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Abstract. In this paper, we study polynomial structures by starting on the Lie algebra level, then
passing to Lie groups to finally arrive at the polycyclic-by-finite group level. To be more precise,
we first show how a general solvable Lie algebra can be decomposed into a sum of two nilpotent
subalgebras. Using this result, we construct, for any simply connected, connected solvable Lie group
G of dimn, a simply transitive action on R” which is polynomial and of degree < n3. Finally, we

- show the existence of a polynomial structure on any polycyclic-by-finite group I", which is of degree
< h(I‘)3 on almost the entire group (h(I") being the Hirsch length of I').
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1. Introduction

In this paper, we continue our study of polynomial structures (see [7,9-11]). Let
us briefly recall the context of this topic.

In 1977 John Milnor [14] formulated the following question, which became
widely known as Milnor’s conjecture: Does any torsion-free polycyclic-by-finite
group occur as the fundamental group of a complete, affinely flat manifold M?

An equivalent, but more algebraic formulation is the following: Is it true that
any torsion-free, polycyclic-by-finite group I" admits a morphism ¢: ' — Aff(R")
(Aff(R") is the group of invertible affine mappings of R”") letting I act properly
discontinuously and with compact quotient on R"”? Such a morphism ¢ has been
called an affine structure on I'.

For a long time, one expected that the answer to the above question was positive,
until 1992 when Yves Benoist ([2-3]) produced a counter-example, which was
later even generalized to a family of examples ([4-5]).

The study of polynomial structures arose in the search for the best possible
alternative to Milnor’s question. As the reader might suspect, a polynomial struc-
ture on a group I" is a properly discontinuous action ¢:I" — P(R") with compact
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quotient. Here, P(R") stands for the group of polynomial diffeomorphisms of R”,
i.e. the maps u: R” — R”, which are bijective and for which both x and wl are
expressed by means of polynomials (in the usual coordinates of R").

It turned out that even in the cases where the affine structures fail to exist, there
is always a polynomial structure. In fact, the two most important results obtained
thus far are:

(1) Let T be any polycyclic-by-finite group, then I' admits a polynomial structure
(which is of canonical type, see Section 4 and [9]). It is known that this poly-
nomial structure is of bounded degree, meaning that there is an upperbound on
the degrees of the polynomials expressing this polynomial structure. However,
there is no knowledge at all concerning the value of such an upperbound.

(2) Let I be any polycyclic-by-finite group, then I" has a subgroup I'', which is of
finite index in I" and which admits a polynomial structure of degree < h(I')
(= h(I)). (In this paper, we will always use h(I") to denote the Hirsch length
of a polycyclic-by-finite group I" (see [10]).) Unfortunately, it is not known if
the polynomial structure on I' can be extended to the whole group I

Knowing this result, one might formulate the following conjecture ([7]):

CONIJECTURE 1.1. There exists a function v: N — N, (most likely v(n) = n
will do), such that for any polycyclic-by-finite group T, there exists a polynomial
structure of degree < v(h(I')) on T'.

This paper should be seen as a first step towards a possible solution of this problem.
Indeed, we prove a result which can be seen as a combination of the two results
mentioned above, namely we show that any polycyclic-by-finite group I" admits a
polynomial structure which restricts to a polynomial structure of degree < h(l)?
on a subgroup of finite index. So, although the bound we get for the degree of the
polynomial structure on the finite index subgroup is worse than the bound obtained
in the second result mentioned above, we do know that the polynomial structure
really exists on the whole group I'" and not only on the finite index subgroup.

Finally, we wish to remark that the results obtained in Sections 2 and 3 can
also be useful, if you are not immediately interested in polynomial structures of
polycyclic-by-finite subgroups. In fact, in Section 2 we describe how any solvable
Lie algebra g can be seen as a sum g = n + ¢ of two nilpotent subalgebras, where
n is the nilradical of g. In the following section, we use this result to decompose a
simply connected, connected solvable Lie group G as a product G = NC, of two
nilpotent Lie subgroups, where N is the nilradical of G. Moreover, we describe
some interesting coordinate systems on such a group G, based on this decompos-
ition and show how the product in G is expressed by means of a function which
is polynomial in some of its variables. This leads to the construction of a simply
transitive and polynomial action of G on some space R”.
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2. A Decomposition of Solvable Lie Algebras

In this section we will proof a decomposition result for solvable Lie algebras. In
fact, the result we present here is the analogue of the result for polycyclic groups
as can be found in Segal’s book ([16]) (from page 45 to page 51). The proofs
we present here are translations from the proofs on the group level to the Lie
algebra level. The basis of the decomposition result of solvable Lie algebras is
the following cohomology vanishing result.

PROPOSITION 2.1. Let n be any nilpotent Lie algebra over any field. If M is a
finite dimensional n-module with H°(n, M) = 0, then H' (n,M)=0, VieN.

Proof. We proceed by induction on the dimension n of M. If n = 0, then M = 0
and the proposition is trivially true. So suppose that n > 0 and that the proposition
holds for modules of lower dimension.

As H'm,M)={m e M|x-m =0, Vx € n} =0, there exists a x € nand a
m € M such that x - m # 0. It follows that the ideal t = {x e n|x -m =0, Vm €
M} of n is not the whole of n.

Choose an element x; € n such that its image X, in n/¥ is non zero and belongs
to the center Z(n/¥) of the Lie algebra n/¢. We claim that x¢ - M is a n-submodule
of M. Indeed, for any x € n and any m € M, we have that

x-(xg-m)=x¢-(x-m)—[xg,x] m=xp-(x-m)e€xyg-M.
——
et

If we let K denote the kernel of the n-linear map p: M — xo- M:m +— xo - m,
we obtain the following short exact sequence of n-modules 0 - K —» M —
X0 * M — 0.

This short exact sequence gives rise to the long exact sequence of cohomology
spaces

0 > H'n, K) - H'(m, M) > H(n, xo - M) —
N ! N e’ b‘,o_z
— H'0,K) > H'(n,M) > H'(n, xo - M) —>
— H?(n,K) - H*(n, M) > H*(n,x0 - M) —> -+

We now distinguish two cases.

Casel: K #0. Asxy €% xo-M # 0 and therefore both dim(K) < dim(M) and
dim(xo - M) < dim(M). By the induction hypothesis, we know that H'(n, K) =
0= H'(n,xo - M) for all i € N. The long exact cohomology sequence above now
implies the exactness of the sequences 0 — H'(n, M) — 0, Vi € N proving that
H'(n,M) =0, VieN.

Case2: K = 0,ie. M = xy- M. In this case, xo - m = 0 (for some m € M)
implies that m = 0 (since the linear transformation M — M: m +— xg-m is
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bijective). It follows immediately that H%((xo), M) = 0, where (xo) denotes the
vector space (in this case subalgebra) spanned by xy. As (x¢) is a 1-dimensional
Lie algebra H'((xo), M) = 0, for all i > 2. It is also easy to show by a direct
argument, using xo - M = M, that H!({xo), M) = 0.

Now, let Z; = Z;(n), with i € N, denote the ith term of the upper central series
of n (iie Zg = Oand Z; . 1(n)/Z;(n) = Z(n/Z;(n))). In n we can consider the
subalgebra Z; .| + {xp), which contains Z; + (x¢) as an ideal. We will now show by
induction on i that H¥(Z; 4 (x9), M) = 0forallg € N.Fori =0, Z; + {xo) = {x0)
and the argument is given above.

Now fix an i and assume that H?(Z; + (xg), M) = 0, for all ¢ € N. The first
terms of the Hochschild—Serre (5-term) exact sequence for g > 1 are of the form

Zit1 + (xo)
Z; + {xo)

0 - HY ,HYZ; + (xo), M) | —
=0
= HY(Ziy1 + (x0), M) > HU(Z; + (x0), M) — - --

=0

implying that H4(Z; 1 + {x0), M) = O for ¢ > 1. The case ¢ = 0 is trivially true
as xg € Zjy1 + (xo)-

The proposition is now proved since Z; + (xo) = Z; = n for i sufficiently
large. O

We are now ready to prove the decomposition result mentioned above.

THEOREM 2.2. Suppose that g is a finite dimensional Lie algebra (over any field)
with a nilpotent ideal n, such that the quotient g/n is also nilpotent. Then there
exists a nilpotent subalgebra ¢ of g such that ¢ = n + ¢ (the above sum not
necessarily being a direct sum!)

Proof. We will prove this theorem by induction on the dimension of g. Let us
denote the quotient g/n by t. The theorem is trivially true for a Lie algebra of
dimension 1. So, let us assume that the dimension of g is greater than 1 and that
the theorem is valid for Lie algebras of smaller dimension.

If n = 0, there is nothing to show, otherwise n/Z(n) is a nilpotent ideal of
g/Z(w) and (g/Z(n))/(n/Z(n)) = g/n = tis nilpotent. We know by the induc-
tion hypothesis that there exists a nilpotent subalgebra h/Z(n) of g/Z(n), with
9/Z(m) =n/Z(M)+h/Z(n) = g=n+}.

Again we consider two cases:

Case 1: Zm)NZ®B) # 0. If e = Z(n)N Z(H), then h/¢ is a Lie algebra with
ideal (n N §) /¥ inducing a quotient

MO . b LG+
@NB/EH ~ nh ~  n

1
1

t,

g
n
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which is nilpotent. By the induction hypothesis, there exists a nilpotent subalgebra
¢/t of h/¢ with

h_

g
As € C Z(c) and ¢/¢ is nilpotent, we can conclude that c itself is nilpotent. In other
words there exists a nilpotent subalgebra ¢ of g with

mNp)/e+c/t=>h=nNh+c

g=n+h=n+mNh)+c=n+c,

which finishes the proof in this case.

Case?2: Z(n)NZ(h) = 0. Consider the short exact sequence of Lie algebras
0>Z(n)=>h—>h/Z(n) > 0. (D)

This short exact sequence gives rise to a f/Z(n)-module structure of Z(n) which,
for any x € his givenby Vz € Z(n): X -z = [x,2], where X = x + Z(n)
and [x, z] denotes the Lie bracket in h. From Z(n) N Z(h) = O it follows that
H°(H/Z(m),Z(n)) = 0, and thus by Proposition 2.1 also H i(h/
Z(n), Z(n)) = 0 for any i € N. In particular, from H%*(H/Z(n), Z(n)) = O, it
follows that the extension (1) must split. This implies that there exists a subalgebra
¢ = b/Z(n) (so ¢ is nilpotent) of h withh = Z(n) S c.

Note that the direct sum decomposition above is meant to be a direct sum of
vector spaces not of Lie algebras ( is only a semi-direct product). Moreover, g =
n+ b = n+ Z(n) + ¢ = n + ¢ which finishes the proof in the second case. a

DEFINITION 2.3. (1) Let g be a Lie algebra with ideal n. A (nilpotent, . . .) almost
supplement for n in g is a (nilpotent, . . .) subalgebra ¢ of g withg =n +c.

(2) Let G be a (Lie) group with normal (Lie) subgroup N. A (nilpotent,...)
almost supplement for N in G is a (Lie) subgroup C of G with G = N.C.

COROLLARY 2.4. Let g be a solvable Lie algebra over a field of characteristic 0.
Then there exists a nilpotent almost supplement < for the nilradical n of g.

Proof. For any solvable Lie algebra g over a field of characteristic zero, [g, g]
is nilpotent ([17]). It follows that [g, g] < n. The corollary is now a direct con-
sequence of Theorem 2.2, since g/n is Abelian. ]

3. Simply Transitive Polynomial Actions

In this section we will apply the results obtained thusfar to construct a simply
transitive polynomial action for any simply connected, connected solvable Lie

group.

PROPOSITION 3.1. Let N be any connected, simply connected nilpotent Lie group
of nilpotency class < c with Lie algebra w. Suppose that there is a vector space
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decomposition n = a@®b, where a is an ideal of nand b is a sub (vector) space of n.
Then for any basis Ay, A, ..., A, of a and any basis By, Bs, ..., Bs of b, the maps
01:R™ — N and ¢o: R"™™ — N defined by Vxi, X2, ..., Xry Y1, Y25 -+, Ys € R:

O1x1, ey Xy Y1y e, Ys) = eXp(x1Ar + - + X, A + Y1 By + - ¥ By),
©2(X1, .oy Xry Y1y e ey Ys) = €Xp(X1 AL + -+ - + X, Ap) exp(y1 By + - - - Y5 By)
are analytical diffeomorphisms. Moreover,

o o R 5 R™ and @' op: R — R

are polynomial of total degree < c and of degree < Max(c — 1, 1) in the variables

X1, X2, ... X, (T€SP. Y1, Y2, - - ., ¥s5) alone.
Proof. The proof of this proposition can be obtained via a straightforward ap-
plication of the Campbell-Baker—Haussdorf formula. 0

Remark 3.2. Let
p: RI‘-H‘ - Rs: (-x19'-"xryyl’---ays) = (}’1,---,}%)

denote the projection on the last s components. There are commutative diagrams

—1 -1
r+s %1 °%2 r+s rés %2 091 r+s
R ——R R™ ——R
N N

i.e. the maps ¢, 1o ¢, and ©y 16 ¢ are constant on the last s components.

The following lemma seems to be well known (e.g., see [15]). However, because
of its importance to the rest of the paper we like to present it here with a short proof
in full detail.

LEMMA 3.3. Let G be a simply connected, connected solvable Lie group with
nilradical N. Let g be the Lie algebra of G and denote by n the subalgebra of g
corresponding to N. Let t be a subspace of g such that g = n@®+t. Then G/N = R¥
for some k and there is a commutative diagram (wWhere the upper row is a short
exact sequence of Lie groups and the bottom row is a short exact sequence of Lie

algebras)
1 N G L —+ Rk 1
T exp 1 73 1 exp=Igk
1 n g2 : R¥ 1,

wherep:g=n®t— G:(x,y) — exp(x)exp(y), Vxen, Vyet.
Moreover, ¢ is an analytic diffeomorphism. (p and p’ are the natural projection
homomorphisms.)
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Proof. The commutativity of the left-hand square is obvious. The commutativity
of the right-hand square follows from the fact that p oexp = exp op’. The map ¢ is
an analytic map, since it is a product of analytic maps. The only thing left to show is
the fact that ¢ is a bijection. Note that the two exponential maps on the outer sides
of the diagram above are bijective. We will first show that ¢ is a surjective map. Let
g € G. There exists a unique element ¢ € t such that exp(p’(¢)) = p'(t) = p(g).
It follows that p(gexp(t)~!) = 1, implying that gexp(¢)~! € N, from which it
follows that there exists a n € n with exp(n) = gexp(t)~!. This means that we
have found n e nand ¢ € t with ¢(n,?) = g.

To show the injectivity of ¢, we consider ny,n, € nand t1, 1, € t with ¢(n,,
1) = ¢@(ny, t;). The commutativity of the diagram implies that p(¢(ni, 1)) =
exp(t;) = p(p(na, 1)) = exp(fy) = t; = t,. Using this, we find that exp(n;) =
exp(ny) = n; = ny, which was to be shown. O

We will now use the lemma above for a suitable t. Consider any solvable Lie
algebra g (over the field R). Then, by Theorem 2.2, g = n + ¢, where n is the
nilradical of g and c is a nilpotent almost supplement for n in g. Take a subspace t
of g such that c = (nN¢) @ t (direct sum of vector spaces).

We can choose a basis Bj, Bs, ..., B; of the vector space n N ¢, a basis Cy,
Cs, ..., C, of the vector space t and vectors Aj, Az, ..., Ax of n such that the
total set of vectors

A[,Az,..-,Ak,Bl,Bz,...,B],Cl,CZ,...,Cm

forms a basis of g. It also follows then that A;, A,,..., Ak, By, Ba,..., By is a
basis of n. After having chosen this basis for g, we can identify g with Rk++m By
means of the map ¢ of Lemma 3.3 (with respect to the decomposition g = n + ¢)
we can therefore analytically identify the Lie group G with Rk+i+m.

k+1
]R++m (xl,---,xk,}’Is---’)’I,Zl,---,zm)

k 1 m
g=n+t Y xAi+) ¥Bi+) zuC
i=l1 i=l1 i=l1

1 Y
k ! m

G exp (inA,- + Zy,-B,-) exp (Zz,C,-) .
i=1 i=1 i=1

The coordinate map

k ) m
co: G — R¥H™: exp (inAi + Zy;B,-) exp (Zz,C,-)
i=1

i=1 i=1

= (xl,---,xk,}’la---,zm)
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obtained as the inverse of the above identification is a global chart on G.

DEFINITION 3.4. A global chart co: G — R¥+'*™ on a simply connected, con-
nected solvable Lie group G, obtained in the way described above will be called a
Mal’cev-like coordinate map. For an element g € G, the (k 4+ [ 4+ m)-tuple co(g)
will be referred to as the Mal’cev-like coordinates of g.

Of course, when no confusion can arise, we will call co(g) simply the coordinates
of g. The importance of these coordinates with respect to polynomial structures
becomes clearer with the following theorem.

THEOREM 3.5. Let G be a simply connected, connected solvable Lie group equipped
with a Mal’cev-like coordinate map co. Then, the coordinate expression for the
product in G is polynomial in the second variable, i.e. the map

W Rk+l+m x Rk+l+m — Rk+l+m: (d, ﬂ) — CO(CO_I ((!) CO_I(ﬂ))

is polynomial in the k + | + m components of B.
Moreover, deg(u) < (k + 1 + m)3, where deg(u) denotes the total degree of
in the components of B.

Proof. Let
a=(al,...,ak,bl,...,b,,cl,...,c,,,) and
ﬂz(xl,---,xk,)’h---,}’I,Zl,---,zm)-

We have to show that

co(exp(aA + bB) exp(cC) exp(xA + yB) exp(zC))

is polynomial in the variables xi, ..., Xk, ¥1,..., Y, 21, - . - » Zm. Here, the vector
expressions such as aA are used to denote sums like a; A; +az A, + - - - +ax Ag and
SO on.

First of all remember that the exponential map exp : n — N from the nilradical
n of g to the nilradical N of G is an analytical bijection. Moreover, for any continu-
ous automorphism o of N, there exists a linear map / of n (namely the differential
of o), such that

o(exp(X)) = exp(I(X)), VX €n. 2)

(For more information, see, e.g., [8].)

Let b be the Lie algebra of a connected and simply connected nilpotent Lie
group H of nilpotency class c;. Suppose that 71, T3, ..., T; is a basis of b. It is
known that there exist polynomial functions ¢;: R> — R of total degree < c;, for
which

expri Ty + -+ x,T)) expn Ty + - -+ + 3, T))
=exp(Q1(Xa Y)Tl + +qJ(X, y)T_]) (3)
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for all xy, x2,...,%,y1,¥2,...,Y; € R. A proof of this fact is already given
in [13]. (See also [8] and [10]). We will use this fact for two simply connected
nilpotent Lie groups, namely N = exp(n) and the Lie group C = exp(¢) = exp(nN
c) exp(t). Let us denote the nilpotency class of N by c; and the nilpotency class of
Cbyc,.Letn=k+1+m,thenc; <nandc; < n.

In the course of this proof, we will use symbols p; ; to denote maps from some
space RP? to a space R? which are polynomial of total degree < j in the variables
mentioned. The i is merely meant as an index to distinguish the maps between
one another. A symbol like p;;(x,y) denotes a map which is polynomial in the
variables X,y (of degree < j), but which depends also on ¢ in a way which is
possibly not polynomial. The notation /; ¢ is equivalent to pf; and is used for maps
which are linear in the variables mentioned between brackets, but which depend
also on c.

We now compute the product above:

co(exp(aA + bB) exp(cC) exp(xa + yB) exp(zC))

= co | exp(aA + bB) exp(cC) exp(xa + yB) exp(—cCZ exp(cC) exp(zC)

inner auto. of G re;;ricts to auto. on N
= co(exp(aA + bB) exp(l; (X, Y)A + L (X, y)B) X
x exp[p1,x(¢c, Z)B + p2.x(c, 2)C])

(Use formula (2) and formula (3) with H = C)

= co(exp[p3n(a, b, l1,c(X, Y), lp,c(X, y)A +

+Pan(@ b, l (X, Y), bc(x,¥))B] x

X eXplps.n(P1,n(C, 2), P2.n(c, 2))B]exp[pe,n(P1,(¢, 2), P2.n(c, 2))C])
(Use formula (3) for H = N and Proposition 3.1 for C)

= co(exp[p7 ,(a, b, X, ¥)A + pg ,(a, b, X, y)B] x
x exp| pg 2 (¢, Z)B] exp[pio,2(¢, 2)C])

= co(explp11,1(P7 (3, b, X, Y), P§ (3, b, X, ), po,n2(c, 2))A +
+p12,n(P7 ,(a, b, X, ), Pg ,(a, b, X, ¥), Py n2(c, 2))B] x
x exp[pig,n2(c, 2)CI)

= (pf3,,,3 (a,b,Xx,y,2), pgn2 (c, 7).

This computation shows that the map u depends in a polynomial way on the
variables X, y and z. Moreover, the total degree of the polynomial in these three
variables is < n3, where n = k + [ + m is the dimension of G. O
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Remark 3.6. The careful reader will have noticed that via a detailed analysis of
the above proof it is possible to find an even better upper-bound for the degree of the
polynomial map u. However, the quality of such a bound does not really improve,
because it remains a cubic polynomial in n. For our purposes, the existence of such
a bound is more important than its actual value!

Remark 3.7. At first sight one can be disappointed that the coordinate expression
for the product is only polynomial in the second (set of) variable(s) 8. However,
one can not hope to get anything better because it is known that any Lie group
G admitting a global chart c:G — R” (for some n), for which the product is
expressed by means of a polynomial function in both variables is a nilpotent Lie
group (see [1]), i.e. such a global chart does not exist for general solvable Lie
groups.

To construct a simply transitive action of a simply connected solvable Lie group
on a space R", we can consider the action obtained by left multiplication in G and
identify G with R” by means of a Mal’cev-like coordinate chart. We make this
explicit in the following corollary to Theorem 3.5.

COROLLARY 3.8. Let G be a connected and simply connected solvable Lie group
of dimension n equipped with a Mal’cev-like coordinate map co:G — R". The
map

p:G x R" > R": (g,y) — co(g - co™(y))

is a simply transitive action of G on R". Moreover, the action of any element g € G
is expressed by a polynomial of degree < n3.
Proof. This is an immediate consequence of Theorem 3.5. (]

We remark here that we will improve this result in a forthcoming paper [6] by
showing that any connected and simply connected solvable Lie group G admits a
simply transitive polynomial action of degree < n, where n = dim(G). The im-
portance of the approach we developed here will become apparent in the following
section. Therefore, we need a refinement of Theorem 3.5 dealing with more general
coordinate systems on G.

Let g be a solvable Lie algebra equipped with a fixed basis

A, Ay ... A, B, By, ...,B,C,Cy,...,Cp “4)

as on page 189 i.e. Ay, A,,..., By is a basis of the nilradical n of g, B, B,, ..., Cp,
is a basis of a nilpotent almost-supplement ¢ fornin g, ...).

Now, let Dy, D,, ..., D¢i1+m be any basis of g. There is an invertible linear
map L = (Ly, Ly, ..., Liti4m) € Gl(k + I + m, R) describing the change of
coordinates for these two bases

k+l4+m k ! m
Y. xDi=) Li®Ai+ Y Liyi®Bi + Y L (®C;.
i=1 i=1

i=1 i=1
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Using this map L we can construct another coordinate map on the corresponding
simply connected solvable Lie group G by taking the inverse map of the following
identification of R¥+™ with G

k+l4+m
R (x1, X2, X35+« Xktitm)

|

k+l+m

g Z x;D;
i=1
|

k 1 m
g=n+t Y Li®A+ Y Liyi®Bi+ ) Lipsi®Ci
i=1

i=l1 i=1

¢ |
k ) m
G exp <Z Li(x)A; + Z Lk+i(x)Bi) exp (Z Lk+z+i(X)Ci> .
i=1 i=1

i=1

-1

If we denote the inverse of the above map by Co, then we find that Co = L™ o co.

DEFINITION 3.9. Let Co: G — R¥**'+™ be a map obtained as described above,
then Co is called a generalized Mal’cev-like coordinate map on G.

It is easy to see that for any linear map M in Gl(k+I+m, R) there exists a change of
basis such that the map M~! oco is a generalized Mal’cev-like coordinate map. So
the generalized Mal’cev-like coordinate maps are nothing but the linear alterations
of the usual Mal’cev-like coordinate maps.

For our purposes it is useful to choose the basis for constructing a generalized
Mal’cev-like coordinate map in the following way. Let g be the solvable Lie algebra
under consideration. Consider any central series (e.g. the upper or lower central
series)

0C3 C3C--Cj=n )

of characteristic ideals of the nilradical n of g. Note that the spaces 3; are also
characteristic ideals of g.

We now choose the basis to construct a generalized Mal’cev-like coordinate
map to consist of vectors

Zi1s Z12s - Zigys Zo1s - o Zagys 2305 -+ Loy 1y oo o5 Ciy (6)
in such a way that the set of vectors

Zi1yZigy o Zigyy Loy oo s Logyy 2305 - - Ziky
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is a basis of the ideal 3; and the vectors C; come from our original basis (4).

DEFINITION 3.10. The generalized Mal’cev-like coordinate map obtained by con-
sidering the basis (6) (related to (5)) is called a structured coordinate map.

Remark 3.11. From now onwards we will write the coordinates in a structured
coordinate map as a column vector rather then a row vector. It turns out that this
choice facilitates the notations used further on.

A typical coordinate of an element with respect to the basis (6) will be written as

\ 3 /
We will also use x; (resp. y) to denote the ith (resp. last) block of this coordinate
vector consisting of the elements

Xi1 Y1

Xi,2 2
X; = . s resp. y =

Xik; Ym

The following refinement of Theorem 3.5 will be the basis of our next section.

THEOREM 3.12. Let G be a simply connected, connected, n-dimensional solvable
Lie group equipped with a generalized Mal’cev-like coordinate map Co. Then, the
coordinate expression for the product in G is polynomial of degree < n in the
second variable, i.e. the map

w:R* x R* > R™ (a, x) = Co(Co™}(a) - Co~!(x))

is polynomial in the n components of X.
Moreover, if Co is a structured coordinate map, say with respect to a basis

ZisZioy o Zikys Zojs ooy Zogys 2315 oo - Zeps Cly oo vy Gy
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(corresponding to a series of ideals (5)) we have that for any & = (1,1, - - - %c k.
Biy ... Bu)T and for any X = (X1,1, X125+« s XLy X215 « -+ Xerker Yo+ - o2 Ym) |
pr(x)
p;(x)
ple, X) = : ’
pe (x)
Pei1(X)
where
(1) Forall 1 < i < c: pf(x) = ATXi + ¢%(Xiy1, Xis2, - - - Xc, Y) for some A; €
Gl(k;, R) and some polynomial map q%: Rki+1++ketm _ Rk,
» + B
»+ B2

() P (x) =

Ym + Bm

3 Ifa=(al,az,...,a,-,O,O,...,O)Tforsomei €{l,2,...,c} then

( Xi1 + i1
o Xi2 + o2
pi (x) = . )
\ Xik; + Ok
( Xj1 N1
« Xj2 o . 2
pix) = ) (for i < j<c¢) and p;  (X)=
\ X j ki Ym

Proof. Let the generalized Mal’cev coordinate map be written as a composition
L~! o co, where L € Gl(n, R) and co is a genuine Mal’cev like coordinate map.
By Theorem 3.5 we know that Va € R” the map

Ag:R* > R™:x > co(co (), co (%))
is polynomial of degree < n>. It follows that the map L' oAp@oL:R* > R”,

as a composition of two linear maps and a polynomial map of degree < n3 is also
a polynomial map of degree < n3, for any @ € R".
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This proves the first claim of the theorem since

(L7 odp@ o L)(x) = (L7' oco)(co™ (L(a)), co™ (L(X)))
= Co(Co (a), Co~!(x)) = u(a, X).

From now onwards, we assume that Co is a structured coordinate map on G.
To prove the last assertions of the theorem, we re-use the proof of Theorem 3.5.
However, in stead of focussing on the polynomiality of the expression (a fact we
already know now), we pay special attention to how the expression depends on the
variables involved.

Consider the basis

Zi1sZ1py ooy Zigys L2y Z22y o+ o5 Lo

(relative to a central series 0 C 3; C 32 C - -+ C 3. = n) of n. It is known that there
is a rather nice expression for the product in the corresponding simply connected,
connected Lie group N. To be precise, there exist polynomial maps p;, ; (depending
on the variables indicated below) such that ([11, 13] and [7, p. 84])

c ki c ki
exp ZZM,'JZ,‘J exXp ZZU,'JZ,‘,]'

i=1 j=1 i=1 j=1

c ki

= exp E E (i,j +vij + pi j(Mig1,1, Uit1,25 -+ - »
i=1 j=1

Uc ke Vit 15 Vigl,25 - -+ Vo)) Zij

Moreover, as the 3; are characteristic ideals of n, any automorphism of n is ex-
pressed by means of a blocked upper triangular matrix

A x --- %k
0 A2 *
O 0 .- A,

where A; € Gl(k;, R) foralli € {1,2,...,c}.

In the computation below we will use symbols f; ; to denote functions (in fact
they will all be polynomial) which have their image in R* . The counter s is used to
distinguish the functions amongst each other. As usual a notation like x;Z; is used
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as a shorthand to Z'j":  Xi i Zij-

Co Y(a) - Co~!(x)

exp Za i Z; ) exp(BC) exp (Zx, ) exp(yC)

automorphism of n

=1

i=1

(Za Zi ) exp(BC) exp( > %z ) exp(—BC) exp(BC) exp(yC)

Zalzt) eXP(Z(AaX: + fl I(Xl+l’ coes Xpy ﬂ)Zl) X

X exp Z 10, B ) - exp(y + B)C)

= exp(ZaiZi) . exp(Z(A}"xi + f1iXit1s -+ Xes B) + f2.i(y, B)+

i=1

+f3,iXit1s -+ > Xe, ¥ B)Zi )GXP((Y +B)C)

_exp(Za Z)exp(Z(A Xi + fai(Xit1y -5 X, Yo ,B))Z,~) X

i=1

x exp((y + B)C)

= exp( Z(A;"x,- +a;+

i=l1

+f5‘i(xi+1, e Xe, Yo Uity e o, ﬂ))zl ) eXP((y + p)c)
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It follows that for a fixed o

P (x)
P5(x)
Co(Co™ (&) - Co™H(x) =
pe(x)
Pe1(X)
with

p,a(x) = A?Xi +ai + f5,i(xi+1» ey Xca Y» ai+1, L 7“(," ﬂ)j

= (Xi41,-Xc,Y)

Vie(l,2,...,c)

and
i+ B
. »+pB
pc+1 (X) =
Ym + Bm
Finally, assume & = (ay, &2, ...,;,0,0,..., 0)T for somei € {1,2,...,c}. As
B = 0 it follows that AY is the identity matrix and the maps fi; = fo 5 = f35s =
fas =0foralls € {1,2,...,c}. The fact that &;; = --- = ¢, = O implies that
the maps fs;+1 = --- = fs. = 0. This information proves the last claim of the
theorem. O

Remark 3.13. The theorem above shows that for a structured coordinate system
the maps u(«, . ) belong to the blocked Jonquiere group of type (k1, k2, . .., kc, m)

([9D-

4. Polynomial Structures on Polycyclic-by-Finite Groups

Let G be any connected and simply connected solvable Lie group acting poly-
nomially and simply transitively on some space R”. We denote this action by
0:G — P(R"). (Recall that P(R") is the group of polynomial diffeomorphisms
of R".)

Assume I is a uniform lattice (i.e. a discrete and cocompact subgroup) of G.
Then, the restriction of p to I' determines a polynomial structure on I'. In other
words p = pir:I' > P(R"):y — p(y) = p(y) defines a properly discontinuous
action with compact quotient.
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Therefore, if one aims to construct a polynomial structure on a polycyclic group,
it is often useful to consider lattices in solvable Lie groups. Before we continue, let
us recall a few facts about such lattices:

If " is a uniform lattice of a simply connected, connected solvable Lie group G
with nilradical N, then I’ N\ N is a uniform lattice of N and I'/(I' N N) is a uniform
lattice of G/N (see [12]). I' N N does not need to coincide with Fitt(I"), where
Fitt(T") is the unique maximal normal nilpotent subgroup of I". An example of this
situation is obtained when G = R?xR, where the action of ¢ € R on R? is given by

the matrix (

cos2mt sin2mt
—sin2nwt  cos2mt

). In this case, the set I consisting of all integral triples
(21, 22, 23) in G is a uniform lattice with I' = Z?xZ = Z3.

However, as N = R? for this Lie group G, we find that N N T = Z? #
Fitt(T") = Z3.

This is a rather unfortunate situation for our purposes, but is not of much influ-
ence because we can regard G as being a wrong choice of Lie group to contain Z3
as a uniform lattice. A better choice is of course G = R>. We make this argument

more precise in the following more or less well known theorem.

THEOREM 4.1. Let T be any polycyclic-by-finite group, then I" contains a normal
subgroup of finite index I’ such that there exists a connected and simply connected
solvable Lie group G containing T as a uniform lattice and such that N NI =
Fitt(I'"), where N denotes the nilradical of G.

Proof. The proof of this theorem is exactly the same as the somewhat weaker
formulated version of this theorem in [15, Thm. 4.2.8]. O

In view of the theorem above it makes sense to pay special attention to those
lattices T" of a connected and simply connected solvable Lie group such that I' N
N = Fitt(I") (N is the nilradical of G). The group I', = I' N N is a lattice of N,
as such it is a finitely generated torsion free nilpotent group, and T’ = I'/ T, is free
Abelian (being a lattice of G/N). Let

IO(Fn) =0C {I(Fn) - ;2(Fn) c..-C CC(Fn) =TI,

be the upper central series of I',, (we suppose that the nilpotency class of I',, which
equals the nilpotency class of N, is c¢). Choose a set of generators of I',

V1,15 V1,25« +s YLk1s V2,15 o+ s YV2.kps V3,15 + -+ Vekes
in such a way that the cosets
Yi1Cic1(Tn), ¥i2li-1(Tn)s ooy Viki Cic1 ()

freely generate the free Abelian group ¢ (I',) /&1 (Tn)(1 < i < ©).
It is well-known that the vectors

Zi1,Zvay - Zigys Loy ooy Zogys Z30s o - Lo, With €xp(Z; ;) = vi,j
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form a basis of the Lie algebra n of N. Moreover, the vectors
Zl,l, ZI.Z! e Zl,kp 22.11 ey ZZ,k27 Z3,19 e Zi,k,‘

form a basis of the ith term 3; (n) of the upper central series of n.
We now complete the above basis to a basis

Zi, 212y Zigyy Loy ooy Zokyy Z30s - v Lok
C,,Cy...,Cp

of g by choosing vectors Cy, C», ..., Cy, in a nilpotent almost supplement ¢ of n in
g. In this way we constructed a basis satisfying the necessary conditions to obtain a
structured coordinate map which we again denote by Co. By construction, we have
the following lemma.

LEMMA 4.2. With the notations of above we have that Co(y;,;) = (0,0,0,...,
0,1,0,...,0)T where the 1 appears on the (i, j)th place. More generally,

a1 a2 Qi k; T
CO(V1'1 V12 "'yi,k,-’) = (ay,02,...,2;,0,0,...,0)",
. T
with o; = (@1, ai2, ..., k) -

Let Yeti,1s Yet1,20++-» Yetr1,m € I be elements of I' such tlBt Yetr1,1ns
Yes12Tny - oy Ver1,mIn freely generated the free Abelian group I'. Again by
construction, we have the following lemma.

LEMMA 4.3. Let p: Rkitket-+ketm _ Rm pe the projection on the last m com-
ponents, then we have that poCo: G — R™ is a surjective morphism of Lie groups
with kernel N. The image of T under this projection is a uniform lattice of R™
(isomorphic to T).

Proof. Let g1, g» € G, then g; = exp(n;) exp(r1C1+r,Cy - - -+, Cp,) and g, =

exp(n,) exp(s;Cy + 52C2 + - -+ + 5, Cp,) for some unique ny,ny € 0, 71,0 Iy
1, ...,5m € R. The following small computation
p o Co(g182)

= p o Co(exp(n;) exp(riCy + - - - + rmCp) €xp(nz) X
x exp(s1C1 + -+ - +5mCp))

=1 +s,r2+52, s Tm +5m)

= p o Co(g1) + p o Co(g2)

shows that p o Co is a surjective homomorphism of Lie groups, with kernel N. The
factorization of this morphism

G/N
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induces an isomorphism of G/N with R™. Via this isomorphism, the statement of
p o Co(T") being a lattice in R™ is equivalent to T" being a lattice in G/N, which is
known to be true. a

The importance of this structured coordinate map Co lies in the fact that the
polynomial structure p: I' — P(R") (n = ky+- - -+k.+m) obtained as a restriction
of the simply transitive action

5:G > PRM:g > p(g), with F(g)(x) = Co(g Co™' (X)), Q)

is of the so-called canonical type. To explain this notion, we recall the necessary
concepts (see also [7,9], and [11]).

For any polycyclic-by-finite group I' there exists an ascending sequence (or
filtration) of normal subgroups I'; (0 < i < s + 1) of I' ([16, Lem. 6, pp. 16])

My:Tp=1chchc---CIl  E El =T, (8
for which
/Ty = 7% for1 < i < sandsome!; € Ngand I'/ T is finite.

Such a filtration of T is called a forsion-free filtration (of length s). We will also
use L; =l + 41 + -+~ + s and Ly = 0. It follows that the Hirsch length of I',
h(T) = L,.

We denote the real vector space of polynomial mappings from R to R’ by
P(RL, RY). An element p(xi, ..., x.) of P(RE, R') consists of / polynomials in L

variables
pl(xl’xZ’ o ,XL)
pa(x1, X2, ..., XL)
P(xl,---,xL) = . )
pl(xl’x25 R ,XL)

with p;(xy,...,xL) € P(RL, R).

The vector space P(RL, R) contains R’ as the subspace of constant mappings.
P(RL, R!) is made into a GI(R") x P(RL)-module, via

Vg € GIR!), Vh e PRE), Vp e PRER):®Pp=gopoh™.

The resulting semi-direct product P(RZ, R')x(GI(R') x P(RL)) embeds into
P(R'+L) as follows: Vp € P(RE, RY), Vg € GI(R'), Vh € P(R")

gx)+ p(h(y)) ) .

I L. X\
VxeR,VyeR.(p,g,h)(y)-( h(y)
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Using the notations above, we are ready to define the notion of a canonical type
polynomial representation (or a canonical type polynomial structure).

DEFINITION 4.4. Assume I' is a polycyclic-by-finite group with a torsion-free
filtration T,. For every i, write ¢;: ['/ T'; — Aut(Z") for the morphism induced by
the short exact sequence

1—»Z(=Ti/Tis)) > T/Tisy > T/Ti > 1.

A polynomial representation p = po:I" — P(R*") will be called of canonical
type with respect to I', (or simply of canonical type) iff it induces a sequence of
representations

pi:T/Ti = PRE+),  (1<i<ys)

and a sequence of morphisms j;: Z% — P(RL+1, R¥), (1 < i < s) mapping each
z € Z" onto a constant mapping ji (z): RLi+1 — Rli:x +— r;(z), with the property
that the r;(z) span R% as a vector space, such that for all i the following diagram
commutes

| R/ =D VY VI — 7} r/T; > 1

lji lpi—l llllixpi )]
1— PRLi+1 RY)) —» pRL+1, Rl) x (GIRH) x P(RE+1) — GI(RY) x PRE+1) — 1,

where ¥; is the unique morphism v;: '/ I'; = GI(R") satisfying
V¥ €T/ Ti, VzeZ':4;7)(i(@) = ji(@i(7)2).

Remark 4.5. To get a better understanding of this concept we refer the reader to
[7,9] and [11].

We are now ready to prove the following theorem.

THEOREM 4.6. Let T" be a lattice of a simply connected, connected solvable Lie
group G, with N N I" = Fitt(I"), where N denotes the nilradical of G.

Define a structured coordinate map Co: G — R" on G by following the pro-
cedure starting above.

Then, the polynomial structure p: T — P(R") obtained as the restriction of the
simply transitive polynomial action p: G — P(R") defined in (7) is of canonical
type with respect to the torsion-free filtration (I', = Fitt(I"))

Nl =1 =aT) ch =0T, & -
Cle=¢@)=T,CTep=FCTlp=T.

Proof. Using the result of Theorem 3.12, the reader should be able to supply a
detailed proof of this theorem. O
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We are now ready to prove the theorem mentioned in the Introduction and which
states that any polycyclic-by-finite group I' admits a polynomial structure, which
is of degree < h(I")* on virtually the entire group. This theorem should be seen as
a step towards Conjecture 1.1.

THEOREM 4.7. Let T be any polycyclic-by-finite group of Hirsch length h(I').
Then there exists a polynomial structure p:I" — PR"D) for T" and a finite index
subgroup T of T' such that the restriction of the polynomial structure to I is of
degree < h(I')>.

Proof. The proof of this theorem is a combination of the results in [9] and
Theorem 4.6. Let I be any polycyclic-by-finite group, then, by Theorem 4.1, there
exists a normal subgroup I'" of I which is of finite index in I' and such that I’
is a lattice of a simply connected, connected solvable Lie group G and such that
G N N = Fitt(I"") (N being the nilradical of G, say of nilpotency class c). By
Theorem 4.6 there exists a polynomial structure p: I — P(R"™) of I'" which is
of canonical type with respect to the torsion-free filtration

I:Ty = 1 ST = gFit)) < -
C I = ¢ (Fit(I") = Fi(M) S Ty, =T ST, =T

Moreover, this polynomial structure is of degree < (dim G)® = ()3 = k()3
As all T'/’s in the torsion-free filtration I, are characteristic subgroups of I/, they
are normal in T". Therefore, the following sequence is a torsion-free filtration of I'

I,:To = 1S T =& Find) € -
C I, = ¢ Fitt(I)) = Fitt(l") C Ty =T STy =T

By Theorem 4.1 of [9], there exists a polynomial structure 5: I" — P(R*™), which
is of canonical type with respect to I's. By Theorem 2.2 of [9], we know that the
restriction gy of § to the subgroup I is a polynomial representation of canonical
type with respect to I',. Again by Theorem 4.1 of [9], we know that there exists a
polynomial diffeomorphism p € P(R*™) such that 5 = p o v o p~L. Now, let
p = popopl. As pis conjugated inside P(R*™) to a polynomial structure of T,
p is itself a polynomial structure. Moreover, when restricted to I, this polynomial
structure is of degree < h(I")3, which was to be shown. O
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