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Abstract

In a subgroup analysis for an actuarial problem, the goal is for the investigator to classify the policyholders
into unique groups, where the claims experience within each group are made as homogenous as possible.
In this paper, we illustrate how the alternating direction method of multipliers (ADMM) approach for sub-
group analysis can be modified so that it can be more easily incorporated into an insurance claims analysis.
We present an approach to penalize adjacent coefficients only and show how the algorithm can be imple-
mented for fast estimation of the parameters. We present three different cases of the model, depending on
the level of dependence among the different coverage groups within the data. In addition, we provide an
interpretation of the credibility problem using both random effects and fixed effects, where the fixed effects
approach corresponds to the ADMM approach to subgroup analysis, while the random effects approach
represents the classic Bayesian approach. In an empirical study, we demonstrate how these approaches can
be applied to real data using the Wisconsin Local Government Property Insurance Fund data. Our results
show that the presented approach to subgroup analysis could provide a classification of the policyhold-
ers that improves the prediction accuracy of the claim frequencies in case other classifying variables are
unavailable in the data.

Keywords: Subgroup analysis; credibility; random effects models; dependence modeling; regularization methods; fused
lasso; actuarial modeling; insurance claims analysis

1. Introduction

Subgroup analysis in actuarial science is related to the risk classification problem in insurance
ratemaking. In property insurance ratemaking applications, risk classification allows for insurance
rates to be charged differently according to the policyholder’s geographical region, property type,
or policy feature. Risk classification is an important technique for the solvency of the insurance
company because it prevents adverse selection against the company. In a competitive insurance
market, companies with better risk classification are likely to attract more so-called low-risk
policyholders, leaving those companies using inferior risk classification methods with high-risk
policyholders. The mechanism by which this can influence the insurance company’s solvency is
explained in detail by authors such as Akerlof (1970), Rothschild and Stiglitz (1976), or Wilson
(1977).

In the actuarial literature, authors such as Guo (2003), and Yeo et al. (2001) have suggested
using machine learning approaches to segment the subjects in a population into homogenous
groups with similar characteristics, while heterogeneity between the groups is maximized. In
the statistics literature, subgroup analysis has been known as a technique called cluster analysis.
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For a recent example, Ma and Huang (2017) proposed a subgroup linear model, where the sub-
group structure is defined by group-specific intercepts. They applied the alternating direction
method of multipliers (ADMM) algorithm to the subgroup analysis in the statistics literature
for the first time, according to our understanding. The approach in Ma and Huang (2017) did
not have insurance applications in particular in mind, and they used a pairwise penalty on the
subject-specific intercepts to regularize the distance among the subjects.

The adoption of the technique described in Ma and Huang (2017) into the actuarial liter-
ature was first done by Chen et al. (2019), who implemented the approach for a zero-inflated
Poisson model and applied it to an insurance risk classification context. Their approach also used
a pairwise penalty in the same way Ma and Huang (2017) did. The authors of Chen et al. (2019)
have also suggested using deviance residuals as a preliminary tool to assess the applicability of
subgroup analysis methods to a given dataset. The paper was an interesting contribution to the
literature, and in our opinion they presented an alternative approach to viewing the risk clas-
sification problem. Although the approach was interesting, we believe there are some practical
difficulties applying the method to larger datasets because of the computational load caused by the
pairwise penalties. Reducing this computational load is part of the contribution we are making in
our paper.

Meanwhile, the fused lasso method has been around for a longer period of time. Authors such
as Tibshirani et al. (2005) and Tibshirani and Taylor (2011) have contributed to the development
of fused lasso approaches to estimation, where the coefficients are assumed to be ordered from the
lowest to the largest one. A recent example of a study applying the ADMM algorithm to the fused
lasso problem in an actuarial context can be found in Deviendt et al. (2021). In their work, the
authors propose an algorithm for solving the regularized regression problem for a multitype lasso
penalized problem. The multitype penalty includes the fused lasso and generalized fused lasso as
one of the penalties applicable to the objective function.

The approach in Deviendt et al. (2021) is interesting and is closely related to our approach,
although the intercepts were not a target of regularization in their work unlike ours. Additional
contributions in our work are that in addition to existing work, we attempt to relate the risk
classification problem to the credibility problem and make a comparison with existing Bayesian
approaches to the problem. In the actuarial literature, authors such as Jeong and Valdez (2020) or
Jeong (2020) have explored the credibility problem using Bayesian approaches. As we understand,
credibility theory is a way to consider unobserved heterogeneity within the observations from the
same object (could be an individual or a group) so that it is strongly related with the ratemaking
problem, where a large part of the interest is in attaining better risk classification.

Hierarchical random effects models are also related to our work, as we compare the ADMM
approach to the random effects approach to classification. In actuarial science, hierarchical ran-
dom effects models have been explored by authors such as Norberg (1986), Boucher and Denuit
(2006), and Antonio and Beirlant (2007). Random effects models in actuarial science have been
studied extensively in relation to the credibility problem. Another interesting related paper would
be Frees and Shi (2017), where the authors use a Tweedie model with multiplicative random effects
to incorporate collateral information into a credibility ratemaking model. We are unaware of
existing work comparing the ADMM approach to classification with the random effects approach.

The approach presented in this paper illustrates how a modified ADMM approach can be used
to estimate the parameters for a subgroup analysis problem quickly. We present three different
cases of the subgroup analysis problem, where the first case assumes there are no interdependence
among the different coverage groups of a multiline insurance company, the second case assumes
perfect interdependence, and the third case assumes flexible interdependence. We also propose
an approach to speed up the ADMM algorithm by keeping track of the group members for the
regularized intercepts at each step of the iteration. To summarize our contributions, the first is a
computational one, where we contribute to improving the speed and estimation of the ADMM
algorithm by presenting a way to figure out the initial values, penalize adjacent coefficients only,
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and keep track of the groupings of the coefficients. The second is an analytical one, where we
are able to combine the ADMM approach with dependence models with dependencies induced
by common effects. The third is an empirical one, where we demonstrate the application of our
approach using the Wisconsin Local Government Property Insurance Fund (LGPIF) dataset.

The rest of the paper proceeds in the following order: Section 2 explains the proposed method-
ology in detail. Section 3 presents a simulation study to determine when the proposed method may
perform well, and provides some discussion. Section 4 starts by illustrating the actuarial problem
of interest, and the dataset related to the problem. Section 5 presents the empirical results from
the application of our approach to the actuarial problem stated in Section 4. Section 6 concludes
the paper with closing remarks.

2. Methodology

Let us consider a usual data structure for multi-peril frequency. For an insurance policy of the ith
policyholder, we may observe the multi-peril claim frequencies over time ¢ for the jth coverage
type as follows:

Dj,TZ{(njit,Xit) i=1,...,I,t=1,...,T}, (1)
where x; is a p-dimensional vector that captures the observable characteristics of the policy and
njir is defined as the observed number of accident(s) from claim type j € {1,2,...,]}, for the ith
policyholder in year ¢, respectively.

We assume that the number of claims is affected by both observable covariates via associated
regression coefficients as well as the (common) unobserved heterogeneity factor 6;; for each cov-
erage. Imagine that P(v) is a Poisson distribution for now. One way to incorporate heterogeneity
into this model would be to multiply policyholder and claim-type specific effects:

Niit|it, 0ji 0; ~ P (vjit;i6; ) » (2)

where vjjr = exp(x;taj), and the common effect 6; allows the lines to be dependent among one
another. If ; = 1 with probability 1, then we have independent lines. In comparison to the hier-
archical random effects literature, the 6’s in our model would correspond to the multiplicative
random effects factor used in papers such as the one published by Frees and Shi (2017). Note
that one needs to impose additional constraints on 6; and 6j; in (2) to assure model identifiability,
which are specified in each of the scenarios discussed in this section later.

Our goal is to develop a method that enables the analyst to easily consider individual unob-
served heterogeneity 0;;, and the subject-specific effect 6;. We are also interested in exploring the
possibility of capturing the dependence among the claims of the coverages from the same pol-
icyholder. Here, we treat 0ji as either random or nonrandom. In the former case, we assume a
parametric distribution of 6;; so that Bayesian credibility is used to compute the posterior expecta-
tion of ;. In the latter case, we perform a nonparametric regression of 6;; with a fused LASSO-type
penalty applied to the log-likelihood function using an advanced version of ADMM algorithm
from that of Chen et al. (2019). We refer to this approach as the nonparametric approach, because
we do not assume a parametric distribution on 6j;. The original ADMM algorithm by Chen et al.
(2019) is summarized in Appendix A. The different cases of our model, depending on how 6;; and
0; are treated are explained in more detail in Appendix D.

We tried implementing our routines using all three penalties explained in Chen et al. (2019),
including the L1 penalty, the minimax concave penalty (MCP) penalty, and the smoothly clipped
absolute deviation (SCAD) penalty. The definitions of all three penalties are replicated in the
Appendix, for the interested reader. Intuitively, the MCP and SCAD are concave penalty func-
tions capable of shrinking pairwise differences to zero, and k controls the concavity of the penalty
function. As ¥ — 00, both penalties approach the L1 penalty as shown in Figure 1.
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Figure 1. The SCAD and MCP penalty functions with different « values.

Because the SCAD and MCP penalties are concave, they avoid over-shrinking large differences.
The large difference pairs are the pairs that should not be combined into groups, and for these
pairs it is optimal to apply smaller penalties. For this reason, the SCAD and MCP are known
to reduce biases in the estimated coefficients. As for the choice between SCAD versus MCP, we
preferred SCAD because it has a higher curvature near zero and hence is more likely to shrink
small coefficients to zero. Furthermore, SCAD gave the cleanest solution paths according to our
empirical analyses, so in the rest of this paper and in our implementation, we will assume the
penalty term is specifically the SCAD penalty.

To elaborate on this, a solution path is the curve one obtains by adjusting the tuning parameter
from a small value to a large value. We prefer that this curve is smooth (clean), without kinks,
because only then will the objective function for cross-validation have a smooth shape. Thus,
smooth solution paths imply the solutions change continuously as the tuning parameter is altered,
which is a desirable property for cross-validation purposes. Yet, even with the SCAD penalty,
we found it difficult to obtain nice solution paths in general, where a nice solution path is one
where the solution curves are smooth. The problem with the approach taken by Chen et al. (2019)
seemed to be that once the policies start forming groups, the group with the largest number of
policies start attracting all the other policies into its group. This is because of all the pairwise
penalty terms resulting in a large pull from all the policies forming the group. The pairwise penalty
approach has other difficulties in the estimation, namely the fact that the estimation algorithm
runs very slow when there are a large number of policies. If there are n policies, then there would
be (g) pairwise penalty terms. Instead, we propose penalizing the distance between the intercepts
of those policies that have similar intercepts. Specifically, we propose using the following penalized
likelihood to estimate the fixed effects &j and coverage specfic unobserved heterogeneity factors

0;=(6j1,...,0):"

I
fp(ocj,()jIDj,T) =Z(“j’ 0|Djr) — ZP (I3ﬁ|§ tj) ’ ®

i=2

"Note that we do not estimate nonrandom 6;; and nonrandom 6; simulataneously in our applications. Therefore, we
illustrate the proposed ADMM approach for estimation of only nonrandom 6j; in this section. One can apply essentially the
same algorithm with modest modification to estimate nonrandom 6;, as elaborated in Case 2b of Appendix D.
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where (o j» 0;D; 1) is the Poisson likelihood given by (2) with 6; =1,

N
p(18];7) = 27 ), min{2.7, (3.7 — x/7)+}dx, & —log —log 9]-’)‘,-71,

and 6 are the coefficients 6j; ordered by their initial values 9-(1-0):

min {9(0)} 9;;(0) < 9*(0) < 6*(0) max {Gj(io)} 4)
for each j. Note that we may define nji =log Gﬁ for notational convenience in the algorithm. For
a low-dimensional problem with a small number of policyholders, a generalized linear model
(GLM) may be used to figure out the initial values, which can be used to obtain the ordering of the
coefficients. For a high-dimensional problem, this approach becomes problematic, and our pro-
posal is to use a ridge-regression to obtain the ordering, where the tuning parameter is initially set
to a high value and eventually adjusted to a value close to zero. The reason for using ridge regres-
sion instead of lasso here, is because we would like to preserve all the coefficients while converging
to the initial values of the coefficients, for small values of the tuning parameter. Specifically, let

I T I
(o (O) 0(0)) = arg min |:Z Z (njit(x;-totj +log 0;;) — Ujitej,') —A Z ngi ”zj| (5)
;.0 i=1 t=1 i=1
for a very small (close to zero) tuning parameter A. The expression in Equation (5) is optimized
initially with a large A value (so that the coefficients form one big group), and the estimates for
the 0;;’s from the previous step are used as initial values for the subsequent estimates for a smaller
value of 1. The process is repeated until A is a very small number close to zero (small enough so
that it is numerically identical to zero). Because the ridge penalty does not introduce kinks into
the objective function, this optimization can be performed using standard maximum likelihood
estimation. Once the ordering is obtained, Equation (3) can be optimized for increasing values of
7j, where the optimal tuning parameter is selected by the one that maximizes the correlation of the
predicted claim frequencies with the true frequencies (because that particular tuning parameter
would be the one that performs the best in terms of prediction). In practice, this scheme would be
implemented so that for each j, we optimize

I
U3y, 8} 1D3r) = (e, 651031 = > p (187157 (6)
i=2
In this case, the augmented Lagrangian is given as follows:
L@, 07,8, A1 D) = — (@, 07 D) + Zp (1858:57) + W, )

where W; = Z Aji-1(log 0 —log 6%, — 87 + 2 Zi:Z (log6; —log 6 | — 8]?’;)2.

The problem w1th the naive Algorlthm shown in Appendix A is that the solution path is yet not
ideal, because the coefficients within the same group do not merge completely. This problem can
be fixed using an encoding of which policies belong to which group at each step s. This approach
is illustrated in Algorithm 1.

where
(a]’"]’s(S) )\-(S)) E (a], 77])+Zp 8(s)| T])+W(S) (8)
i=2
Py 2T
= —*(aj, "7)+EZ - =8+ 2 ve o)
i=2
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Algorithm 1: A modified ADMM for fast and stable parameter estimation

1. Set GJ(O) = Ir«J, an identity matrix of dimension I x I.

2. Obtain ocj(-o) and 0;-<(O) from Equations (4) and (5), and set ‘;‘Jf“(o) = G](O)n;f(o)

0 0 0 0 )
3. Set )\.](')i) =0and 8;( ) — nj*f ) _ ’7;5—)1 fori=1,---,I—1.
4. Repeat the following for t;, = Tyin, - - * > Tmax> Where Tpiy is close to zero:

(a) Repeat the following for s=0, 1,2, - - - until convergence:

i. Let (oc](-SH), wf(s+l)) =argminL (ocj, G](S)/g;k(s), 5](-5), )L](-s)) using Equation (8).

O(j,E;k(S)
ii. Set ;7;‘<5+1> - G]@)/,p;w),
fii. Obtain 81'()$i+1)’ GJ(SH)’ and §f(s+1) using Equations (10), (13), and (15),
respectively.
iv. Obtain 2" using Equation (12).

(b) Use the current estimates of the parameters as initial values for the t;, + 1th

step.

with a constant C,

ST(uji> T/ p) if Jujil < (1 +p7 1)
(s+1) ST(ujikcty/(k=1)p)) . _
3]'51' = W if (1 + p~1) < Jujil <k
Uji [uji| > Kk Th,
_ (1) (s+1) —14(5)
Wi == Mo oA

ST(u, ) = sgn(u)(Ju| — 1) 4,

(s+1) (s) (s+1) (s+1) (s+1)
)\j,si = )\j,si +p (77;1‘5 - 77* ) — 5]-,51- ) >

ji—1
and
(s+1) _ s+ (1) (s+D)y
G = g )
g;:'H) = g](jg, A(r) = {w:wis in the new rth group }
weA(r)

Here g; is the number of groups (number of rows in matrix GJ(S) at step s) and

(s+1) _ A(s+1) *(s+1)
§ =6 m

(10)

(11)

(12)

(13)

(14)

(15)

With Algorithm 1, the gradient and Hessian need to be modified, but it is a simple modification

as explained in Appendix C section.
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The proposed method can be used to capture the unobserved heterogeneity of the policyhold-
ers in diverse scenarios on the dependence structure of the insurance claims from multiple lines
of business. In that regard, we consider the following cases to elaborate how the proposed method
can be applied in the ratemaking practices:

e No interdependence among the lines,
e Perfect interdependence among the lines,
e Flexible interdependence.

In Appendix D, the details of these three cases are explained in full detail. In the following section,
we perform a simulation study to compare the different dependence cases in conjunction with the
ADMM estimation approach.

3. Simulation study

With the three cases illustrated in Section 2 and Appendix D, we are interested in which approach
performs better in different situations of data availablity. We perform a simulation study to seek
some answers. Here we assume that ] = 3 (trivariate coverage case), I = 1000, and T = 5.
Recall that vj; :exp(x;toc(j)) while we set x;; = (x1i, X2i, x3;)’. Here x7;; follows a student’s t-
distribution with degree of freedom of 30, corresponds to a continuous covariate such as age
or vehicle value. x,; is a Bernoulli random variable with probability 0.5 that might have varying
impacts depending on the coverage type for the same insured. For example, an outdated pick-
up truck may have higher risk in bodily injury and property damage liabilities but low exposure
on the collision due to relatively less vehicle value, which is vice versa for a compact luxurious
electric vehicle. Lastly, x3; follows a normal distribution with mean —0.5 and variance 1, which
corresponds to the territorial or individual risk score that affects all coverages simultaneously in
the same way, which could be available or not as a covariate. We also fixed a; = (—1, +0.3,0.1),
a)=(—1,-0.3,0.1),and 3 = (—1,+0.1,0.1).

Note that depending on the data collection scheme or company policies, it is possible that some
of the covariates that affect the claim frequency may not be available. In this regard, we assume
the following scenarios to fit ratemaking models:

Scenario 1: All covariates are available,
Scenario 2: x1;; and x;; are available,
Scenario 3: x1;; and x3; are available,
Scenario 4: Only x,;; is available.

Under each scenario, we used the data points {xi;, Njit |t=1,2,3,4} as a training set, which
were fitted with the following models:

e GLM without individual effects: Simple Poisson GLM and no consideration in the unobserved
factors, which is equivalent to 6j; = 1 and 6; = 1 for all i and j.

e Individual effects model: A model where 6¢;; are nonrandom and estimated by the pro-
posed ADMM approach while 6; =1 for all i and j. The details are explained in Case 1b of
Appendix D.

e Common effects model: A model where 6; are nonrandom and estimated by the proposed
ADMM approach while 6;; =1 for all i and j. The details are explained in Case 2b of
Appendix D.

e Boosted credibility model: A model where 6;; are nonrandom and estimated by the proposed
ADMM approach first, and boosted by the credibility estimate of random 6; for all i and j. The
details are explained in Case 3 of Appendix D.

e True model: A model that used actual vj;;, which is not attainable in practice but only provided
as an ideal benchmark.
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Table 1. Out-of-sample validation results with simulated Coverage 1

Scenario 1 Scenario 2 Scenario 3 Scenario 4
GLM without individual effects 2.6851 2.7409 2.6492 2.7052
|nd|v|dualeffectsmode| A 28210 R 23423 e 23276 e 28336
Commoneffectsmodel 36703 26462 25875 2625
Boosted credibility model 2.8269 2.8448 2.8377 2.8052
True mOde[ postusseAstoteeosos N 25515 e 26741 e 25438 e 25554

Table 2. Out-of-sample validation results with simulated Coverage 2

Scenario 1 Scenario 2 Scenario 3 Scenario 4
GLM without individual effects 2.1750 2.2427 2.2312 2.2979
|nd|v|dua|effectsmodel A 21927 S 21893 e 21599 T 21854
Common effects model 2.0942 2.1126 2.1562 2.1863
B‘oosit‘edi‘crét‘iibi‘lity‘modeli‘ - 2.1>94O - 2.1889 - >‘2.1‘745H - 2;1483
True mOde[ pestusseAstoeesses 21326 e 21970 e 21935 e 22081

Table 3. Out-of-sample validation results with simulated Coverage 3

Scenario 1 Scenario 2 Scenario 3 Scenario 4
GLM without individual effects 2.4593 2.5299 2.4423 2.5139
|nd|v|dua|effectsmode| A 24580 T 24500 . 24398 S 24384
Common effects model 2.3996 2.4367 2.3813 2.4251
Boostedcred|b|[|ty mode[ 24605 24573 24505 24366
_I._r.u é mode[ ....................... .2..4.31.3 ........... 24467 ........... 24254 ............ 2.‘44.1.0

After the models are fitted for each dataset, {xi;, Nji: | t = 5} was used to assess the model per-
formance via out-of-sample validation with root-mean squared error (RMSE), which is defined as
follows:

I
1 N
RMSE: Y El (NijS - Nijs)z.
1=

Note that we prefer a model with lower RMSE. Tables 1, 2, and 3 summarize the validation mea-
sures for all data availability scenarios and models. It is observed that the individual effects model,
common effects model, and boosted credibility models tend to perform better than the naive
model (GLM without individual effects) as the covariates become unavailable in Scenarios 2, 3,
and 4. Note that such improved performance is obtained at the expense of increased computation
costs as shown in the Tables E.1, E.2, and E.3 of Appendix E.

4. Data

It is often the case for actuaries to be in a situation, where limited explanatory variables are avail-
able besides the exposure variable for modeling the insurance claim frequencies. In this case, the
question arises: how would the insurer avoid overcharging those policyholders with little or no
claims, while charging a higher, fair, premium for those policies with a recurrently large number
of claims. By doing so, the insurer may be interested in avoiding adverse selection, and preventing
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Table 4. Summary of coverage amounts by year in millions of dollars

Year BC PN PO CN co IM

2006 32.335 0.176 0.532 0.094 0.270 0.772
2008 37118 0154 0613 0097 0287 0815
2009 40.239 0.148 0.674 0.102 0.334 0.903

Table 5. Summary of claim frequencies by year

Year BC PN PO CN co IM
2006 0.734 0.155 0.092 0.101 0.098 0.040
2010 1.098 0.216 0.126 0.154 0.125 0.062

low-risk policyholders from lapsing. Standard credibility approaches are available for this situa-
tion, allowing the actuary to vary the insurance rate depending on past experience, in addition
to the exposure variable in hand. Subgroup analysis methods present an alternative approach to
solve the same problem, where one may consider the subject-specific intercepts for the frequency
regression model as a target of regularization. Which approach performs better in terms of the
out-of-sample prediction accuracy would be the question of interest.

We first summarize the dataset used for the empirical analysis. We assume that the insurance
company carries multiple coverage groups of business. For the Wisconsin LGPIF dataset that we
use, there are six different coverage groups; building and content (BC), contractor’s equipment
(IM), comprehensive new (PN), comprehensive old (PO), collision new (CN), and collision old
(CO) coverage. Table 4 summarizes the coverage amount per policyholder per year for the six
different groups over time. The reader may verify that the building and contents coverage group
has the highest coverage amounts. Table 5 shows the average claim frequencies for each coverage
group per policy per year. Due to its comprehensive characteristics of the coverage, it is observed
that the number of BC claims per year is substantially higher than the number of claims from the
other coverages. For detailed description and marginal analysis results of the LGPIF dataset, see
Frees et al. (2016).

One may expect that the claim frequencies and coverage amounts are highly correlated, and
this is verified in Figure 2. The reader may verify that higher claim frequencies are related to
higher coverage amounts in general. This justifies using the log coverage amount as the expo-
sure variable. Note that in Figure 2, it is possible for a policyholder to have positive coverage with
zero claim. This is a unique feature of insurance claims datasets. Besides the coverage amount,
we assume that no other explanatory variables are available for the actuary. This imaginary setup
allows us to focus on the risk classification problem, where limited explanatory variables are avail-
able. This kind of situation may arise in practice quite naturally in, for example, a guaranteed
issue insurance product, where the insurance company is not allowed to underwrite or collect any
details regarding the policyholder. In the real dataset we have in our hands, there are in fact other
variables available, such as the geographical location, the county code, and the entity type of the
policy. Yet, we avoid using them in our analysis to mimic a situation where rating variables are
limited. In Section 5, we do provide a comparison of our method with and without the use of
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Table 6. Number of observations by the entity type variable

Entity type BC PN PO CN co IM
City 795 219 224 191 190 784
..County, e
T TR T T T
School 1,599 575 779 574 771 1,195
B o
"Vlllage‘ |
s
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Figure 2. Relationship between coverage amounts and claim frequencies.

additional entity type variables in the regression. For completeness, we include a summary table
of the sample sizes by the entity type variable in Table 6.

One of the main goals of our analysis is to figure out a way to prevent policyholders from
lapsing. Naturally, it is of interest to see if lapse behaviors are observed in the dataset. Table 7
shows that over time, the number of policyholders with each coverage is in general decreasing.
At the same time, the LGPIF has been experiencing a drop in the surplus ratio. The surplus ratio
is the ratio of the collected premium to the surplus, and it is a measure of the insurer’s financial
health. A surplus ratio below the company’s target ratio would indicate bad financial health. The
fact that this ratio has dropped in recent years makes the property fund manager wonder if there
is an alternative approach to the ratemaking problem. Hence, the presence of lapse may provide
motivation for the type of analysis we are about the present in this paper.

Figure 3 shows the Cox-Snell residuals for the claim frequencies observed for each policy-
holder. The Cox-Snell residuals are obtained by performing a simple Poisson frequency regression
of the claim frequencies on the exposure and obtaining the fitted distributions first. For example,
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Table 7. Number of policies with positive coverage each year

Year BC PN PO CN Cco IM
2006 1,159 359 453 334 424 935
2007 1,143 342 430 318 403 932
2008 1,130 321 422 298 397 922
2009 1,114 307 422 288 400 917
2010 1,098 309 411 291 389 906
o BC PN PO
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Figure 3. Histogram plots of the Cox-Snell residuals for a basic GLM.

if x;; are the exposures (say the log coverage amount) and n;; are the observed frequencies for pol-
icyholdersi=1,2,--- ,Iand timest=1,2,-- - , T, then one would perform a Poisson regression
with the specification

Nijitlxit ~ P(vjit)
where vjis = exp(x;re;), to obtain the parameter estimates @j for each coverage typej=1,2,--- ,]
and Poisson distribution functions P with means vj;;. The observed frequencies are then plugged

into the fitted cumulative distribution functions and plotted as histograms. In other words, the
Cox-Snell residuals are

Enj, (njit)

where ﬁl\@-n are the estimated cumulative distribution functions of the observed frequencies 7
of the random variables Nji;, having coefficients @;. The values are plotted as a histogram in each
of the panels of Figure 3. This is done as a preliminary analysis to see if there is evidence of the
need of subgroup analysis. It is an approach comparable to analyzing the deviance residuals as
done in Chen et al. (2019). Figure 3 shows that the residuals are not so uniform and instead have
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clusters between 0 and 1. This provides motivation to perform subgroup analysis to figure out if
the policyholders can be classified into homogenous groups for the ratemaking purposes.

5. Empirical results

To empirically illustrate which approach has the most advantage for the LGPIF dataset, we com-
pare five different approaches to performing a Poisson regression. The five different cases are
summarized in the list below. In each case, we may either include or not include the entity type
categories as explanatory variables, resulting in ten different special cases. The entity type cat-
egories include: city, county, school, town, village, and miscellaneous (six different entity type
categories).

e The basic GLM approach: This approach is a plain generalized linear modeling approach,
without individual or common effects. It will be used as a benchmark model, which we hope
to out-perform using the approaches described in this paper. This would be the case when
6; = 6;; = 1 in Equation (2), so that we simply have

Nijit|xje ~P (Ujit) , (16)

Note that x;; would include the log coverage amount, and the entity type categories, which are
the same across different coverage types. Yet, a different GLM is used for each coverage type,
and hence the subscript j. If the entity type categories are not used, then x; would include a
single covariate, which is the log coverage amount.

e The individual effects model: This is one of the ADMM approaches, where each of the six
lines is modeled separately with fixed policy-number effects. The details are explained in Case
1b of Appendix D.

e The common effects model: This is another ADMM approach, where we have perfect inter-
dependence among the different coverage groups. The details are explained in Case 2b of
Appendix D.

e The offsets model: This is a two-step approach, where the predictions from the individual
effects model are used as offsets in the regression model for the common effects model, hoping
that the second step common effects model will capture any residual common effects among
the different coverage groups.

e The boosted credibility model: This is a hybrid approach, where we have flexible interde-
pendence. The individual effects model is boosted with credibility factors. The details are
explained in Case 3 of Appendix D.

We now compare the basic GLM approach, the individual effects model, the common effects
model, the offsets model, and the boosted credibility model. Tables 8 and 9 compare the five dif-
ferent approaches. The hold out sample comparisons were performed after omitting new policies
for which experience does not exist. The optimal tuning parameters for the models using the
ADMM approach are determined using a fourfold cross-validation, where in each fold a particu-
lar year of data is used as the validation sample and the rest are used to fit the model. Computation
time was a critical issue in completing this project, and we found that a fourfold cross-validation
(as opposed to a ten-fold) was enough to deliver the results we wanted in a reasonable amount of
time. The model with the lowest validation sample Akaike Information Criteria (AIC) is selected
as the optimal model.

In Tables 8 and 9, the GLM without individual effects is a simple Poisson regression model. The
individual effects model predictions are obtained by concatenating the predictions from the six
different coverage groups (j=1, - - - 6) and comparing it with the hold out sample frequencies
from each coverage group. The same is true for the common effects model, the offsets model, and
the boosted credibility model.
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Table 8. Spearman correlations with the hold out sample frequencies

With entity type Without entity type
GLM without individual effects 0.509 0.453
|nd|v|dua[effects model e e e 0509 e 0474 S—
vCoh"]mv(‘)nve‘ffe(‘;ts;nodve[” N v0.5,0.8v. B s 0471
Individual and common effects using offsets 0.509 0.474
Boostedcred|b|[|ty mOdel st et 0510 e 0487 S
Table 9. Number of unique fixed-effect coefficients
With entity type Without entity type
GLM without individual effects 42 12
| invdi.\,vi.d.ué[.e.ffé{;'ts. model ................................ N , 3 .....
Commoneffectsmode[ S 37 e
Individual and common effects using offsets 79 35
Boostedcred|b|[|tymode| 42 23 B—

Table 10. Number of groups in the intercepts of the individual effects model

BC PN PO CN co IM
With entity type 1 1 1 1 1 1
Without entity type 4 5 5] 4 2 2

From Tables 8 and 9, we can see that the GLM and the individual effects model are giving the
same results. This is because with the entity type fixed effects present, the individual effects model
converges to the trivial model without any additional fixed effects. The resulting overall intercept
is exactly same as the intercept for the GLM model, and so are the other coefficients as well. We
can see that even the boosted credibility model does not show a particular advantage in this case.

Table 10 illustrates that with the entity type covariates present, the ADMM approach proposes
the trivial model without any subject-specific intercepts as the optimal models. This can be seen
in the first row, where the number of intercepts in the resulting model is 1 for all of the six cov-
erage groups. In the second row, we can see that if the entity type covariates are unavailable,
then the resulting optimal model has several groups in the intercepts. This is consistent with our
expectations from the preliminary analysis using the Cox-Snell residuals in Section 4.

The last column in the tables illustrate when and how our approach can be useful. The individ-
ual effects model without entity type would be used in an imaginary situation, where the analyst
only has a single exposure variable and no other predictors. In this case, the GLM model is out-
performed by the individual effects model, which uses 16 additional coefficients. The common
effects model seems to have not much added benefits. The boosted credibility model seems to be
the best one with 48.69% Spearman correlation with the hold out sample claim frequencies.

The solution paths for the individual effects models for the six lines are shown in Figures 4
and 5. Figure 4 shows the case when there are no entity type fixed effects, while Figure 5 shows the
solution path of the ’7;;‘ values for the model with entity type fixed effects.

To understand the figure intuitively, imagine changing the tuning parameter 7 from a small
value to a larger value. As the tuning parameter increases, more and more penalty is applied to
the likelihood function, forcing more coefficients to merge with one another. As the coefficients
merge more and more, the model contains less and less unique coefficients. At some point, there
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Figure 4. Solution paths for the six coverage groups without entity type predictors.
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will be an optimal model suggested by cross-validation, and that optimal model is indicated by
a vertical line in each panel of the figures. Note that each line would represent one coefficient in
the beginning, but that beginning point is now shown in the figures, so as to magnify the most
interesting part of the entire figure.

In the figures, we can see that the optimal model chosen by cross-validation contains only one
unique coefficient for the intercepts, indicating that the optimal model is the GLM (the optimal
tuning parameter is indicated by the solid vertical line). In Figure 4, we can see that the selected
optimal model contains more than one unique parameters for the ’7;;‘ values for each coverage

group.

6. Conclusion

In this paper, we presented an approach for enhancing the prediction from a GLM model by allow-
ing the model to have subject-specific intercepts. We have presented a modified ADMM algorithm
that uses penalties for adjacent coefficients only, as opposed to the pairwise penalty approach in
the original ADMM for subgroup analysis. Our approach runs faster with better looking solution
paths, and we have been successful at applying the approach to a real insurance dataset with more
than thousands of unique policyholders. The optimal number of unique intercepts is determined
by cross-validation, and in the empirical studies, we have demonstrated that the approach can be
further enhanced using a flexible interdependence approach among the coverage groups.

The benefits and costs of the ADMM approach are as follows: The first benefit of the ADMM
approach for the unobserved heterogeneity is that it can be flexibly applied to an actuarial appli-
cation regardless of the underlying distribution of N|6. For example, the response N|6 does not
need to follow Poisson but any frequency distribution such as zero-one inflated negative binomial
(Shi & Lee, 2022). Another benefit is that one can also use the approach to capture the unob-
served heterogeneity of random variables, whose dependence structure is described by a copula.
For example, one way this can happen is if one assumes a multivariate Gaussian copula with many
dependence parameters (due to the fact that there are many response variables). Each dependence
parameter may be a target for subgroup analysis. The disadvantage of the approach seems to be
the computation time. If N|6 indeed follows a Poisson distribution, then it could be more sensible
to assume that 6 follows a gamma distribution that leads to much simpler estimation and predic-
tion with closed form formulas. Nevertheless, the ADMM approach is conceptually simple, and it
provides a simple alternative to the Bayesian approach to credibility in case there is a reasonable
number of unique policies.

Our contribution in this paper is the following. First, we have presented a modified version
of the ADMM algorithm for subgroup analysis, allowing the penalties to be applied to adjacent
coefficients only, and allowing the number of unique coefficients in the model to decrease as the
iterations increase, allowing the algorithm to run even faster. Second, we have demonstrated how
the approach can be extended to a hybrid approach, so it allows for the flexible incorporation of
dependencies among different coverage groups for a multiline insurance company. Third, we pre-
sented a case study using the LGPIF dataset, where we compared the performance of the ADMM
approach with competing approaches with a full insurance claims dataset.

Possible future work may include the application of subgroup analysis to dependence models
involving copulas, where the dependence parameters for an elliptical copula are regularized using
pair-wise penalties similar to the one explored in this paper. Another avenue of future work may
be the exploration of subgroup analysis for other distributions, including but not limited to the
negative binomial, or zero-inflated versions of the frequency models often used in the actuarial
literature. For example, in Section 2, Equation (2), Imagine that P(v) is a Poisson distribution
with mean v, although our approach is general it is possible to work with other discrete distribu-
tions including the binomial or negative binomial distributions. It may be a little trickier with the
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Tweedie distribution, as the density function requires a big summation, and exploring this may
be interesting future work.
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Appendix A: The original ADMM algorithm

For completeness, we briefly introduce the algorithm used in Chen et al. (2019), which consid-
ered a simpler data structure compared to the one studied in this paper. They neither considerd
possible dependence among the lines of business nor serial dependence among the claims from
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the same policyholder so that J= T =1 in Equation (1) and 6; =1 in Equation (2) of the main
paper. The dataset that we studied is more complicated, because there are multiple coverage types
j=1,---,Jand timest=1, .-, T. Chen et al. (2019) target to maximize the Poisson likelihood
with a fused LASSO-type penalty, which is given as follows:

Cpletj, 0;1D;1) = £, 0 Dyr) = Y p (18uls 7)) (17)
1<i<I<I

subject to log 6; — log 6 = §j; for all 1 <i <1<, where

{(etj, 8j|Dj ) = N'Xaj + NjU; log (8)) — v;U;8; — C; (18)
and
=(n 1, jz, cee, ]/'1)/ and  nj; = (nji1, njin, - -+ » Mjir)’ (19)
X=X,X}---X) and X;j=(x},xp, - xip) (20)
( 1o 12’ s UJ/‘[)/ and U]z = ( J,) Jp s, ]z)T><I (21)
0;= 01,00, ,0;1) (22)
v; = exp(Xa;) (23)
1 T
and Cj = Z Z log (njit!) . (24)
i=1 t=1
The elements of e;; = (eji1, €jia, - - -, €jir) are basically vectors whose elements are all zeros except
for one entry:
1 ifi=lI

=0 ifil

and the exp( - ) and log ( - ) are element-wise functions in case the input is a vector. p( - ; T) can be
any concave penalty function and t is the corresponding tuning parameter. Examples of penalty
functions used are

(a) The LASSO penalty:

p(t;T)=tlt], (25)
(b) The MC (minimax concave) penalty:
ptT)=1 /t (1= x/(kT))sdx, K> 1, (26)
(c) The SCAD penalty: O
ptT)=1 /Otmin{l, (k —x/T)4+ /(c — D}dx, K > 2. 27)
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Figure A.1. An illustration of the potential difficulties of direct optimization.

One can observe that (17) is not smooth for certain values of the tuning parameter, which
hinders direct maximization of (17) via the use of popular optimization routines for convex opti-
mization. For example, with the LASSO penalty, one may observe that the negative log-likelihood
function has a kink as in the right panel of Figure A.1, for certain values of the tuning parameter:

In that regard, Chen et al. (2019) used a version of ADMM algorithm that uses the following
augmented Lagrangian as the objective function:

L(aj, 05, 8), M| Djr) = — (e, 01D r) + Y p (I8l 1) + W,

1<i<I<I

where W; =", _; ;1 Aji(log 0 —log 65 — &) + 5 3~ ;11 (log 6 — log 6 — Bjil)z. Here Aj;
is Lagrange multiplier that corresponds to the equality constraints and p is a hyperparame-
ter that controls smoothness of the augmented Lagrangian with an additional quadratic term.
According to Boyd et al. (2011), addition of the quadratic term makes the augmented Lagrangian
differentiable under mild conditions and facilitates better convergence of the algorithm.

This results in the naive version of the ADMM algorithm are shown below.

where
I
() 3Oy _ gy ), . ()
Lej, 1}, 857, A7) = =8 (e, m)) + Y pl18;75 1) + W, (28)
i=2
P ! 3 1 2
:—E*(aj’ )+ = Nt — 77*'_1 —5(5)_1 + i +C, (29)
where C is a constant, and 772 ; peH 7
ST(uji» Th/ p) if Jujil < (1 +p7 1)
+1 ST (ujisktn/((k=1)p)) . -
oiT = Y1+ p7Y) < Jujal < ke (30)
Uji [t i| > Kk Th,
1 1 -
Ui = 77;,51‘+ - ”;,Sitl) o 1)‘1(,51')’

(31)
ST(u, 7) = sgn(u)(|ul — 7).,
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Algorithm 0: A naive ADMM algorithm for parameter estimation

1. Obtain the initial values a(o) and )1] ) from Equations (4) and (5) of the main paper.
2.5et Al =0and 871 = n}{” — /) fori=1,- - ,I—1.

3. Repeat the following for 7, = Tpmin, * - * » Trmax> Where Tpiy is close to zero:

(a) Repeat the following for s =0, 1, 2, - - - until convergence:

i. Let ( (s+1), n;‘(SH)) =arg rorimL (ozj, n; ,3(5), k;”) using Equation (28).

ii. Obtain SE;H) using Equation (30).
iii Obtain A} " using Equation (32).

(b). Use the current estimates of the parameters as initial values for the 7; + 1 step.

and
)L(s+1) A(s) ¥p (nj*z(s-i-l) _ ’7]*z(stl) _ 5]-(,5,-“)) _ (32)
To see the equality between Equations (28) and (29), note that expanding the right-hand side
of (29), we see that
o d A 1 2
() 4 (s 7 ( ) iz
i=2
p d p L4 1 2
7 (s) iz
=—0%(a, 777) + 3 Z (’7;;‘ - rl;:i—l - 5]',5,- )+ 5 Z e
i=2 i—2
I 56
i—1
+2X_Z & Wi = i1 = 8+ C
b d U 2
7 (5)y2 piz
=—0%(a, ﬂf) + Y Z (’7}:‘ - Tlﬁi_1 - 5]-,51- )"+ 5 Z e
i=2 i—2

= (amHZP (18515 ) + Wy
i=2

where, the last equality holds if
L9\

1
). P Zjpi-1
i=

i—2
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Note that terms with superscript (s) can all be considered constant. Here k controls the shape
of SCAD penalty, which was set to 3.7 in the original work of Fan and Li (2001), but also could
be determined by cross-validation. 7j, corresponds to the magnitude of the penalty term so that as
Tj, increases 8( 9) is more likely to shrink to zero, which implies the discrepancy M s+ and nj*l(s'ql)
also shrinks to zero. The choice of p determines the smoothness of the objectlve function, and it
is left to the modeler. In our case, it has been set to 5 after trial and error. We acknowledge that
we do not have a statistical approach to selecting the optimal p (neither did the orignal authors
of the ADMM paper) and leave this as future work. The real problem with Algorithm 0 is that
the solution path is yet not ideal, because the coefficients within the same group do not merge
completely, which gives rise to need for a more efficient algorithm as proposed in the main paper.

Appendix B: Derivation of the gradient and Hessian

For fast computation of the ADMM algorithm, an analytic expression for the gradient and Hessian
of the likelihood function is required. Here, we replicate Equation (18) and the ADMM objective
function.

1
L(etj, 07, 8, A|Djr) = — (@, 071D;1) + Y p (185l 1) + W,
i=2

where
E*(Otj, 0J*|D]T) = N]/-X(Xj + N}Uj log (01*) — v]’-UjH;-“.

To write the gradient down, one can first observe that W; can be written as a function of 17]?’;(: =
log Qj’; as follows:

2 ep
]k 1( ]k 1 ]k 1)+ (7] ]k 1 Sj,k—l) +C;kk ifk=1I
‘/V](rlﬂ;(): ]k l( ]k 1 8]*1( 1)+)\'*( ;kk-‘rl 7() (33)
p .
J (77 Jk ) Sj,k—l) +5 (77],kJrl ]k 8}’;{) CJ’.*k ifl<k<I
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Mgy — 8+ 50y, — My — 807+ G, ifk=1
where 8C* /Oy k= =0 and it leads to
p (= — 85+ ifk=1
ik~ Mik—1 " k-1 .
31/\/] _ * * 8* k;k—l * * (S* )L;k fl k I (34)
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J
* * §* )";‘k ifk=1
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) o [ﬂ{k’zk} - ]l{k’:k—l}] ifk=1I
—8 Wi _ 2.1 1 1 ifl<k<I 35
377 877 '0[ C K=k} T HK=k-1} T {k’=k+1}] nIl<rk< (35)
o [Lge=ky — Lig=ks1}] ifk=1
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It is also easy to observe that

9L

1
S =2 (e — O = NJX — X'diag ( ) Ujb?, (36)
] i=1 t=1
0 o o 0L
= 2 e = . 5 =NJU; = U dig(@)) @)
azé'* 1 T
W =— Z Z 9].’;‘ VjitXigXj; = —X’diag(vj’-) . diag(Uj0;-‘)X, (38)
i=1 t=1
920" :i: 920"
7 VikeXe0y, ———— = —X'diag(v))U;diag(67), (39)
deimy = TR baon; PR
32e*
oy = = diag (—v]/» Ujdiag(();k)) , (40)
nron;

Using these expressions for the optimization routine helps improve the convergence of the
algorithm and reduces computation time significantly.

Appendix C: Modified gradient and Hessian
With the modified algorithm (Algorithm 1 in the main paper), we simply use the fact that we have

so that using chain rule, we may write the gradient and Hessian in terms of E}k:
920 920
= G, (42)
dotjO; (80@817}") J

920+ 920+
- =Gj - | G; (43)
07 0E7 oy oy

Note that the rows of Gj are indicators of the elements within a specific group of coefficients, and
the length of 5;‘ is equal to the number of unique coefficients left inside the model.

Appendix D: Dependence cases

In the main text of the paper, three different dependence cases are considered. The details of these
three cases are explained in full detail here.

Case 1. No interdependence among the lines

In the first case, we do not assume any type of interdependence among (Nyjy, . . . , Nji) for each
ofi=1,...,Jandt=1,..., T and estimate o and Oji only using the observations of claims and
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policy characteristics from jth line of business. In other words, we use the following longitudinal
dataset for estimation of &; and 6j; and no inter-line dependence is considered:

Djr= {(ﬂjit, Xit)

In this case, we do not consider the effect of 6;. For this reason, it may be thought of as if ; = 1 is
fixed. There are two subcases to the no-interdependence case:

i=1,...,I,t=l,...,T}. (44)

Case 1a. When 6;; is random

We assume 6j; follows a gamma distribution with unit mean. More specifically, 6;; ~ G(rj, 1/r}) so
that E[0;;] = 1 and Var[6};] = 1/r;. Due to the conjugacy of Poisson and gamma distributions (see
Jeong & Valdez, 2020), it turns out that

i+ iy nii
i+ v
which captures the posterior expectation of the unobserved heterogeneity of the policyholder i on
coverage j. Note that r; can be determined in two ways. First, r; can be interpreted as degree of
dispersion in 6;;, which is unobserved heterogeneity in the claim frequency. In this regard, one
can assign a value for 7; so that the range (for example, 95% highest posterior density interval) of
6ji can be in certain level as discussed in Page 6 of Jeong (2020).

Second, one can use a method of moments estimator to retrieve the value of r;. If we assume
that6; = 1 and Gij ~g (rj, 1/ rj) where 9,-j are independent of each other foralli=1,. .., and fixed

j, then E [Zthl Njit] =Y/, vjit and Var [Zthl Njit] Yo viie + (Ei IU’”) so that E[z;;] =
1/rjand zj; (i=1, ..., I) are independent observations where
T T
(D1 Njit = 2oy Vi) Zt 1 Vﬂf
(Zt 1 Vjit)?

E[6;iDj,r] = (45)

Zj,’ =

which lead to the following estimate of r;:

I
-
> i1 i
Once r; is specified in either way, the predicted claim frequency can be written as follows:

Niit+1 = E[Njir111D;7] = Vi 71 E[0: D 71 - E[6;] Dy ]

H+ Y nii (46)
i+ i Dji
where we have assumed 6; = 1 with probability 1, which is basically an assumption that the claims
experience from each line is independent from one another.

Note that one can use different distributions instead of gamma distribution to describe the
behavior of random 6;; as long as [E[0};] = 1 for an identifiability issue. For more details on the

use of distributions for random 6;; other than gamma when Nj;¢|6;; follows a Poisson distribution,
please see Tzougas (2020) and Tzougas and Makariou (2022).

A

1’j=

= exp(x; 7., &) -

Case 1b. When 6;; is nonrandom

In this case, there is no assumed structure in 6;;, so we may consider finding the point estimates
of @; = (61, . . ., 0)r) via the proposed ADMM algorithm. For the identifiability issue, 61 was set 0
for all j.
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After the estimates of &; and 6;; are obtained, the predicted claim frequency will be written as
follows:

Nji,T+1 = exp(X] 1,1 @) - é]z (47)

Case 2. Perfect interdependence among the lines
In this case, we assume there is only a common unobserved heterogeneity factor for each

policyholder so that 61; = - - - = 6;; = 1. In this case, we have
Nijit|xit, 0; ~ P (vjit; ) » (48)
for all 4, t, and j and we estimate (a1, . . ., &, ;) simultaneously using the multiline dataset.

Case 2a. When 6; is random
We assume that §; ~ G(r, 1/r) so that E[6;] = 1 and Var[6;] = 1/r. Due to the conjugacy of Poisson
and gamma distributions (see Jeong & Dey, 2023), it turns out that

J T
T i = Mt

E[6i|Dr] = T ,
r+ Z}:l =1 Vjit

(49)

where Dy = {(nl,-t, NN (TTH n]it,xi,) i=1,...,Lt=1,..., T}.Itcaptures the pooled pos-

terior expectation of the common unobserved heterogeneity of the policyholder i. Therefore, the
predicted claim frequency will be written as follows:

A

Njir+1 = E[Njir+1|D1] = Vi 711 E[6:| D]
J T

D i et Mjit (50)
J T :

r+ Zj:l D=1 Vit

= exp(x; 14, &)) -

Case 2b. When 6; is nonrandom
In this case, there is no assumed distributional structure in 6; so we find the point estimates of
0 = (01, . .., 6r) by maximizing the following penalized likelihood:

£y(e, 0]Dr) =

J
]:

T
Z Z (njie (0t + log (6;)) — vjir6;" — log (njit))
1i=1 t=1
I
- Zp (Ilog6; —log 6/ |1;7).

i=2

Since the only difference between the above penalized likelihood and (3) in the main paper is
that 0;; are replaced with 6;, one can use the proposed ADMM algorithm with modest modification
to estimate o, #. Note that (48) is already of full-rank as long as J > 2 or J > 2 for each i, which
is easiliy satisfied in our simulation study and empirical analysis so that they is no identification
issue either. In that case, the predicted claim frequency will be written as follows:

. LA
Nji,r+1 = exp(x; 7, ,@;) - 0;.
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Case 3. Flexible interdependence
In the third case, we have

Niit|%it, 0, 6; ~ P (v;ib;i0; ) » (51)

where 6; accounts for the common unobserved heterogeneity of policyholder i shared by all cov-
erages. This is an experimental two-step approach, where we boost the risk classification model
using common effects 0;. The main idea of boosting the risk classification model stepwise is to
add common unobserved heterogeneity upon observed covariates and coverage-specific unob-
served heterogeneity. We assume 6j;; is nonrandom but 6; is random. The step-wise approach is
the following:

1. We find the nonparametric estimates of 6;; for j=1,...,J and i=1,...,I, as in Case 1
(when 6j; are nonrandom), while ¢; is not considered in this step. In other words, 6; = 1 with
probability 1.

2. After that, we assume that 6; follows G(r,1/r), which leads to the following posterior
distribution and Bayesian premium:

-1

T ] T
T@OID0)~G [ DD Nubji+r, | DY viubi+r ; (52)

t=1 j=1 t=1 j=1

Zt 1 Z _y Njubji +r
E[I\rji,T+1 |Dj,r] = Vji,TJrlG]z [‘91|D] Tl = Vji, T+19]1 7 > (53)
j=1 Ujiteji +r

where éj,- are estimated in the first step. In this case, we assume there are unobserved heterogeneity
factors of the coverages for each policyholder that are intertwined in a way.

Appendix E: Tables

Table E.1. Computation time for simulated Coverage 1 (in sec)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
GLM without individual effects 0.01 0.01 0.01 0.01
Individual effects model 68.97 58.08 58.59 83.38
‘commoneffectsmode[ [ 4970 4640 73707141 .
| Bédsfe'd"c}édibﬁ[fty model .............. 6899 ............ 5810 ............ s 861 ............. 8340 .

Table E.2. Computation time for simulated Coverage 2 (in sec)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
GLM without |nd|V|dual effects 0 01 0 01 0 01 0 Ol
‘|nd|v|dua|effects model R 71 57 e 58 69. e 83 64.. e 81 62 .
‘Common effects mode[ e 49.70 e 46.40. e 73.70 [ it .
Boosted credibility model 71.59 58.71 83.66 81.64
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Table E.3. Computation time for simulated Coverage 3 (in sec)

Scenario 1 Scenario 2 Scenario 3 Scenario 4
GLM without individual effects 0.01 0.01 0.01 0.01
|nd|v|dualeffect5mode| R 5785 e 5994 e 9302 e 8131 .
Commoneffectsmodel e 4970 e 4640 e 7370 e 7141 .
Boosted credibility model 67.87 59.96 93.04 81.33
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