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More Variations on the Sierpinski Sieve

Kevin G. Hare

Abstract. This paper answers a question of Broomhead, Montaldi and Sidorov about the existence of
gaskets of a particular type related to the Sierpinski sieve. These gaskets are given by iterated function
systems that do not satisfy the open set condition. We use the methods of Ngai and Wang to compute
the dimension of these gaskets.

1 Introduction and Basic Definitions

This paper is motivated by the paper of Broomhead, Montaldi and Sidorov [1]. In
their paper, the authors looked at a variation of the Sierpinski sieve that allowed
some overlap between triangular subregions. They showed that the gasket dimen-
sions could be computed when the overlap was sufficiently nice. In their conclusions,
they raised the question of what happens if, instead of triangles, the maps are based
on regular n-gons with n > 5.

This paper answers this question, showing that it is possible to have gaskets of this
type for n = 3,6, 8, and 12, and that these are the only values of n for which gaskets
of this type can be constructed. We also show how the methods of [7] can be used to
compute the dimension of these gaskets and we compute their dimension.

Before summarizing our results, we introduce some notation and definitions.

Definition 1.1 An iterated function system (IFS) is a family of contractions
{fi, /-, fu}- The attractor of the IFS is the unique non-empty compact set K
such that K = f;(K).

Since their introduction, IFSs and their attractors have been widely studied (see
[2,3] and the references listed therein). A useful condition in the study of IFSs and
their attractors is the open set condition.

Definition 1.2 We say that an IFS satisfies the open set condition (OSC), if there
exists a non-empty open set O such that

e fi(O) C Oforalli.
* fi(0O)N f;(0) = @foralli # j.

Intuitively one can think of this as saying that f;(K) and f;(K) do not have any
significant overlap. In practice the construction of this open set O can be quite com-
plicated. If an IFS satisfies the OSC, then it is relatively straightforward to compute
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the dimension of its attractor (see for example [2, 3,5]). The IFSs studied in this
paper do not satisfy the OSC.

There are a number of techniques that can be used to compute the dimension of
an IFS if the overlapping components f;(K) and f;(K) look nice. By “nice”, we mean
that their construction satisfies the finite type condition that will be defined formally
in Section[3] See for instance [6,7].

It is worth noting that that the box counting dimension and Hausdorff dimension
are equal when the f; are similitudes (as they are in our case). (See [3, Theorem 9.3]
and the comments directly following its proof.)

The general construction of these gaskets is based on the contraction maps f;(x) =
Ax + b;, where x € R? and the b; are the vertices of a regular n-gon. If we wish to
specify the value of n used in the construction, then we will say n-gasket, instead of
gasket. Not all values of A give interesting gaskets. If A is too large, then the resulting
attractor will be a filled-in n-gon of dimension 2. If A is too small, then the IFS will
satisfy the OSC, and its dimension can be trivially computed.

In Section 2l we give a description of the contraction ratios used to find n-gaskets
with nice overlap. We also show that this method only works for triangles, hexagons,
octagons, and dodecagons. In Section[3} a brief discussion of the algorithm of Ngai
and Wang [7] is given. Attention is given to how it can be used to compute the
dimension of the gaskets studied in this paper. The interested reader is encouraged
to read the original article for a more general discussion. In Sectiondlwe compute the
dimension of these n-gaskets, using the contraction ratios given in Section[2l Some
discussion of further directions for this research is given in Section[5l

2 Contraction Ratios

In this section, we show how to determine the contraction ratios used in the construc-
tion of n-gaskets with nice overlap. Before we begin, we determine the contraction
ratio for the non-overlapping case. The result for the non-overlapping case is not
new, but the technique used is useful for demonstration purposes. A variation of this
technique is used later for finding the contraction ratios with nice overlaps. Consider
a non-overlapping n-gasket with side length 1. We see that this n-gasket is composed
of n components, each with side length A for some A. These components are scale
copies of the original fractal. Our goal is to find this A, such that these n components
touch, but do not overlap. The outside corners of these components are equal to the
outside corners of the original n-gasket. In addition, the corner of a component clos-
est to an adjacent component, will touch that adjacent component. We will denote
this ratio as A = A, .. (This choice of notation will be explained later.) See for
example Figure[Tl

Consider Figure[2] Let § = 2%, and let N = | #]. By noticing that the side length
of the original gasket is 1, and the side length of the component is ), we get that

sin((2N + 1)§))

1:2()\+>\cos(9)+-~-+)\cos(N9)):)\(1+ e
Sin 2
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(a) 9-gasket - no overlap

A A
~D - —
1

(b) 9-gasket - construction

Figure I: 9-gon - no overlap
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(a) 9-gasket, width (b) 9-gasket - construction

Figure 2: 9-gon - calculating A
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n ty

3 2

4 2

5 | /5 ~ 2618033989

6 3

7 3.246979604

8 3.414213562

9 3.879385241

10 4.236067979

11 4.513337092

12 4.732050806

13 5.148114905

14 5.493959207

15 5.783386115

16 6.027339490

Table 1: t, values
For ease of notation, let
sin(2N +1)%) sin((2[ 2] + 1)Z)
=1+ — = —— .
sin(3) sin(%)

Using this notation, the width of an #n-gon of side length 1 is t, — 1. Furthermore, by
noticing that 1 = At,,, we get that A, o = ti

In Table [Tl we give the values of ¢, for small n. These ¢, play an important role in
computing A, the contraction ratio of an n-gasket with nice overlap. The algebraic
value of t5 is used in the proof of Theorem 2.3] and hence both the algebraic value
and a floating point approximation is given here.

We use the term n-gasket of order m to mean an n-gasket of side length 1, such
that adjacent components of side length A overlap completely at a subcomponent of
side length A™*!. The contraction ratio for such an n-gasket of order m is denoted by
Anm. See Figure[3lfor a construction of an 8-gasket of order 1, with contraction ratio
)\ = Agﬂ].

Similar to our analysis in Figure2lwe find a defining equation for A = A, ,,. Notice
that the width of an n-gasket with side length \™*! is A™*1(¢,, — 1). This gives that
along the side of length 1 of the original n-gasket of order m we have two components
of side length A\ minus an overlapping subcomponent of side length A™*!. This gives

(2.1) AN, — 1) — M, +1 =0,

where A € (0, 1). It is worth observing that this gives the same equation as [1] in the
case when n = 3. It is also worth observing that as m — 00, 50 A,y — Ay 00, Which
explains our choice of notation earlier. (Geometrically, this makes sense, as the size
of the overlapping section is going to zero.)
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Figure 3: 8-gasket of order 1

(a) gasket (b) gasket - adjacent components and overlap

Figure 4: 3-gasket of order 2

The next question that we need to consider is: what sort of additional overlap do
we get? Consider an n-gasket of order m. We know that the two adjacent components
of this gasket of side length \ will overlap in a subcomponent of side length A"**1, The
main question is: do we get any other overlapping subcomponents of these gaskets,
and if so, how “nice” is this overlap? Here, by nice overlap we mean overlap that is
the complete overlap of subcomponents of size A* for some k > . This will become
clear when we look at the details of Theorems[2.1] and[2.3]

In the case of n = 3, or n = 8, with m > 2, there is no additional overlap. In
the case of n = 6,12 or n = 8 with m = 1, there is additional overlap, but this
additional overlap is the complete overlap of subcomponent of side length A* for
some larger values of k. For all other n, there is additional overlap, but the overlap
is not complete overlap of smaller subcomponents. This is summarized by the next
three theorems.

Theorem 2.1 Ifn = 3 withm > 2 or n = 8 with m > 2, then there is no additional
overlap.
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0000

(a) gasket (b) gasket - adjacent components and overlap

Figure 5: 8-gasket of order 2

(a) gasket

(b) gasket - adjacent components and overlap

Figure 6: 6-gasket of order 3
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(a) gasket (b) gasket - adjacent components and overlap

Figure 7: 8-gasket of order 1

(a) gasket

(b) gasket - adjacent components and overlap

Figure 8: 12-gasket of order 1
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Proof Consider two adjacent components of side length A of a 3-gasket of order m.
The only region of overlap for these two components is a triangle of side length A"*!,
hence there is no additional overlap. See Figure[dl In this case we see that the overlap
of the convex hulls of these subcomponents is a triangle of size \™*!, regardless of
how large m is. Thus, even though Figure[dis for m = 2, we see that this argument
carries over for all m.

Consider the two adjacent components of side length X of an 8-gaskets of order m,
for m > 2 We see that the only overlap is 2" components of side length \™*!, hence
there is no additional overlap. See Figure[5l This case is more complicated than the
triangular case. Consider again the overlapping subcomponents of size \"*!. We
see that there would be additional overlap if the neighbours of these subcomponents
overlapped. Consider the center of the overlapping subcomponent of size A™*!, (call
this a), and the centers of its two neighbours (say b and ¢). A quick calculation shows
that the distance from a to b, and from a to ¢ is equal to (1 + v/2)(A™! — \¥"+1) As
the angle made by bac is a right angle, we then get that the distance between b and
cis (2 +v/2)(A\™1 — A1) As the subcomponent with centers b and ¢ has width
A™1(1 + v/2) and

(2.2) N +4/2) < (24 V2) (A — N2

for m > 2, we get that there is no additional overlap. For m = 1, we have that
A= 1+1\/5 and a quick calculation shows that equation (2.2)) does not hold, which is
why it is a special case. (See Figure[Zland the discussion in Section[4.2]) ]
Theorem 2.2 Ifn = 6withm > 2, n = 8withm = 1, orn = 12withm >
1, then there is additional overlap. This additional overlap is the complete overlap of
subcomponents of side length \* for some k > m.

Proof Consider the two adjacent components of side length X of a 6-gasket of or-
der m. We see that the overlap between these two components is one gasket of side
length A1, two gaskets of side length A>*!, and in general 25~! gaskets of side
length A\¥*1 See Figure [l Consider the overlapping gasket of size \"™*!. We see
that as m increases, the size of the overlap will decrease, but the center of this over-
lap will always be located in the same location, (midway between the centers of the
parent components.) Similarly, if we consider the two overlapping subcomponents
of side length A1, the location of the center will always be the midpoint between
the centres of the neighbours of the overlapping subcomponents of side length A1,
A similar argument can be used for all of the subcomponents of size \¥"**1,

Consider the two adjacent components of side length A of an 8-gasket of order 1.
We see that the overlap between these two regions is two gaskets of side length \?, four
gaskets of side length \*, and in general four gaskets of side length \*. See Figure[Zl
An argument similar to that used for the hexagons can be used to show that this is
true for all n.

Consider the two adjacent components of side length A of a 12-gasket of order m.
If m = 1, then the overlap is two gaskets of side length A\, and four gaskets of side
length \* for all k > 3. If m > 2, then the overlap is 2" gaskets of side length A",
and in general 2%~ gaskets of side length \¥"*1, See Figure[8l An argument similar
to that used for the hexagons can be used to show that this is true for all n. ]

https://doi.org/10.4153/CJM-2010-036-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2010-036-3

More Variations on the Sierpifiski Sieve 551

Theorem 2.3  For all other n and m there is additional overlap. This additional overlap
is not complete overlap of smaller subcomponents.

Proof Let n be odd, n > 5. Consider the two adjacent components of an n-gasket
of order m, where the components have side length A, and we have an overlapping
subcomponent with side length \™*!. See Figure[Pl Note in Figure[the slight over-
lap between the pentagons is intentional, as I am assuming that there is an overlap
of some order. Consider the neighbours of the overlapping subcomponents of side
length A™*!. We claim that these neighbours have additional overlap, and that this
additional overlap is not the complete overlap of smaller copies of this gasket. As
n > 5 and n is odd, we see that two of these neighbours will overlap. We notice
that the width of this overlap is (£, — 2)A™* + N2+ = \mHl(y, — 2 4+ A1) (We
notice that the horizontal distance between A and B, as well as between C and D is
1(t, — 2)A™"!, and the distance between B and C is A\*"*!.) We see that the width of
a gasket with side length A\, (with k > m + 1), is (¢, — 1). Letting k' = k — m + 1,
to show that there is only incomplete overlap, it suffices to show that there are no
integer solutions to

(2.3) th—2+ A" =2\t — 1)
form, k' > 1.
Notice that
1 1
?:An,ooé"'é)\njg)\n,zg)\n.l:t 1
n n -

This shows that the right-hand side of (2.3) is bounded above by ;- —1 = 1.Forn>7,
we see that the left-hand side of (2.3) is bounded below by t; — 2 ~ 1.24 > 1. Hence
there are no solutions for n > 7.

So assume that n = 5. Recall 5 = @ If k > 2, then the left-hand side is
bounded above by ﬁ = t5 — 2. The right-hand side of (2.3) is strictly greater than
ts — 2, hence there are no solutions if n = 5 and k > 2.

So assume that n = 5 and k = 1. Multiplying (2.3) by \ and noticing that \™*! =

Al by we get

t,—1°7

A5 — 1
Ats —2) + tS

= )\2(t5 - 1)
- —
Solving this equation gives A = A5 o = é Hence there are no solutions for # odd,
and n > 5.

A similar argument can be made for when n = 2 (mod 4) and n > 10 and when
n =0 (mod 4) and n > 16. The defining equation for n = 2 (mod 4) is

fy—3+2\"(t, + 1) = N(t, — 1)
and forn =0 (mod 4) is
ty—3—2cosf +2\"(t, + 1) = M(t, — 1).

(Here 0 = 27”.) As before, there are no solutions if n > 10 or n > 16, respectively, as
one side is bounded above by 1, and the other is strictly greater than 1.
|
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Figure 9: n-gasket for n-odd

3 Algorithm

In this section, we give an overview of the algorithm of Ngai and Wang. We simplify
their discussion somewhat, as in our case the contraction ratio for the f; are all equal.
We refer the reader to [7] for a detailed proof as to the correctness of this algorithm.

First, we define formally the maps used to construct an n-gasket of order m. Let
fj(x) = Ax +bj, where x, b; € R*. Here the b are the vertices of a regular n-gon and
A = Ay is given in equation (2.1)). The b; are scaled such that the attractor has side
length 1.

We defineJ € {1,2,...,n}* to be a finite word with symbols 1,2, ..., n. Letting
J=jij2--- jxwedefine fy = f; o fj,0--- 0 fj.

Define R = ﬁ Let B be the open ball of radius R around 0. We say that J; and
J, are neighbours if [J,| = |J2| and f;,(Bg) N f;,(Br) # . In our case we can think of
each fj being associated with a particular component of side length A\l, and we say
that two components are neighbours if they are the same size, and they overlap.

We define the neighbourhood set of J as Q(J) = {J’ : ]’ is a neighbour to J}. Based
on J, define the map 7(x) = 7(x) = Al — £;(0)). This map re-scales and
re-centers a neighbourhood set €2(J), allowing us to compare neighbourhood sets at
different depths. We say two neighbourhood sets have the same neighbourhood type
if there exists a rotational matrix U such that 75, (£2(J1)) = Uy, (£2(J2)).

We say that an IFS is of finite type if there is only a finite number of neighbourhood
types. If an IFS is of finite type, then it is possible to compute the dimension of
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the attractor by considering the eigenvalues of an adjacency matrix whose rows and
columns are indexed by the neighbourhood types.

Consider a J = jjj, - - - j associated with a particular neighbourhood type. We
then consider the sequences Jr = j;j, - - - jxr, where r takes on the values between 1
and n. We say an edge from J to Jr is acceptable if there are no other )’ with [J'| = k+1
such that f;; = fj,, where J’ would have precedence. This concept of precedence is
described in more detail in Section[dl In our implementation, we use a rotational
precedence. So, if k is the largest eigenvalue of the incidence matrix of this graph,
then the dimension is
log(k)

dim(K) = “logy)’

In the next section, we show that these n-gasket of order m, for n = 6,8, or 12 have
finite type, and construct their incidence matrix and compute their dimension.

4 Dimension

In Section 2} we discussed the contraction ratio used for an n-gasket of order m. In
Section Bl we gave an overview of the algorithm of Ngai and Wang to compute the
dimension of an n-gasket of order m. In this section, we show how to compute the
dimension of such gaskets. We do this separately for each n, as the techniques are
optimized for each case. Special attention is given to the case n = 6, after which we
give the highlights only for n = 8 and n = 12, as the techniques are similar. We do
not do the case of n = 3, as the results can be found in [1].

4.1 Hexagons

In this subsection we consider the case of a hexagonal gasket of order m for m >
2. If m = 1, then A\¢; = 1/2, and the resulting gasket is a filled in hexagon with
dimension 2.

In a hexagonal gasket of order m, we have that the adjacent components with side
length ) overlap at a subcomponent of side length A™*!. To compute the dimension,
we must count the number of subcomponents with side length A, as k goes to infin-
ity. So, in this case, for k = 0, 1,2, ..., m the number of components with side length
Ais1,6,36,...,6™. Inthe case when k = m + 1, the number of subcomponents is
6™ — 6, as there are six subcomponents with side length A™*! that overlap.

The trick to computing the dimension of this gasket, (or in fact any of these n-gas-
kets of order m) is to carefully count how many components of side length \* there
are as k — oo. Careful consideration needs to be taken about when gaskets overlap
completely, as we need to avoid double counting.

For each component of side length A¥, say A, consider the six subcomponents of
side length A**!, say B, B,, . . ., Bs, of which A is composed. In this case we say that
A is the parent of the B;s, and the B;s are offspring of the A. We similarly define the
notion of descendants and ancestors.

Now consider some subcomponent C of side length A such that it is the offspring
of two different parents, say A and B. This will happen when C is an overlapping oft-
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D

N

D
A

S,

A B

valid offsprin\g\ /wn—valid offspring
C

Figure 10: Precedence diagram

spring subcomponent of two adjacent components. These two parents have a com-
mon ancestor D. The nice property, which we can exploit in this case, (but is not true
for general IFS), is that we can impose a priority on these parents that is rotational.
Let D4 be the offspring of D that contains A and Dy the offspring of D that contains
B. If Dy is counter-clockwise to Dg, then we say that A has priority over B. As such,
when counting offspring of A and B, we count C as an offspring of A, but not as
an offspring of B. This avoids double counting. This is described in the ancestor
diagram in Figure

At this point we need to introduce some notation for hexagonal gaskets of order
m, (where m > 3.) We will do this by way of example.

Example 4.1 Consider the following example found by looking at a component of
the hexagonal gasket of order 2 in Figure[[Il Here black is the component that we
are interested in. The light grey and dark grey components are in the neighbourhood
of the black component, and included to represent the neighbourhood type of B. We
find the six neighbourhood types that are offspring of the neighbourhood type of B.

In Figure[ITl(a) we have a hexagon (labeled B), with corners labelled —2, 2 or left
empty. By labelling the corners with £2, we mean that there is a hexagon overlap-
ping this corner, and, moreover, the size of this overlap is A2 times that of the par-
ent hexagon. In the case of —2, the overlapping hexagon does not have precedence,
whereas +2, (or 2), indicates that the overlapping hexagon has precedence. Corners
that are left blank indicate that there is no overlapping hexagon with that corner. We
can, based on this, determine the six hexagons that the parent hexagon is composed
of.  This is represented graphically in Figure [[I(b) and [[1lc), where black is the
hexagon we are interested in, light grey represents hexagons with which black has
precedence over, and dark grey represents hexagons that have precedence over black.
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DOLCOE

(a) Precedence structure

% w
%
%§

(b) Parent (c) Offspring

Figure 11: Precedence structure and graphical interpretation

If the hexagon gasket has order m, then we see that each corner of a neighbour-
hood type representation can take the values of empty, or 1 through m, with either
positive or negative sign. This means that there are a total of (2m + 1)® possible
neighbourhood types. (There are in fact much fewer in practice that we need to
worry about.) Hence, these gaskets have finite neighbourhood type. Figure 13 gives
our full description of the maps from the neighbourhood types to their offspring.
The hexagon A is the neighbourhood type for the starting n-gasket of side length 1.

We notice that because our priority is rotational, we can rotate the existing off-
spring and treat a number of these gaskets as equivalent.

From this network diagram, we can compute an adjacency matrix, as shown in
Figure[12

We see that y(k) := [1,1,...,1]A%[1,0,0,...,0]7 gives the number of hexagons
of side length A¥. At this point it suffices to find the maximal eigenvalue of A to tell
us what the growth of (k) looks like.

Let a, b, ..., be the frequency associated with A, B, .... Let k be the eigenvalue
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A B Cy-y Dyy Cy—» Dy --- C, Db E F G H 1

A 0 6

B 0 4 1 1
Cu_1]10 3 1 1 1
Dy—1]10 3 1 1 0 1

C, 0 3 1 1 0 0 1

D, 0 3 1 1 0 0 0 1

C 0 1 1 1 0 0 0 0 1 1 1

D, 0 1 1 1 0 0 0O o0 0 0 0 1 1
E 0 3 2 1

F 0 2 3 1

G 0 3 2 1

H 0 3 1 2

I 0 3 0 3

Figure 12

of A. This tells us that
rka=20
kb=4b+3c,_1+3d,_1+ - +3c+3dy+ 1 +d;
+3e+2f+3¢g+3h+3i
KCn—1 =b+cp_1+dpy_1+---+c1+di+2e+3f+2¢g+h
kdm—1 =b+cp1+dm_1+---+a+di+e+ f+g+2h+3i
KCp—y = Cp—_1*" K€l = ¢
Kdpy =dp_1---kdy =d;

ke=c¢ Kf=c kg=oaca Ki=d.
By using the observations that
a=rg, di=rkfh, e=g f=g i=h,
we can rewrite this system to get the relevant equations

(4.1) kb =4b+3(k™ '+ -+ KY) (g +h) + kg + Kh
+3g+2¢g+3¢g+3h+3h

/{m_KZ
:4b+371(g+h)+/$g+/<;h+8g+6h
e —
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K"g=b+ (K" "+ +k)(g+h) +2g+3g+2g+h

(4.2) m_
:b+K il
k—1

(g+h)+7¢+h

K"h=b+ (""" 4+ +kK)(g+h) +g+g+g+2h+3h

(4.3) m

K K
=b+ p— (g+h) +3g+5h.

Subtracting equation (42) from @3) gives us 0 = (k™ —4)(h—g). Either k = /4
or h = g. Here we want x to be the largest eigenvalue, so assume for the moment
that h = g, to find the other eigenvalues. This then gives us

2

m
(4.4) Kb = 4b + 6%g +2Kg + 14g,
K

K" — K

(4.5) b=r"g—2 — 8g.

r—1

Combining (£4) and (£5) and noticing that g # 0 gives the equation for .

K" — K K" — K K™ — K2
n(n’"—z —8)—(4(;4"—2 —8>+67+2n+14>
K —1 Kk—1 K—1

i1 —26MT 4 282 m . 8K™ — 8K —6K™ + 6K*
=M - 8k — 4K —— + 32+ —————
Kk—1 k—1 r—1
— 2k — 14
—2K™1 1 2K™ + 8K% — 8
— el 2R " r N 4k™ — 10k + 18

k—1

= k™! — 6x™ — 2k + 18.

By noticing that x > 5 for all m > 3, gives that x # {/4. This gives the final
result.

Theorem 4.1 The 6-gasket of order m has dimension log(k)/— log(\), where k is the
largest root of k™! — 6x™ — 2k + 18 and X is the root in (0, 1) of 2A™! — 3\ — 1.

It is worth observing that £ — 6 and Ag ,, — Ag o0 as m — 00, and furthermore
the dimension of the non-overlapping case is log(6)/— log(A¢ oo)-

4.2 Octagons

The case of octagons is done in a similar way. The main difference is that they are
denoted differently, as the overlaps are on the edges, not the corners, and will always
effect two octagons. The case of m = 1 is a special case, as its overlap structure is
unusual (see Theorem 2.2)). Its dimension for m = 1 was computed directly by a
computer implementation of [7], (see [4] for the implementation). This implemen-
tation would start with neighbourhood type given by the initial starting octagon. It
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would then recurse into the structure, finding all of the neighbourhood types of all
of the descendants of each neighbourhood type. As this fractal has finite type, this
process eventually terminates. When this process terminates, we can then compute
the adjacency matrix, and finally compute the dimension.

(a) Precedence structure (b) Graphical interpretation

Figure 14: Precedence structure and graphical interpretation

n

-m -m -m

=
=

-(m-1)

-m

@
@
Figure 15: Pictorial Representations

Using the same colour notation as Figure [[T] we give an example of a particular
8-gasket of order 2 (see Figure [[4). This means that the left side will overlap an
adjacent octagon in 1 step, and this octagon will have priority. This also means that
the upper right side will overlap an adjacent octagon in 2 steps, and this octagon will
not have priority. Lastly, all other sides do not overlap other octagons.

All of the offspring octagons can be determined by the parents with this informa-
tion. This is done in much that same way as the hexagon case.

To simplify notation, we will not give a pictorial representation as we did for the
hexagons. Instead we will list only what is meant by each 8-gasket, and the transi-
tions. See Figure[I5] The maps are:
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A — 8 X B,

B—4xB,Cy_1,Dy—1,Epn—1,Fn—1,
C,—2xB,Ch—1,Dy,_1,Cry_1,Dpy—1, Ey—1, Fru—1
D, —2xB,Ch—1,Dy—1,Cry—1, Dyy—1, Em—1, Fru—1
Ci —2xB,Cp, Dy, Coy—1,Dyyy—1, Epy—1, Frn—1,
Dy —2%xB,Cp,Dp,Cp—1,Diy—1, Ejy—1, Fry—1,
E,—2xB,E,_1,F—1,Cpi—1,Dpy—1, Epy—1, Fr—1
F,—-2xB,E,_1,F,—1,Cpi—1,Dp—1,Epy—1, Fr—1
Ey — B,G,Cp—1,Dp—1,Ep—1, Fru—1,

Fi, —2xB,H,Cp—1,Dp—1,En—1,
G—4XxB,2XEu_1,2XF,_1,

K. G. Hare

(n#1),
(n# 1),

(n#1),
(n# 1),

HHZXB,ZXEm_l,zXFm_l,Em_z,Fm_Q (ﬂ’l?éZ),

H—2%B,2XEp_1,Fp_i,H (m=D2).

Using a similar technique to before, we get & satisfies (for m > 2)

Km+1 — 8r™ +2m71l€ + 2m+2.

log(k)
— log(\)?

Theorem 4.2 The 8-gasket of order m has dimension
root of

e m=1,K—6K>+K+12,
o m > 2, kKM — 8rM 4 2" L 4 22,

and X is the root in (0,1) of (v/2 + DA™ — 2+ v/2)\ — 1.

4.3 Dodecagons

where K is the largest

We proceed the same as for the octagon case, for m > 2. The case of a dodecagon
with m = 1 is somewhat special, and is calculated using the code provided at the
author’s home page [4]. Using Figure[I6] for a representation of which each symbol

represents we get the maps for m > 2:

A— 12 x B,

B — 8 x B,Cp_1, Dy, Em_1, F_1,

Cp— 6% B,Cy_1,Dy_1,Crm—1,Dpsr, Em—1, Fru_
D, — 6 X B,Cy—1,Dy_1,C—1, D1, Em—1, Eyn1
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Figure 16: Pictorial Representations

E,—6xB,E, 1,F,_1,Cu_1,Diy—1, Ep—1, Fn1  (n # 1),
Fy —6XB,Ey;_1,Fy—1,Cn1, D1, Ep1, Fur - (n# 1),
Ci —-4xB,2xG,2xH,Cpy_1,Dy—1,En—1,Fu_1,

Dy —-4xB,2xG,2xH,Cpy_1,Dp—1,En—1,Fpn_1,

Ey - 4xB,K,L,Cpy—1,Dyy—1,Ep—1,Fp—1,

Fi - 4xB,K,L,Cp,_1,Dp—1,Ep_1,Fp_1,
G—6xB,2xCy_1,2XDy_1,En_1,Fpn_1,
H—6xB,2xCy_1,2XDy_1,Ey_1,Fn_1,
K—6xB,3%xE, ,3%XF,_1,
L—6xB,Cpy_1,D—1,2 X Ejy_1,2 X Fpy_;.

Using the same techniques as before, this gives us the theorem.

Theorem 4.3 The 12-gasket of order m has dimension _lolf’,;?i) where K is the largest

root of

e m=1,«k*— 11k + 16,
o m>2, kM —12k™m — 2" 1z 4 18- 2™,

and X is the root in (0,1) of (v/3 + 2)A™1 — (3 +/3)\ — L.

5 Conclusions

This paper answers a question of Broomhead, Montaldi and Sidorov as to the exis-
tence and construction of n-gaskets. It shows how to use the algorithm of Ngai and
Wang to compute these gasket dimensions. There are a number of observations that
are worth making at this point. First, the gaskets studied in this paper all have finite
type. It can be shown that if 1/ is a Pisot number, with Q(\) O Q(cos(27/#n)),
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then the n-gasket with contraction A will also have finite type. This is a sufficient
condition, but not necessary, as can be seen by noticing that most of the A, ,, in this
paper are not in fact Pisot numbers. Examples would be A ~ 0.5698402911, the root
of x> —x*+2x — 1, forn = 3 or A = 0.3819660113, the root of x> — 3x + 1, for
n = 5. These objects in general will be much more complicated than the n-gaskets of
order m that we studied here. It is not immediately obvious whether the existence of
such a A in the relevant range is guaranteed for all n-gons. (If A is too big, then the
gasket will have dimension 2, and if it is too small it will satisfy the OSC.) Moreover,
the computational aspects in even this simple case of the problem are immense. For
example, the resulting minimal polynomial for «, for the 3-gon with the contraction
A & 0.5698402911, is of degree 445. How these computations could be, or should
be done for more complicated objects would require techniques from sparse matrix
theory.

Variations of these sorts of objects can also be studied in higher dimensions. It
is not clear if there is an equivalent trick to rotational precedence in higher dimen-
sions. It is possible to ignore this, and simply do a larger computation, but that seems
computationally inefficient.
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