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On ordinary differentially large fields
Omar León Sánchez and Marcus Tressl
Abstract. We provide a characterization of differentially large fields in arbitrary characteristic
and a single derivation in the spirit of Blum axioms for differentially closed fields. In the case
of characteristic zero, we use these axioms to characterize differential largeness in terms of being
existentially closed in the differential algebraic Laurent series ring, and we prove that any large
field of infinite transcendence degree can be expanded to a differentially large field even under
certain prescribed constant fields. As an application, we show that the theory of proper dense pairs
of models of a complete and model-complete theory of large fields, is a complete theory. As a further
consequence of the expansion result we show that there is no real closed and differential field that
has a prime model extension in closed ordered differential fields, unless it is itself a closed ordered
differential field.

1 Introduction

The class of differentially large fields was introduced and studied by the authors in
[LST24]. Evidenced by the results in that paper, this class can be considered as the
differential analog of the class of large fields. We recall that a field K is said to be large
(aka ample) if every irreducible algebraic variety over K with a smooth K-point has a
Zariski dense set of K-points. Equivalently, K is e.c. (existentially closed) in the field
of formal Laurent series K((t)).

In [LST24], a differential field (K , Δ) of characteristic zero with commuting
derivations Δ = {δ1 , . . . , δm} is defined to be differentially large if K is large (as a
field) and for every differential extension (L, Δ), if K is e.c. in L (as a field), then
(K , Δ) is e.c. in (L, Δ) as a differential field (see [LST24, 2.1] for the algebraic meaning
of e.c.). Several foundational properties and applications are explored in [LST24]. In
particular, it is shown that (K , Δ) is differentially large if and only if (K , Δ) is e.c. in
(K((t1 , . . . , tm)), Δ), where the derivations on K((t1 , . . . , tm)) are the natural ones
extending those on K that commute with meaningful sums and satisfy δ j(t i) = dt i

dt j
.

The first-order characterization of differential largeness provided in [LST24, 4.7]
makes reference to the somewhat elaborate axiom scheme UC from [Tre05, Corollary
4.5]. In Theorem 2.8 below, we give a significant simplification of this axiom scheme
in the ordinary case, i.e., the case of a single derivation, so Δ = {δ}. The new scheme
resembles the Blum axioms for differentially closed fields of characteristic 0 (DCF0)
and at the same time allows an extension of the notion of differential largeness to
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2 O. León Sánchez and M. Tressl

arbitrary characteristic (cf. Definition 2.1). In subsequent sections, we give
applications of our new simple description of differential largeness in the ordinary
case as follows.

Henceforth we restrict to a single derivation. An immediate consequence of the
new axioms is the new characterization Corollary 2.9 of closed ordered differential
fields (CODF), in the sense of Singer [Sin78], which does not make reference to the
order. A further Corollary 2.12 provides geometric axioms for differentially large fields
in arbitrary characteristic in terms of D-varieties, in the spirit of the Pierce–Pillay
axioms for DCF0, see [PP98].

In the rest of the paper, we readopt the characteristic zero assumption. In Section 3,
we prove that differential largeness can be characterized in terms of being existentially
closed in the differential algebraic formal Laurent series, see Corollary 3.5. Our
proof uses an approximation-type statement that resembles that of Denef–Lipshitz
in [DL84]. We then use this to produce a new way (or rather an improvement of the
construction in [LST24] for the ordinary case) to construct differentially large fields
using iterated differential algebraic Laurent series, see Theorem 3.8.

In Section 4, we show that for any ordinary differential field (K , d) and any given
large field L ⊇ K of transcendence degree over K at least the size of K, there is an
extension δ of d to L such that (L, δ) is differentially large, see Theorem 4.3. This
has two consequences: Firstly, large fields of infinite transcendence degree (over Q)
are characterized in Corollary 4.5 as exactly those fields that possess a derivation d
for which (L, d) is differentially large (significantly generalizing an earlier result by
Christian Michaux saying that R carries a CODF structure). Secondly, we show in
Theorem 6.2 that no real closed field equipped with any derivation has a prime model
extension in CODF, unless it is already a CODF; this strengthens a result from [Sin78]
stating that the theory CODF does not have a prime model.

Theorem 4.3 is significantly strengthened in Section 5 in the case when the constant
field C of K is dense for the étale open topology of L (see 5.5 for its definition). Namely
we show in Theorem 5.8 that L can be expanded to a differentially large field whose
constant field is algebraic over C. This Theorem has an interesting consequence for
dense pairs of large fields: In Corollary 5.12, we show that for any complete and model
complete theory T of large fields of characteristic 0 in the language L of rings, possibly
extended by constants, the theory of proper dense pairs of models of T is complete and
inherits various neostability theoretic properties from T.

By a differential ring in this paper, we always mean a commutative unital ring
furnished with a single derivation.

2 Blum-style axioms for ordinary differentially large fields

In [LST24], differentially large fields in characteristic zero were introduced. The
definition there makes sense also for ordinary differential fields of characteristic p > 0.
Definition 2.1 A differential field (K , d), of arbitrary characteristic, is said to be
differentially large if it is large as a field and for every differential field extension
(L, δ)/(K , d), if K is e.c. in L as a field, then (K , d) is e.c. in (L, δ).

Examples of differentially large fields in characteristic p > 0 are differentially closed
fields in the sense of Wood [Woo73], and also separably differentially closed fields
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On ordinary differentially large fields 3

in the sense of Ino and the first author [IL23]. Recall that a differential field (K , δ)
is said to be separably differentially closed if for every differential field extension
(L, δ)/(K , δ) with L/K separable (as fields), (K , δ) is e.c. in (L, δ). To see that this
class of differential fields is differentially large one only needs to note that if K is e.c.
in L as a field, then L/K is separable.

Let (K , δ) be a differential field (of arbitrary characteristic). In what follows, we
freely and interchangeably view any differential polynomial f ∈ K{x} of order n as
a differential polynomial in the differential variables x = (x1 , . . . , xm) and also as a
polynomial in m(n + 1) algebraic variables x , δx , . . . , δn x. It will be clear from the
context which view we are taking; for instance, if a ∈ Km(n+1) and we write f (a) = 0,
we mean viewing f as a polynomial in m(n + 1) variables.

In Theorem 2.8 below, we provide Blum-style axioms for ordinary differentially
large fields of arbitrary characteristic. The proof relies on the following fact and its
consequences, about extending derivations.

Fact 2.2 [Jac64, Theorem 18, Section IV.7] Suppose L/K is a separable field extension.
If δ ∶ K → L is a derivation, then δ can be extended to a derivation L → L.

Corollary 2.3 Let (K , δ) ⊆ (L, δ) be an extension of differential fields and let E be
a subset of L with L/K(E) separable. Then there is a derivation ∂ ∶ K(E ∪ δ(E)) 	→
K(E ∪ δ(E)) that restricts to δ on K(E).

If E is finite, then for each such ∂ there is some f ∈ K[E ∪ δ(E)] such that ∂ restricts
to a derivation of the localisation K[E ∪ δ(E)] f 	→ K[E ∪ δ(E)] f .

Proof Since δ(K(E)) ⊆ K(E ∪ δ(E)) we may apply Fact 2.2 to the derivation
δ∣K(E) ∶ K(E) 	→ K(E ∪ δ(E)) and get a derivation ∂ ∶ K(E ∪ δ(E)) 	→ K(E ∪
δ(E)) that restricts to δ on K(E). Assume then that E is finite. There is some nonzero
f ∈ K[E ∪ δ(E)] such that f ⋅∂(δ(a)) ∈ K[E ∪ δ(E)] for each a ∈ E. Obviously f has
the required property. ∎

Proposition 2.4 Let K be a differential field and let S = (S , δ) be a differentially finitely
generated K-algebra and a domain such that S/K is separable, i.e., Quot(S)/K is a
separable field extension. Let A be a finitely generated K-subalgebra of S. Then there are
an element f ∈ S, a finitely generated K-subalgebra B of S f containing A, a derivation
∂ on B and a differential K-algebra homomorphism S 	→ (B, ∂) that restricts to the
identity map on A. In particular ∂a = δa for all a ∈ A.

Proof Let b ∈ Sn be such that S is the differential K-algebra generated by b and A ⊆
K[b]. Let p = { f ∈ K{x} ∣ f (b) = 0} be the differential vanishing ideal of b over K.
Then p is a separable prime differential ideal; separability is due to fact that K{x}/p is
K-isomorphic to S. By the differential basis theorem of Kolchin [Kol73, Corollary 4,
Section III.5], there is a finite set Σ ⊆ p that generates p as a radical differential ideal.
Take d ≥ 1 such that each derivative of any x1 , . . . , xn occurring in some polynomial
from Σ has order ≤ d. Finally take

E = {δk b i ∣ i ∈ {1, . . . , n}, k ≤ d} ⊆ S .

By possibly taking a larger d, a result of Kolchin appearing in [Kol73, Lemma 1, Section
III.2] tells us that S/K(E) is separable. By Corollary 2.3, there are f ∈ K[E ∪ δ(E)]
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4 O. León Sánchez and M. Tressl

and a derivation ∂ of B ∶= K[E ∪ δ(E)] f that restricts to δ on K[E]. Then ∂k b i =
δk b i for all i ∈ {1, . . . , n}, k ≤ d and therefore b is a solution to Σ = 0 in (B, ∂).
Consequently, the identity map of K ∪ {b1 , . . . , bn} extends to a differential K-algebra
homomorphism φ ∶ S 	→ (B, ∂). By choice of b, the map φ restricts to the identity
map of A. ∎

Corollary 2.5 Let Σ be a set of differential polynomials over (K , δ) in finitely many
differential variables. Suppose Σ = 0 has a solution in some differential field extension
(L, δ) with L/K separable. Then there is a finitely generated K-subalgebra B of L and
a derivation ∂ of B such that (B, ∂) has a solution to Σ = 0. In particular, (B, ∂) is
differentially algebraic over (K , δ) and B/K is separable.

Notice that if K is e.c. in L as a field then K is also e.c. in B as a field.

Proof By assumption, there is a solution of Σ = 0 in a differentially finitely generated
K-subalgebra S of L. Now apply Proposition 2.4 to S and A = K. ∎

Remark 2.6 In the case of several commuting derivations statements similar to
Proposition 2.4 and Corollary 2.5 fail in general. This follows from examples produced
by Johnson, Reinhart, and Rubel [JRR95, Theorem 2]. In particular, working over
(C(z1 , z2), δ1 ≡ ∂

∂z1
, δ2 ≡ ∂

∂z2
), they prove that the PDE

δ2(x) = (1 − z1

z2
) x + 1

has no differential algebraic solutions (equivalently, has no solution in a differential
field extension of finite transcendence degree over C).

Given a differential field K and a differential polynomial f ∈ K{x}, where x is a
single differential variable, we denote by s f the separant of f ; namely, the formal partial
derivative of f with respect to its highest order variable. We write [ f ] for the differential
ideal generated by f in K{x} and

[ f ] ∶ s∞f = {g ∈ K{x} ∶ sm g ∈ [ f ] for some m ≥ 0}.

Observation 2.7 Let K be a differential field and let f ∈ K{x} for x a single differential
variable. Let n = ord( f ) ≥ 0 and let a ∈ Kn+1 with f (a) = 0 and s f (a) ≠ 0. Then there
is an irreducible factor h of f with ord(h) = n, h(a) = 0 and sh(a) ≠ 0.

Proof Let f0 , f1 ∈ K{x}, with f0 irreducible, f = f0⋅ f1 and ord( f0) = n. Then

(∗) s f =
∂ f
∂xn

= ∂ f0

∂xn
⋅ f1 + f0 ⋅

∂ f1

∂xn
.

If f0(a) = 0, then (∗) implies s f0(a) = ∂ f0
∂xn

(a) ≠ 0. If f0(a) ≠ 0, then f1(a) = 0 and
(∗) shows s f1(a) = ∂ f1

∂xn
(a) ≠ 0; hence also ord( f1) = n and in this case we may replace

f by f1 and proceed by induction. ∎

We now come to the promised axiomatization.

Theorem 2.8 Let (K , δ) be an ordinary differential field of arbitrary characteristic. The
following conditions are equivalent.
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On ordinary differentially large fields 5

(i) (K , δ) is differentially large.
(ii) K is large as a field and for every pair f , g ∈ K{x}, where x is a single differential

variable, with g nonzero and ord( f ) > ord(g), if the system

f (x) = 0 & s f (x) ≠ 0

has an algebraic solution in K, then f (x) = 0 & g(x) ≠ 0 has a differential solution
in K.1

(iii) For every pair f , g ∈ K{x}, where x is a single differential variable, with ord( f ) ≥ 1
and ord( f ) ≥ ord(g), if the system

f (x) = 0 & g(x) ⋅ s f (x) ≠ 0

has an algebraic solution in K, then it has infinitely many differential solutions in K.
Notice that each of the properties (ii) and (iii) gives an axiom scheme for a first order
axiomatization of differential largeness in the language of differential rings.
Proof (i)⇒(iii). Let f , g ∈ K{x} with ord( f ) ≥ 1 and ord( f ) ≥ ord(g) and assume

(†) f (x) = 0 & g(x) ⋅ s f (x) ≠ 0

has an algebraic solution in K. Let n = ord( f ). By Observation 2.7, we may assume that
f is irreducible. Let p = [ f ] ∶ s∞f . Since s f ≠ 0, Theorem 3.1(2) of [IL23] says that p is a
separable prime differential ideal of K{x}. We write a = x mod p. Now, an algebraic
solution of f (x) = 0 & s f (x) ≠ 0 in K is a smooth K-rational point of

K[x0 , . . . , xn]/( f ) ≅K K[a, . . . , a(n)].

The largeness of K yields that K is e.c. in K(a, . . . , a(n)). Since the latter is equal to the
differential field K⟨a⟩ generated by a over K, differential largeness implies that (K , δ)
is e.c. in (K⟨a⟩, δ).

Since ord( f ) ≥ ord(g) and (†) has an algebraic solution in K, Lemma 3.6(1) of
[IL23] implies that g ⋅ s f ∉ p. Hence a is a differential solution of (†) in K⟨a⟩. As (K , δ)
is e.c. in (K⟨a⟩, δ) also K has a differential solution α of (†). To argue that there are
infinitely many solutions, note that g ⋅ (x − α) has again order at most ord( f ). By
largeness of K and the assumption ord( f ) ≥ 1, there is an algebraic solution of the
new system where we replace g with g ⋅ (x − α). It follows, by repeating the above
argument, that there are infinitely many differential solutions of (†) in K.

(iii)⇒(ii) It suffices to show that K is large as a field. By [Jar11, Lemma 5.3.1, p. 67],
a field K is large if and only if for every absolutely irreducible polynomial F(X , Y) ∈
K[X , Y], if there is a point (a, b) ∈ K2 with F(a, b) = 0 and ∂F

∂Y (a, b) ≠ 0, then there
are infinitely many such points.

So take an absolutely irreducible polynomial F(X , Y) ∈ K[X , Y] and some (a, b) ∈
K2 with F(a, b) = 0 and ∂F

∂Y (a, b) ≠ 0. Consider the differential polynomial f (x) =
F(x , x′). Then f (x) = 0 & s f (x) ≠ 0 has an algebraic solution in K, namely (a, b). By
(iii) there are infinitely many differential solutions in K. But then there are infinitely
many solutions to F(X , Y) = 0 and ∂F

∂Y (X , Y) ≠ 0 in K as well.
(ii)⇒(i). To prove differential largeness, let F be a differential field extension of K

such that K is e.c. in F as a field. Note that then F/K is separable. We need to show

1By 2.7 we may also assume that f is irreducible in this condition.
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6 O. León Sánchez and M. Tressl

that K is e.c. in F as a differential field. Let Σ be a system of differential polynomials
in n differential variables over K and assume that Σ = 0 has a solution a ∈ Fn . We
may assume that F = K⟨a⟩. By 2.5 applied to F, we may assume that F is differentially
algebraic over K (and F/K remains separable).

Condition (ii) guarantees that [K ∶ CK] is infinite; hence, by the differential prim-
itive element theorem [Kol73, Proposition 9, Section II.8, p. 103], the differential field
F is differentially generated over K by a single element b ∈ F. Let p be the prime
differential ideal of K{x} associated with b. Note that p is separable (over K).

Then, by Theorem 3.1(1) of [IL23], p = [ f ] ∶ s∞f for f ∈ p irreducible of minimal
rank. Write a = (a1 , . . . , an) and let f i , g ∈ K{x} with a i = f i(b)

g(b) . By the differential
division algorithm [Kol73, Section I.9] there are h ∈ K{x} reduced with respect to f
and some r ≥ 0 with

(i f s f )r g ≡ h mod [ f ].

Since f (b) = 0 and i f (b)⋅s f (b) ≠ 0 we get ir
f (b)sr

f (b)g(b) = h(b) ≠ 0. Hence, we
may replace g by h and f i by (i f s f )r ⋅ f i if necessary and assume that g is reduced with
respect to f. Notice that a i ∈ K{b}g(b).

Now, since K e.c. in F as a field, the system f (x) = 0 & s f (x) ≠ 0 has an algebraic
solutions in K. By condition (ii), the set

{ f = 0} ∪ {q ≠ 0 ∣ q ∈ K{x} is nonzero and ord(q) < ord( f )}

is finitely satisfiable in the differential field K. Hence there is an elementary extension L
of the differential field K having a differential solution c to f (x) = 0 such that q(c) ≠ 0
for all q ∈ K{x} with ord(q) < ord( f ). Since f is irreducible, it follows that q(c) ≠ 0
for all q ∈ K{x} that are reduced with respect to f.

In particular f (c) = 0 & g(c) ≠ 0. Since K ≺ L there is some d ∈ K with
f (d) = 0 & g(d) ≠ 0. This means there is a differential K-homomorphism
(K{x}/p)g mod p 	→ K. By choice of pwe have (K{x}/p)g mod p ≅ K{b}g(b) as differ-
ential K-algebras. Since K{a1 , . . . , an} ⊆ K{b}g(b), we obtain a differential K-algebra
homomorphism K{a1 , . . . , an} 	→ K and this corresponds to a differential solution
of Σ = 0 in Kn . ∎

When K is real closed, the above theorem yields a new axiomatization of the theory
CODF. A differential field (K , δ) is a model of CODF if and only if it is an existentially
closed model of the theory of ordered differential fields. Axioms for CODF appear in
[Sin78]. While the axioms there make explicit reference to the order, our new axioms
are purely in the differential field language, namely:

Corollary 2.9 Let (K , δ) be a differential field. The following are equivalent.
(i) (K , δ) ⊧ CODF.

(ii) K is real closed and for every pair f , g ∈ K{x}, where x is a single differential
variable, with g nonzero and ord( f ) > ord(g), if the system

f (x) = 0 & s f (x) ≠ 0

has an algebraic solution in K, then f (x) = 0 & g(x) ≠ 0 has a differential solution
in K.
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On ordinary differentially large fields 7

Notice that every field K is algebraically closed in the large field K((t)), but not
every field is large. In the differential phrasing this changes:

Corollary 2.10 Let L/K be an extension of differential fields. If K is differentially
algebraically closed in L and L is differentially large, then K is differentially large as well.

Proof We verify 2.8(iii). Take f , g ∈ K{x}, x a single differential variable, with
ord( f ) ≥ 1 and ord( f ) ≥ ord(g), and assume that f (x) = 0 & g(x) ⋅ s f (x) ≠ 0 has
an algebraic solution in K. Since L is differentially large, it has infinitely many
differential solutions to f (x) = 0 & g(x) ⋅ s f (x) ≠ 0. But then each of these solutions
is differentially algebraic over K. Hence all these solutions are in K. ∎

Remark 2.11 We note that the condition of a differential field (K , δ) being differen-
tially algebraically closed in some extension (L, δ) is quite strong. Arguably, being
differentially algebraically closed in an extension is not quite the right differential
analog of being algebraically closed in the field sense. We do not know whether
the assumption in Corollary 2.10 can be weakened to only assuming that K is
constrainedly closed in L (namely, every finite tuple from L which is constrained over
K, in the sense of Kolchin [Kol73, Section III.10], is from K).

We conclude this section with a geometric characterization of being differentially
large. Namely, in terms of algebraic D-varieties. Recall that an algebraic D-variety over
K is a pair (V , s) where V is an algebraic variety over K and s ∶ V → τV is a section
over K of the prolongation of V (see [KP05, Section 2], for instance). The latter is the
algebraic bundle π ∶ τV → V with the characteristic property that for any differential
field extension (L, δ) of (K , δ) we have that if a ∈ V(L) then (a, δa) ∈ τV .

Corollary 2.12 Let K be a large field of arbitrary characteristic and let δ be a derivation
of K. The following conditions are equivalent.

(i) (K , δ) is differentially large
(ii) Let V and W be K-irreducible algebraic varieties with W ⊆ τV. If π∣W ∶ W → V is

a separable morphism and W has a smooth K-point, then the set

{(a, δa) ∈ W ∶ a ∈ V(K)}

is Zariski dense in W.
(iii) Let (V , s) be a K-irreducible algebraic D-variety. If V has a smooth K-point, then

the set

{a ∈ V(K) ∶ s(a) = (a, δ(a))}

is Zariski dense in V.

Proof (i)⇒(ii) Let (a, b) be a K-generic point of W. Since πW ∶ W → V is a sepa-
rable morphism, we obtain that a is K-generic in V and K(a, b)/K(a) is a separable
extension. Since W ⊆ τV , there is a derivation δ ∶ K(a) → K(a, b) extending the one
on K such that δ(a) = b. As K(a, b)/K(a) is separable, by 2.2, we can extend the
derivation to K(a, b) → K(a, b). Then, for any nonempty Zariski-open OW ⊆ W over
K, in the differential field extension (K(a, b), δ) we can find a solution to x ∈ V and
(x , δx) ∈ OW (namely, the tuple a). Since W has a smooth K-point, we get that K is e.c.
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8 O. León Sánchez and M. Tressl

in K(W) = K(a, b) as a field. By differential largeness, (K , δ) is e.c. in (K(a, b), δ),
and so we can find the desired solution in K.

(ii)⇒(iii) If we let W = s(V) ⊆ τV , then the pair V and W satisfy the conditions
of (ii) (note that if b is a smooth point of V then (b, s(b)) is a smooth point of W). If
follows that the set of points in W of the form (a, δa) with a ∈ V(K) is Zariski dense
in W. But then, as W = s(V), the set of points a ∈ V such that s(a) = (a, δa) must be
Zariski dense in V.

(iii)⇒(i) We verify 2.8(ii). Let f , g ∈ K{x} with ord(g) < ord( f ) and g nonzero.
Assume the system

f (x) = 0 & s f (x) ≠ 0

has an algebraic solution in K. In particular, s f ≠ 0. By Observation 2.7, we may assume
that f is irreducible. By Theorem 3.1(1) of [IL23], p = [ f ] ∶ s∞f is a separable prime
differential ideal of K{x}. Let a = x + p in the fraction field of K{x}/p. Letting n =
ord( f ), we see that (a, δa, . . . , δn−1a) is algebraically independent over K and δn a is
separably algebraic over K(a, . . . , δn−1a). It follows that

δn+1a = h(a, δa, . . . , δn a)
s f (a)

for some h ∈ K[t0 , . . . , tn]. Let V be the localisation at g ⋅ s f of the Zariski-locus of
(a, δa, . . . , δn a) over K. From the assumptions (on existence of an algebraic solution
in K), we see that V has a smooth K-rational point and that the morphism on V
induced by

(t0 , t1 , . . . , tn) ↦ ((t0 , t1 , . . . , tn),(t1 , t2 , . . . , tn , h(t0 , t1 , . . . , tn)
s f (t0 , t1 , . . . , tn)

)

yields a regular algebraic map s ∶ V → τV . This equips V with a D-variety structure.
Then, the assumption of (iii) yields α ∈ V(K) such that s(α) = (α, δα). But then α is
the desired differential solution of f (x) = 0 & g(x) ≠ 0 in K. ∎

3 Power series in characteristic zero

In this section, we assume fields are of characteristic zero, and thus the results on
differentially large fields from [LST24] may be deployed. We prove, in Corollary 3.5,
two further characterizations of being differentially large.

For a differential field K (ordinary throughout), we endow K((t)) with its natural
derivation extending the given derivation on K and satisfying δ(t) = 1; that is,

δ (∑
n≥k

an tn) = ∑
n≥k

δ(an)tn + ∑
n≥k

nan tn−1 .

In [LST24, 4.3] it is shown that (K , δ) is differentially large if and only if (K , δ)
is e.c. in (K((t)), δ). We do not know if this characterization extends to positive
characteristic, the proof relies on the existence of a twisted version of the Taylor
morphism [LST24, 3.4], whose construction picks up rational denominators. Below
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we prove that it suffices to ask for (K , δ) to be e.c. in the differential subfield of
(K((t), δ) consisting of differential algebraic elements (over K).

Definition 3.1 Let K be a differential field and let S be a differential K-algebra. We
write Sdiffalg for the differential subring of all a ∈ S that are differentially algebraic
over K.

Remark 3.2 Since K((t)) is the localization of K[[t]] at t, the fraction field of
K[[t]]diffalg is K((t))diffalg .

Proposition 3.3 Let (K , δ) be a differential field (of characteristic zero) that is large
as a field and let S be a differentially finitely generated K-algebra. If there is a K-algebra
homomorphism S → L for some field extension L/K in which K is e.c. (as a field, there
are no derivations on L given), then there is a differential K-algebra homomorphism
S → K[[t]]diffalg .

Proof By [LST24, 3.5] there is a differential K-algebra homomorphism ψ ∶ S →
K[[t]]. Applying 2.4 to ψ(S), we may then find a finitely generated K-subalgebra
B of K((t)), a derivation ∂ of B extending δ on K together with a differential K-
algebra homomorphism φ ∶ ψ(S) 	→ (B, ∂). By [LST24, 3.5] applied to (B, ∂) and
the inclusion map B ↪ K((t)) there is a differential K-algebra homomorphism γ ∶
B → K[[t]]. Since B is a finitely generated K-algebra, the image of γ is in K[[t]]diffalg .
Hence the map γ ○ φ ○ ψ ∶ S 	→ K[[t]]diffalg has the required property. ∎

A special case of 3.3 resembles an approximation statement over large and differ-
ential fields in the spirit of [DL84, Theorem 2.1].

Corollary 3.4 Let (K , δ) be a differential field of characteristic zero such that K is
large as a field. Let Σ be a system of differential polynomials in finitely many differential
variables over K. If the differential ideal generated by Σ has an algebraic solution in
K((t)), then Σ = 0 has a differential solution in K[[t]]diffalg .

Proof Apply 3.3 to the differential coordinate ring of Σ. ∎
Corollary 3.5 Let K be a large field of characteristic 0 and let δ be a derivation of K.
The following conditions are equivalent.

(i) (K , δ) is differentially large.
(ii) K is e.c. in K[[t]]diffalg as a differential field.

(iii) For every K-irreducible algebraic D-variety (V , s), if V has a K-point, then there is
a ∈ V(K) such that s(a) = (a, δa).

Proof (i)⇒(ii) is a consequence of [LST24, 4.3(ii)], which says that K is e.c. in K((t))
as a differential field.

(ii)⇒(i). By 3.4 one verifies that K is e.c. in K((t)) as a differential field. Hence by
[LST24, 4.3], (K , δ) is differentially large

(iii)⇒(i) We verify 2.12(iii). Let (V , s) be a K-irreducible D-variety with a smooth
K-point. Let h ∈ K[V] nonzero. Then, there is an induced D-variety structure in the
localization K[V]h . Denote this D-variety by (W , t). As K is large and V has a smooth
K-point, we get that K is Zariski dense in V. Thus, W has a K-point. The assumption
now yields a K-point b in W such that s(b) = (b, δb). As h was arbitrary, it follows
that the set of points {a ∈ V(K) ∶ s(a) = (a, δa)} is Zariski dense.
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10 O. León Sánchez and M. Tressl

(i)⇒(iii) Let (V , s) be a K-irreducible D-variety with a K-point. Applying Propo-
sition 3.3 with S = K[V] and L = K, we find a K((t))-rational point b of V such that
s(b) = (b, δb). As K is differentially large, it is e.c. in K((t)) as a differential field.
Hence, we can find such a point in K. ∎

We may now improve the construction of differentially large fields from
[LST24, 5.2] in the ordinary case. A few preparations are necessary.

Proposition 3.6 Let (K i , f i j)i , j∈I be a directed system of differential fields and differ-
ential embeddings with the following properties.
(a) All K i are large as fields.
(b) All embeddings f i j ∶ K i 	→ K j are isomorphisms onto a subfield of K j that is e.c. in

K j as a field.
(c) For all i ∈ I there exist j ≥ i and a differential homomorphism K i[[t]]diffalg 	→ K j

extending f i j .
Then the direct limit L of the directed system is a differentially large field.

Proof The proof is identical to the proof of [LST24, 5.1], except we use Proposi-
tion 3.3 in that proof instead of [LST24, 3.5]. ∎

Observation 3.7 Let K be a differential field. Then K[[t]]diffalg is a Henselian valua-
tion ring.

Proof We write S = K[[t]]diffalg . Since S = K[[t]] ∩ K((t))diffalg , it is a valuation
ring. Clearly the maximal ideal of S is t⋅S. To verify that S is Henselian it suffices to
show that for all μ2 , . . . , μn ∈ m there is some f ∈ S with

1 + f + μ2 f 2 + . . . + μn f n = 0.

As K[[t]] is Henselian, there is such an f in K[[t]]. Obviously, f ∈ S. ∎

Theorem 3.8 Let (K , δ) be any differential field of characteristic zero. Set K0 = K and
let Kn+1 = Kn((tn))diffalg . Then ⋃n≥0 Kn is differentially large.

Proof By Observation 3.7, Kn[[tn]]diffalg is a Henselian valuation ring. By [Pop10],
Kn((tn))diffalg is a large field. We see that all assumptions of Proposition 3.6 are
satisfied for the Kn and the inclusion maps Kn ↪ Kn+k . Now the argument for [LST24,
5.2(i)] can be copied, where we use 3.6 instead of [LST24, 5.1]. ∎

Remark 3.9 For every differential field K, there are power series in K((t)) that
are differentially transcendental over K (here K((t)) is furnished with the natural
derivation extending the given one on K and satisfying δ(t) = 1); for example, the
power series f (t) = ∑n≥0 t2n

. Indeed, this power series, which lives in Q((t)), is
differentially transcendental over Q by Mahler [Mah30] (also see [LR86]). Any such
power series, viewed in K((t)), remains differentially transcendental over K because
Q((t)) and K are linearly disjoint over Q in K((t)). This shows that, for any
differential field K, the subfield K((t))diffalg of differentially algebraic elements is
properly contained in K((t)).

We conclude this section by discussing possible improvements of Proposition 3.3.
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Counter example 3.10 If K is algebraically closed in Proposition 3.3 then a stronger
conclusion holds, namely there is a differential K-algebra homomorphism S → K[[t]]
whose image is constrained. The reason is that there is a differential homomorphism
ε ∶ S 	→ Kdiff and then one can apply Proposition 3.3 to obtain a differential embedding
of the image of ε into K[[t]].

However, if K is not algebraically closed then in general there is no differential K-
algebra homomorphism S → K[[t]] whose image is constrained. To see an example,
consider the ordered field R(z) where z > R and let K be its real closure. We furnish
K with the unique derivation extending the standard derivation d

dz on R(z). Let x be a
new transcendental element and let R be the real closure of the ordered field K(x) with
the ordering x > K. Extend the derivation of K to R by setting δ(x) = 0. Let y be a square
root of x − z in R and let S be the differential K-subalgebra of R generated by y, hence
S = K[y, y−1]. Now if φ ∶ S 	→ K[[t]] is a differential K-algebra homomorphism, then
φ(x)′ = φ(x′) = 0 and φ(x) = φ(y2 + z) = φ(y)2 + z, hence φ(x) is a constant and
φ(x) − z is a square. As z > R and R is the constant field of K, we see that φ(x) cannot
be in K. Hence φ(x) is a new constant of K[[t]] and therefore it is not constrained
over K.

3.11 (On the canonicity of differentially algebraic solutions) Let K be a differential
field. If S is a differentially finitely generated K-algebra and φ ∶ S 	→ K is a K-algebra
homomorphism, then by [LST24, 3.5] one can explicitly construct a differential K-
algebra homomorphism ψ ∶ S 	→ K[[t]], namely one can take ψ to be the twisted Taylor
morphism T∗φ associated with φ. Now, by Proposition 3.3 there is even a differential K-
algebra homomorphism ρ ∶ S 	→ K[[t]]diffalg and one might ask whether ρ can also be
obtained in some canonical form out of φ. However Gabriel Ng has shown that this is
not possible. We refer to [Ng23, Proposition 7.11] for details.

4 Expansions of large fields to a differentially large field

The main goal of this section is Theorem 4.3 which implies that any large field of
characteristic zero of infinite transcendence degree over Q can be expanded to a
differentially large field. A further consequence of Theorem 4.3 is 6.2, which says that
prime model extensions in CODF only exist in the trivial case. Throughout this section
fields are assumed to be of characteristic zero.

Notation 4.1 Let K be a field (of characteristic zero). A differentially large problem of
K is a pair ( f , g) of polynomials from K{x} = K[x0 , x1 , . . . ] such that f is of order n ≥ 0,
the order of g is strictly less than n and for which there is an element (c0 , . . . , cn) ∈ Kn+1

such that

f (c0 , . . . , cn) = 0 & s f (c0 , . . . , cn) ≠ 0.2

We call c̄ an algebraic solution of the differentially large problem. Obviously a
differentially large problem over K remains a differentially large problem over every
field extension of K. If d is a derivation of K, then a solution of a differentially large

2Note that there is no condition on g here.
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12 O. León Sánchez and M. Tressl

problem of K in a differential field (L, δ) extending (K , d) is an element a ∈ L with
f (a) = 0 & g(a) ≠ 0, where polynomials are now evaluated as differential polynomials.

Proposition 4.2 Let L/K be a field extension, n ∈N and assume that tr. deg(L/K) ≥
n. Let ( f , g) be a differentially large problem of K with ord( f ) = n. Let d be a derivation
of K and assume L is large.

Then there is a subfield K1 of L that is finitely generated over K as a field, a derivation
δ of K1 extending d and a solution a ∈ K1 of the differentially large problem ( f , g) such
that a, δa, . . . , δn−1a are algebraically independent over K.

Proof Let x̄ = (x0 , . . . , xn) and let Z be the solution set in L of the system

f (x̄) = 0 & s f (x̄) ≠ 0.

Claim There exists a point (a0 , . . . , an) ∈ Z with tr. deg(a0 , . . . , an/K) = n. ∎

Proof Let W be the variety defined by the two polynomials

f (x̄), y⋅s f (x̄) − 1 ∈ K[x̄ , y].

Write h(x̄ , y) = y⋅s f (x̄) − 1. Then any common zero (ā, c) of f and h in the algebraic
closure of L is a regular point of W, because c⋅s f (ā) − 1 = 0 implies ∂ f

∂xn
(ā) ≠ 0

and obviously ∂h
∂ y = s f does not vanish at ā. Hence the determinant of the matrix

⎛
⎝

∂ f
∂xn

∂ f
∂ y

∂h
∂xn

∂h
∂ y

⎞
⎠

is not zero at (ā, c). This shows that W is smooth.

Since ( f , g) is a differentially large problem of K we know that W has a K-
rational point. By [Feh11, Theorem 1], using tr. deg(L/K) ≥ n = dim(W), there is a
K-embedding K(W) 	→ L. A generic point of W in K(W) is then mapped to a point
(a0 , . . . , an) ∈ Z with tr. deg(a0 , . . . , an/K) = n. ∎

As s f (a0 , . . . , an) ≠ 0, an is algebraic over K(a0 , . . . , an−1). But now we see that
g(a0 , . . . , an) ≠ 0 as the order of g is strictly less than n, and K1 ∶= K(a0 , . . . , an)
is isomorphic to the quotient field of K{x}/p, where p = [ f ] ∶ s∞f . This induces a
derivation δ on K1 and this derivation has the required properties: a = a0 solves the
given differentially large problem.

Theorem 4.3 Let L/K be an extension of fields of characteristic 0 and suppose L is
a large field. Let d be a derivation of K. If tr. deg(L/K) ≥ card(K), then there is a
derivation δ of L extending d such that (L, δ) is differentially large.

[Under necessary assumptions on the constant field C of K we will show in Theo-
rem 5.8 that we may in addition find such a δ whose constant field is algebraic over C.]

Proof Let κ = card(K). By extending K and d we may assume that tr. deg(L/K) =
κ. Let {t i ∣ i < κ} be a transcendence basis of L over K and let ( f i , g i)i∈κ be a list
of all differentially large problems of L; so here f i , g i ∈ L{x} in the terminology of
Notation 4.1.

For i < κ we define a subfield K i of L and a derivation d i of K i such that
(a) K i contains t i , tr. deg(K i/K) is finite for finite i and tr. deg(K i/K) ≤ card(i) for

i ≥ ω,
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(b) (K i , d i) extends (K j , d j) for j < i, and
(c) (K i , d i) solves the differentially large problem ( f i , g i).

Suppose i < κ and (K j , d j) has already been defined with properties (a)–(c); this
also covers the case i = 0. Let b̄ ⊆ L be finite with f i , g i ∈ K(b̄){x} such that there is
an algebraic solution of the differentially large problem ( f i , g i) in K(b̄). Let K∗ be the
field generated by K(t i , b̄) ∪ ⋃ j<i K j and extend the derivation ⋃ j<i d j to a derivation
d∗ of K∗ arbitrarily. Obviously then tr. deg(K∗/K) is finite if i is finite and ≤ card(i)
otherwise.

Consequently tr. deg(L/K∗) is infinite and we may apply Proposition 4.2 to the
extension K∗ ⊆ L, the derivation d∗ and the differentially large problem ( f i , d i). We
obtain an extension (K i , d i) of (K∗ , d∗) such that K i is a subfield of L that is finitely
generated over K∗. Clearly (K i , d i) satisfies (a)–(c).

Then L = ⋃i<κ K i and by 2.8 the differential field (L, ∂) with ∂ = ⋃i<κ d i is differ-
entially large. ∎
Remark 4.4 In characteristic p > 0 the conclusion in Theorem 4.3 fails even under
the assumption that L/K is separable. For example L might be perfect (as a field), and
hence any derivation on L is trivial.

Corollary 4.5 A large field L of characteristic zero is of infinite transcendence degree if
and only if there is a derivation d of L such that (L, d) is differentially large.

Proof If L has infinite transcendence degree, then by Theorem 4.3 applied with K =
Q shows that there is a derivation d of L such that (L, d) is differentially large. For the
converse assume, there is a derivation d of L such that (L, d) is differentially large. By
[LST24, 5.12], the algebraic closure L of L is differentially closed. We may then replace
L by the differential closure of Q. By the non-minimality of the differential closure
of Q ([Ros74]), there is an embedding L 	→ L that is not surjective. Hence L cannot
have finite transcendence degree. ∎

5 Differentially large fields with prescribed constant field

We now aim to provide a version of Theorem 4.3 for all differentially large fields
of characteristic 0 without extending the constants. More precisely, we prove in
Theorem 5.8 below that for a field extension L/K with tr. deg(L/K) ≥ card(K), if d
be a derivation of K whose constant field CK is dense in L for the étale open topology
of L, then there is an extension δ of d on L such that (L, δ) is differentially large and
CL is algebraic over CK . Hence, under a density assumption of the constants CK , if CK
is algebraically closed in L, then the construction of the derivation in Theorem 4.3 can
be performed without introducing new constants. We conclude this section with an
application to dense pairs of large fields in 5.12.

We first (briefly) introduce the notion of L-prime ideals in the context of a fixed field
extension L/K. For a differential ring S we write Sped(S) for the subspace of Spec(S)
consisting of the differential prime ideals of S.

Definition 5.1 Let L/K be an extension of fields and let d be a derivation of K. Let S
be a differential K-algebra. We call a prime ideal p of S a differential L-prime ideal if
it is differential and S/p can be embedded into L as a K-algebra; observe that there is

Downloaded from https://www.cambridge.org/core. 11 Feb 2025 at 08:20:02, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 O. León Sánchez and M. Tressl

no derivation given on L. We write SpedL(S) for the subspace of Sped(S) consisting
of differential L-prime ideals. We say that a point p ∈ Sped(S) is L-locally closed if it
is a locally closed point of SpedL(S). If S is finitely generated as a K-algebra and (0) is
the unique point of SpedL(S), we say that S is L-simple. Note that L-simplicity implies
that there is a K-algebra embedding S 	→ L.

Examples 5.2
(i) If L is an algebraically closed field of infinite transcendence degree over K and S is a

differentially finitely generated K-algebra, then SpedL(S) = Sped(S), and L-locally
closed is the same as being constrained in the sense of Kolchin [Kol74].

(ii) If K is real closed and L is an ∣S∣+-saturated real closed field, then SpedL(S) is the
subspace of differential prime ideals p that are real, i.e., −1 is not a sum of squares in
S/p. When we are in this example we will say real constrained instead of L-locally
closed.

(iii) Clearly, being constrained and real implies real-constrained. However, the converse
does not always hold. For instance, consider the real closure K = Q(t)rcl, where
Q(t) is equipped with the unique ordering such that t > Q and with the unique
derivation extending d

dt onQ(t). Let α2 be a transcendental over K. In the formally
real field K(α2) define a derivation δ that extends the one on K such that δ(α2) =
−1

2α2
. Let α1 = t + α2

2 . Then, δ(α1) = 0 and α1 is transcendental over K (as α1 > Qrcl).
Now consider α = (α1 , α2). Clearly α is not constrained over K (as α1 is a constant
which is not algebraic over CK = Qrcl). But α is real-constrained over K. Indeed,
for any differential specialization β = (β1 , β2) of α over K with K⟨β⟩ formally real,
we see that β1 is transcendental over K (for the same reason that α1 was); thus,
the map K(α) → K(β) fixing K and mapping (α1 , α2) ↦ (β1 , β2) is a differential
isomorphism (not necessarily preserving the orderings).

Observation 5.3 Let L be a differentially large field and let K ⊆ L be a differential
subfield. Then for every L-simple K-algebra S there is a differential K-embedding S 	→ L.

Proof As S is L-simple, there is a K-algebra embedding φ ∶ S 	→ L. Now S ⊗K L is a
finitely generated differential L-algebra and φ extends to an L-algebra homomorphism
S ⊗K L 	→ L. By differential largeness, [LST24, 4.3(iv)] says that there is a differential
L-algebra homomorphism ψ ∶ S ⊗K L 	→ L. Composing ψ with the natural map
S 	→ S ⊗K L gives a differential K-algebra homomorphism S 	→ L. Since S is L-
simple, this map is an embedding. ∎

Proposition 5.4 Let L/K be a field extension and let d be a derivation of K. Let S be
a differentially finitely generated K-algebra. If SpedL(S) is nonempty, then there are L-
locally closed points p of S and for each such point there is some q ∈ S such that (S/p)q
is L-simple.

Proof By Noetherianity of Sped(S), there are points of SpedL(S) that are maximal
for inclusion in SpedL(S). These points are even closed in SpedL(S).

Now take an L-locally closed points p of S. Hence there is some q ∈ S such that the
prime ideal p is maximal for inclusion in D(q) ∩ SpedL(S). In other words the zero
ideal is the unique element of SpedL(A), where A = (S/p)q ; in particular there is a
K-algebra embedding A 	→ L.
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By 2.4 there are a ∈ A and a (not necessary differential) finitely generated K-
subalgebra B of Aa and a derivation ∂ of B together with a differential K-algebra
homomorphism f ∶ A 	→ (B, ∂). In particular the kernel of f is in Sped(A). Since
B is a K-subalgebra of Aa , the kernel of f is even in SpedL(S) and so the kernel of
f is 0. Thus f is an embedding and qf(A) is a finitely generated field extension of K.
Since A is a differentially finitely generated K-algebra we may then localize it at some
element of A and see that A is finitely generated as a K-algebra. ∎

In what follows we will talk about the étale open topology on K-rational points of K-
varieties for a field K, cf. [JTWY24, p. 4034]. Explicitly we will only need a few basic
properties of the étale open topology of K itself and we only record what we need
later on.

5.5 (The étale open topology) Let K be a field.
(i) We call a subset U of K standard étale open if it is the image of the projection

K2 	→ K onto the first coordinate of a set of the form {(a, b) ∈ K2 ∣ P(a, b) =
0 & Q(a, b) ≠ 0}, where P, Q ∈ K[x , y] such that ∂

∂ y P is invertible in the localiza-
tion of K[x , y]/(P) at Q. In the terminology of [Poo17, Definition 3.5.38] these sets
are precisely the images of K-rational points of standard étale morphisms defined
over K with codomain A1. The standard étale open sets form a basis of a topology
on K which is the étale open topology, cf. [Poo17, Definition 3.5.38], [JTWY24,
p. 4037].

(ii) [JTWY24] The field K is large if and only if the étale open topology is not discrete.
If K is algebraically closed, then the étale open topology is the Zariski topology. If
K is real closed, then the étale open topology is the order topology. If K possesses
a nontrivial henselian valuation v, then the étale open topology is the open ball
topology of v.

Proposition 5.6 Let L/K be a field extension such that L is large and let d be a
derivation of K. Let S be an L-simple differential K-algebra. If K is algebraically closed in
L and CK is dense in L for the étale open topology of L, then the constant field of qf(S)
is CK .

Proof By L-simplicity, we may assume that S is a K-subalgebra of L. We write F =
qf(S) and δ for the derivation of F. Since S is L-simple, there is g ∈ S such that the
localisation SpedL(Sg) only consist of the zero ideal.

Now suppose f = p
q ∈ F is a constant, thus δ( f ) = 0. We aim to show that f is in

CK . We work in the localization Sg⋅q , and we view it as the coordinate ring of an affine
variety V defined over K. Then f yields an algebraic map f ∶ V(L) → L. The image
W = f (V(L))[3] is K-definable in L in the language of rings.

Case 1. W is infinite.
Since W is an existentially L-definable set it must have nonempty interior for the

étale open topology of L by [WY23, Corollary A, p.613]. Since CK is dense in L, there
is ε ∈ V(L)—hence a K-algebra homomorphism Sg⋅q 	→ L—such that c ∶= ε( f ) ∈ CK
and we claim that f = c.

3Formally: W is the set of all ε( f ), where ε ∶ Sg⋅q �→ L is a K-algebra homomorphism.
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Since δ( f − c) = 0, the ideal a ∶= ( f − c) of Sg⋅q is differential and contained in the
kernel q of ε. Choose any extension of the derivation of K to L and let T∗ε ∶ Sg⋅q 	→
L[[t]] be the twisted Taylor morphism of ε and that derivation. We write q# for
the kernel of T∗ε and obtain a differential K-algebra embedding Sg⋅q/q# ↪ L[[t]][4].
It follows that the K-variety V1 defined by Sg⋅q/q# has a smooth L[[t]]-rational
point. Since L is a large field, V1 also has a smooth L-rational point. Since S is a K-
subalgebra of L we see that tr. deg(L/K) ≥ tr. deg(S/K) ≥ tr. deg((Sg⋅q/q#)/K). By
[Feh11, Theorem 1] we know that there is a K-algebra embedding Sg⋅q/q# ↪ L. We
have shown that q# is in SpedL(A). But (0) is the only differential L-prime ideal of
Sg⋅q , thus q# = (0). On the other hand, a is a differential ideal and contained in the
kernel q of ε. This implies a ⊆ q# = (0), showing that f − c = 0 as required.

Case 2. W is finite.
Since V is irreducible and defined over K the assumption that K is algebraically

closed in L, implies that the variety V ×K L is also irreducible. Consequently V(L) is
an irreducible subset for the Zariski topology of the L-rational points of V. It follows
that the image W of f seen as a map V(L) 	→ L is also irreducible. As W is finite, W
is a singleton set. Hence f is a constant algebraic map and thus f = c. ∎
Corollary 5.7 Let L/K be an extension of differential fields and suppose L is large as
a field. Suppose K is algebraically closed in L and CK is dense in L for the étale open
topology of L. Let a ∈ Ln and g ∈ K{x} with g(a) ≠ 0.
(i) There is an L-simple differential K-algebra S such that the fraction field of S

has constant field CK , together with a differential K-algebra homomorphism φ ∶
K{a} 	→ S satisfying g(φ(a)) ≠ 0.

(ii) If L is differentially large, then there is some b ∈ Ln with g(b) ≠ 0 such that
CK⟨b⟩ = CK together with a differential K-algebra homomorphism K{a} 	→ K{b}
mapping a to b.

Proof (i) Since (0) is a differential L-prime ideal, there is a differential L-prime ideal
p of K{a} with g ∉ p and some s ∈ K{a}/p such that S = (K{a}/p)g(a)⋅s is L-simple.
In particular, S can be embedded as a K-algebra into L. By Proposition 5.6, the fraction
field of S has constant field CK .

(ii) follows from (i) and Observation 5.3. ∎
Theorem 5.8 Let L/K be a field extension such that L is large with tr. deg(L/K) ≥
card(K). Let d be a derivation of K whose constant field C is dense in L for the étale open
topology of L. Then there is an extension δ of d on L such that (L, δ) is differentially large
whose constant field is algebraic over C.

Proof Using Corollary 5.7 we adapt the strategy of the proof of Theorem 4.3. We
may replace K by its algebraic closure of K in L, hence we need to find a derivation
on L extending d with constant field C. Let κ = card(K). By extending K with
sufficiently many differentially algebraic independent elements, we may assume that
tr. deg(L/K) = κ; this will not extend the constants as one verifies without difficulty.

4We only need the derivation on L to obtain some K-algebra embedding as asserted, the classical
Taylor morphism would not deliver this.
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Let ( f i , g i)i∈κ be a list of all differentially large problems of L, where f0 = x , g0 = 1; so
here f i , g i ∈ L{x} in the terminology of 4.1.

For i < κ, starting with K0 = K, we define a subfield K i of L that is algebraically
closed in L and a derivation d i of K i such that
(a) (K i , d i) extends (K j , d j) for j < i.
(b) tr. deg(K i/K) ≤ max{ℵ0 , card(i)}.
(c) tr. deg(L/K i) is infinite (which is implied by (b) when L is uncountable).
(d) f i , g i ∈ K i{x} and (K i , d i) solves the differentially large problem ( f i , g i).
(e) (K i , d i) has constant field C.

Suppose 0 < i < κ and (K j , d j) has already been defined for j < i with prop-
erties (a)–(e). Let K∗ = ⋃ j<i K j with derivation d∗ = ⋃ j<i d j . Obviously then
tr. deg(K∗/K) ≤ max{ℵ0 , card(i)}. If i is infinite, then L is uncountable and of size >
card(i), hence tr. deg(L/K∗) is infinite. If i is finite, then K∗ = K i−1 and tr. deg(L/K∗)
is infinite as well.

Since tr. deg(L/K∗) is infinite, there is a countable infinite set T ⊆ L that is
algebraically independent over K∗ such that tr. deg(L/K∗(T)) is infinite, such that
f i , g i ∈ K∗(T)alg{x} and such that there is an algebraic solution of the differentially
large problem ( f i , g i) in K∗(T)alg (here the superscript “alg” stands for the algebraic
closure in L).

It follows that tr. deg(L/K∗(T)) ≥ card(K∗(T)) in either case. Now the field
K∗(T) is isomorphic to the fraction field K∗⟨x⟩ of the differential polynomial ring
K∗{x} and therefore there is a derivation ∂ of K∗(T) extending d∗ such that
(K∗(T), ∂) is K∗-isomorphic to K∗⟨x⟩ with its natural derivation. It follows that the
constant field of ∂ is the constant field of K∗, which is C by property (e) in the induction
hypothesis. Hence we may extend ∂ to the algebraic closure K+ of K∗(T) in L without
extending the constants.

Since tr. deg(L/K+) ≥ card(K+) we may now apply Theorem 4.3 and extend ∂ to
a derivation on L such that (L, ∂) is differentially large. Since C is dense in L it is also
dense in K+. Since ( f i , g i) is a differentially large problem of K+ by choice of T, we may
apply Corollary 5.7(ii), which shows that ( f i , g i) has a differential solution a in (L, ∂)
such that (K+⟨a⟩, ∂) has constant field C. We may then define K i to be the algebraic
closure of (K+⟨a⟩, ∂) in L and see that all conditions (a)–(e) are satisfied.

Finally, L = ⋃i<κ K i because for each b ∈ L, the differentially large problem (x −
b, 1) is solved in the union. Hence the theorem follows. ∎

From the description of the étale open topology in 5.5, we see that every dif-
ferentially large field has a dense constant field for that topology, hence the density
assumption in Theorem 5.8 is necessary.

Corollary 5.9
(i) For every real closed subfield K of the field R with tr. deg(R/K) ≥ 2ℵ0 and any

derivation d of K there is a derivation δ on R extending d such that (R, δ) is a
CODF whose constant field is the constant field of (K , d). Recall that the étale open
topology of R is the Euclidean topology of R.

(ii) For every p-adically closed subfield K of the fieldQp with tr. deg(Qp/K) ≥ 2ℵ0 and
any derivation d of K there is a derivation δ on Qp extending d such that (Qp , δ)
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18 O. León Sánchez and M. Tressl

is differentially large, whose constant field is the constant field of (K , d). Recall that
the étale open topology of Qp is the valuation topology of Qp and Q is dense in Qp .

(iii) For every pair K ⊆ L of countable fields, if L is large, K is algebraically closed in
L and dense in L for the étale open topology of L with tr. deg(L/K) infinite, then
there is a derivation δ on L such that (L, δ) is differentially large with constant
field K.

Example 5.10 Dense pairs of fields C ⊆ L as required in 5.8 – hence L is large, C
is dense for the étale open topology of L with tr. deg(L/C) ≥ card(C)—also occur
naturally in power series fields: Let k be any field of characteristic 0. We work in the
Henselian valued field k((tQ)) of generalized power series of k. Let C be the algebraic
closure of k(t) in k((tQ)) and let M be the completion of C for the valued field C,
hence M is the subfield of k((tQ)) consisting of power series whose support is cofinal
in Q and of order type ω.

Now for any Q-linearly independent set Λ ⊆ k of cardinality card(k) (a baby
version of) Ax’s solution to the functional Schanuel conjecture implies that the series
exp(λ⋅t) with λ ∈ Λ are algebraically independent over k.

So if L is a large subfield of M (for example, M itself), containing all the exp(λ⋅t),
then the pair L/C has the required properties.

A further consequence of Theorem 5.8 is an application to dense pairs of large fields.

Theorem 5.11 Let T be a theory of large fields of characteristic 0 in the language L of
rings. Let Tpair be the L (P) theory of proper pairs K ⊊ L of models of T for which K is
algebraically closed in L and K is dense in the étale open topology of L; here P is a new
unary predicate.5 Let T δ be the theory T together with the theory of differentially large
fields in the language L (δ) of ordinary differential rings.

If T δ is a complete theory, then the theory Tpair is also complete.

Proof If (L, K) ⊧ Tpair, then a standard compactness argument shows that there is
an elementary extension (L′ , K′) ≻ (L, K), such that tr. deg(L′/K′) is infinite. By the
downwards Skolem–Löwenheim theorem there is a countable elementary restriction
(L′′ , K′′) ≺ (L′ , K′) such that tr. deg(L′′/K′′) is infinite.

Now take (L1 , K1), (L2 , K2) ⊧ Tpair. In order to show that the pairs (L1 , K1) and
(L2 , K2) are elementary equivalent we may apply the argument above to each pair
and assume that L i is countable and of infinite transcendence degree over K i . By
Corollary 5.9, we may expand L i to a differentially large field (L i , δ i) with constant
field K i . Hence the completeness of T δ implies that (L1 , δ1) and (L2 , δ2) are elemen-
tary equivalent as differential fields and therefore the pairs (L1 , K1) and (L2 , K2) are
elementary equivalent as well. ∎
Corollary 5.12 Let T be a complete and model complete theory of large fields of
characteristic 0 in the language L of rings, possibly expanded by constants. Let Tpair
be the theory of proper (étale-)dense pairs of models of T. Then Tpair is complete and the
following neostability theoretic properties transfer from T to Tpair:

5Notice that all these conditions are first order in the language L (P), even when the étale open
topology is not a definable field topology. Density of the subfield is preserved by elementary equivalence,
as one sees by using the description of the open sets in 5.5.
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(i) if T is stable, then Tpair is the theory of (beautiful) pairs of ACF0,
(ii) if T is simple, then Tpair is simple,
(iii) if T is NSOP1, then so is Tpair, and
(iv) if T is NIP, then so is Tpair.

Proof By [LST24, Corollary 4.8(iii)], T δ is complete and model complete (recall that
T δ is the theory T together with the theory of differentially large fields). In particular,
Theorem 5.11 yields that Tpair is complete. Now, (i) follows from the fact that a large
field of characteristic zero with a stable theory must be algebraically closed [JTWY24].
For (ii), by the argument in the proof of Theorem 5.11, it suffices to observe that T δ is
simple whenever T is simple. This appears in [ML24, Corollary 3.6(i)]. Similarly, from
[ML24, Corollary 3.6(ii)] we get that T δ is NSOP1 whenever T is NSOP1, and so (iii)
follows. By [Moh24, Corollary 5.1], T δ has NIP if T has NIP, hence we obtain (iv). ∎
Remark 5.13 For the case of real closed fields, the completeness result of Corol-
lary 5.12 is A. Robinson’s theorem saying that the theory of proper pairs of dense real
closed fields is complete. More generally, under the assumptions of Corollary 5.12,
the theory Tpair coincides with the theory of geometrically-dense pairs of models of
T in the sense of Fornasiero [For11, Section 8]. Indeed, since T is a complete and
model-complete theory of large fields (in the ring language), then T is geometric (T is
very slim by [JK10, Theorem 5.4] and very slim implies geometric by [JY23, Corollary
2.9]); and so it suffices to show that (in this context) étale-denseness coincides with
geometric-denseness. Recall that K is geometrically-dense in L iff K intersects every
infinite definable subset of L (see [For11, Example 7.2]). It is then clear that geometric-
denseness implies étale-denseness. But then completeness of Tpair (by Corollary 5.12)
implies that the two notion of denseness must coincide.

6 Prime models in CODF are algebraic

We now apply Theorem 4.3 to answer a question about prime model extensions
for CODF. Recall that a CODF in the sense of Singer (cf. [Sin78]) is the same as a
differentially large field that is real closed as a pure field. In [Sin78], Singer shows
that CODF has no prime model, i.e., there is no CODF that embeds into all other
CODF s.6 We now show that in fact no differential and formally real field (i.e.,
it possesses an ordering) has a prime model extension for CODF7, unless its real
closure is already a CODF. In particular, no formally real field equipped with the
trivial derivation has a prime model extension in CODF. The proof is essentially an
application of Theorem 4.3 together with the following purely field theoretic fact.

Proposition 6.1 Let R be a real closed field and let κ be its cardinality. Then, there are
real closed fields M , N containing R of transcendence degree κ over R with the following
property: If S ⊇ R is a real closed field then S can be embedded over R into M and into N
if and only if tr. deg(S/R) ≤ 1 and R is Dedekind complete in S.

6Note that CODF is model complete in the language of differential rings, i.e., every embedding of
CODF s is elementary.

7A prime model extension of K for CODF is a model K̂ of CODF having K as a differential subfield
such that K̂ embeds over K as a differential field into any other CODF that has K as a differential subfield.
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Proof We take M ⊇ R by successively adjoining infinitely large elements aα for α <
κ. Hence aα > R(aβ ∣ β < α) in M and M is algebraic over R(aα ∣ α < κ). Then R is
Dedekind complete in M and M has transcendence degree κ over R.

For N we may take any real closed subfield of R((tR)) of transcendence degree
κ over R. Such fields exist because of the following reason: Let Λ be a basis of the
Q-vector space R. Since R is real closed, the cardinality of Λ is κ. Then the set
{exp(λ⋅t) ∣ λ ∈ Λ} ⊆ R[[t]] is an algebraically independent subset of R((tR)) over
R: this is a baby case of Ax’s positive solution to the functional Schanuel conjecture,
but is not difficult to prove directly. Hence we may take N as the real closure of
R(exp(λ⋅t) ∣ λ ∈ Λ) in R((tR)). Clearly N has transcendence degree κ over R.

Since R is Dedekind complete in M and in N, any real closed field S containing R
with tr. deg(S/R) ≤ 1 in which R is Dedekind complete, can be embedded into M and
into N. It remains to show that any real closed subfield S of M containing R that can
be embedded into N over R is of transcendence degree at most 1 over R; note that R is
Dedekind complete in S because R is Dedekind complete in M (and in N).

For a contradiction, suppose S has transcendence degree 2 over R. We furnish
M with the valuation whose valuation ring is the convex hull of R in M. Real
closures are now taken in M throughout and this is indicated by the superscript
rcl. Take ā = (aα1 , . . . , aαn), α1 < . . . < αn such that S ⊆ R(ā)rcl. Then by choice of
the aα the chain R ⊆ R(aα1)rcl ⊆ . . . ⊆ R(aα1 , . . . , aαn)rcl witnesses that the value
group of R(aα1 , . . . , aαn)rcl has height n, where height stands for the number of
convex subgroups of the value group. Since tr. deg(S/R) = 2, there are n − 2 elements
b1 , . . . , bn−2 from {aα1 , . . . , aαn} that are algebraically independent over S. Since S
can be embedded into R((tR)) we know that S has height 1: Crucially we use here
that any such embedding preserves the valuations because the natural valuation on
R((tR)) again has the convex hull of R in R((tR)) as its valuation ring. But now the
chain R ⊆ S ⊆ S(b1)rcl ⊆ . . . ⊆ S(b1 , . . . , bn−2)rcl = R(aα1 , . . . , aαn)rcl witnesses that
the value group of R(aα1 , . . . , aαn)rcl has height at most n − 1, which gives the desired
contradiction. ∎

Theorem 6.2 Let K be a differential and formally real field. If K has a prime model
extension K̂ for CODF, then K̂ is algebraic over K.

Proof Suppose there is a prime model extension K̂ of K for CODF but K̂ is not
algebraic over K. Let R be the algebraic closure of K in K̂. Then R is a differential
subfield of K̂ and K̂ is also a prime model of R for CODF: If R ⊆ M ⊧ CODF, then any
K-embedding K̂ 	→ M must be the identity on R. Hence we may assume that K is
real closed all along.

Choose real closed fields M , N for K as in Proposition 6.1. By Theorem 4.3 there
are extensions of the derivation of K to M , N respectively such that M , N furnished
with these extensions are CODF s. Since K̂ can be embedded into M and into N by
assumption, Proposition 6.1 implies that K̂ must be of transcendence degree ≤ 1 over
K and K is Dedekind complete in K̂. As K ≠ K̂, we know that tr. deg(K̂/K) = 1.

Since K̂ is a CODF it follows that K̂ has a positive infinitesimal element t with
respect to K such that t′ = 1 (in particular t ∉ K). Then K̂ is a differential subfield of
K((tQ)) (endowed with the derivation extending the one on K and satisfying t′ = 1).

Downloaded from https://www.cambridge.org/core. 11 Feb 2025 at 08:20:02, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


On ordinary differentially large fields 21

By [LST24, end of 5.3] we know that t−1 has no integral in K((tQ)). This contradicts
the fact that t−1 has an integral in the CODF K̂. ∎

Remark 6.3 The proofs of Proposition 6.1 and Theorem 6.2 can be adapted to get
the analogous statements about differential and formally p-adic fields and the class
of p-adically closed differentially large fields. One possible task for future work is to
extend Theorem 6.2 (or rather Proposition 6.1) to topological differential fields in the
sense of [GP10]. We do not know if there is a version of Theorem 6.2 outside of that
context. For example, if K is a subfield of a pseudo-finite field and d is a derivation of
K, it is unclear whether there is a prime model over (K , d) in the class of differentially
large and pseudo-finite fields (all of characteristic zero).
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