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Automorphisms of Iterated Wreath
Product p-Groups

Jeffrey M. Riedl

Abstract. We determine the order of the automorphism group Aut(W ) for each member W of an

important family of finite p-groups that may be constructed as iterated regular wreath products of

cyclic groups. We use a method based on representation theory.

1 Introduction

We begin by defining an important family of finite groups of prime-power order. Let

p be a prime and let e be a positive integer. Let W e
1(p) denote the cyclic group of

order pe. For each integer n ≥ 2, we recursively define W e
n(p) as the regular wreath

product group W e
n(p) = W e

n−1(p) ≀ Zp. Thus, for n ≥ 2, the group W e
n(p) is the

semidirect product N ⋊ Zp where N is the direct product of p copies of W e
n−1(p),

and where Zp, the cyclic group of order p, acts via automorphisms on N by regularly

permuting these direct factors.

It is well known that for an arbitrary prime p and positive integer n, the group

W 1
n (p) is isomorphic to a Sylow p-subgroup of the symmetric group of degree pn.

The following two results [6, Theorem 1.4, Theorem 1.5] suggest that the three-

parameter family of groups W e
n(p) is worthy of attention.

Theorem 1.1 Let q > 1 be any prime-power and let p be any prime divisor of q − 1.

Let pe denote the p-part of q − 1, so that e is a positive integer. Then for every positive

integer n, the general linear group Γ = GL(pn−1, q) contains a subgroup P that is

isomorphic to W e
n(p). Furthermore, if pe ≥ 3, then P is a Sylow p-subgroup of Γ.

We mention without proof that in the situation of Theorem 1.1, it is actually true

that P is a Sylow p-subgroup of Γ if and only if pe ≥ 3. Although Theorem 1.1 is

quite well known, we suspect that the following result might be less well known.

Theorem 1.2 Let G be a finite p-group for some prime p. Let r be any prime such that

r 6= p, and let F denote the algebraic closure of the field with r elements. Let n be any

positive integer. The following conditions are equivalent.

(i) G is isomorphic to a subgroup of the general linear group GL(pn−1,C).

(ii) G is isomorphic to a subgroup of the general linear group GL(pn−1, F).

(iii) G is isomorphic to a subgroup of W e
n(p) for some positive integer e.

The purpose of this article is to determine the order of the group of automor-

phisms Aut(W ) of the group W = W e
n(p) in case n ≥ 2 and pe ≥ 3.
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Automorphisms of Iterated Wreath Product p-Groups 391

Before going further, we explain why these automorphism groups may be of inter-

est. In unpublished work we classified up to isomorphism the nonabelian subgroups

H of W e
2(p) for an arbitrary prime p and positive integer e such that pe ≥ 3. (Using

Theorem 1.2, one can show that this is equivalent to classifying up to isomorphism

the finite p-groups having a faithful irreducible ordinary character of degree p.) Let

A = Aut(W ) for W = W e
2(p). In other unpublished work we prove, for every group

H of nilpotence class at least 3 appearing in this classification, that NA(H)/CA(H)

is isomorphic to Aut(H), which says essentially that the full automorphism group

Aut(H) is realized inside the group Aut(W ). This suggests that knowledge of the

structure of the group Aut(W ) could, in principle, be translated into knowledge of

the structure of Aut(H) for many subgroups H of W . Knowing the order of Aut(W )

is a natural first step toward gaining some understanding of the structure of the group

Aut(W ).

In order to state the main result, we need to define some notations and make some

preliminary remarks. Let p be any prime and let e and n be any positive integers such

that n ≥ 2. It is straightforward to calculate that the order of the group W e
n(p) is

pα(n) where α(n) = 1 + p + · · ·+ pn−2 + epn−1. In Section 3 we determine character-

theoretic information about the group W e
n(p) that is needed for the main result. We

prove that every faithful irreducible ordinary character of W e
n(p) has degree at least

pn−1. Let Fn denote the set consisting of all faithful irreducible ordinary characters

of W e
n(p) that have degree pn−1. We also prove that the cardinality of the set Fn is

(p − 1)pβ(n) where

β(n) = (p − 1)

[(

n

2

)

+ (e − 1)n

]

− (e − 1)(p − 2) − 1.

(Our proof in Section 3 gives an interesting description of the characters belonging

to the set Fn.) Our approach to determining |Fn| is to show that |F2| = (p− 1)pep−2

and that

|Fn| = |Fn−1| · p(p−1)(n+e−2) for n > 2.

The formula for β(n) that appears above is the unique solution of the recurrence

β(2) = ep − 2, β(n) = β(n − 1) + (p − 1)(n + e − 2) for n > 2.

We are now ready to state the main result.

Theorem A Let p be a prime and let e and n be positive integers such that n ≥ 2 and

pe ≥ 3. For W = W e
n(p), the automorphism group Aut(W ) has order (p−1)n pr where

r = α(n) + β(n) − e.

We use the automorphism counting formula that was developed in [6] to estab-

lish Theorem A. This is a general formula for the order of the automorphism group

Aut(G) of a monolithic finite group G in terms of information about the faithful ir-

reducible ordinary characters of G of minimal degree and information about how G

is embedded as a subgroup of a particular finite general linear group. (A finite group

is said to be monolithic if it has a unique minimal normal subgroup. Thus a finite
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p-group is monolithic if and only if the center of the group is cyclic.) We mention

that Lentoudis [4,5] determined the order of Aut(W ) for the special case W = W 1
n (p)

for odd primes p, using methods completely different from those of this article. The

proof of Theorem A appears in Section 2. The character-theoretic results that are

used in the proof of Theorem A appear in Section 3.

Let Irr(G) denote the set of irreducible ordinary characters of a finite group G.

2 The Proof of Theorem A

For each finite group G and each prime-power q, we define mindeg(G, q) to be the

smallest positive integer m such that the general linear group GL(m, q) contains a

subgroup that is isomorphic to G. Thus mindeg(G, q) is the minimal degree among

all the faithful F-representations of the group G, where F denotes the field with q

elements.

Definition 2.1 Let G be a monolithic finite group, let q be a prime-power that

is relatively prime to the order of G, and let m = mindeg(G, q). We say that the

ordered triple (G, q,m) is a monolithic triple in case every faithful irreducible ordinary

character of G has degree at least m. Assuming that (G, q,m) is a monolithic triple,

we define F(G, q) to be the set of all faithful irreducible ordinary characters of G of

degree m. We say that the monolithic triple (G, q,m) is good provided that every value

of each character belonging to the set F(G, q) is a Z-linear combination of complex

(q − 1)-th roots of unity.

The following is a special case of a result that was proved in [6]. We refer to this re-

sult as the automorphism counting formula. It is the key to establishing Theorem A.

Theorem 2.2 Let (G, q,m) be a good monolithic triple. Suppose that Γ = GL(m, q)

has a unique conjugacy class of subgroups whose members are isomorphic to G. Let H be

any subgroup of Γ that is isomorphic to G. Then |Aut(G)|(q−1) = |F(G, q)| · |NΓ(H)|.

To establish Theorem A, the idea is to define a good monolithic triple (G, q,m)

with G = W e
n(p) that satisfies the hypothesis of Theorem 2.2. The conclusion of

Theorem 2.2 would then yield |Aut(G)| provided that we know in advance |F(G, q)|
and |NΓ(H)|. The next several results will be used to calculate |F(G, q)| and |NΓ(H)|
in this situation.

The following character-theoretic result will be proved Section 3.

Theorem 2.3 Let p be a prime. Let e and n be positive integers. Write W = W e
n(p).

We define the set F = {χ ∈ Irr(W ) | χ(1) = pn−1 and χ is faithful}. The following

hold.

(i) The center of the group W is cyclic of order pe.

(ii) Every faithful irreducible ordinary character of W has degree at least pn−1.

(iii) Every value of each character belonging to the set F is a Z-linear combination of

complex pe-th roots of unity.

(iv) If n ≥ 2, then |F| = (p − 1)pβ(n), where β(n) is as defined in the introduction.

The following result is included in [6, Theorem 4.4].
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Theorem 2.4 Let Γ = GL(m, q), where q > 1 is any prime-power and m is any

positive integer. Let F be the field with q elements, let F0 be any nontrivial subgroup of

the multiplicative group F×
= F − {0}, and let E be the group of all diagonal matrices

in Γ having the property that each entry along the diagonal belongs to F0. Let S be the

subgroup of Γ consisting of all permutation matrices, and note that S ∼= Sym(m). Let

T be any transitive subgroup of the symmetric group S and let H = E ⋊ T. If E is a

characteristic subgroup of H, then

|NΓ(H)| = |NS(T) :T| · |H| (q − 1) / |F0|.

In the situation and notation of Theorem 2.4, the conclusion of that result reduces

the problem of calculating the order of NΓ(H) to the problem of calculating the index

|NS(T) :T|. The following result, which appears in [1], will be used to calculate the

index |NS(T) :T| for the particular situation that arises in the proof of Theorem A.

Theorem 2.5 Let p be any prime and let n be any positive integer. Let P be any Sylow

p-subgroup of the symmetric group S = Sym(pn). Then |NS(P) :P| = (p − 1)n.

Recall that in case n ≥ 2, we recursively defined W e
n(p) as the semidirect product

N ⋊ Zp, where N is the direct product of p copies of W e
n−1(p). We now describe

another useful way to regard W e
n(p) as a semidirect product. First note that for n ≥ 2,

the fact that W 1
n−1(p) is isomorphic to a Sylow p-subgroup of the symmetric group

of degree pn−1 provides us with a transitive action of W 1
n−1(p) on a set of size pn−1.

For each positive integer n, the group W e
n(p) is isomorphic to the semidirect product

B ⋊ T, where B is the direct product of pn−1 copies of the cyclic group of order pe

and where the group T and its action on B are defined as follows. In case n = 1, the

group T is trivial and thus its action on B is trivial. In case n ≥ 2, the group T is

isomorphic to W 1
n−1(p) and acts via automorphisms on B by transitively permuting

the pn−1 direct factors of B in a manner described earlier in this paragraph.

In the proof of Theorem A, we apply Theorem 2.4 with the groups W e
n(p) and

B playing the roles of H and E in the notation of Theorem 2.4. One hypothesis of

Theorem 2.4 is that E is a characteristic subgroup of H, and so we need the following

result. This result is a generalization of [2, Satz III.15.4(a)] with the same proof,

which we omit here.

Theorem 2.6 Let p be a prime, let e and n be positive integers, and write W e
n(p) =

B ⋊ T, where B and T are as defined earlier. If pe ≥ 3, then B is the product of all the

abelian normal subgroups of W e
n(p), and so B is a characteristic subgroup of W e

n(p).

In the proof of Theorem A, we use the following result to define an embedding

of W e
n(p) as a subgroup of a general linear group that satisfies the hypotheses of

Theorem 2.4

Lemma 2.7 Let p be a prime, let e and n be positive integers, and write W e
n(p) =

B ⋊ T, where B and T are as defined earlier. Let F be any field containing a prim-

itive pe-th root of unity. Then there exists a faithful F-representation Y of W e
n(p) of

degree pn−1 such that Y(B) is the group of all diagonal matrices of order dividing pe in

the general linear group GL(pn−1, F), while Y(T) is a transitive group of permutation

matrices.
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Proof We proceed via induction on n. The base case n = 1 is trivial. Let n > 1 and

assume inductively that X is a faithful F-representation of W e
n−1(p) of degree pn−2

having the desired properties. By definition we have W e
n(p) = N ⋊ 〈w〉, where N

is the direct product of p copies of the group W e
n−1(p) and the automorphism w ∈

Aut(N) cyclically permutes these p direct factors. We now define the homomorphism

Y : W e
n(p) → GL(pn−1, F) as follows. For each element x = (x1, . . . , xp) ∈ N, we let

Y(x) =











X(x1) 0 · · · 0

0 X(x2) · · · 0
...

...
. . .

...

0 0 · · · X(xp)











.

Furthermore, letting I denote the pn−2-by-pn−2 identity matrix, we define

Y(w) =















0 0 0 0 I

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

... 0

0 0 · · · I 0















.

The proof is complete.

The following result (which appeared as Lemma 3.2 in [6]) describes the orders of

the Sylow p-subgroups of certain finite general linear groups.

Lemma 2.8 Let q > 1 be any prime-power and let p be any prime divisor of q − 1.

Let pe denote the full p-part of q − 1, and suppose that pe ≥ 3. Then for every positive

integer m, the full p-part of |GL(m, q)| is pem+s where ps is the full p-part of m!.

Let q be a prime-power and p a prime that satisfy the hypothesis of Lemma 2.8.

For any integers k and m such that 1 ≤ k < m, the full p-part of k! is less than

or equal to the full p-part of m!, and so by Lemma 2.8, the full p-part of |GL(k, q)|
is strictly smaller than the full p-part of |GL(m, q)|. Hence a Sylow p-subgroup of

GL(k, q) has smaller order than a Sylow p-subgroup of GL(m, q). We shall use this

fact in the proof of Theorem A.

Proof of Theorem A By Theorem 2.3(i), the p-group W has a cyclic center and is

therefore monolithic. Choose any prime-power q > 1 such that pe is the full p-part

of q − 1. Write Γ = GL(pn−1, q) and let P be any Sylow p-subgroup of Γ. By the

hypothesis pe ≥ 3 and by Theorem 1.1, we deduce that P ∼= W . It follows that

mindeg(W, q) ≤ pn−1. For each positive integer k such that k < pn−1, Lemma 2.8

implies that the p-part of the order of the general linear group GL(k, q) is strictly

smaller than the p-power |W |, and so GL(k, q) contains no subgroup that is isomor-

phic to W . It follows that mindeg(W, q) = pn−1. Now Theorem 2.3(ii) implies that

(W, q, pn−1) is a monolithic triple. By Theorem 2.3(iii) and the fact that pe is a divi-

sor of q−1, (W, q, pn−1) is indeed a good monolithic triple. Since W is isomorphic to
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a Sylow p-subgroup of Γ, there is only one conjugacy class of subgroups of Γ whose

members are isomorphic to W . Theorem 2.3(iv) yields |F(W, q)| = (p − 1)pβ(n).

By Lemma 2.7, we may write P = B ⋊ T, where B is the group of all diagonal ma-

trices of order dividing pe in Γ, and where T is a transitive group of permutation ma-

trices that is isomorphic to W 1
n−1(p). Let S be the subgroup of Γ consisting of all per-

mutation matrices, and note that S ∼= Sym(pn−1). Theorem 2.5 yields |NS(T) :T| =
(p − 1)n−1. By Theorem 2.6, B is a characteristic subgroup of P. Since P ∼= W , we

have |P| = pα(n). By Theorem 2.4, we obtain |NΓ(P)| = (p − 1)n−1 pα(n)(q − 1)/pe.

Now Theorem 2.2 yields

|Aut(W )| = [(p − 1)pβ(n)][(p − 1)n−1 pα(n)−e(q − 1)]/(q − 1)

= (p − 1)n pα(n)+β(n)−e,

as desired to complete the proof.

3 Character Theory

In this section we determine useful character-theoretic information about the family

of groups W e
n(p). First we introduce some notations. For an arbitrary finite group

G, we write Lin(G) to denote the group of all linear ordinary characters of G. If ǫ
is any primitive complex m-th root of unity for some positive integer m, we let Z(ǫ)
denote the subring of C that is generated by ǫ, and we mention that Z(ǫ) is equal to

the set of all Z-linear combinations of complex m-th roots of unity. The following

result includes Theorem 2.3.

Theorem 3.1 Let p be a prime and let e and n be positive integers. Write P = W e
n(p).

We define the set Fn = {χ ∈ Irr(P) | χ(1) = pn−1 and χ is faithful}. Let ǫ be any

primitive complex pe-th root of unity. Then the following conditions hold.

(i) The center Z(P) is cyclic of order pe.

(ii) |Lin(P)| = pn+e−1.

(iii) For each character µ ∈ Lin(P), all the values of µ belong to the ring Z(ǫ).

(iv) For each faithful character χ ∈ Irr(P), we have χ(1) ≥ pn−1.

(v) For each character χ ∈ Fn, all the values of χ belong to the ring Z(ǫ).

(vi) If n ≥ 2, then |Fn| = (p − 1)pβ(n) where β(n) is as defined in the Introduction.

The following standard fact is used in our proof of Theorem 3.1.

Lemma 3.2 Let G be a finite group having a unique minimal normal subgroup M.

Let 1 < N ⊳ G and let ψ ∈ Irr(N). Then the induced character ψG is faithful if and

only if M * kerψ.

Proof If M ⊆ kerψ, then [3, Lemma 5.11] yields 1 < M ⊆ coreG(kerψ) = kerψG,

soψG is not faithful. If M * kerψ, then using kerψG ⊆ kerψ we obtain M * kerψG,

and so by the uniqueness of M we have kerψG
= 1, which says that ψG is faithful.

Proof of Theorem 3.1 Since p is fixed throughout this proof, we write W e
n = W e

n(p)

for arbitrary positive integers n and e. We proceed via induction on n. In the base
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case n = 1, it is clear that all conclusions hold. Henceforth let n ≥ 2 and note that

P = N ⋊ Zp, where N is a direct product of p copies of the group W e
n−1. Each

element of N is of the form x = (x1, . . . , xp) where xi ∈ W e
n−1 for i ∈ {1, . . . , p}.

Conjugation by an arbitrary element of P cyclically permutes the direct factors of N.

By the inductive hypothesis applied to part (i), the center Z(W e
n−1) is cyclic of

order pe. Let the element u be a generator for the cyclic group Z(W e
n−1). If Z(P) * N,

then using |P :N| = p we obtain P = Z(P)N, and so the permutation action of

P on the p direct summands of N is trivial, contrary to what we know. Therefore

Z(P) ⊆ N.

It follows that Z(P) ⊆ Z(N) = 〈u〉 × · · · × 〈u〉. For an element x ∈ Z(N) to

belong to Z(P), it is necessary and sufficient that x be invariant under conjugation

by elements outside of N. But this happens if and only if the components of x are all

equal to each other. Thus, for the element z = (u, . . . , u) ∈ N of order pe, we have

Z(P) = 〈z〉, establishing part (i).

Since N⊳ P and |P :N| = p, for each characterψ ∈ Irr(N), it is true thatψ extends

to P in case ψ is P-invariant (by [3, Corollary 6.20]) and that ψP is irreducible in case

ψ is not P-invariant. Each character ψ ∈ Irr(N) is of the form ψ = θ1 × · · · × θp for

θi ∈ Irr(W e
n−1). We call θ1, . . . , θp the components of ψ. For an arbitrary element

x = (x1, . . . , xp) ∈ N, we have ψ(x) = θ1(x1)θ2(x2) · · · θp(xp). We say that ψ is

homogeneous in case θ1 = θ2 = · · · = θp. It is clear that ψ is P-invariant if and only

if ψ is homogeneous.

The restriction of each linear character of P to the subgroup N is a linear P-invar-

iant character of N and is therefore homogeneous. On the other hand, every homoge-

nous linear character of N has p distinct extensions in Lin(P). Hence restriction to N

defines a p-to-one mapping from the set Lin(P) onto the set of all homogenous linear

characters of N. The number of homogenous linear characters of N is |Lin(W e
n−1)|. It

follows that |Lin(P)| = p · |Lin(W e
n−1)|. The inductive hypothesis applied to part (ii)

yields |Lin(W e
n−1)| = p(n−1)+e−1. We obtain |Lin(P)| = pn+e−1 as desired to establish

part (ii).

It is clear that the group W 1
n is a homomorphic image of P. By [2, Satz III.15.3c],

the elementary abelian p-group of rank n is a homomorphic image of W 1
n . Hence

the elementary abelian p-group of rank n is a homomorphic image of P/P ′. The

abelian p-group Lin(P) is isomorphic to P/P ′, and therefore has rank at least n. Since

|Lin(P)| = pn+e−1, it follows that the abelian p-group Lin(P) has exponent at most

pe, and so part (iii) is established.

We now argue that the element zpe−1

is contained in the kernel of every homo-

geneous character ψ ∈ Irr(N). Write ψ = θ × · · · × θ for some θ ∈ Irr(W e
n−1).

Because the element u ∈ Z(W e
n−1) has order pe, we have θ(u) = θ(1)ǫm for some

integer m. Hence θ(upe−1

) = θ(1)ǫmpe−1

. Since z = (u, . . . , u), we have zpe−1

=

(upe−1

, . . . , upe−1

). Recalling that ǫ is a primitive complex pe-th root of unity, we

obtain

ψ
(

zpe−1)

=

p
∏

i=1

θ
(

upe−1)

=

p
∏

i=1

θ(1)ǫmpe−1

= θ(1)pǫmpe

= θ(1)p
= ψ(1),

which says that zpe−1

∈ kerψ, as claimed.
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We now argue that for each faithful character χ ∈ Irr(P) there exists ψ ∈ Irr(N)

such that ψP
= χ and zpe−1

6∈ kerψ. Let χ ∈ Irr(P) be faithful. If the restriction

χN is irreducible, then χN is P-invariant and therefore homogeneous, and so the

preceding paragraph yields zpe−1

∈ kerχN , from which it follows that zpe−1

∈ kerχ,

contradicting that χ is faithful. Hence χN is reducible. By [3, Corollary 6.19], we

deduce that ψP
= χ for some character ψ ∈ Irr(N). Since 〈zpe−1

〉 is the unique

minimal normal subgroup of P while ψP is faithful, Lemma 3.2 yields zpe−1

6∈ kerψ,

as desired to establish our claim.

We define the set S = {ψ ∈ Irr(N) | zpe−1

6∈ kerψ and ψ(1) = pn−2}. We now

argue that the rule ψ 7→ ψP defines a mapping from the set S to the set Fn. Let

ψ ∈ S be arbitrary. Because zpe−1

6∈ kerψ, we know that ψ is not homogeneous and

therefore not P-invariant, and so ψP is irreducible. Since zpe−1

6∈ kerψ while 〈zpe−1

〉
is the unique minimal normal subgroup of P, Lemma 3.2 implies that ψP is faithful.

Using ψ(1) = pn−2 and |P :N| = p, we obtain ψP(1) = pn−1. Hence ψP ∈ Fn and

the mapping S → Fn is well defined. Next we argue that this mapping S → Fn is

p-to-one and onto. Let χ ∈ Fn be arbitrary. By the preceding paragraph, there exists

ψ ∈ Irr(N) such that ψP
= χ and zpe−1

6∈ kerψ. Since χ(1) = pn−1 and χ = ψP

for ψ ∈ Irr(N) with |P :N| = p, we have ψ(1) = pn−2. Therefore ψ ∈ S and the

mapping is onto. Since ψ ∈ Irr(N) and ψP is irreducible, we know that ψ is not

P-invariant. Each of the p distinct P-conjugates of ψ in Irr(N) also belongs to the set

S and induces χ. Hence the mapping is p-to-one.

Since we have a p-to-one mapping from the set S onto the set Fn, indeed |Fn| =
|S|/p.

Case 1: Suppose n = 2. Thus N is a direct product of p copies of the cyclic group

W e
1 of order pe. Let χ ∈ Irr(P) be faithful. Since P is a noncyclic p-group, we have

χ(1) ≥ p, thereby establishing part (iv). By earlier observation, we know thatχ = ψP

for some ψ ∈ Irr(N). Hence χ vanishes off the normal subgroup N. We also know

that χN = ψ1 + · · ·+ψp for characters ψ1, . . . , ψp ∈ Irr(N). Because N is homocyclic

of exponent pe, each of the values of each of the characters ψ1, . . . , ψp belongs to the

ring Z(ǫ). This establishes part (v).

Since n = 2, the condition ψ(1) = pn−2 in the definition of S becomes ψ(1) = 1,

which is true for every ψ ∈ Irr(N) since N is abelian. Thus

S = {ψ ∈ Irr(N) | zpe−1

6∈ kerψ}.

In order to calculate the cardinality |S|, it suffices to count the linear characters of the

abelian group N whose kernel does not contain the subgroup 〈zpe−1

〉 of order p. The

total number of linear characters of N is |N| = pep, and the number of these whose

kernel contains 〈zpe−1

〉 is |N|/p = pep−1. Hence |S| = pep − pep−1
= (p − 1)pep−1.

Therefore |F2| = |S|/p = (p − 1)pep−2. Since β(2) = ep − 2, we have established

part (vi).

Case 2: Suppose n > 2. First we argue that the element zpe−1

is contained in the

kernel of every character ψ = θ1 × · · · × θp ∈ Irr(N) having the property that none

of the characters θ1, . . . , θp is faithful. First note that 〈upe−1

〉 is the unique minimal
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normal subgroup of W e
n−1. Assuming that for each i ∈ {1, . . . , p} the character

θi ∈ Irr(W e
n−1) is not faithful, we have upe−1

∈ ker θp for each i ∈ {1, . . . , p}. Using

zpe−1

= (upe−1

, . . . , upe−1

), we calculate that

ψ
(

zpe−1)

=

p
∏

i=1

θi

(

upe−1)

=

p
∏

i=1

θi(1) = ψ(1),

which says that zpe−1

∈ kerψ, as claimed.

Let ψ ∈ Irr(N) be arbitrary and write ψ = θ1 × · · · × θp. Since |P :N| = p, the

induced character ψP has degree ψP(1) = pψ(1) with ψ(1) = θ1(1)θ2(1) · · · θp(1).

Suppose that zpe−1

6∈ kerψ. By the preceding paragraph, there exists an index k ∈
{1, . . . , p} such that the character θk ∈ Irr(W e

n−1) is faithful. The inductive hypoth-

esis applied to part (iv) yields θk(1) ≥ pn−2. It is clear that ψ(1) ≥ θk(1), and so we

obtain

ψP(1) = pψ(1) ≥ pθk(1) ≥ ppn−2
= pn−1.

Note that ψ ∈ S if and only if ψ(1) = pn−2. By the preceding chain of inequalities,

the condition ψ(1) = pn−2 occurs if and only if θk(1) = pn−2 while θi(1) = 1 for

each i ∈ {1, . . . , p} such that i 6= k.

For each faithful character χ ∈ Irr(P), we proved earlier that there exists ψ ∈

Irr(N) such that ψP
= χ and zpe−1

6∈ kerψ, and so the preceding paragraph yields

χ(1) = ψP(1) ≥ pn−1, thereby establishing part (iv).

The preceding observations give us the following more explicit characterization

of the members of the set S. For each character ψ = θ1 × · · · × θp ∈ Irr(N), it is

true that ψ ∈ S if and only if exactly one of the characters θ1, . . . , θp belongs to the

set Fn−1 (and is hence nonlinear because W e
n−1 is noncyclic for n > 2), while the

remaining p − 1 such characters are linear.

We now argue that every value of each character belonging to the set S lies in the

ring Z(ǫ). Let ψ = θ1 × · · · × θp ∈ S be arbitrary. By the preceding paragraph, there

exists a unique index k ∈ {1, . . . , p} such that θk ∈ Fn−1 while θi ∈ Lin(W e
n−1)

for each i ∈ {1, . . . , p} such that i 6= k. By the inductive hypothesis applied to

part (iii) and part (v), every value of each of the characters θ1, . . . , θp lies in the

ring Z(ǫ). Thus for an arbitrary element x = (x1, . . . , xp) ∈ N we have ψ(x) =

θ1(x1)θ2(x2) · · · θp(xp) ∈ Z(ǫ).

We now establish part (v). Let χ ∈ Fn be arbitrary. Thus χ = ψP for some char-

acter ψ ∈ S. Since ψ ∈ Irr(N), the character χ vanishes off the normal subgroup N.

The restriction χN is a sum of p characters belonging to the set S. By the preced-

ing paragraph, it follows that every value of χN lies in the ring Z(ǫ), as required to

establish part (v).

It remains to establish part (vi). First we use our characterization of the set S to

determine the cardinality of the set S. To construct an arbitrary member ψ of the set

S, we begin by choosing some character in Fn−1. Next we decide in which of the p

components of ψ this character chosen from Fn−1 will appear. We then fill each of

the remaining p − 1 components of ψ with an arbitrary member of Lin(W e
n−1). By

counting the total number of ways to carry out this process, we obtain

|S| = |Fn−1| · p · |Lin(W e
n−1)|

p−1
.
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The inductive hypothesis applied to part (ii) yields |Lin(W e
n−1)| = pn+e−2. Using

|Fn| = |S|/p, we deduce that |Fn| = |Fn−1| · p(p−1)(n+e−2). Since n > 2, the inductive

hypothesis applied to part (vi) yields |Fn−1| = (p − 1)pβ(n−1). It follows that

|Fn| = (p − 1)pβ(n−1) p(p−1)(n+e−2).

It is straightforward to verify that β(n − 1) + (p − 1)(n + e − 2) = β(n). Hence we

conclude that indeed |Fn| = (p − 1)pβ(n), as required to establish part (vi).
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