Consistently,
impaired performance in the BD pair condition was also
observed in hippocampal-lesioned animals (Titone et al.,
2004). In the present study, both groups performed above
chance in the AE pair but only the dyslexia group performed
significantly above chance in the BD pair. This state of affairs
can imply the use of declarative strategies of the dyslexia
group during the TI task, possibly by the action of compen-
satory medial temporal lobe (MTL)-related structures.

Observations of both the PS and TI tasks suggest that
learning of reinforcement contingencies occurs less robustly
in individuals with dyslexia compared with neurotypicals,
with no differences in learning strategies between the two
groups. However, these learning impairments seem to be lim-
ited to trained items since the ability to generalize from
repeated exposure in both the PS and TI tasks did not differ
across the dyslexia and control groups. Such a pattern of
results seems to adhere to the notion of different functions
of the basal ganglia vs. hippocampus during associative

learning. In particular, the basal ganglia are critically
involved in stimulus-response habit learning, whereas the
hippocampus and related MTL structures may be required
for more complex learning such carry out transfer processes
when familiar stimuli are presented in novel combinations
(Gabrieli, 1998; Gluck & Myers, 1993; Myers et al., 2002;
Myers et al., 2003; Shohamy, Myers, Geghman, Sage, &
Gluck, 2006). Indeed, research suggests that non-demented
elderly individuals with hippocampal atrophy (HA) are
capable of learning trained items as well as control partici-
pants but are impaired when these items are presented in
novel combinations (Myers et al., 2002). In addition,
Myers et al. (2003) reported a double dissociation between
the associative learning deficits observed in patients with
medial temporal (hippocampal) damage versus patients with
Parkinson’s disease. In their study patients with basal ganglia
dysfunction exhibited impaired initial learning yet intact
transfer abilities. In contrast, patients with hippocampal dam-
age exhibited the opposite pattern. Based on this, they argued
that both the basal ganglia and the hippocampus are involved
in associative learning, but the basal ganglia are involved in
initial learning, whereas the hippocampus is involved when
the transfer of the learned ability is required (Moustafa,
Keri, Herzallah, Myers, & Gluck, 2010). Taken together,
the observation of impaired learning alongside intact transfer
ability in the dyslexia group is consistent with the PDH that
posits abnormality in the basal ganglia in dyslexia but not in
hippocampal and related MTL structures.

The tasks used in the present study involves learning of
cue-outcome relationships over many trials by integrating
the overall frequency of reinforcement. In this sense, they
share some similarities with the WPT. In the study of
Gabay et al. (2015), both feedback-based and observational
probabilistic category learning were impaired in dyslexia.
It may be the case that the probabilistic nature of both of these
tasks may have given rise to the reported observations.
Specifically, probabilistic relationships increase uncertainty,
are more immune to the involvement of declarative
compensation processes, and may therefore present a major
source of difficulty in dyslexia (Lum et al., 2013). Notably,
in the present study, individuals with dyslexia were also
impaired in the TI task that involved a deterministic feedback.
However, the partial overlapping of stimuli introduced
reward uncertainty, which resulted in less consistent mapping
between specific cues and outcomes (e.g. B was 50%
rewarding and 50% non-rewarding depending on the other
stimuli in the pair) a fact that could negatively influence
the ability of individuals with dyslexia to learn reinforcement
contingencies.

Studies in recent years argue in favor of an involvement of
domain-general learning mechanisms in many aspects of lan-
guage acquisition (Rabagliati, Gambi, & Pickering, 2016;
Saffran & Thiessen, 2007) including the formation of speech
categories (Holt & Lotto, 2010). Speech categories are
multidimensional such that there is no one consistent cue
for signaling category membership and some cues are more
reliable than others in signaling a category difference
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depending on the listener’s linguistic experience (Holt &
Lotto, 2006). Listeners need to discover which cues are most
critical for singling meaning change in their native linguistic
environments (i.e. which cues are most important for making
phonological distinctions). It is assumed that unsupervised
statistical learning where learners become sensitive to the
distributional frequency of speech cues supports speech
categorization (Maye & Gerken, 2000, 2001). However,
recent evidence suggests that language learning cannot be
fully explained by mere statistical tracking of regularities
and that reinforcement-learning mechanisms are critically
involved as well (Harmon, Idemaru, & Kapatsinski,
2019; Lim, Fiez, & Holt, 2014; Nixon, 2020; Olejarczuk,
Kapatsinski, & Baayen, 2018; Rabagliati et al., 2016).
It seems that listeners approach the task of speech categori-
zation also by using a discriminative error-driven learning
process that guides learners to ignore non-informative cues
and to efficiently learn to use predictive cues (Nixon,
2020). Consistently, several studies have revealed striatal
activity among neurotypical listeners who acquire sound cat-
egories (Feng, Yi, & Chandrasekaran, 2019; Lim, Fiez, &
Holt, 2019) as well as a relationship between basal ganglia
dopamine levels and phonological processing (Tettamanti
et al., 2005). Therefore, RL deficits may influence dyslexics’
ability to establish precise phonological representations.
Hence, the PDH could encompass one of the known causal
factors in dyslexia, phonological processing deficits, while
also providing a broader explanatory framework. In particu-
lar, the PDH can provide a mechanistic understanding of
dyslexics’ phonological deficits that extends to other cogni-
tive and motor skills impairments as well. Notably, the ability
to attend acoustic cues might be influenced by attentional
processes that are compromised in dyslexia (Facoetti,
Lorusso, Cattaneo, Galli, & Molteni, 2005; Franceschini,
Gori, Ruffino, Pedrolli, & Facoetti, 2012). Therefore, it is
possible that impaired attentional mechanisms could influ-
ence learning processes in this population. However, the
alternative option is also possible, according to which
(reinforcement) learning shapes attention toward specific
acoustic cues rather than the opposite. Future studies should
explore whether the process of learning to attend or atten-
tional problems may contribute to dyslexics’ difficulties in
forming phonological categories.

Gabay and Holt (2015) observed impaired incidental
auditory category learning in individuals with dyslexia.
They speculated that impairments in reward-prediction
error-driven learning via the basal ganglia might contribute
to disrupting the typical course of category acquisition in dys-
lexia, with cascading effects on phonological processing. The
present study confirms the hypothesis that RL is impaired in
dyslexia but a replication of the current findings using a more
heterogeneous sample is required, including a population of
dyslexic children. This observation, however, opens the
door for further investigation. First, it is possible that linguis-
tic deficits observed in dyslexia can originate not only from
impaired unsupervised statistical learning abilities (Bogaerts,
Siegelman, & Frost, 2020; Sigurdardottir et al., 2017; Singh

et al., 2018; Vandermosten et al., 2019) but also from less
robust RL mechanisms. For instance, weak learning signals
from the striatum could ultimately contribute to dimensioned
cortical representations of sound categories in people with
dyslexia leading to weakened phonological representations
(Gabay & Holt, 2015). Future neuroimaging studies are
required to explore this assumption. An additional possible
venue of investigation would be to examine whether pharma-
cological interventions (De Vries, Ulte, Zwitserlood,
Szymanski, & Knecht, 2010) or experimental manipulations
(Gabay, Shahbari-Khateb, & Mendelsohn, 2018) can rescue
RL in dyslexia. Finally, burgeoning research suggests the
existence of two RL systems in the brain (Daw, Niv, &
Dayan, 2005), one that is involved in the formation of
stimulus–response associations (model-free) and the
other involving the learning of a model of the world that is
believed to support goal-directed behavior (model-based).
Examination of the balance between these two RL systems
in dyslexia could help to further characterize their learning-
related impairments.

SUPPLEMENTARY MATERIAL
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