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Rectifiability of Singularities

There is a huge literature on singularities of solutions to geometric variational,
and other, problems. Here we only briefly present some results and ideas re-
lated to rectifiability. We first discuss currents and varifolds and then harmonic
maps. The methods for both are rather similar and we give a few more details
in the latter case. These topics have a good bit in common with the other topics
we then discuss.

15.1 Mass Minimizing Currents and Stationary Varifolds

Recall Chapter 13 for the notation and terminology. De Lellis’s survey [161]
gives an excellent up-to-date view of this wide topic. Currents give a very
convenient setting for the Plateau problem for orientable surfaces. Let B ∈
Rm−1(Rn) with ∂B = 0 and with finite mass. Then there are currents T ∈ Im(Rn)
with ∂T = B, for example, cones over B. We say that such a T is mass mini-
mizing if M(T ) ≤ M(S ) for all S ∈ Im(Rn) with ∂S = ∂T . For the important
local and homological minimizers, see [203, 297, 397]. The existence of mass
minimizing currents follows from the compactness Theorem 13.5 together
with the easy facts that mass is lower semicontinuous and the boundary op-
erator is continuous. How much can we say about their regularity?

Definition 15.1 Let T ∈ Dm(Rn). A point x ∈ spt T \spt ∂T is called a regular
point of T if it has a neighbourhood U such that spt T ∩U is an m-dimensional
smooth submanifold of Rn. Otherwise x is called a singular point of T . The set
of singular points of T is denoted by Sing(T ).

Often the singular set is empty, but not always:

Theorem 15.2 Let T ∈ Im(Rn) be mass minimizing.
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130 Rectifiability of Singularities

(1) If m = 1 or m = n − 1 ≤ 6, then Sing(T ) = ∅.

(2) If m = n − 1 ≥ 7, then dim Sing(T ) ≤ m − 7.

(3) If m ≥ 2, then dim Sing(T ) ≤ m − 2.

The bounds in (2) and (3) are sharp.

(1) was proved by Simons in [403]. The cases m = 2, by Fleming, and m = 3,
by Almgren, were done earlier. An example showing the sharpness in (2) in
R

8 is the current induced by the cone
{

x ∈ R8 : x2
1 + · · · + x2

4 = x2
5 + · · · + x2

8

}

.
It has a singularity at the origin and it was shown to be mass minimizing (lo-
cally) by Bombieri, De Giorgi and Giusti in [70], see also [227]. Cartesian
products with Rn−8 give higher-dimensional examples. Examples for (3) are
obtained by complex analytic varieties, which also minimize area. For exam-
ple,

{

(w, z) ∈ C2 : w2 = z3
}

has a genuine branch point at the origin. The
estimate (2) was proved by Federer in [204] and (3) by Almgren in his mas-
sive more than 1,000-page paper, which appeared as a Princeton University
preprint in the early 1980s and was published in [10]. One of the key tools,
due to De Giorgi and Reifenberg, in codimension 1 regularity theory is the ap-
proximation by graphs of harmonic functions. In higher codimensions this is
not possible, for example, because of the complex analytic varieties. To over-
come this, Almgren developed a theory of multivalued functions minimizing
the Dirichlet integral. Much of Almgren’s work has been simplified and ex-
tended by De Lellis and Spadaro, see the surveys [160,161] and the references
given there.

So the singular sets are small but their structure is a big open question. As
above, in all known examples they are quite nice, but in general it is not known
if they could be some kind of fractals. However, see the comment at the end of
this section. Simon proved the following in [399]:

Theorem 15.3 If n ≥ 8 and T ∈ In−1(Rn) is mass minimizing, then Sing(T )
is (n − 8)-rectifiable.

The proof has similar ingredients as the proof of Simon’s Theorem 15.6
for harmonic maps, which we shall discuss soon. In particular, the monotonic-
ity formula, tangent cones and the general form of Theorem 4.22 play decisive
roles.

De Lellis, Hirsch, Marchese, Spolaor and Stuvard thoroughly investigated
the rectifiability and more detailed structure of the singular sets of mass mini-
mizing currents mod p. See [163] and the references given there.

Much less is known about the singular sets of stationary m-varifolds, not
even if they haveHm measure zero. The best known result is still due to Allard
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15.1 Mass Minimizing Currents and Stationary Varifolds 131

[7] saying that the regular set is an open dense subset of the support. However,
the stratification can be used to obtain relevant information about the singular-
ities, for both currents and varifolds. Let v be an integer multiplicity rectifiable
m-varifold in Rn. A varifold cone C is said to be k-symmetric if there exists
V ∈ G(n, k) such that C is V × C′ for some cone C′. Then the kth stratum of v
is

S k(v) = {x ∈ spt v : no tangent cone of v at x is (k + 1)-symmetric}.

So S 0(v) ⊂ · · · ⊂ S m−1(v) ⊂ Sing(v). Almgren [10] had proved in the 1980s
that dim S k(v) ≤ k. Naber and Valtorta [359] proved much more:

Theorem 15.4 Let v be an integer multiplicity rectifiable m-varifold in Rn

whose first variation is a Radon measure. Then for k = 0, . . . ,m − 1, S k(v)
is k-rectifiable. Moreover, for Hk almost all x ∈ S k(v) there exists a unique
V ∈ G(n, k) such that every tangent cone of v at x is of the form V ×C for some
cone C.

Note that the last statement does not mean that the tangent cones at x would
be unique.

For mass minimizing integer multiplicity rectifiable (n − 1)-currents T in
R

n, Simon proved, in addition to Theorem 15.3, that the whole singular set
agrees with the top stratum: Sing(T ) = S n−8(T ). We shall see other results
like this later in this chapter. For mass minimizing currents of codimension
bigger than 1, S m−1(T ) need not be the whole singular set. For example, for
{

(w, z) ∈ C2 : w2 = z3
}

the origin is a singular point but there is a unique 2-
plane tangent cone. However, with multiplicity 2 > 1, which is the reason why
this can happen.

As for harmonic maps (see below) a key feature in Naber and Valtorta’s
method is to consider quantitative stratifications; no tangent cone in a ball is ε
close to a symmetric cone. The proof is rather similar to that of Theorem 15.7.
Their method also gives a new proof for Theorem 15.3.

If the Euclidean metric is perturbed to a suitable C∞ metric d, the singu-
lar sets can be quite wild, as shown by Simon in [401] and [402]: if N ≥
7, l ≥ 1 and K ⊂ Rl is compact, he then constructed minimal hypersurfaces in
(

R
N+1+l, d

)

with singular set {0}×K. The very complicated and technical proof
is mainly based on PDE methods; singular solutions of the symmetric minimal
surface equation, see [208], are the building blocks of the construction.
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132 Rectifiability of Singularities

15.2 Energy Minimizing Maps

Let Ω be an open subset of Rn and N a Riemannian submanifold of Rp.

Definition 15.5 A map u : Ω → N in the Sobolev space W1,2(Ω,N) (that is,
u ∈ W1,2(Ω,Rp) and u(x) ∈ N for almost all x ∈ Ω) is energy minimizing if for
every ball B(x, r) ⊂ Ω,

∫

B(x,r)
|Du|2 ≤

∫

B(x,r)
|Dw|2 (15.1)

for all w ∈ W1,2(Ω,N) such that w = u in a neighbourhood of ∂B(x, r).
The regular set, Reg(u), of u is the set of points x ∈ Ω such that u is C∞ in

some neighbourhood of x. The singular set, Sing(u), of u is Ω\Reg(u).

Then x ∈ Reg(u) if u is continuous in some neighbourhood of x, cf. [393,
p. 309].

Energy minimizing maps satisfy a Laplace-type equation generated by the
restriction that the target is N. If n ≤ 2, these maps have no singularities, but
already when n = 3 and N is a two-sphere they occur: u : R3 → S 2, u(x) =
x/|x| is energy minimizing and it has a singularity at the origin. Then un:
R

n → S 2, n > 3, un(x) = u(x1, x2, x3) is energy minimizing in Rn with an
(n − 3)-dimensional singular set. This is sharp: Schoen and Uhlenbeck [393]
showed that the Hausdorff dimension of Sing(u) is at most n−3. Simon proved
in [398], see also [400], the following much stronger result:

Theorem 15.6 If n ≥ 3, N is real analytic and u : Ω→ N is energy minimiz-
ing, then Sing(u) is (n − 3)-rectifiable.

The proof is ingenious and very complicated. We try to give some flavour of
it. The book [400] gives a detailed exposition, also of the background material.
In the end, the rectifiability is obtained by showing that essential parts of the
singular set satisfy the assumptions of Theorem 4.22, that is, the ε approxima-
tion by (n − 3)-planes and the gap condition. Or rather, the assumptions of a
generalization of Theorem 4.22 where additional exceptional sets are allowed.
But it is a long way to get there.

Let u : Ω → N be energy minimizing. For much of what is said below
the real analyticity of N is not needed and Simon proved some partial results
in the general case. There is some PDE theory involved, which, in particular,
gives that there is ε(n,N) > 0 such that if u : Ω → N is energy minimizing,
B(x, r) ⊂ Ω and r2−n

∫

B(x,r)
|Du|2 < ε(n,N), then x ∈ Reg(u). This gives almost

immediately that the singular set of u has locally finiteHn−2 measure and with
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15.2 Energy Minimizing Maps 133

a little more work one finds that Hn−2(Sing(u)) = 0. But the bound n − 3
requires further effort.

Two basic tools are analogous to those we met in Allard’s rectifiability the-
orem for varifolds: the monotonicity formula and tangent maps. The mono-
tonicity formula now takes the form

s2−n
∫

B(x,s)
|Du|2 − r2−n

∫

B(x,r)
|Du|2 = 2

∫

B(x,s)\B(x,r)
|y − x|2−n|∂ y−x

|y−x|
u(y)|2 dy

(15.2)
when 0 < r < s and B(x, s) ⊂ Ω. In particular, the density

Θu(x) = lim
r→0

r2−n
∫

B(x,r)
|Du|2 (15.3)

exists. The proof of the monotonicity formula is based on the variational equa-
tion which u satisfies.

A useful property of the density is that it is upper semicontinuous. We have
also that x ∈ Reg(u) if and only if Θu(x) = 0. One direction follows from the
above ε(n,N)-property and the other is trivial.

Set ux,r(y) = u(x + ry) when x, x + ry ∈ Ω. A map ϕ : Rn → N is called
a tangent map of u at x if there is a sequence ri > 0 tending to 0 such that
ux,ri → ϕ locally in W1,2(Rn). The boundedness of the density ratios, due to
the monotonicity formula, and a compactness theorem yield that tangent maps
always exist. White showed in [437] that in general they need not be unique,
but it is an open question whether they are unique when the target N is real
analytic. See [346] for a discussion on this and related issues.

The tangent maps are energy minimizing and they have other very useful
properties. First,

Θu(x) = Θϕ(0) = r2−n
∫

B(0,r)
|Dϕ|2 for all r > 0.

From this, one concludes with the monotonicity formula for ϕ (since the left,
and hence also the right, hand side now is 0) that

ϕ(λx) = ϕ(x) for all x ∈ Rn, λ > 0, (15.4)

and that x ∈ Reg(u) if and only if there is a constant tangent map at x. A little
more calculus gives that Θϕ(x) ≤ Θϕ(0) for all x ∈ Rn and that

S (ϕ) :=
{

x ∈ Rn : Θϕ(x) = Θϕ(0)
}

is a linear subspace of Rn such that ϕ(x + y) = ϕ(x) for x ∈ Rn, y ∈ S (ϕ).
Moreover, S (ϕ) = Rn if and only if ϕ is constant; otherwise, S (ϕ) ⊂ Sing(ϕ).
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134 Rectifiability of Singularities

AsHn−2(Sing(ϕ)) = 0, we have dim S (ϕ) ≤ n−3 for any non-constant tangent
map ϕ.

Let x ∈ Sing(u) and δ > 0. Then there is 0 < ε < Θu(x) such that for every
0 < r < ε there is an (n − 3)-dimensional affine plane V for which

{

y ∈ B(x, r) : Θu(y) ≥ Θu(x) − ε
}

⊂
{

y : d(y,V) ≤ δr
}

. (15.5)

Recall that for any tangent map ϕ the set S (ϕ) is contained in an (n − 3)-
plane. Inclusion (15.5) is not immediate from this, but not very difficult either.
The upper semicontinuity of the density plays a role here.

Inclusion (15.5) gives an approximation of the singular set with (n − 3)-
planes and one can deduce from it that dim Sing(u) ≤ n − 3. But to conclude
rectifiability with something like Theorem 4.22 we would still need the gap
condition. That is the hardest part of the proof. Roughly speaking (very
roughly), suppose we start with (15.5) at some x at some scale r such that
there are no gaps in a range of scales below r. Then many technical integral
estimates on the derivatives of u imply that at these scales u is L2 close to a
map ϕ as in (15.4), which gives the required approximation at smaller scales
with planes parallel to V .

Naber and Valtorta proved in [356] with different methods further deep re-
sults on the structure of the singular sets, recall their similar results for varifolds
from the previous section. Define

S k(u) =
{

x ∈ Sing(u) : dim S (ϕ) ≤ k for all tangent maps ϕ of u at x
}

.

Then we have the stratification of the singular set

S 0(u) ⊂ S 1(u) ⊂ · · · ⊂ S n−3(u) = S n−2(u) = S n−1(u) = Sing(u).

The equalities follow from the fact, which is essentially mentioned above, that
dim S (ϕ) ≤ n − 3 if and only if x ∈ Sing(u).

By what was said about S (ϕ), x ∈ S k(u) means that no tangent map ϕ of u
at x is (k + 1)-symmetric. A tangent map ϕ is k-symmetric if there is V(ϕ) ∈
G(n, k) such that ϕ(x + y) = ϕ(x) for x ∈ Rn, y ∈ V(ϕ).

Schoen and Uhlenbck proved in [393] that dim S k(u) ≤ k; similar arguments
that gave dim Sing(u) ≤ n− 3 apply. Naber and Valtorta proved in [356], with-
out assuming real analyticity,

Theorem 15.7 If u : Ω→ N is energy minimizing, then S k(u) is k-rectifiable
for k = 0, 1, . . . , n − 3.

This gives a new proof for Simon’s Theorem 15.6. They also prove the result
more generally for stationary maps, and in [357] for a larger class of approx-
imate harmonic maps. The latter paper has some simplifications of the proof
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15.3 Mean Curvature Flow 135

of Theorem 15.7. In addition, these papers contain many other significant re-
sults. A key feature in their method is to consider quantitative stratifications;
no tangent map in a ball is ε close to a symmetric map. For these, they proved
volume estimates for the r-neighbourhoods of S k(u) which in particular yield
the bound k for the Minkowski dimension. They also showed that the plane
V(ϕ), mentioned above, is independent of ϕ.

The density ratios are again one of the key factors. Setting
Θu(x, r) = r2−n

∫

B(x,r)
|Du|2, it is shown for any finite Borel measure μ that if u

is not ε close to any (k + 1)-symmetric map in B(0, 8), then

inf
V k−plane

∫

d(x,V)2 dμx �
∫

(Θu(x, 8) − Θu(x, 1)) dμx. (15.6)

Scaled versions of this are applied with μ a discrete approximation of the Haus-
dorff measure. They give volume estimates. Based on (15.6), rectifiability is
derived from Reifenberg-type theorems, recall Section 4.7 and Theorem 6.4.
The proofs involve complicated covering and induction arguments.

Defect measures provide one of the tools: by compactness, any bounded
sequence (ui) in W1,2 has a subsequence (ui j ) converging weakly in W1,2 to u
such that |∇ui j |2 converges weakly to a measure |∇u|2 + ν.

Theorem 15.8 If (ui) is a sequence of stationary maps in Rn converging
weakly in W1,2 to u and |∇ui|2 converges weakly to |∇u|2 + ν, then u is sta-
tionary and the defect measure ν is (n − 2)-rectifiable.

This was proved by Lin in [295], see also [296]. The methods have some
similar ingredients as those in Sections 4.3 and 4.4, but Lin gives independent
proofs relying on facts at hand.

De Lellis, Marchese, Spadaro and Valtorta [164] and Hirsch, Stuvard and
Valtorta [234] proved for Almgren’s multivalued functions results analogous
to Theorem 15.6. Alper proved in [11] that the zero sets of harmonic maps
from three-dimensional domains into a cone over the real projective plane are
1-rectifiable. In [12], he showed that the singular set of the free interface in an
optimal partition problem for the first Dirichlet eigenvalue in Rn is (n − 2)-
rectifiable.

15.3 Mean Curvature Flow

A one-parameter family {Mt, t ≥ 0} of compact surfaces moves by mean cur-
vature if the normal velocity of Mt equals the mean curvature vector at each
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136 Rectifiability of Singularities

point of Mt. We first discuss the case where the initial surface is a smooth hyper-
surface M0 in Rn. Then the flow is governed by a heat equation-type partial
differential equation: if F : M0 × [0,T ] → Rn parametrizes part of the motion,
Mt = F(M0 × {t}), then ∂tF = H. Here H is the mean curvature vector of
Mt, which also is a Laplacian of F in the metric of Mt. Then the area of
Mt is decreasing and singularities will appear. For instance, a sphere shrinks
into a point and a cylinder into a line. See, for example, the survey [119]
of Colding, Minicozzi and Pedersen and the book [304] of Mantegazza for
many interesting phenomena. Here we only briefly discuss the result of Cold-
ing and Minicozzi [118] on the rectifiability of singularities.

A point (x, s), x ∈ Ms, s > 0, is a singular point of the flow (Mt) if {(y, t), y ∈
Mt, t > 0} is not a smooth manifold in any neighbourhood of (x, s). Let S ⊂
R

n × [0,∞) be the set of singular points. The flow (Mt) is called mean con-
vex if M0, and hence every Mt, has non-negative mean curvature. White [440]
showed that for them the singular set has parabolic (and so also Euclidean)
Hausdorff dimension at most n − 2. Colding and Minicozzi proved for such,
and more general, flows that the singular set is (n − 2)-rectifiable. In fact they
proved much more:

Theorem 15.9 If the flow (Mt) is mean convex, then the singular set S can
be covered with finitely many bi-Lipschitz images of subsets of Rn−2 together
with a set of Hausdorff dimension n − 3.

The paper [118] contains many other facts about the structure of S . For
example, the bi-Lipschitz images can be taken to be Lipschitz graphs with
respect to the parabolic distance on Rn × R, so S is parabolic rectifiable, recall
Section 5.6. Again, also the rectifiability of the stratification of S is established.

The proof uses similar tools that we have seen above: monotonicity formula,
tangent flows and a parabolic Reifenberg theorem. The monotonicity formula
is due to Huisken [243]; t(1−n)/2

∫

Mt
e−|y−x|2/t dHn−1y is non-decreasing. The tan-

gent flows of (Mt) are the weak limits of δ−1
i Mδ2

i t, δi → 0. By an earlier result
of Colding and Minicozzi [117], the tangent flows are unique for the mean con-
vex flows, which is crucial in the proof of Theorem 15.9. In full generality the
uniqueness of tangent flows is open. The parabolic Reifenberg theorem is now
rather simple because the approximating plane is assumed to be the same at
all small scales. That this suffices is due to the strong information coming from
the uniqueness of the tangent flows.

The tangent flows are not only unique but also cylindrical, that is, of the
form Rk × S n−k. The uniqueness means that k and the direction of the Rk factor
are unique. In fact, Colding and Minicozzi proved their results for all motions
that have only cylindrical singularities. For k < n, the kth stratum S k consists
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of those points of S where the Euclidean factor has dimension at most k. Then
S 0 ⊂ S 1 ⊂ · · · ⊂ S n−2 = S and, by [118], each S k is k-rectifiable.

Much of the basics of the theory with smooth initial surfaces was established
only in the 1980s and later. Surprisingly early, in the 1970s, Brakke [80] de-
veloped a very general theory with rectifiable m-varifolds vt, 0 < m < n. There
are at least two good reasons to do this. Quite often the classical solutions de-
velop singularities and the evolution in the classical sense stops. For varifolds,
singularities are allowed and the flow exists for all t > 0. In many applications
singularities are unavoidable. Brakke himself applied his flow to grain bound-
aries. For many further developments with a number of variants, connections
and applications, see, for example, [422], [233] and the references given there.

In this general case, the equation for the flow is more complicated and in fact
an inequality rather than an equality is needed. This is necessary to have useful
compactness. As mentioned in Section 13.3, the first variation of a varifold
leads to a concept of mean curvature. One also needs a weak formulation of
the velocity. The first variations δvt are assumed to be Radon measures and the
curvatures are assumed to be in L2(μvt ). I skip the precise definitions.

The construction of Brakke’s flow is a highly non-trivial matter. Brakke used
a complicated approximation procedure. Ilmanen [250] showed that sequences
of energy densities of the Allen–Cahn equation converge to rectifiable mea-
sures leading to a Brakke flow. In [251] he used elliptic regularization. For
other methods, also with prescribed boundary conditions, see [233, 386, 405,
422, 441] and their references.

15.4 Gromov–Hausdorff Limits and Related Matters

This section deals with one small but important part of the theory of Rieman-
nian manifolds with lower bounded Ricci curvature: the structure of Gromov–
Hausdorff limits of such manifolds. Since Gromov’s fundamental work in the
1980s, see, for example, [228], this topic has been intensively studied by many
authors. Below we shall briefly discuss only matters directly related to recti-
fiability. For many other aspects, see, for example, the introductions of [262]
and [93] and the survey [355]. There is a lot of similarity in results and some
similarity in methods with those for harmonic maps discussed in Section 15.2.

Recall the definitions related to Gromov–Hausdorff convergence from Sec-
tion 7.7. In addition, a tangent cone of a metric space X at a point x ∈ X is any
pointed limit (X∞, d∞, x∞) of (X, r−i

i d, x) where ri → 0.
Let (Mi) be a sequence of n-dimensional Riemannian manifolds and mi ∈

Mi. We shall always assume that the Ricci curvatures and the volumes of the
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unit balls are bounded below:

RicMi ≥ −(n − 1) andHn(B(mi, 1)) > c > 0 for all i. (15.7)

Let (X, d, x) be a pointed limit of (Mi,mi). Then, under the above conditions
on Mi, tangent cones Y exist at every point of X by a compactness theorem
of Gromov and they are metric cones, Y = C(W), by a result of Cheeger and
Colding [91]. By definition, the metric cone C(W) over a metric space W is
the completion of (0,∞) ×W with a particular metric, see [92]. They are also
metric measure spaces where the measure is a limit of volume measures. A
point x ∈ X is regular if every tangent cone at x is isometric to Rn. Otherwise,
x is singular. We denote the set of singular points by Sing(X).

Colding and Naber [120] showed that the tangent cones need not be unique
under the above assumptions.

Cheeger and Colding proved in [91] that dim Sing(X) ≤ n − 2. Assuming
the two-sided bound |RicMi | ≤ n − 1, Cheeger and Naber proved in [94] that
dim Sing(X) ≤ n − 4. But we have more:

Theorem 15.10 Let n ≥ 4. Then Sing(X) is (n − 4)-rectifiable if |RicMi | ≤
n − 1.

This was proved by Jiang and Naber in [262]. The proof is quite involved
with many different kinds of techniques. Again monotonicity formulas play a
decisive role, as they do for many other results mentioned below. Neck decom-
positions, recall Section 6.2, are central. Now instead of (15.6) the L2 integral
of curvature is dominated by monotonic entities.

Cheeger and Colding introduced in [91] the stratification of the singular set.
Let S k ⊂ Sing(X) be the set of points x ∈ X for which no tangent cone at x is
of the form C(W) × Rk+1. Then

S 0 ⊂ S 1 ⊂ · · · ⊂ S n−1 = Sing(X),

and, by [91], dim S k ≤ k, S n−2 = Sing(X), and, by [94], S n−4 = Sing(X) if the
Ricci curvatures are also bounded above; |RicMi | ≤ (n−1). Cheeger, Jiang and
Naber proved the rectifiability in [93]:

Theorem 15.11 S k is k-rectifiable for all k = 0, 1, . . . , n − 2. In particular,
Sing(X) is (n − 2)-rectifiable.

As for harmonic maps, quantitative stratification is considered in [93] and
quantitative volume estimates are obtained for them. The proof again involves
monotonicity and neck decompositions.

With only the lower bound for the Ricci curvature, rectifiability is essentially
the best one can say; the singular sets can be Cantor sets, see [93, 292].

https://doi.org/10.1017/9781009288057.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009288057.016


15.5 Measure Solutions of PDEs 139

Recall from the end of Section 15.2 Lin’s results on defect measures re-
lated to sequences of stationary harmonic maps. Similar defect measures occur
for sequences of connections and their Yang–Mills energies on n-dimensional
manifolds. Tian proved their (n − 4)-rectifiability in [407]. See also [358] for
further work involving neck-type decompositions.

There are also many rectifiability results on metric measure spaces. I don’t
go into any details here; I just mention some of them. Li and Naber proved
in [292] results analogous to the above for Alexandrov spaces with curvature
bounded below. A special case of the results of Mondino and Naber [349]
shows that metric measure spaces (X, d,Hn) with lower bounds for the Ricci
curvature are n-rectifiable, see also [84] for another proof. Brué, Naber and
Semola showed in [82] that their boundaries are (n−1)-rectifiable. The bound-
ary of X is the closure of S n−1 \ S n−2, which in this setting need not be empty.
Here S k is a stratum as above. Brué, Pasqualetto and Semola [83] developed
De Giorgi’s theory for sets of finite perimeter, including their rectifiability, in
these and more general spaces. Lee, Naber and Neumayer introduced in [287]
rectifiable Riemann spaces to deal with some problems in Gromov–Hausdorff
convergence. They are topological measure spaces, not necessarily metric.
David [152] showed that the tangents of AD-regular Lipschitz differentiabil-
ity spaces, recall Section 7.5, are uniformly rectifiable provided the space has
charts of maximal dimension. Otherwise they are purely unrectifiable.

15.5 Measure Solutions of PDEs

Consider the system of constant coefficient linear partial differential equations
on Rn,

Au =
∑

|α|≤k

Aα∂
αu = 0, u : Rn → Rl,

where ∂α = ∂α1 . . . ∂αn , |α| = max{α j : j = 1, . . . , n} for the multi-index
α = {α1, . . . , αn} and the Aα : Rl → Rp are linear maps. An Rl-valued Radon
measure on Rn, μ ∈ M(Rn,Rl), is said to be A-free if Aμ = 0 in the distribu-
tional sense.

Examples of curl-free measures are the derivatives Du of BV-maps u : Rn →
R

l, see below.
By the Radon–Nikodym theorem any μ ∈ M(Rn,Rl) can be written as

μ = μa + μs = μa + D(μ, |μ|)|μ|s, where μa is absolutely continuous with re-
spect to Ln, D(μ, |μ|) is the Radon–Nikodym derivative of μ with respect to the
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total variation measure |μ| and |μ|s is the singular part of |μ| in its Lebesgue
decomposition.

The structure of the singular parts μs is a much studied question with many
applications, see [29, 175] and the ICM survey [176]. The wave cone

ΛA =
⋃

ξ∈Rn\{0}
ker Ak(ξ) ⊂ Rl, where Ak(ξ) =

∑

|α|=k

ξαAα, ξ
α = ξα1

1 . . . ξαn
n

is central in this investigation, as well as in many other topics, see [175, 176]
and the references given there. We shall look at some examples below.

If A is homogeneous, A = ∑

|α|=k Aα∂
α, then λ ∈ Rl belongs to ΛA if and

only if there exists ξ ∈ Rn \ {0} such that x �→ λh(x · ξ) is A-free for all
smooth functions h : R→ R. That is, in the words of De Philippis and Rindler
in [176]: ‘Roughly speaking, ΛA contains all the amplitudes along which the
system is not elliptic’ and “‘one-dimensional” oscillations and concentrations
are possible only if the amplitude (direction) belongs to the wave cone’.

The following theorem of De Philippis and Rindler gives a new proof of
Alberti’s rank one Theorem 12.15 and extends it to BD-maps. It has many other
consequences too, see [175].

Theorem 15.12 If μ ∈ M(Rn,Rl) is A-free, then D(μ, |μ|)(x) ∈ ΛA for |μ|s
almost all x ∈ Rn.

The proof uses tangent measures and pseudo-differential calculus. Partially
based on similar ideas, Arroyo-Rabasa, De Philippis, Hirsch and Rindler proved
in [29] several interesting rectifiability results. They are formulated in terms of
m-dimensional wave cones

Λm
A =

⋂

V∈G(n,m)

⋃

ξ∈V\{0}
ker Ak(ξ).

Clearly, these sets increase when m increases.
Examples (1) The divergence operator on Rn isA = ∑n

i=1 Ai∂i, where Aix =
ei · x, with ei the standard basis vectors. Then A1(ξ)x = ξ · x, so ΛA = Λm

A = R
n

for 2 ≤ m ≤ n and Λ1
A = {0}.

(2) The curl is defined for m × n – matrix-valued measures μ on Rn by

curl μ = (∂iμ
k
j − ∂ jμ

k
i ), i, j = 1, . . . , n, k = 1, . . . ,m.

This can be written in the form curl μ =
∑n

i=1 Ai∂iμ for some Ai. Further, it
can be checked that for every ξ ∈ Rn \ {0} the kernel of curl(ξ) consists of the
matrices a ⊗ ξ, a ∈ Rm, see [207], Remark 3.3(iii), for these facts. It follows
that Λn−1

curl = {0}.
(3) Also the second-order operator curl curl on n × n – matrix-valued mea-

sures is of the above type with Λn−1
curl curl = {0}.
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Recall from Section 4.5 the integral-geometric measure Im
1 , whose null-sets

are those that project to measure zero on almost all m-planes. By [29]

Theorem 15.13 Let μ ∈ M(Rn,Rl) be A-free and let E ⊂ Rn be a Borel set
with Im

1 (E) = 0. Then D(μ, |μ|)(x) ∈ Λm
A for |μ| almost all x ∈ E. In particular,

if Λm
A = {0}, then |μ|(E) = 0, whence |μ| � Im

1 � H
m.

Notice first that if m = n, and so Im
1 = L

m, this is the same as Theorem
15.12. In particular, if for |μ| almost all x ∈ Rm, Ak(ξ)(D(μ, |μ|)(x)) � 0 for
ξ ∈ Rm \ {0}, then |μ| is absolutely continuous.

The proof of Theorem 15.13 is by contradiction; the following sketch is
rather imprecise and very incomplete. The counter-assumption leads to a sub-
set F of E with |μ|(F) > 0, a point x ∈ F and a plane V ∈ G(n,m) such that
Hm(PV (F)) = 0 and

Ak(ξ)
(

D(μ, |μ|)(x)
)

� 0 for ξ ∈ V \ {0}. (15.8)

Moreover, x can be chosen so that for a sequence μ j ∈ M(B(0, 1)) of normal-
ized blow-ups at x of μ F the total variations |μ j| converge to a non-zero
measure σ ∈ M(B(0, 1)). Setting ν j = PV#(μ j) and F j = spt |ν j|, one has
Hm(F j) = 0. By delicate analysis based on (15.8), there is θ ∈ L1(V ∩ B(0, 1))
such that lim j→∞ ||ν j| − θHm|(V ∩ B(0, 1)) = 0. This leads to the contradiction

0 < σ(B(0, 1)) ≤ lim inf
j→∞

|ν j|(B(0, 1))

≤ lim inf
j→∞

⎛
⎜⎜⎜⎜⎝

∫

F j

θ dHm + ||ν j| − θHm|
(

F j ∩ B(0, 1)
)
⎞
⎟⎟⎟⎟⎠ = 0.

As a corollary to Theorem 15.13, we have

Theorem 15.14 Let μ ∈ M(Rn,Rl) be A-free and suppose that Λm
A = {0}.

Then Θ∗m(|μ|, x) < ∞ for |μ| almost all x ∈ Rn and |μ| {x ∈ Rn : Θ∗m(|μ|, x) >
0} is m-rectifiable.

By Theorem 1.3 and the last statement of Theorem 15.13, the upper density
is finite |μ| almost everywhere. The set A, where 0 < Θ∗m(|μ|, x) < ∞, has σ-
finite Hm measure, and |μ| and Hm are mutually absolutely continuous on A
by Theorem 1.3. Hence the rectifiability follows from Theorem 15.13 and the
Besicovitch–Federer projection Theorem 4.17.

Here are some of the applications. Let u = (u1, . . . , ul) ∈ BV(Rn,Rl). Then
μ = Du = (μk

i ) = (∂iuk), i = 1, . . . , n, k = 1, . . . , l, is curl-free. By example
2 above, Λn−1

curl = {0} and one can use Theorem 15.14 to get a new proof for
the fact that |Du| {x : Θ∗m(|Du|, x) > 0} is (n − 1)-rectifiable, recall Theorem
12.14. In the same way, example 3 yields Theorem 12.17 for BD-maps.
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As another application of Theorem 15.14, the authors of [29] gave a new
proof and extensions of Allard’s rectifiability Theorem 13.10 and the related
results of [20] and [173]. Then A is a divergence operator on matrix-valued
measures. Lin’s defect measure Theorem 15.8 also follows from Theorem
15.14.

15.6 A Free Boundary Problem

Recall from Section 14.3 the work of David, Engelstein and Toro [141]. Ede-
len and Engelstein [183] studied the analogous one-phase problem. Let q be
positive and Hölder continuous in Ω. Minimize

J(u) =
∫

Ω

(|∇u(x)|2 + q(x)2χu>0(x)) dx

among u ∈ W1,2(Ω) with given non-negative boundary values. This problem
has an interesting history starting from Alt and Caffarelli in 1981 and there
are similarities to codimension 1 minimal surface theory, see [183]. In partic-
ular, let k∗ be the smallest k such that the above problem admits a non-linear,
one-homogeneous solution with Ω = Rk, q = 1. Then k∗ is 5, 6 or 7, but oth-
erwise the value is unknown. By a result of Weiss, we have for a minimizer
u, dim Sing(u) ≤ n − k∗, meaning that Sing(u) = ∅, if n < k∗. The singular set
now is the subset of ∂{u > 0} ∩ Ω, where u fails to be C1,α for some α > 0.
Edelen and Engelstein proved

Theorem 15.15 If u is a minimizer for J, then Sing(u) is (n − k∗)-rectifiable.

They also considered stratification in the spirit we have seen before and they
proved the rectifiability of each stratum. Their methods are influenced by those
of Naber and Valtorta [356]. They also apply to the two-phase problem and to
almost minimizers.

For further work along these lines by De Philippis, Engelstein, Spolaor and
Velichkov, see [174].
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