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Introduction. The introduction of curvature considerations in the past decade into
Combinatorial Group Theory has had a profound effect on the study of infinite discrete
groups. In particular, the theory of negatively curved groups has enjoyed significant and
extensive development since Cannon's seminal study of cocompact hyperbolic groups in
the early eighties [7]. Unarguably the greatest influence on the direction of this
development has been Gromov's tour de force, his foundational essay in [12] entitled
Hyperbolic Groups. Therein Gromov hints at the prospect of developing a corresponding
theory of "non-positively curved groups" in his non-definition (Gromov's terminology) of
a semihyperbolic group as a group that "looks as if it admits a discrete co-compact
isometric action on a space of nonpositive curvature"; [12, p. 81]. Such a development is
now occurring and is closely related to the other notable outgrowth of the theory of
negatively curved groups, that of automatic groups [10]; we mention here the works [3]
and [6] as developments of a theory of nonpositively curved groups along with Chapter 6
of Gromov's more recent treatise [13]. A natural question that serves both to guide and
organize the developing theory is: to what extent is the well-developed theory of
negatively curved groups reflected in and subsumed under the developing theory of
nonpositively curved groups? Our overall interest is in one aspect of this question—
namely, as the question relates to the boundaries of groups and spaces: can one define the
boundary of a nonpositively curved group intrinsically in a way that generalizes that of
negatively curved groups and retains some of their essential features?

Recall that the boundary of a negatively curved group (or more generally, space) G is
defined in terms of equivalence classes of sequences convergent at infinity in the Gromov
inner product (precise definitions are recalled later) and is compact, metrizable and
finite-dimensional [2,12]. The boundary also may be described in terms of equivalence
classes of geodesic rays that fellow travel in the Cayley graph of G with word metric [8],
and as such parameterizes the "directions towards infinity" in the Cayley graph. The
"visual" or "geodesic" boundary of a CAT(0)-space X parameterizes the geodesic rays
issuing from a basepoint and, if X also is negatively curved, then these two concepts of
boundary agree. Whenever a group G acts geometrically (i.e., properly discontinuously,
cocompactly, and isometrically) on a negatively curved geometry A", the group G is
negatively curved and the natural map g >->• g. x0 (x0 is a fixed basepoint in A") of G to X
extends continuously to an equivariant homeomorphism of boundaries. For this reason, if
G acts geometrically on two negatively curved geometries X and A", then the boundaries
of X and X' are equivariantly homeomorphic. To what extent the situation as outlined
here generalizes to groups acting geometrically on CAT(0)-spaces is a question of
considerable current interest. In fact, Gromov [13, Chapter 6] specifically asks whether
the visual boundaries of X and X' are F-equivariantly homeomorphic whenever the group
T acts geometrically on the two CAT(0)-spaces X and X', and it is natural to suggest that
implicit in Gromov's question is the question of whether the natural quasi-isometry from
X to X' that quasi-isometrically factors through the Cayley graph of T extends
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continuously to a homeomorphism of visual boundaries. As noted, this is exactly what
occurs in the presence of negative curvature and, were it true, would lead to an
unambiguously defined analogue of the boundary of a group in the presence of
nonpositive curvature. This paper presents a case study of these questions in the context
of groups of the form T = G X Z", where G is negatively curved.

Consider then a group T acting geometrically on the CAT(0)-geodesic spaces X and
X'. In Section 1, we use a lemma of Bridson and Haefliger to show that if T is of the form
G X Z" with G negatively curved, then the visual boundaries of X and X' are
equivariantly homeomorphic, though not canonically so. On the other hand, the following
simple but enlightening example shows that in general the question implicit in Gromov's
has a negative answer; i.e., in general, the natural quasi-isometry

where x0 e X and x'o e X' are basepoints and " s " indicates a quasi-isometry, does not
extend continuously to a map of X U dX to X' U dX'. (In the sequel, any quasi-isometry
X—>X' such that y. x0<-> y. XQ for y s F will be called a Y-equivariant quasi-isometry.)
We elaborate upon and verify the claims of the example in Section 2.

EXAMPLE. Let F2 = \a,b:<f>\ be the rank 2 free group with basis {a,b) and let
X = T X R, where T is the unique nonempty 4-valent tree. We may identify T with the
Cayley graph of F2 with respect to the generating set {a, b} and so regard F2 as the vertex
set of T. Endowed with the l2-product metric {{d\ + d2)

112 for metrics d^ and d2), where T
is given a path metric wherein each edge is isometric to the unit interval and U has its
usual absolute value metric, X becomes a CAT(O)-space. We consider two geometric
actions of F2 X Z on X. The first is just the product action defined on the generating set
{( f l ,0) , (M),( l , l )}ofF2xZby

( a , 0 ) . ( t , r ) = ( a . t , r ) , ( b , O ) . ( t , r ) = ( b . t , r ) , ( 1 , 1 ) . (t,r) = ( t , r + 1 ) .

Here of course (a,t)y-*a. t, {b,t)>-*b .t describes the natural action of F2 on its Cayley
graph T. The second is obtained by a simple change in the action of (b,0) on X and is
defined by

( a , 0 ) * ( t , r ) = ( a . t , r ) , ( b , 0 ) * ( b . t , r + 2 ) , ( l , l ) * ( r , r ) = ( f , r + l ) .

In Section 2, we verify that this example satisfies the following properties:

(i) For a fixed basepoint x0 of X, (F2 X {0}). x0, the copy of F2 realized as the orbit
of x0 under F2 x {0} by the first action, obviously lies in a horizontal slice of
X = T x U and is a quasi-convex (see Section 2 for definitions) subset of X;
however, (F2 x {0}) * x0, the copy of F2 realized under the second action, is not
quasi-convex.

(ii) F2 x {0} is a quasi-convex negatively curved subgroup of F2 X Z with a Cantor set
boundary. Of course, the quasi-isometric embedding (g,0)>-»(g,0). xo of
F2 X {0} extends continuously to a map of the boundary of F2 x {0} into the visual
boundary of X; however, the quasi-isometric embedding (g,0)>-*(g,0)*x0 of
F2 X {0} does not extend continuously to a map of the boundary of F2 x {0}. In
fact, the natural extension of (g,0)h->(g, 0)*xo to the rational points (see
definition below) of the boundary of F2 x {0} is not even continuous.
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(iii) The maps F2X.Z^>X given by yi-> y. x0 and yi->. y *x0 are quasi-isometries [8]
that induce a quasi-isometry Z-> X for which -y. x0 >-> y * *o- This F-equivariant
quasi-isometry of X induced by the two actions of F2xZ does not extend
continuously to a map of visual boundaries.

(iv) There is an automorphism of F2xZ that sends (a,0) to (a,0), (b,0) to (b,2),
and (1,1) to (1,1), showing that the product action . and the "twisted" action *
are equivalent up to automorphism of F2 X Z. This shows that the relationship of
the group F2 x Z (or its Cayley graph) to visual boundary is not even
automorphism-invariant; i.e., an automorphism of F2xZ does not induce a
homeomorphism of visual boundaries, as does occur in the context of negatively
curved groups.

(v) It is an open question as to whether all 1-ended negatively curved groups have
locally connected boundaries. This simple example provides a negative answer to
the analog of this question in the setting of nonpositive curvature. Indeed, our
main result guarantees that the group F2xZ has a well-defined boundary as the
suspension of a Cantor set, a connected nonlocally connected space. Further-
more, Mike Mihalik has pointed out to the second author that F2 x Z sits as a
finite-index subgroup of a Coxeter group, and this furnishes an example of a
1-ended Coxeter group with nonlocally connected boundary.

The example shows that it is impossible to generalize from the context of negatively
curved groups to that of nonpositively curved groups the notion of boundary that
parameterizes the directions to infinity in a way that equivariantly identifies the boundary
of the group with the visual boundary of any and every CAT(O)-space on which the group
might geometrically act. The example, though very simple, is revealing of the lack of
structure that results in a move from negatively to nonpositively curved groups.

Section 3 closes the paper on a positive note. Recall that an element g of infinite
order in the negatively curved group G determines a rational point g" = lim g" in the
boundary (since the powers of g form a quasi-geodesic [2]), and the set of these rational
points is dense in the boundary of G [12, 5]. This denseness has important implications for
the dynamics of the natural action of G on its boundary [9]. If a group acts on a negatively
curved space (or a CAT(O)-space) X with basepoint x0, the G-rational points of the
(visual) boundary are the limiting values of sequences of the form {gn. x0} for infinite
order elements g. Easily, from our previous discussion, these rational points form a dense
subset of the boundary of X whenever the group G acts geometrically on the negatively
curved space X. We verify that the corresponding result holds true in our particular
nonpositively curved setting: if X is CAT(O) and F is of the form G x Z " with G negatively
curved, then the rational points determined by F still form a dense subset of the visual
boundary of X.

1. The boundary determined by G x Z". Our goal in this section is to prove that
the visual boundaries of the CAT(O)-spaces X and X' are equivariantly homeomorphic
whenever X and X' both admit a geometric action by the same group GxZ" , where G is
negatively curved. The proof depends on a result of Bridson and Haefliger that dissects
the effect of a hyperbolic isometry on a CAT(O)-space, which generalizes the correspond-
ing effect of a hyperbolic isometry on a Hadamard manifold [4]. We prove the main
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result after stating the pertinent results of Bridson and Haefliger, but it is fitting first to
recall some definitions and terminology.

A geodesic space X, d is a complete, locally compact path metric space and is
negatively curved if it has a negatively curved Gromov inner product. Recall that the
Gromov inner product (or overlap function) based at w e X is given by

and is negatively curved if there is a nonnegative constant S such that

(x. y)w > min{(x. z)w, (y-z)w}-8

for all x,y,zeX. The definition of negatively curved geodesic space is base-point
independent since the negative curvature of the inner product based at one point of X
guarantees that based at every point of X. A group is negatively curved if its Cayley graph
with respect to some (finite) generating set with word metric is negatively curved.
Negative curvature of a geodesic space is equivalent to the more geometric condition of
having thin triangles; see for instance [8]. Because negative curvature of a geodesic space
is a quasi-isometric invariant, any group that acts geometrically on a negatively curved
space is itself negatively curved. We refer the reader to [2,8,9,12] for an account of the
theory of negatively curved groups and spaces, and to [8,11] for general information on
groups acting geometrically.

Let X, d be a negatively curved geodesic space with inner product ( . ). A sequence
{XJ} in X is convergent at infinity if (x,. *,)-» °° as i,j-* °°, and two sequences {x,) and {_y,}
convergent at infinity are equivalent if (*,•. y,)-> <* as i-» <». The boundary of X, denoted
as dX, consists of all equivalence classes of sequences in X convergent at infinity. We
refer the reader to [2] for a precise description of the topology on IUdX; for our
purposes, it suffices to note that the sequence {&,} in dX converges to the boundary point
b if and only if £,—> °° as /—»°°, where

e, = lim inf (xtJ. xj),
i

for any choice of sequences {*,,} representing bt and {xj} representing b. Each geodesic
ray cr: [0, oo)_»X determines a point cr(oo) in SX; indeed, given any two sequences {s,}
and {r,} of positive real numbers with s,--> °° and r,--»», the sequences {o"(s,)} and {cr(r,)}
are equivalent sequences convergent at infinity. Each point of dX is determined in this
way by some geodesic ray, and two arclength parameterized geodesic rays a and T
determine the same point cr(°o) = T(°°) if and only if they fellow travel (i.e.,
{d(a-(s), T(S)): S 2:0} is bounded above); thus, dX parameterizes the equivalence classes of
fellow-traveling geodesic rays. Finally, X U dX is a finite-dimensional metrizable compac-
tification of X, and we refer the reader to the following sources for more extensive and
informative discussion: [2,8,12].

CAT(0)-spaces are the metric geometry version of nonpositively curved, simply-
connected riemannian manifolds. A geodesic space X, d is CAT(O), or satisfies the
0-comparison inequality of Alexandrov-Toponogrov, if every geodesic triangle in X has
no larger Alexandrov (upper) angles than the corresponding ones of a comparison
triangle of the same edge lengths in the flat euclidean plane. CAT(0)-geodesic spaces have
unique geodesic segments between pairs of points, geodesic rays issuing from the same
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point diverge at least as fast as those in euclidean space, and geodesic triangles are at least
as thin as comparison triangles of the same edge lengths in flat euclidean space. Instead of
Alexandrov angles, appropriate reformulations of this last property are often used in the
definition of CAT(O)-spaces; see [4,6,13]. What is likely to become the standard reference
on CAT(0)-geometry is the as yet unpublished book of Bridson and Haefliger [6], but for
now the reader is referred to [1] for a good standard exposition of the theory. The visual
boundary of the CAT(0)-geodesic space X, d based at x0 e X is the collection of geodesic
rays issuing from x0 with the topology of uniform convergence on bounded subsegments.
Since the visual boundaries based at different points are canonically homeomorphic, we
delete any reference to basepoints in notation and use dX to denote any visual boundary
of X. If A' happens to be simultaneously negatively curved and CAT(O), the "evaluation
map" o-i-»cr(00) describes a homeomorphism of the visual boundary of X to the
negatively curved boundary of X, justifying our use of the notation dX for both.

Reflecting the classification of isometries of hyperbolic w-space, the isometries of the
CAT(0)-geodesic space X, d fall into three categories—hyperbolic, elliptic, and parabolic.
Our interest here is only in the hyperbolic isometries; general information in the setting of
Hadamard manifolds appears in [4, Lecture II] and generalizations to the setting of
CAT(O)-spaces will appear in [6]. If A is an isometry of X, then the translation length of A
is

\k\ = \ni{d{x,\{x)):x e X},

and A is hyperbolic if |A| > 0 and A assumes the infimum; i.e., there exists xoe X such that
|A| = d(x0, A(*o))- Following [4], the minimal set MIN(A) of the hyperbolic isometry A
consists of the set of points x for which |A| = d(x, A(x)). Two (bi-infinite) geodesic lines
a, x : R-» X are asymptotic (or fellow travel) if {d(a(t), r(f)): t E U} is bounded, and the
images o-(R) and T(R) cobound a flat strip in X if there is an isometric embedding
i / c [0 ,D]xR->I , for some positive number D, whose restrictions to {0}xR and
{D} XIR are respective reparameterizations of a and r. Observe that the flat strip
i//([0, D] X R) is a convex subset of X. The next theorem is a restatement in the context of
CAT(O)-spaces of a basic property of Hadamard manifolds. Its proof is essentially that of
its Hadamard-analog found in [4] and will appear in [6].

FLAT STRIP THEOREM. / / geodesic lines a and r in the CAT(O)-geodesic space X are
asymptotic, then their images a(U) and T(R) cobound a (unique) flat strip.

The next result, the aforementioned lemma of Bridson and Haefliger that is applied
in the proof of Proposition 1.1, illuminates the effect of a hyperbolic isometry on a
CAT(O)-space. It generalizes [4, Lemma 6.2] and is a fairly direct corollary of the Flat
Strip Theorem. Since [6] has yet to appear, even in preprint form, and their quick proof of
item (iii) of the proposition relies on properties of Busemann functions developed early
therein, we have decided to include a self-contained proof.

DECOMPOSITION LEMMA [Bridson and Haefliger]. Let A be a hyperbolic isometry of the
CAT(0)-geodesic space X, d.

(i) There exists a geodesic line a : U-^X such that A(cr(r)) = a(t + |A|) for all t e U.
For such a, the set a(U) is called an axis for A.

(ii) Any two axes for A are asymptotic and the union of all the axes for A is exactly
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MIN(A). Furthermore, MIN(A) is a closed convex subset of X, hence a
CAT(O)-space when metrized by the restriction of d.

(iii) Let cr(U) be an axis for A and let Y be the perpendicular bisector (in MIN(A)) of
<r(U) at cr(O); i.e.,

Y = {xe MIN(A): d(x, <r(R)) = d(x, <r(0))}.

Then Y is a closed convex subset of X and therefore a CAT(0)-geodesic space
when metrized by the restriction of d; moreover, MIN(A) is isometric to YxU
(l2-product metric) and the restriction of A to MIN(A) is of the form (y,t)*-*
(y,t + W).

(iv) Every isometry fi that commutes with A leaves MIN(A) = Y x R invariant and its
restriction to Y X R is of the form fj.' X fi", where y.' is an isometry of Y and /i." is
an isometry of U.

Proof, (i) Choose x0 e MIN(A) and let a: [0, |A|] —> A' be the unique geodesic
segment for which cr(0) = x0 and cr(|A|) = A(xo). Extend a to a map, still called o\ from R
to X by

cr(n |A|+p) = AV(p)) ,

for all n e Z and p s [0, |A|]. It suffices to prove that a is locally geodesic since local
geodesies are global geodesies in CAT(0)-spaces. That a is a local geodesic follows from
the fact that the distance from cr(|A|/2) to cr(3 |A|/2) is precisely |A|, which follows easily
from the fact that x0 e MIN(A).

(ii) The two claims of the first sentence are easy, the second following from the proof
of item (i). That MIN(A) is convex is a direct consequence of the Flat Strip Theorem;
indeed, for x0, *, e MIN(A), let a-0, cr} : R —» X be geodesic lines for which o-,(0) = *,• and
M°v(0) = °"/(f + I'M) f°r aH ' e ^- Then cro and o-] are asymptotic, hence the axes cro(U)
and cri(IR) cobound a flat strip 5. Since A acts as a Clifford translation (i.e., every element
is moved a distance of |A| by A) on cro(R)U cr^R), the boundary of 5, it, being an
isometry, must do so also on 5. It is immediate that 5 c MIN(A), hence MIN(A) is convex.

(iii) Let ao(U), o-](R), and <72(R) be three distinct axes for A that do not lie on a
common flat strip, and for {i,j, k} = {0,1,2}, let 5, be the flat strip cobounded by o)-(IR)
and ak(U). Let p be the intrinsic metric on the union 5 = S0U5] U52 determined by d;
i.e., for u,v e 5, p(u,v) is the infinum (in this case, minimum) of the d-lengths of all
paths in S between u and v. Easily, p is complete and locally euclidean and as such makes
5 into a flat cylinder. Now 5 is foliated by axes for A, namely, the euclidean lines in the
flat strips that are parallel to the cobounding axes. The important observation about these
foliating geodesic lines is that they are p-lines—i.e., not only does each locally minimize
arclength (= geodesic), but also each globally minimizes p-distance between any pair of
its points ( = line). The pertinent point is that it follows (for instance, by writing S as the
quotient of the euclidean plane by a translation) that the p-geodesic foliation on S whose
leaves are perpendicular to these axes consists entirely of closed curves, circles that go
once around 5. Let x0 and xx be points on the axes crQ(R) and cr^R), respectively, such
that the segment [JCO,XI] is perpendicular to the cobounding axes of S2. The conclusion
above guarantees that the unique point on the axis o-2(R) closest to JC0 is equal to the
unique point on <72(R) closest to JC,. It is now easy to verify the convexity of Y. Indeed, let
o-0(R) = cr(R) and JC0 = o-(O). For elements *i and x2 of Y, let <r,(R) and o-2(R) be axes for
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which CT1(O) = A:1 and o-2(0) = Jt2. Since x2 is by definition the unique point on er2(R)
closest to x0, the observation above guarantees that x2 is also the unique point on cr2(IR)
closest to *,; hence, the segment [xi,x2] is perpendicular to the cobounding axes of 50.
For arbitrary point z of [*,,.x2], the same argument applied to the three points z, xx, and
x0 implies, since x0 is the unique point on ao(M) closest to xu then x0 also is the unique
point on aQ(U) closest to z- But this says z e Y, so [xi,x2]<=Y and Y is convex. The
remaining claims of item (iii) now can be verified routinely.

(iv) Since for x e MIN(A) = Y X R, d(\fi(x), /JL(X)) = d(fx\(x), ^.(x)) = d(\(x),x) =
|A|, fji(x) e Y X R and therefore Y X R is /i-invariant. For any y s Y, let fi'(y) be the
unique point of At({y} X (R) in Y and, for a point y0 fixed in Y, let Tbe the R-coordinate of
M^yojO). Define fx": R-»R by ti-*t + T. A straightforward exercise using the Flat Strip
Theorem and item (iii) now shows that /JL' : Y-* Y is an isometry and the restriction of ix
to YxU is given by /A'X/A".

A subset M of a metric space X is quasi-dense if it is TV-dense for some /V > 0; i.e., if
each point of X is TV-close to some point of M. A subset F of a metric space X is an n-flat
if the restriction of the metric on X to F makes F into a flat n -plane, isometric with R".
The next proposition is the main technical result used in this paper. The proof is by
induction on n.

PROPOSITION 1.1. Whenever the group Y -GxZn acts geometrically on the CAT(O)-
geodesic space X, there exist subsets Y c M c X and a map n:M—>Y such that the
following hold:

(i) M is a closed, T-invariant, convex, and quasi-dense subset of X that is isometric
to the l2-product YxU", where Y is metrized by the restriction of the metric on X;

(ii) Y is closed and convex, and for each y eY, n~*(y) is a {1} x Z"'-invariant n-flat,
where 1 denotes the unit element of G;

(iii) there exists a cocompact action (h, r) i-» h. r of Z" on W such that the action of
{1} X Z" on M, identified as Y X W, is of the form (1, h). (y, r) = (y,h. r);

(iv) the natural embedding of visual boundaries, 8Y~*dX, extends to a homeo-
morphism of the join dY*S"~l onto dX\

(v) though Y is not necessarily G X {0}-invariant, there is nonetheless a geometric
action of G on Y obtained by projecting the Y-fiber preserving action of G x {0}
onYxW to Y.

Proof Let ln denote the element ( 0 , . . . , 1) of I". Since the action is cocompact and
discrete, the isometry A of A' given by the action of the group element (1, ln) of G x Z"
must be hyperbolic and, hence, we may choose a basepoint x0 for X in MIN(A). Let V be
the perpendicular bisector of the axis a(U) for A at cr(0) = xo. By item (iii) of the
Decomposition Lemma, MIN(A) may be identified with the /2-product V x IR and so
there is a projection map n': MIN(A)—» Y' such that, whenever y e Y', then (n')~\y) =
{y} x R is an axis for A. By item (iv) of the Decomposition Lemma, since each element of
F commutes with (1, ln), the group T leaves MIN(A) invariant. We denote elements of F
by (g, k)e(GX Z""1) X Z and elements of MIN(A) by (y, t) e Y' x U. For g e G x Z""1

and y e V , define g*y by

if (i is the map x i-» (g, 0). x for x e X, then the map y y-+g *y for y e Y' is exactly the
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map /A' of item (iv) of the Decomposition Lemma. Our claim is that the action
(g,y)<-+g*y of G xZ""1 on Y' is a geometric action on the CAT(O)-space Y'. Indeed,
that the action is isometric and Y' is a CAT(0)-geodesic space is immediate from items
(iii) and (iv) of the Decomposition Lemma. Since each point of the form g*x0 for
g E G x Z""1 is |A|-close to a point of the form (g, k). x0 that lies in the orbit of x0 under
F, the discreteness of the action of F on X guarantees that of G x Z""1 on Y'. Finally, if
N > 0 is chosen so that the metric ball in X of radius TV about x0 contains a fundamental
region for the action of F on X, which exists since the action is cocompact, then the
intersection of that ball with Y' contains a fundamental region for the action of GxZ"" 1

on Y'. Indeed, if v e Y', choose (g, k) s F such that (g, k). (y, 0) is /V-close to x0. Notice
that

Since Y' X U is an /rproduct, the projection map n' is distance non-increasing and, since
(g, k). (y, 0) is TV-close to x0, it follows that g *y = n'((g, k). (y, 0)) is TV-close to K'(X0).
We conclude that there is a fundamental region for the action of G x Z " " ' on Y'
contained in the N-ba\l about 7T'(JC0) in Y', and it follows that the action is cocompact.

Basis of induction: If n = 1, let Y = Y', M = MIN(A) and n = n'. Items (i)-(iii) follow
from the Decomposition Lemma, except for the quasi-denseness of M. For this, let TV be
chosen as in the previous paragraph. For any x e X, choose y sT such that y"1. x is
TV-close to x0 and observe that since y commutes with (1,1), the line y. cr(IR) is an axis for
A and therefore y. cr(0) = y. x0 is an element of M = MIN(A) TV-close to x. Thus M is
TV-dense in X. For item (iv), it is well-known and easily proved that the visual boundary of
the /2-product of two CAT(0)-geodesic spaces is homeornorphic to the join of the visual
boundaries of the factors. Therefore, since M is isometric to the /2-product Y X R, the
visual boundary of M is homeomorphic to the suspension BY*S° = 2(d Y), and since M is
convex and quasi-dense in X, it is immediate that dM = bX. Item (v) is immediate from
the previous paragraph.

Inductive step: Assume the result for n = n - 1. At this point the first paragraph of the
proof provides a geometric action (g,y)<-+g*y of the group GxZ"" 1 on the CAT(O)-
geodesic space Y'. An application of the inductive hypothesis provides subsets Y<= M' c
Y' and a map K":M'-*Y satisfying the appropriate interpretation of items (i)-(v). Let
M = M' x R c Y'XR = lvllN(A)cA', and let n = n"°K' \M. We leave the straightforward
verification that Y, M and n satisfy items (i)-(v) to the reader, noting only that item (iv)
of the Decomposition Lemma needs to be used to verify (ii) and (iii).

It is worth noting what Proposition 1.1 does not say: it does not say that the action of
F = G x Z" on the product M = Y xR" is a product action nor does it find in A' a
G x {0}-invariant convex (or even quasi-convex) subset on which the restricted action is
cocompact. The example that is presented in the Introduction and discussed in the
following section in general precludes both these possibilities.

THEOREM 1.2. Whenever G is negatively curved and F = G X Z" acts geometrically on
the CAT(0)-geodesic space X, there is an embedding 8G->clAr that extends to a
homeomorphism of the join BG*S"~1 onto the visual boundary dX. Moreover, ifT also
acts geometrically on the CAT(0)-geodesic space A", then the visual boundaries of X and
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X' are T-equivariantly homeomorphic; however, such a homeomorphism cannot in general
be obtained as a continuous extension of a T-equivariant quasi-isometry of X to X'.

Proof. By item (v) of Proposition 1.1, the negatively curved group G acts
geometrically on Y and, since negative curvature is a quasi-isometry invariant, we
conclude that Y, in addition to being CAT(O), is also negatively curved. Hence there is a
G-equivariant homeomorphism of dG onto dY, and item (iv) of Proposition 1.1 implies
the first claim. The second claim is a consequence of the fact that the action of the second
factor 1" of T is trivial on <?X. Indeed, notice that the action of r on 8X = dY*S""1 is
given by

(g,h).[y,t,s] = \g*y,t,s]

for (g,h)eGxln and [y,t,s] e dY*S"~i = Yx [0,1] x S"^/-, where (g,y)»g*y
denotes the extended action of G on dY. This follows because (l,/i) for h eZ" acts
trivially on the visual boundary of M since, by item (iii) of Proposition 1.1, the image of
any bi-infinite geodesic line / under (l,h) is parallel to /. It follows immediately that the
homeomorphism

dY*S"-1 = dX^dX' = BY'*S"-1

given-by [y,t,s]>-*[y',t,s], where y>-*y' is the natural G-equivariant homeomorphism of
BY to dY' that factors through dG, is F-equivariant. The final claim is a consequence of
the Example of the Introduction.

2. The Example. The purpose of this section is to verify the claims of items (i)-(v)
of the Example of the Introduction. First, though, we review for the reader our initial
strategy for approaching the question of whether dX and dX' are equivariantly
homeomorphic. This strategy, as the Example shows, is untenable but, nonetheless, is
quite natural and had the effect of focusing our attention on the possibility of such an
example. The second paragraph of the Introduction frames the situation in the presence
of negative curvature: whenever a group G acts geometrically on negatively curved
geometries Xand A", their boundaries are equivariantly homeomorphic because there are
natural equaivariant homeomorphisms of dG itself to both dX and dX'. In the setting of
F = G x Z acting geometrically on CAT(0)-geodesic spaces X and A", where G is
negatively curved, we do not have the advantage of an intrinsically-defined boundary for
the group F, but our desire is nonetheless to mimic as much as possible the situation
described above by exploiting the availability of the boundary of the negatively curved
factor of F; namely, dG. The overall idea is to find an embedding of dG into dX that
extends to a homeomorphism of the suspension, and, as Proposition 1.1 attests, works out
nicely when one exploits the results of Bridson and Haefliger. Our initial strategy for
constructing such an embedding, even though a failed one, is perhaps a more natural one
to try than the one that actually succeeds in the proof of Proposition 1.1. It is: fix a
basepoint xoe X and argue that the quasi-isometric embedding g i-> g. x0 of G x {0} into
X extends continuously to a map of d(G X {0}) into X. A first attempt might try to show
that the orbit (G x {0}). x0 is a quasi-convex subset of A', from which the desired result
would easily follow. This failing, a direct approach might attempt to verify that the natural
extension of g>-*g. x0 on G x {0} to the rational points of d(G x {0}) is continuous, even
uniformly so, so that a further extension to B(G x {0}) would be possible. Item (i) shows
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that the former attempt cannot succeed while item (ii) shows the same for the latter, and
item (iii) shows that any attempt to "quasi-identify" F U Z(e?G) equivariantly with X U dX
must fail.

Item (i): Without loss of generality let x0 be the "origin" (1,0) of X = T X U, where
of course " 1 " denotes the empty word in the free group F2. Recall that a subset C of a
path metric space is quasi-convex if there exists a positive number N such that every
geodesic segment whose endpoints lie in C is contained in the N-neighborhood of C. We
confirm item (i) by exhibiting a sequence {g,} of group elements in F2 such that the

midpoint of the unique segment from x0 to xt = {gi,0)*xo lies greater than - units from

(F2 X {0}) *x0. For this, set g, = a'b' and observe that x, = (a'b\ 2i) e F2 X Z c T X R. The
point of 7* X R midway between x0 and xt is (a1, /). For an arbitrary element
g = amife"i... am*bn* of F2, where none of the exponents is zero except for possibly m, and
"*> (g> 0) *x0 = (g, In), where n = n, + . . . + nk. The distance between (g, 2«) and (a1, i) is
at least as large as the maximum of \2n - i\ and \a~'g\, the word distance between g and a'

in F2. If \2n - i\ < -, then n>- and therefore
J J

showing that the midpoint (a',i) lies at least - units from (g,0)*Jto. It follows that (a',i)

is not in the (- j-neighborhood of (F2x{0})*x0 and, hence, (F2x{0})*x0 is not

quasi-convex, as claimed.

Item (ii): For an element 1 ¥^g e F2, let g00 denote the rational point determined by g
in the Cantor set boundary 8F2. Let pT : X = T x M-> T be the projection map and for a
geodesic ray <x : [0, °°)-»X based at x0, let crT = pT°o: If a is not parallel to the R-factor,
then crT is a geodesic ray in T and determines a point OY(°°) in dF2. Moreover, the ray a
traces out a straight euclidean line in the flat euclidean half-plane OY([0, °O)) X R and
makes a (signed) euclidean angle 6(a) with the line crT([0, oo)). Thus we may
parameterize dX = dF2 * 5° = Z(dF2) as

7T

identifying cr with.[o-T(<»), 0((7)].
Now let gj = fl'fc' and observe that gf-^a* as / - • ». It is a straight-forward exercise

to confirm for each i that the point of dX determined by the second action by the group
element (g,, 0) is given by
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where the limit is taken in X U 8X. However, the point of bX determined by a is

\im(an,0)*xo = [a'°,0).
n—»°c

This shows that the natural extension of the quasi-isometric embedding (g,0)h+(g,0)*xo

of F2 x {0} does not extend continuously to a map of the boundary of F2 x {0}, nor even to
the set of rational points in the boundary.

Item (iii): This follows from the above confirmation of item (ii). Indeed, with
gi = aib>,

lim(g?,0).*o=br,0]
n—>°c

and

so any map X U dX —»X U BX that extends the quasi-isometry y. x0 *-* y * x0 continuously

to dX must send [g", 0] to g°°, - and fix [a", 0]. However, this condition is incompatible

with continuity at [a", 0], since [gT, 0] —> [a", 0] as / -* ».

Item (v): Consider the Coxeter group C = (A*A)x(A*A*A), where A = Z/2,
which has presentation

<«,,... , a5 : a\ = 1; (a,*,)2 = (a2a,)2 = 1,/ = 3,4,5).

The first factor A*A contains an infinite cyclic subgroup of finite index and the second
A * A * A contains a rank 2 free subgroup of finite index. It follows that C contains a copy
of F2 X 2 as a subgroup of finite index. Since all Coxeter groups are CAT(0)-groups [15], C
acts geometrically on some CAT(0)-space. Since F2 X Z is a finite-index subgroup of C, it
acts geometrically on every CAT(O)-space that admits a geometric action of C, and
Theorem 1.2 applies to show that the visual boundary of every such space is
homeomorphic to the suspension of a Cantor set. Thus C has a well-defined boundary as
the suspension of a Cantor set, which is not locally connected. Although this provides an
example of a Coexeter group with somewhat unexpected behavior, Mike Mihalik has
shown that all Coxeter groups are semistable at infinity [14].

3. The rational points of the visual boundary are dense. We prove the following
theorem, which Gromov observes to hold in the presence of negative curvature [12]; for a
"slick" proof in the setting of negative curvature see [5].

THEOREM 3.1. Whenever G is negatively curved and T = G x Z" acts geometrically on
the CAT(0)-geodesic space X, the set of T-rational points of dX forms a dense subset of the
visual boundary.

Proof Apply Proposition 1.1 to obtain subsets Y<=M<zX and a map n.M^Y
satisfying items (i)-(v). Identifying M with the /2-product YxU", let n':M-*W be
projection to the second factor, and interpret dX as the space of of geodesic rays in X
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issuing from the point x0 = (y0,0) E Y X R". Fix an element a : [0, » ) - • X in BX whose
image lies neither in Y x {0} nor {yQ} x R". Note that the image cr(R) lies entirely in M,
which follows from the convexity and quasi-denseness of the closed set M, as guaranteed
by Proposition l.l(i). Set aY = n°<j and crn. = n'aa and observe that since M is the
/2-product of y and R", crY and o v are respective geodesic rays in Y and R" based at the
respective points y0 and 0. Let (g,y)*-+g*y denote the geometric action of G on Y
identified in the proof of Proposition 1.1, and let C(G) denote a Cayley graph for G with
respect to some finite generating set and given the word metric. Denote by q : C(G) U
dG —* Y U dY the G-equivariant continuous extension of a quasi-isometry of C(G) with Y
determined by the orbit map g y-+g *y0 of G to Y. Recall that the restriction of q to BG is
a G-equivariant homeomorphism onto BY. Interpreting dY as the space of geodesic rays
in y issuing from y0, let z & dG satisfy q(z) = <rY e BY. Since the rational points of dG are
dense in dG, we may choose an infinite order element g eG such that g" = limg' lies
close to the boundary point z. Since the *-action of G on Y is cocompact and discrete, g
acts as a hyperbolic isometry on Y. Let Ag = a(U) be an axis for the isometry y>-+g*y for
y s Y, where of course a : R—> Y is a bi-infinite geodesic. By a standard argument, the
segments from y0 to a(i), i s 0, limit to the image of a geodesic ray rY : [0, «)-» y, with
Ty(0) = y0, that fellow-travels the ray a | [0, °°). We have

= q(limg' 1 = \img' *yo = limg'* a(0) = lim a(i |g|),

where \g\ is the translation length of the *-action of g on Y. Since ry fellow-travels
a | [0,0°), this last limit is exactly iy, thought of as an element of dY. Since q is
continuous on dG, q(gx) = Ty is close to q(z) = try. At this point we find it convenient to
assume that y0 = a(0), which causes no loss of generality since visual boundaries based at
different points are canonically homeomorphic. With this convenience, the ray iy is just
a | [0,oo).

Since Ag is an axis for g in Y, item (ii) of Proposition 1.1 and item (iv) of the
Decomposition Lemma imply that the subset Ag X R" of Y x R" = M is a (g) x Z"-
invariant (n + l)-flat; moreover, item (iii) of Proposition 1.1 and item (iv) of the
Decomposition Lemma imply that the orbit ((g) x Z"). x0 is a cocompact lattice in
Ag X R". (Note that we are not saying that (g) x Z" acts as a product action on Ag x R";
for instance, g. Ag may be disjoint from Ag while g *Ag = >4g, since /4g is an axis for the
•-action of g on Y.) Parameterizing the visual boundary dX as

3 y iiV * ^O^ (3V v \f\ 11 v ^ O n \ / «̂
OJ\ — OI ^Outt — 10 / ^ 1 v/j i. I <"> 0u$ )/ .

we may write the element a E dX as a = [ay, u, crRn] for some « E [0,1], the geodesic rays
(TY E ay and aUn E dR". Notice that the visual boundary of the (n + l)-flat Ag X R" sits
naturally in dX as {[±Ty, t,s] :t E [0,1], s E dR"}, where -rY denotes the ray a<-*a(-a).
Now the (g) x Z"-rational points of 3(Ag x R") are dense in d(Ag X R") and so arbitrarily
close to the point [Ty,u,crRn] of B(Ag X R") lies a (g) x Z"-rational point, say [ry,/,s]
determined by the element (g*, h) e (g) x Z". Then [ry, i , j ] i s a G x Z"-rational point of
dX that is close to a, since Ty is close to aY and s and r are close, respectively, to crRn

and u.
Whenever the group T acts geometrically on the CAT(0)-geodesic space X, Gromov

[13] has suggested that the set of periodic k-flats ought to be dense in the set of &-flats.
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The proof of Theorem 3.1 may be modified to verify Gromov's expectation for k-flats in
the context of F = G X Z" with G negatively curved. The second author presents, in her
PhD thesis, an analysis of Gromov's expectation in more general contexts than ours.
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