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More Variations on the Sierpiński Sieve

Kevin G. Hare

Abstract. This paper answers a question of Broomhead, Montaldi and Sidorov about the existence of

gaskets of a particular type related to the Sierpiński sieve. These gaskets are given by iterated function

systems that do not satisfy the open set condition. We use the methods of Ngai and Wang to compute

the dimension of these gaskets.

1 Introduction and Basic Definitions

This paper is motivated by the paper of Broomhead, Montaldi and Sidorov [1]. In

their paper, the authors looked at a variation of the Sierpiński sieve that allowed

some overlap between triangular subregions. They showed that the gasket dimen-

sions could be computed when the overlap was sufficiently nice. In their conclusions,

they raised the question of what happens if, instead of triangles, the maps are based

on regular n-gons with n ≥ 5.

This paper answers this question, showing that it is possible to have gaskets of this

type for n = 3, 6, 8, and 12, and that these are the only values of n for which gaskets

of this type can be constructed. We also show how the methods of [7] can be used to

compute the dimension of these gaskets and we compute their dimension.

Before summarizing our results, we introduce some notation and definitions.

Definition 1.1 An iterated function system (IFS) is a family of contractions

{ f1, f2, . . . , fn}. The attractor of the IFS is the unique non-empty compact set K

such that K =
⋃

fi(K).

Since their introduction, IFSs and their attractors have been widely studied (see

[2, 3] and the references listed therein). A useful condition in the study of IFSs and

their attractors is the open set condition.

Definition 1.2 We say that an IFS satisfies the open set condition (OSC), if there

exists a non-empty open set O such that

• fi(O) ⊂ O for all i.
• fi(O) ∩ f j(O) = ∅ for all i 6= j.

Intuitively one can think of this as saying that fi(K) and f j(K) do not have any

significant overlap. In practice the construction of this open set O can be quite com-

plicated. If an IFS satisfies the OSC, then it is relatively straightforward to compute
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the dimension of its attractor (see for example [2, 3, 5]). The IFSs studied in this

paper do not satisfy the OSC.

There are a number of techniques that can be used to compute the dimension of

an IFS if the overlapping components fi(K) and f j(K) look nice. By “nice”, we mean

that their construction satisfies the finite type condition that will be defined formally

in Section 3. See for instance [6, 7].

It is worth noting that that the box counting dimension and Hausdorff dimension

are equal when the fi are similitudes (as they are in our case). (See [3, Theorem 9.3]

and the comments directly following its proof.)

The general construction of these gaskets is based on the contraction maps fi(x) =

λx + bi , where x ∈ R2 and the bi are the vertices of a regular n-gon. If we wish to

specify the value of n used in the construction, then we will say n-gasket, instead of

gasket. Not all values of λ give interesting gaskets. If λ is too large, then the resulting

attractor will be a filled-in n-gon of dimension 2. If λ is too small, then the IFS will

satisfy the OSC, and its dimension can be trivially computed.

In Section 2 we give a description of the contraction ratios used to find n-gaskets

with nice overlap. We also show that this method only works for triangles, hexagons,

octagons, and dodecagons. In Section 3, a brief discussion of the algorithm of Ngai

and Wang [7] is given. Attention is given to how it can be used to compute the

dimension of the gaskets studied in this paper. The interested reader is encouraged

to read the original article for a more general discussion. In Section 4 we compute the

dimension of these n-gaskets, using the contraction ratios given in Section 2. Some

discussion of further directions for this research is given in Section 5.

2 Contraction Ratios

In this section, we show how to determine the contraction ratios used in the construc-

tion of n-gaskets with nice overlap. Before we begin, we determine the contraction

ratio for the non-overlapping case. The result for the non-overlapping case is not

new, but the technique used is useful for demonstration purposes. A variation of this

technique is used later for finding the contraction ratios with nice overlaps. Consider

a non-overlapping n-gasket with side length 1. We see that this n-gasket is composed

of n components, each with side length λ for some λ. These components are scale

copies of the original fractal. Our goal is to find this λ, such that these n components

touch, but do not overlap. The outside corners of these components are equal to the

outside corners of the original n-gasket. In addition, the corner of a component clos-

est to an adjacent component, will touch that adjacent component. We will denote

this ratio as λ = λn,∞. (This choice of notation will be explained later.) See for

example Figure 1.

Consider Figure 2. Let θ =
2π
n

, and let N = ⌊ n
4
⌋. By noticing that the side length

of the original gasket is 1, and the side length of the component is λ, we get that

1 = 2(λ + λ cos(θ) + · · · + λ cos(Nθ)) = λ
(

1 +
sin((2N + 1) θ

2
)

sin( θ
2

)

)

.
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(a) 9-gasket - no overlap

λλ

.
....

.

1
(b) 9-gasket - construction

Figure 1: 9-gon - no overlap

)
)θ
θ2cos(
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λ
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(a) 9-gasket, width

θθ(1+cos(   ) + ... + cos(N   )) = 1λ2

.
....

.

(b) 9-gasket - construction

Figure 2: 9-gon - calculating λ
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n tn

3 2

4 2

5 3+
√

5
2

≈ 2.618033989

6 3

7 3.246979604

8 3.414213562

9 3.879385241

10 4.236067979

11 4.513337092

12 4.732050806

13 5.148114905

14 5.493959207

15 5.783386115

16 6.027339490

Table 1: tn values

For ease of notation, let

tn = 1 +
sin((2N + 1) θ

2
)

sin( θ
2

)
= 1 +

sin((2⌊ n
4
⌋ + 1) π

n
)

sin( π
n

)
.

Using this notation, the width of an n-gon of side length 1 is tn − 1. Furthermore, by

noticing that 1 = λtn, we get that λn,∞ =
1
tn

.

In Table 1 we give the values of tn for small n. These tn play an important role in

computing λn,m, the contraction ratio of an n-gasket with nice overlap. The algebraic

value of t5 is used in the proof of Theorem 2.3, and hence both the algebraic value

and a floating point approximation is given here.

We use the term n-gasket of order m to mean an n-gasket of side length 1, such

that adjacent components of side length λ overlap completely at a subcomponent of

side length λm+1. The contraction ratio for such an n-gasket of order m is denoted by

λn,m. See Figure 3 for a construction of an 8-gasket of order 1, with contraction ratio

λ = λ8,1.

Similar to our analysis in Figure 2 we find a defining equation for λ = λn,m. Notice

that the width of an n-gasket with side length λm+1 is λm+1(tn − 1). This gives that

along the side of length 1 of the original n-gasket of order m we have two components

of side length λ minus an overlapping subcomponent of side length λm+1. This gives

(2.1) λm+1(tn − 1) − λtn + 1 = 0,

where λ ∈ (0, 1). It is worth observing that this gives the same equation as [1] in the

case when n = 3. It is also worth observing that as m → ∞, so λn,m → λn,∞, which

explains our choice of notation earlier. (Geometrically, this makes sense, as the size

of the overlapping section is going to zero.)
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Figure 3: 8-gasket of order 1

(a) gasket (b) gasket - adjacent components and overlap

Figure 4: 3-gasket of order 2

The next question that we need to consider is: what sort of additional overlap do

we get? Consider an n-gasket of order m. We know that the two adjacent components

of this gasket of side length λ will overlap in a subcomponent of side length λm+1. The

main question is: do we get any other overlapping subcomponents of these gaskets,

and if so, how “nice” is this overlap? Here, by nice overlap we mean overlap that is

the complete overlap of subcomponents of size λk for some k > m. This will become

clear when we look at the details of Theorems 2.1, 2.2, and 2.3.

In the case of n = 3, or n = 8, with m ≥ 2, there is no additional overlap. In

the case of n = 6, 12 or n = 8 with m = 1, there is additional overlap, but this

additional overlap is the complete overlap of subcomponent of side length λk for

some larger values of k. For all other n, there is additional overlap, but the overlap

is not complete overlap of smaller subcomponents. This is summarized by the next

three theorems.

Theorem 2.1 If n = 3 with m ≥ 2 or n = 8 with m ≥ 2, then there is no additional

overlap.
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(a) gasket (b) gasket - adjacent components and overlap

Figure 5: 8-gasket of order 2

(a) gasket

(b) gasket - adjacent components and overlap

Figure 6: 6-gasket of order 3
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(a) gasket (b) gasket - adjacent components and overlap

Figure 7: 8-gasket of order 1

(a) gasket

(b) gasket - adjacent components and overlap

Figure 8: 12-gasket of order 1
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Proof Consider two adjacent components of side length λ of a 3-gasket of order m.

The only region of overlap for these two components is a triangle of side length λm+1,

hence there is no additional overlap. See Figure 4. In this case we see that the overlap

of the convex hulls of these subcomponents is a triangle of size λm+1, regardless of

how large m is. Thus, even though Figure 4 is for m = 2, we see that this argument

carries over for all m.

Consider the two adjacent components of side length λ of an 8-gaskets of order m,

for m ≥ 2 We see that the only overlap is 2m components of side length λm+1, hence

there is no additional overlap. See Figure 5. This case is more complicated than the

triangular case. Consider again the overlapping subcomponents of size λm+1. We

see that there would be additional overlap if the neighbours of these subcomponents

overlapped. Consider the center of the overlapping subcomponent of size λm+1, (call

this a), and the centers of its two neighbours (say b and c). A quick calculation shows

that the distance from a to b, and from a to c is equal to (1 +
√

2)(λm+1 − λ2m+1). As

the angle made by bac is a right angle, we then get that the distance between b and

c is (2 +
√

2)(λm+1 − λ2m+1). As the subcomponent with centers b and c has width

λm+1(1 +
√

2) and

(2.2) λm+1(1 +
√

2) < (2 +
√

2)(λm+1 − λ2m+1)

for m ≥ 2, we get that there is no additional overlap. For m = 1, we have that

λ =
1

1+
√

2
and a quick calculation shows that equation (2.2) does not hold, which is

why it is a special case. (See Figure 7 and the discussion in Section 4.2.)

Theorem 2.2 If n = 6 with m ≥ 2, n = 8 with m = 1, or n = 12 with m ≥
1, then there is additional overlap. This additional overlap is the complete overlap of

subcomponents of side length λk for some k > m.

Proof Consider the two adjacent components of side length λ of a 6-gasket of or-

der m. We see that the overlap between these two components is one gasket of side

length λm+1, two gaskets of side length λ2m+1, and in general 2k−1 gaskets of side

length λkm+1. See Figure 6. Consider the overlapping gasket of size λm+1. We see

that as m increases, the size of the overlap will decrease, but the center of this over-

lap will always be located in the same location, (midway between the centers of the

parent components.) Similarly, if we consider the two overlapping subcomponents

of side length λ2m+1, the location of the center will always be the midpoint between

the centres of the neighbours of the overlapping subcomponents of side length λm+1.

A similar argument can be used for all of the subcomponents of size λkm+1.

Consider the two adjacent components of side length λ of an 8-gasket of order 1.

We see that the overlap between these two regions is two gaskets of side length λ2, four

gaskets of side length λ3, and in general four gaskets of side length λk. See Figure 7.

An argument similar to that used for the hexagons can be used to show that this is

true for all n.

Consider the two adjacent components of side length λ of a 12-gasket of order m.

If m = 1, then the overlap is two gaskets of side length λ2, and four gaskets of side

length λk for all k ≥ 3. If m ≥ 2, then the overlap is 2m gaskets of side length λm+1,

and in general 2m+k−1 gaskets of side length λkm+1. See Figure 8. An argument similar

to that used for the hexagons can be used to show that this is true for all n.
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Theorem 2.3 For all other n and m there is additional overlap. This additional overlap

is not complete overlap of smaller subcomponents.

Proof Let n be odd, n ≥ 5. Consider the two adjacent components of an n-gasket

of order m, where the components have side length λ, and we have an overlapping

subcomponent with side length λm+1. See Figure 9. Note in Figure 9 the slight over-

lap between the pentagons is intentional, as I am assuming that there is an overlap

of some order. Consider the neighbours of the overlapping subcomponents of side

length λm+1. We claim that these neighbours have additional overlap, and that this

additional overlap is not the complete overlap of smaller copies of this gasket. As

n ≥ 5 and n is odd, we see that two of these neighbours will overlap. We notice

that the width of this overlap is (tn − 2)λm+1 + λ2m+1
= λm+1(tn − 2 + λm+1). (We

notice that the horizontal distance between A and B, as well as between C and D is
1
2
(tn − 2)λm+1, and the distance between B and C is λ2m+1.) We see that the width of

a gasket with side length λk, (with k ≥ m + 1), is λk(tn − 1). Letting k ′
= k − m + 1,

to show that there is only incomplete overlap, it suffices to show that there are no

integer solutions to

(2.3) tn − 2 + λm
= λk ′

(tn − 1)

for m, k ′ ≥ 1.

Notice that

1

tn

= λn,∞ ≤ · · · ≤ λn,3 ≤ λn,2 ≤ λn,1 =
1

tn − 1
.

This shows that the right-hand side of (2.3) is bounded above by tn−1
tn−1

= 1. For n ≥ 7,

we see that the left-hand side of (2.3) is bounded below by t7 − 2 ≈ 1.24 > 1. Hence

there are no solutions for n ≥ 7.

So assume that n = 5. Recall t5 =

√
5+3
2

. If k ≥ 2, then the left-hand side is

bounded above by 1
t5−1

= t5 − 2. The right-hand side of (2.3) is strictly greater than

t5 − 2, hence there are no solutions if n = 5 and k ≥ 2.

So assume that n = 5 and k = 1. Multiplying (2.3) by λ and noticing that λm+1
=

λtn−1
tn−1

, by (2.1) we get

λ(t5 − 2) +
λt5 − 1

t5 − 1
= λ2(t5 − 1).

Solving this equation gives λ = λ5,∞ =
1
t5

. Hence there are no solutions for n odd,

and n ≥ 5.

A similar argument can be made for when n ≡ 2 (mod 4) and n ≥ 10 and when

n ≡ 0 (mod 4) and n ≥ 16. The defining equation for n ≡ 2 (mod 4) is

tn − 3 + 2λm(tn + 1) = λk(tn − 1)

and for n ≡ 0 (mod 4) is

tn − 3 − 2 cos θ + 2λm(tn + 1) = λk(tn − 1).

(Here θ =
2π
n

.) As before, there are no solutions if n ≥ 10 or n ≥ 16, respectively, as

one side is bounded above by 1, and the other is strictly greater than 1.
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Overlap size 

Width

λ
2m+1

λ
m+1

+ λ
2m+1

B C

DA

(t  −2)n

Figure 9: n-gasket for n-odd

3 Algorithm

In this section, we give an overview of the algorithm of Ngai and Wang. We simplify

their discussion somewhat, as in our case the contraction ratio for the fi are all equal.

We refer the reader to [7] for a detailed proof as to the correctness of this algorithm.

First, we define formally the maps used to construct an n-gasket of order m. Let

f j(x) = λx + b j , where x, b j ∈ R2. Here the b j are the vertices of a regular n-gon and

λ = λn,m is given in equation (2.1). The b j are scaled such that the attractor has side

length 1.

We define J ∈ {1, 2, . . . , n}∗ to be a finite word with symbols 1, 2, . . . , n. Letting

J = j1 j2 · · · jk we define fJ = f j1
◦ f j2

◦ · · · ◦ f jk
.

Define R =
1

1−λ . Let BR be the open ball of radius R around 0. We say that J1 and

J2 are neighbours if |J1| = |J2| and fJ1
(BR) ∩ fJ2

(BR) 6= ∅. In our case we can think of

each fJ being associated with a particular component of side length λ|J|, and we say

that two components are neighbours if they are the same size, and they overlap.

We define the neighbourhood set of J as Ω(J) = {J ′ : J ′ is a neighbour to J}. Based

on J, define the map τ (x) := τJ(x) = λ−|J|(x − fJ(0)). This map re-scales and

re-centers a neighbourhood set Ω(J), allowing us to compare neighbourhood sets at

different depths. We say two neighbourhood sets have the same neighbourhood type

if there exists a rotational matrix U such that τJ1
(Ω(J1)) = UτJ2

(Ω(J2)).

We say that an IFS is of finite type if there is only a finite number of neighbourhood

types. If an IFS is of finite type, then it is possible to compute the dimension of
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the attractor by considering the eigenvalues of an adjacency matrix whose rows and

columns are indexed by the neighbourhood types.

Consider a J = j1 j2 · · · jk associated with a particular neighbourhood type. We

then consider the sequences Jr = j1 j2 · · · jkr, where r takes on the values between 1

and n. We say an edge from J to Jr is acceptable if there are no other J ′ with |J ′| = k+1

such that fJ ′ = fJr, where J ′ would have precedence. This concept of precedence is

described in more detail in Section 4. In our implementation, we use a rotational

precedence. So, if κ is the largest eigenvalue of the incidence matrix of this graph,

then the dimension is

dim(K) =
log(κ)

− log(λ)
.

In the next section, we show that these n-gasket of order m, for n = 6, 8, or 12 have

finite type, and construct their incidence matrix and compute their dimension.

4 Dimension

In Section 2, we discussed the contraction ratio used for an n-gasket of order m. In

Section 3 we gave an overview of the algorithm of Ngai and Wang to compute the

dimension of an n-gasket of order m. In this section, we show how to compute the

dimension of such gaskets. We do this separately for each n, as the techniques are

optimized for each case. Special attention is given to the case n = 6, after which we

give the highlights only for n = 8 and n = 12, as the techniques are similar. We do

not do the case of n = 3, as the results can be found in [1].

4.1 Hexagons

In this subsection we consider the case of a hexagonal gasket of order m for m ≥
2. If m = 1, then λ6,1 = 1/2, and the resulting gasket is a filled in hexagon with

dimension 2.

In a hexagonal gasket of order m, we have that the adjacent components with side

length λ overlap at a subcomponent of side length λm+1. To compute the dimension,

we must count the number of subcomponents with side length λk, as k goes to infin-

ity. So, in this case, for k = 0, 1, 2, . . . , m the number of components with side length

λk is 1, 6, 36, . . . , 6m. In the case when k = m + 1, the number of subcomponents is

6m+1 − 6, as there are six subcomponents with side length λm+1 that overlap.

The trick to computing the dimension of this gasket, (or in fact any of these n-gas-

kets of order m) is to carefully count how many components of side length λk there

are as k → ∞. Careful consideration needs to be taken about when gaskets overlap

completely, as we need to avoid double counting.

For each component of side length λk, say A, consider the six subcomponents of

side length λk+1, say B1, B2, . . . , B6, of which A is composed. In this case we say that

A is the parent of the Bis, and the Bis are offspring of the A. We similarly define the

notion of descendants and ancestors.

Now consider some subcomponent C of side length λk such that it is the offspring

of two different parents, say A and B. This will happen when C is an overlapping off-
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A B

D

A B

DD

valid offspring non−valid offspring

C

Figure 10: Precedence diagram

spring subcomponent of two adjacent components. These two parents have a com-

mon ancestor D. The nice property, which we can exploit in this case, (but is not true

for general IFS), is that we can impose a priority on these parents that is rotational.

Let DA be the offspring of D that contains A and DB the offspring of D that contains

B. If DA is counter-clockwise to DB, then we say that A has priority over B. As such,

when counting offspring of A and B, we count C as an offspring of A, but not as

an offspring of B. This avoids double counting. This is described in the ancestor

diagram in Figure 10.

At this point we need to introduce some notation for hexagonal gaskets of order

m, (where m ≥ 3.) We will do this by way of example.

Example 4.1 Consider the following example found by looking at a component of

the hexagonal gasket of order 2 in Figure 11. Here black is the component that we

are interested in. The light grey and dark grey components are in the neighbourhood

of the black component, and included to represent the neighbourhood type of B. We

find the six neighbourhood types that are offspring of the neighbourhood type of B.

In Figure 11(a) we have a hexagon (labeled B), with corners labelled −2, 2 or left

empty. By labelling the corners with ±2, we mean that there is a hexagon overlap-

ping this corner, and, moreover, the size of this overlap is λ2 times that of the par-

ent hexagon. In the case of −2, the overlapping hexagon does not have precedence,

whereas +2, (or 2), indicates that the overlapping hexagon has precedence. Corners

that are left blank indicate that there is no overlapping hexagon with that corner. We

can, based on this, determine the six hexagons that the parent hexagon is composed

of. This is represented graphically in Figure 11(b) and 11(c), where black is the

hexagon we are interested in, light grey represents hexagons with which black has

precedence over, and dark grey represents hexagons that have precedence over black.
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D1 B B B C1 BB

-2

2 -2

2

-1

-2

2 2

-2

2

-2 2

-2

1

2

-2

(a) Precedence structure

(b) Parent (c) Offspring

Figure 11: Precedence structure and graphical interpretation

If the hexagon gasket has order m, then we see that each corner of a neighbour-

hood type representation can take the values of empty, or 1 through m, with either

positive or negative sign. This means that there are a total of (2m + 1)6 possible

neighbourhood types. (There are in fact much fewer in practice that we need to

worry about.) Hence, these gaskets have finite neighbourhood type. Figure 13 gives

our full description of the maps from the neighbourhood types to their offspring.

The hexagon A is the neighbourhood type for the starting n-gasket of side length 1.

We notice that because our priority is rotational, we can rotate the existing off-

spring and treat a number of these gaskets as equivalent.

From this network diagram, we can compute an adjacency matrix, as shown in

Figure 12.

We see that γ(k) := [1, 1, . . . , 1]Ak[1, 0, 0, . . . , 0]T gives the number of hexagons

of side length λk. At this point it suffices to find the maximal eigenvalue of A to tell

us what the growth of γ(k) looks like.

Let a, b, . . . , be the frequency associated with A, B, . . . . Let κ be the eigenvalue
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A B Cm−1 Dm−1 Cm−2 Dm−2 · · · C1 D1 E F G H I

A 0 6

B 0 4 1 1

Cm−1 0 3 1 1 1

Dm−1 0 3 1 1 0 1
...

...
...

...
...

...
...

. . .

C2 0 3 1 1 0 0 · · · 1

D2 0 3 1 1 0 0 · · · 0 1

C1 0 1 1 1 0 0 · · · 0 0 1 1 1

D1 0 1 1 1 0 0 · · · 0 0 0 0 0 1 1

E 0 3 2 1

F 0 2 3 1

G 0 3 2 1

H 0 3 1 2

I 0 3 0 3

Figure 12

of A. This tells us that

κa = 0

κb = 4b + 3cm−1 + 3dm−1 + · · · + 3c2 + 3d2 + c1 + d1

+ 3e + 2 f + 3g + 3h + 3i

κcm−1 = b + cm−1 + dm−1 + · · · + c1 + d1 + 2e + 3 f + 2g + h

κdm−1 = b + cm−1 + dm−1 + · · · + c1 + d1 + e + f + g + 2h + 3i

κcm−2 = cm−1 · · ·κc1 = c2

κdm−2 = dm−1 · · ·κd1 = d2

κe = c1 κ f = c1 κg = c1 κi = d1.

By using the observations that

ck = κkg, dk = κkh, e = g, f = g, i = h,

we can rewrite this system to get the relevant equations

κb = 4b + 3(κm−1 + · · · + κ2)(g + h) + κg + κh(4.1)

+ 3g + 2g + 3g + 3h + 3h

= 4b + 3
κm − κ2

κ − 1
(g + h) + κg + κh + 8g + 6h
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κmg = b + (κm−1 + · · · + κ)(g + h) + 2g + 3g + 2g + h

= b +
κm − κ

κ − 1
(g + h) + 7g + h

(4.2)

κmh = b + (κm−1 + · · · + κ)(g + h) + g + g + g + 2h + 3h

= b +
κm − κ

κ − 1
(g + h) + 3g + 5h.

(4.3)

Subtracting equation (4.2) from (4.3) gives us 0 = (κm−4)(h−g). Either κ =
m
√

4

or h = g. Here we want κ to be the largest eigenvalue, so assume for the moment

that h = g, to find the other eigenvalues. This then gives us

κb = 4b + 6
κm − κ2

κ − 1
g + 2κg + 14g,(4.4)

b = κmg − 2
κm − κ

κ − 1
− 8g.(4.5)

Combining (4.4) and (4.5) and noticing that g 6= 0 gives the equation for κ.

κ
(

κm − 2
κm − κ

κ − 1
− 8

)

−
(

4
(

κm − 2
κm − κ

κ − 1
− 8

)

+ 6
κm − κ2

κ − 1
+ 2κ + 14

)

= κm+1 +
−2κm+1 + 2κ2

κ − 1
− 8κ − 4κm +

8κm − 8κ

κ − 1
+ 32 +

−6κm + 6κ2

κ − 1

− 2κ − 14

= κm+1 +
−2κm+1 + 2κm + 8κ2 − 8κ

κ − 1
− 4κm − 10κ + 18

= κm+1 − 6κm − 2κ + 18.

By noticing that κ ≥ 5 for all m ≥ 3, gives that κ 6= m
√

4. This gives the final

result.

Theorem 4.1 The 6-gasket of order m has dimension log(κ)/− log(λ), where κ is the

largest root of κm+1 − 6κm − 2κ + 18 and λ is the root in (0, 1) of 2λm+1 − 3λ − 1.

It is worth observing that κ → 6 and λ6,m → λ6,∞ as m → ∞, and furthermore

the dimension of the non-overlapping case is log(6)/− log(λ6,∞).

4.2 Octagons

The case of octagons is done in a similar way. The main difference is that they are

denoted differently, as the overlaps are on the edges, not the corners, and will always

effect two octagons. The case of m = 1 is a special case, as its overlap structure is

unusual (see Theorem 2.2). Its dimension for m = 1 was computed directly by a

computer implementation of [7], (see [4] for the implementation). This implemen-

tation would start with neighbourhood type given by the initial starting octagon. It
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would then recurse into the structure, finding all of the neighbourhood types of all

of the descendants of each neighbourhood type. As this fractal has finite type, this

process eventually terminates. When this process terminates, we can then compute

the adjacency matrix, and finally compute the dimension.

1

-2

(a) Precedence structure (b) Graphical interpretation

Figure 14: Precedence structure and graphical interpretation

A B-m

m

Cn
-m

n

m

Dn
-m

n

m

En
-m

-n

m

Fn
-m

-n

m

G-m

-m

H-m

-(m-1)

-m

Figure 15: Pictorial Representations

Using the same colour notation as Figure 11, we give an example of a particular

8-gasket of order 2 (see Figure 14). This means that the left side will overlap an

adjacent octagon in 1 step, and this octagon will have priority. This also means that

the upper right side will overlap an adjacent octagon in 2 steps, and this octagon will

not have priority. Lastly, all other sides do not overlap other octagons.

All of the offspring octagons can be determined by the parents with this informa-

tion. This is done in much that same way as the hexagon case.

To simplify notation, we will not give a pictorial representation as we did for the

hexagons. Instead we will list only what is meant by each 8-gasket, and the transi-

tions. See Figure 15. The maps are:
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A → 8 × B,

B → 4 × B,Cm−1, Dm−1, Em−1, Fm−1,

Cn → 2 × B,Cn−1, Dn−1,Cm−1, Dm−1, Em−1, Fm−1 (n 6= 1),

Dn → 2 × B,Cn−1, Dn−1,Cm−1, Dm−1, Em−1, Fm−1 (n 6= 1),

C1 → 2 × B,Cm, Dm,Cm−1, Dm−1, Em−1, Fm−1,

D1 → 2 × B,Cm, Dm,Cm−1, Dm−1, Em−1, Fm−1,

En → 2 × B, En−1, Fn−1,Cm−1, Dm−1, Em−1, Fm−1 (n 6= 1),

Fn → 2 × B, En−1, Fn−1,Cm−1, Dm−1, Em−1, Fm−1 (n 6= 1),

E1 → B, G,Cm−1, Dm−1, Em−1, Fm−1,

F1 → 2 × B, H,Cm−1, Dm−1, Em−1,

G → 4 × B, 2 × Em−1, 2 × Fm−1,

H → 2 × B, 2 × Em−1, 2 × Fm−1, Em−2, Fm−2 (m 6= 2),

H → 2 × B, 2 × Em−1, Fm−1, H (m = 2).

Using a similar technique to before, we get κ satisfies (for m ≥ 2)

κm+1 − 8κm + 2m−1κ + 2m+2.

Theorem 4.2 The 8-gasket of order m has dimension
log(κ)

− log(λ)
, where κ is the largest

root of

• m = 1, κ3 − 6κ2 + κ + 12,
• m ≥ 2, κm+1 − 8κm + 2m−1κ + 2m+2,

and λ is the root in (0, 1) of (
√

2 + 1)λm+1 − (2 +
√

2)λ − 1.

4.3 Dodecagons

We proceed the same as for the octagon case, for m ≥ 2. The case of a dodecagon

with m = 1 is somewhat special, and is calculated using the code provided at the

author’s home page [4]. Using Figure 16 for a representation of which each symbol

represents we get the maps for m ≥ 2:

A → 12 × B,

B → 8 × B,Cm−1, Dm−1, Em−1, Fm−1,

Cn → 6 × B,Cn−1, Dn−1,Cm−1, Dm−1, Em−1, Fm−1 (n 6= 1),

Dn → 6 × B,Cn−1, Dn−1,Cm−1, Dm−1, Em−1, Fm−1 (n 6= 1),
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Figure 16: Pictorial Representations

En → 6 × B, En−1, Fn−1,Cm−1, Dm−1, Em−1, Fm−1 (n 6= 1),

Fn → 6 × B, En−1, Fn−1,Cm−1, Dm−1, Em−1, Fm−1 (n 6= 1),

C1 → 4 × B, 2 × G, 2 × H,Cm−1, Dm−1, Em−1, Fm−1,

D1 → 4 × B, 2 × G, 2 × H,Cm−1, Dm−1, Em−1, Fm−1,

E1 → 4 × B, K, L,Cm−1, Dm−1, Em−1, Fm−1,

F1 → 4 × B, K, L,Cm−1, Dm−1, Em−1, Fm−1,

G → 6 × B, 2 ×Cm−1, 2 × Dm−1, Em−1, Fm−1,

H → 6 × B, 2 ×Cm−1, 2 × Dm−1, Em−1, Fm−1,

K → 6 × B, 3 × Em−1, 3 × Fm−1,

L → 6 × B,Cm−1, Dm−1, 2 × Em−1, 2 × Fm−1.

Using the same techniques as before, this gives us the theorem.

Theorem 4.3 The 12-gasket of order m has dimension
log(κ)

− log(λ)
where κ is the largest

root of

• m = 1, κ2 − 11κ + 16,
• m ≥ 2, κm+1 − 12κm − 2m−1z + 18 · 2m ,

and λ is the root in (0, 1) of (
√

3 + 2)λm+1 − (3 +
√

3)λ − 1.

5 Conclusions

This paper answers a question of Broomhead, Montaldi and Sidorov as to the exis-

tence and construction of n-gaskets. It shows how to use the algorithm of Ngai and

Wang to compute these gasket dimensions. There are a number of observations that

are worth making at this point. First, the gaskets studied in this paper all have finite

type. It can be shown that if 1/λ is a Pisot number, with Q(λ) ⊇ Q(cos(2π/n)),
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then the n-gasket with contraction λ will also have finite type. This is a sufficient

condition, but not necessary, as can be seen by noticing that most of the λn,m in this

paper are not in fact Pisot numbers. Examples would be λ ≈ 0.5698402911, the root

of x3 − x2 + 2x − 1, for n = 3 or λ ≈ 0.3819660113, the root of x2 − 3x + 1, for

n = 5. These objects in general will be much more complicated than the n-gaskets of

order m that we studied here. It is not immediately obvious whether the existence of

such a λ in the relevant range is guaranteed for all n-gons. (If λ is too big, then the

gasket will have dimension 2, and if it is too small it will satisfy the OSC.) Moreover,

the computational aspects in even this simple case of the problem are immense. For

example, the resulting minimal polynomial for κ, for the 3-gon with the contraction

λ ≈ 0.5698402911, is of degree 445. How these computations could be, or should

be done for more complicated objects would require techniques from sparse matrix

theory.

Variations of these sorts of objects can also be studied in higher dimensions. It

is not clear if there is an equivalent trick to rotational precedence in higher dimen-

sions. It is possible to ignore this, and simply do a larger computation, but that seems

computationally inefficient.
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