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Abstract. We evaluate asteroid orbital uncertainties from the discovery night onwards using
6D orbit computation tools based on statistical techniques. In particular, we outline a new
nonlinear Monte Carlo technique of phase-space sampling that helps us in assessing the nonlinear
phase transition from extended orbital-element distributions to well-constrained ones as the
observational arc and number of observations grows. We apply the statistical techniques for
near-Earth asteroid 2004 AS1 to examine the time evolution of the orbital uncertainties and
to assess the asteroid impact risk immediately after discovery. We start with the technique
of statistical ranging for exiguous data, continue with the phase-space sampling technique for
moderate data, and conclude with the standard least-squares fit for extensive data.
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1. Introduction
For more than a decade, impacts of asteroids have been recognised as a significant

threat to humankind, comparable to other major natural disasters. Due to the active
monitoring of the impact risk, several new objects having non-zero probabilities for an
Earth impact within the next century are identified each year. The realization of this cos-
mic threat has motivated the development of several theoretical and computational tools
for relatively short-term collision probability assessment (over timescales of decades).
The backbone of collision probability computations is the assessment of orbital uncer-
tainty of the given object. The orbital uncertainty evolves rapidly after an object has
been discovered, typically decreasing when new observations roll in and increasing when
follow-up observations have failed. Thus also the asteroid collision probability evolves
when the observational arc and the number of observations grows and, in fact, for most
of the discovered impactor candidates the probabilities for an Earth impact have been
shown to vanish after days or weeks of observations after the discovery.

In Muinonen and Virtanen (2002), a nonlinear collapse was seen in the orbital uncer-
tainties as a function of the improving accuracy of astrometric observations. This phase
transition effect can also be recognized in the time evolution of the orbital uncertainty:
there is a threshold for the length of the observational arc (and the number of observa-
tions) over which the orbital-element distributions nonlinearly evolve from extended to
well-constrained ones.

Most of the theoretical and computational work for collision probability assessment,
such as that by Yeomans and Chodas (1994) and Chodas and Yeomans (1996, 1999), is
however bounded by the use of linear approximation which has been shown to fail for short
observational arcs. Milani and Valsecchi (1999) and Milani et al. (1999; 2000a, b, c) have
made use of both linear and semilinear methods for the propagation of orbital uncertainty
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(Milani 1999). They illustrate the probability of a collision with virtual impactors (for a
review paper, see Milani 2004, this Proceedings).

We attack the problem of impact risk assessment at the very moment of discovery. The
ill-posedness of this problem stems from the inverse problem of computing the orbit from
a small number of observations covering a short observational arc. With statistical orbit
computation techniques, the probability density of the orbital parameters, and in turn
the collision probability, can be evaluated rigorously even for exiguous data, although the
strict probabilistic interpretation of inversion results may be in doubt. Information on the
orbital characteristics of the object, such as the minimum encounter distance with the
planets in the near future, can nevertheless be extracted. To stress this ambivalence, in
this paper we use the term “collision probability” only in connection to purely theoretical
work, for practical purposes we replace it with the term “collision risk”.

We provide a continuum of statistical orbit computation techniques that can be ap-
plied sequentially accounting for the phase transition effect. In particular, we outline an
innovative 6D technique for asteroids with moderate time arcs and/or moderate numbers
of observations. The technique of sampling in phase-space volume of variation makes use
of local linear approximations by varying one or more orbital elements and fitting the
remaining ones. The use of the curve (or line) of variation in evaluation of orbital un-
certainties has already been brought up by Bowell et al. (1993) and Milani (1999), and
has thereafter been used extensively by Milani in several application, such as ephemeris
prediction, asteroid linkage, and collision probability assessment. We generalize the con-
cept from a line to a volume of variation, and introduce Monte Carlo sampling in the
phase-space volume for a fully nonlinear treatment.

We apply the orbit computation scheme to the case of 2004 AS1, an NEO discovered
in early 2004 having a significant risk for a collision with the Earth some 48 hours
following the discovery moment. While the risk of the immediate impact was removed
with observations from the second night, the extreme nature of the first prediction calls
for a detailed analysis.

2. Orbit computation
2.1. Inverse problem

We denote the osculating orbital elements of an asteroid at a given epoch t0 by P =
(a, e, i,Ω, ω,M0)T (T is transpose). The elements are, respectively, the semimajor axis,
eccentricity, inclination, longitude of ascending node, argument of perihelion, and mean
anomaly. The three angular elements i, Ω, and ω are currently referred to the ecliptic at
equinox J2000.0.

The orbital-element probability density function (p.d.f.) pp is proportional to the a
priori (ppr) and observational error (pε) p.d.f.’s, the latter being evaluated for the sky-
plane (“O-C”) residuals ∆ψ(P ) (Muinonen and Bowell 1993),

pp(P ) ∝ ppr(P )pε(∆ψ(P )), (2.1)

where pε can usually be assumed to be Gaussian. For the mathematical form of pp

to be invariant in transformations from one orbital element set to another (e.g., from
Keplerian to equinoctial or Cartesian), we regularize the statistical analysis by Jeffreys’
noninformative a priori p.d.f. (Jeffreys 1946, Muinonen et al. 2001),

ppr(P ) ∝
√

det Σ−1(P ),
Σ−1(P ) = Φ(P )T Λ−1Φ(P ), (2.2)
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where Σ−1 is the information matrix (or the inverse covariance matrix) evaluated for
the orbital elements P , Φ contains the partial derivatives of right ascension (R.A.) and
declination (Dec.) with respect to the orbital elements, and Λ is the covariance matrix
for the observational errors. By the choice of the a priori p.d.f., the transformation of
rigorous p.d.f.’s becomes analogous to that of Gaussian p.d.f.’s.

The final a posteriori orbital-element p.d.f. is

pp(P ) ∝
√

det Σ−1(P ) exp
[
−1

2
χ2(P )

]
,

χ2(P ) = ∆ψT (P )Λ−1∆ψ(P ). (2.3)

As a consequence of securing the invariance in orbital-element transformations, e.g.,
ephemeris uncertainties and collision probabilities based on the orbital-element p.d.f. are
independent of the choice of the orbital element set. Note that assuming constant ppr is
acceptable, when the exponent part of Eq. (2.3) confines the p.d.f. into a phase space
regime, where the determinant part reduces to a constant (typical for well-constrained
p.d.f.’s, i.e., long observational arcs). Note also that a predominating role of the a priori
p.d.f. casts doubts upon the reliability of the probabilistic interpretation.

2.2. Volume-of-variation sampling
The a posteriori p.d.f. in Eq. (2.3) allows the derivation of a local linear approximation
in the orbital-element phase space (Muinonen et al. 2004). We can select one or more
elements as “the elements to be varied” systematically and derive a linear approximation
for “the remaining elements to be fitted”. For simplicity, we illustrate the local linear ap-
proximations below in the case of a single mapping element and note that the formulation
is analogous for more numerous mapping elements.

We rewrite the a posteriori p.d.f. in Eq. (2.3) explicitly in terms of the mapping ele-
ment Pm and the five remaining elements P ′ (here and below, the prime denotes five-
dimensional quantities),

pp(Pm,P ′) ∝
√

det Σ−1(Pm,P ′) · exp
[
−1

2
χ2(Pm,P ′)

]
,

χ2(Pm,P ′) = ∆ψT (Pm,P ′)Λ−1∆ψ(Pm,P ′). (2.4)

For a given Pm, we define the local linear approximation as follows,

pp(Pm,P ′) ∝
√

det Σ−1(Pm,P ′
ls) · exp

[
−1

2
χ2(Pm,P ′

ls)
]
·

exp
[
−1

2
∆P ′T Σ′−1(Pm,P ′

ls)∆P ′
]

,

∆P ′ = P ′ − P ′
ls(Pm), (2.5)

where P ′
ls = P ′

ls(Pm) is the local least-squares solution for the elements P ′. The local
5×5 covariance matrix Σ′ is recomputed at the local least-squares solution P ′ and defines
a hyperellipsoid centered at these elements. Note that both Σ−1 and Σ′−1 enter the local
linear approximations above. The sequence of orbital elements Pm,P ′

ls(Pm) defines the
line of variation in the orbital-element phase space. The local covariance matrix Σ′ defines
a hyperellipsoid centered at the local least-squares orbital elements,

∆χ2(P ′) = ∆P ′T Σ′−1∆P ′ = ∆χ2
0, (2.6)

where ∆χ2
0 is a constant. The boundaries of, for example, the commonly used 68.3 % or

95.4 % -probability hyperellipsoids are ∆χ2
0 ≈ 5.89 or ∆χ2

0 ≈ 11.3, respectively.
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It is convenient to express the differences ∆P ′ in terms of the standard deviations
σ′

j =
√

Σ′
jj (j = 1, . . . , 5) and to utilize the dimensionless correlation matrix C ′; with

the help of the diagonal standard deviation matrix S′,

∆Q′ = S′−1∆P ′,

C ′ = S′−1Σ′S′−1,

S′
jk = σ′

j δjk, j, k = 1, . . . , 6, (2.7)

where δjk is the Kronecker symbol. The hyperellipsoid is thus defined by

∆Q′T C ′−1∆Q′ = ∆χ2
0, (2.8)

where all the parameters are dimensionless. The eigenvalues λ′
j (j = 1, . . . , 5) for the cor-

relation matrix C ′ are normalized variances along the principal axes of the hyperellipsoid,
the directions of the axes being given by the orthonormal eigenvectors X ′

j ,

C ′X ′
j = λ′

jX
′
j , j = 1, . . . , 5. (2.9)

Since C ′ is a real and symmetric matrix, the eigenproblem is readily solved via Jacobi
transformations.

It is our goal to draw sample orbits from the rigorous orbital-element p.d.f. with the
help of the local linear approximations. First, we specify the variation interval for the
mapping element with the help of the covariance matrix Σ derived in the global linear
approximation and emphasize that the variation interval must be subject to iteration.
For example, one may utilize the one-dimensional 3σ variation interval as given by the
linear approximation so that

Pm ∈ [Pm,ls − 3σm, Pm,ls + 3σm], (2.10)

where Pm,ls is the global least-squares value for the mapping element. Second, the re-
maining elements are sampled with the help of the local intervals of variation so that

P ′ = P ′
ls(Pm) +

5∑
j=1

(1 − 2rj) ·
√

∆χ̃2λ′
j(Pm)S′(Pm,ls)X ′

j(Pm), (2.11)

where rj ∈ (0, 1) (j = 1, . . . , 5) are independent uniform random deviates and ∆χ̃2 is a
scaling parameter to be iterated so that the entire orbit solution space is covered and the
final results have converged. Initially, one may start with ∆χ̃2 = 11.3 and slowly increase
its value. S′(Pm,ls) designates the single standard deviation matrix used throughout the
interval of the mapping parameter, which allows a straightforward debiasing of the sample
orbits at the end of the computation.

In Eq. (2.11), we sample the local phase-space volume using the principal-axis direc-
tions following from the local linear approximation, after diagonalization by the solution
of the eigenproblem in the units specified by the S′ matrix. In the present context,
the shape of the local sampling volume is that of a five-dimensional rectangular paral-
lelepiped.

In practical computations, we need to discretize the interval of the mapping element
and, after solving the five-dimensional local least-squares problem, interpolate the interval
parameters for Eq. (2.11). Once the entire variation-interval map is available across the
interval of the mapping parameter, trial orbits are generated in a straightforward way.
First, a value for the mapping orbital element is obtained from uniform sampling over
the mapping interval. Second, the remaining five elements are generated by interpolating
their variation intervals based on the precomputed map. Third, the trial orbit qualifies
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for a sample orbit if it produces an acceptable fit to the observations. Each sample orbit
is accompanied by the weight factor

w(Pm,P ′) ∝
√

det Σ−1(Pm,P ′) · exp
[
−1

2
χ2(Pm,P ′)

]
·√

λ1(Pm) · . . . · λ5(Pm)
λ1(Pm,ls) · . . . · λ5(Pm,ls)

. (2.12)

2.3. Statistical orbital ranging
For initial orbit computation, we make use of Ranging (Virtanen et al. 2001, Muinonen
et al. 2001). In Ranging, two observation dates (here A and B) are chosen from the
complete observation set. The corresponding topocentric distances (or ranges ρA and
ρB), as well as the R.A. (αA and αB) and Dec. (δA and δB) angles are MC sampled using
intervals subject to iteration, resulting in altogether 12 interval boundary parameters.
Explicitly, 


ρA ∈ [ρ−A , ρ+

A],
αA ∈ [α−

A , α+
A],

δA ∈ [δ−A , δ+
A ],




ρB ∈ [ρA + ρ−B , ρA + ρ+
B ],

αB ∈ [α−
A , α+

A],
δB ∈ [δ−A , δ+

A ].
(2.13)

Note that it is computationally efficient to generate ρB based on ρA generated at an ear-
lier stage. The boundary values ρ±B must be carefully chosen so as to secure the coverage
of the entire relevant interval in ρB. Once the two sets of spherical coordinates have been
generated, the two corresponding Cartesian positions (XA, YA, ZA)T and (XB, YB, ZB)T

lead to an unambiguous set of orbital elements P , based on well-established techniques
in celestial mechanics.

The set of trial orbital elements P is included in the set of sample orbital elements if
and only if it produces an acceptable fit to the entire set of observations, that is, with
the help of Eq. (2.3),

exp
[
−1

2
(χ2(P ) − χ2(P ref))+

ln
√

detΣ−1(P ) − ln
√

det Σ−1(P ref)
]

� cmin, (2.14)

where cmin is the level of acceptance and P ref refers to the best-fit orbital solution
available, constantly updated during the iterative computation. The acceptance criterion
thus becomes analogous to the ∆χ2 criterion for Gaussian p.d.f.’s (Eq. 2.6).

In order to establish the uniform sampling of orbital elements P , each set of sample
orbital elements is weighted by the Jacobian of the transformation from “the phase space”
of the two spherical positions (ρA, αA, δA)T and (ρB, αB, δB)T to the phase space of the
orbital elements,

w(P ) ∝ det
[
∂(ρA, αA, δA; ρB, αB, δB)

∂P

]−1

. (2.15)

Ranging is repeated to obtain a large number of sample orbits, simultaneously iterating
the 12 interval boundary parameters and updating the reference orbital elements in order
to secure the coverage of the full orbit solution space.

2.4. Collision probability using 6D orbital-element p.d.f.’s
Muinonen (1999) and Muinonen et al. (2001) described a set of techniques for the com-
putation of the collision probability for Earth-crossing asteroids. Their formulation of
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the collision probability computation relies on the Bayesian a posteriori probability den-
sity function pp of the orbital elements P , from which the collision probability follows
through the integral:

Pc(τ) =
∫

C(τ)

dP pp(P , t0), (2.16)

where the phase space domain C(τ) contains the elements leading to a collision on the
interval τ .

In particular, Muinonen et al. introduced new techniques for computing the collision
probability for the case of short observational arcs and/or small numbers of observations.
The orbital-element p.d.f. can in this case be very complicated, and it must be assessed
rigorously using Monte Carlo simulations for large numbers of sample orbits. Once the
extent of the orbital-element probability density has been mapped by generating a large,
unbiased set of sample orbits, these orbits can be propagated through the assumed impact
interval τ to derive the weighted fraction of collision orbits, i.e., the collision probability.

Even if none of the sample orbits lead to collision within the impact interval, the
probability for a collision within the interval is not necessarily zero. This can simply
mean that the sampling of the phase space for acceptable orbital solutions has not been
dense enough. Either because, at an epoch close to the observations this 6D phase-space
region is extremely large, as it is for short observational arcs, and it cannot be efficiently
mapped keeping the sample size computationally reasonable. Or, if the time scale of
propagation is very long, repeated close-approaches introduce chaotic effects causing the
extent of an initially small phase-space volume (computed close to the epoch of the
observations) to widen so that the sampling of the impact parameter space is, again, too
sparse. In both cases, the result is that the impacting orbit solutions are missed, because
they are typically confined to very narrow regions in the phase space.

The above limitations of the direct propagation of the orbital-element p.d.f. through
the impact interval can be solved by changing from discretized p.d.f.’s to continuous
functions using intervals of collision orbits (Muinonen et al.). In this method, intervals
of acceptable orbits are computed in the vicinity of each sample orbital element set, and
within these intervals a sub-interval is mapped including orbits that result in collision
in the given time interval. The limitation of this method is that the computational load
can easily become excessive when the unbiased orbital intervals are searched.

For robust and rapid evaluation of collision probability, Muinonen et al. provided upper
bounds in terms of maximum likelihood (ML) collision orbit. This can be determined once
collision orbits have been found in the neighborhood of the orbit maximizing the orbital-
element p.d.f., i.e., around the maximum likelihood orbit. The ML collision orbit is then
the collision orbit that lies probabilistically closest to the ML orbit. However, the upper
bound values have been shown to give only loose bounds to the collision probability, so
more rigorous means should be used whenever the more severe computational load can
be handled.

3. Results and discussion
The orbital-element p.d.f. is here assessed using the two techniques described in the

previous section. Ranging has proven to be a practical way to assess the probability
density for objects with very short observational arcs, while the new VOV sampling
has turned out useful for the moderately observed ones. For well-observed objects, we
use the standard least-squares covariances to estimate the widths of the orbital-element
p.d.f.’s.
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For collision risk assessment, we applied the most simple approach described in the pre-
vious section: the direct propagation of the orbital-element p.d.f. through the predicted
impact interval. In what follows, we will see that this turned out to be the first time that
the collision risk could indeed be estimated directly using sample collision orbits. During
the integrations, we also monitor for (temporary) satellite captures and Earth swing-by’s
to hyperbolic orbits as well as impacts to the Moon.

3.1. 2004AS1

The Apollo asteroid 2004 AS1 grabbed the attention of asteroid scientists for several days
in January 2004 when, based on single-night data from only one observatory, this asteroid
appeared to be on a collision course with the Earth with the timing of the predicted
impact only about 48 hours after the discovery. Although the risk of immediate impact
was ruled out as soon as the follow-up observations from the second night came in, the
extreme nature of the first prediction called for a detailed analysis. First, we present
the results for orbit computations, then we return to the analysis of the actual collision
probability.

3.1.1. Phase transition
To locate the phase transition regime, we carried through the following orbit computa-

tion scheme using methods described in Section 2. As already implied by the preliminary
study in Muinonen and Virtanen (2002) in the case of improving observational accuracy,
the occurence of this nonlinear collapse in the orbital distributions is most likely highly
case-sensitive. Thus, pinpointing its exact location for each object requires breaking down
of the object’s observational data night by night and applying the different statistical
methods to the data in a sequential manner.

For 2004 AS1, we considered the observational data for the first month after discovery
which we divided into the following seven cases in the order of increasing time arc: 0.04
(∼ 1 hr), 1.1, 1.5, 3.0, 5.0, 8.0, and 30.0 days. Ranging was applied to the five first cases,
i.e., up to 5 days of observations, VOV-sampling from the third arc onwards (1.5 days)
and least-squares fit from 1.1 days onwards. The resulting orbital-element p.d.f.’s are
compared in Figure 1 where we plot for the semimajor axis the standard deviations of
the marginal p.d.f.’s obtained with the different techniques.

The phase transition regime extents from the discovery night (1 hr arc) to the second
night of observations, with the most abrupt collapse taking place between arcs of 1.1 and
1.5 days. Across this regime, the orbital uncertainties decrease by several orders of mag-
nitudes for all the elements, but the improvement is most significant for the semimajor
axis, close to a factor of 105. It is notable that for this NEO, for the semimajor axis,
the uncertainties based on the linear technique, i.e., the least-squares covariances, are in
good agreement with the ones from rigorous nonlinear techniques.

3.1.2. Collision risk at discovery
The discovery night observations of 2004 AS1 consisted of four observations over 1 hour

from a single observatory. The first published ephemerides by the Minor Planet Center
(MPC) showed a rapid increase in the apparent brightness and indicated that this aster-
oid would indeed be passing within the Earth radius some 48 hours later. Although the
orbit solution behind this prediction was quickly replaced by another equally acceptable
solution at the MPC (resulting in ephemerides that no more passed through the planet),
it was not before the new observations from the second night came in that the possibility
for an immediate (and future) impact could be overruled. Further observations in the
following months finally showed that the accuracy of the four initial observations was
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Figure 1: Phase transition in the accuracy of the semimajor axis as a function of the
increasing observational arc for 2004 AS1 (obs. accuracy ∼ 0.5 arcsec). Note the logarith-
mic scale on the vertical axis. LA stands for linear approximation, i.e., 6D covariances of
the least-squares solutions.

rather poor (rms-values of 1.4 and 1.3 arcseconds for R.A. and Dec.) and that one obser-
vation was clearly an outlier (residuals of 2.4 and 1.9 arcseconds for R.A. and Dec.). The
overall evolution of this case raised several questions: what was the effect of discordant
observations in collision probability assessment? Can outliers be recognized from very
short arcs? How did the collision probability estimates evolve as the observational arc
increased?

We used the Ranging technique to map the 6D orbital element p.d.f. at discovery
with 50,000 sample orbits. As the first orbit solution used by the MPC led to a col-
lision, it seemed a priori evident that collision orbits would be among the best-fit or-
bit solutions. The collision risk was thus estimated by deriving the impact parameter
distribution by propagating the 50,000 orbits through the iterated impact interval of
January 14 to 17, 2004. We first made a conservative assumption of 1.0 arseconds for
the observational noise. The collision risk is illustrated with the cumulative distribution
function (c.d.f.) for the impact parameter in Figure 2, which confirms the drastic first
prediction: for 1.0 arcsecond noise, the probability for an Earth impact was 12 %, sev-
eral orders of magnitude higher than any of the previously estimated asteroid impact
risks.

We then repeated the analysis (orbit and impact parameter computation) for different
assumptions of the observational noise: 2.0, 1.5, 0.5, and 0.3 arcseconds. The evolution
of collision risk as a function of the noise assumption is shown in Figure 3a: when the
observations are assumed more accurate, the impact probability increases. The reason
can be found by looking at the results from Ranging: assumption that the data was more
accurate (less affected by noise) made the asteroid’s plausible topocentric range interval
to concentrate towards the Earth. This again shows that the best-fit orbits actually led
to collisions within the predicted interval.

To study the evolution of collision risk as a function of time, we added one simulated
observation to the data set: since the collision risk vanishes after the second night of
observations, simulated observation was propagated between the first and second night.
This study implies that a fifth observation 30 minutes after the last one in the original
data set (increasing the time arc from 1 to 1.5 hr) could already have made the difference
and removed the impact risk.
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Figure 2: Collision risk with the Earth for 2004 AS1 during January 14-17, 2004. Impact
parameter c.d.f.’s have been computed with different assumption of the observational
rms: 1.0 arcsec (left) and 0.5 arcsec (right). The estimates for the collision risk are 12%
and 28%, respectively.

(a) (b)

Figure 3: a) Evolution of the collision risk for 2004 AS1 as a function of the assumed
observational rms. b) Evolution of the positional uncertainty for 2004 AS1 in the eclip-
tic plane during the assumed impact interval. Position distributions are shown for the
following dates (from right to left): January 13th, 15th and 17th. Positions of Earth and
Moon are shown with diamond and cross, respectively.

As to the effect of the discordant observations, first, the distributions of residuals from
Ranging technique (cf. Fig. 7 in Bowell et al. 2002) did not reveal the outlier, although
there were indications that the observations in general were not very accurate. Second,
removing one observation at a time and repeating the above analysis for collision risk
did not have major impact to the estimated values. Thus, the presence of discordant
observations could not be deduced from the initial data.

Finally in Figure 3b, we show the highly nonlinear nature of the impact event with the
evolution of the positional uncertainty over the impact interval. The close approaches
to the Earth have scattered the position distribution of 2004 AS1 significantly at the
post-impact epoch of January 17, 2004 (left-most cloud of points).
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4. Conclusions
We have applied our spectrum of statistical orbit computation techniques for 2004 AS1

to study the evolution of orbital uncertainties as a function of time. We find that the
nonlinear phase transition in the orbital p.d.f.’s for this asteroid takes place after 1.5 days
of observations. We will continue to study the phase transition in more detail for different
populations of minor planets, paying also attention to the case of high-precision astrom-
etry obtained, e.g., from future space missions, such as the European Space Agency’s
GAIA space observatory. The succesful application of VOV technique and the consis-
tency of the results with Ranging indicates that the new technique will be useful at the
phase transition regime.

We confirm the extreme initial estimates for the collision risk of 2004 AS1 for the time
span of January 14-17. 2004. The risk of collision based solely on the discovery night
data was indeed non-vanishing, estimates as high as 50% resulted from our analysis.
However, we note that the strict probabilistic interpretation of both the inverse and
prediction problem may no longer be valid for such exiguous data, and the probability
values should be taken as loose estimates only. We investigate the use of regularizing a
priori probability density further and present a more complete collision risk analysis for
this case study in Virtanen et al. 2004.
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