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Abstract

Guaranteed minimum accumulation benefits (GMABs) are retirement savings vehicles that protect the
policyholder against downside market risk. This article proposes a valuation method for these contracts
based on physics-inspired neural networks (PINNSs), in the presence of multiple financial and biometric
risk factors. A PINN integrates principles from physics into its learning process to enhance its efficiency in
solving complex problems. In this article, the driving principle is the Feynman-Kac (FK) equation, which
is a partial differential equation (PDE) governing the GMAB price in an arbitrage-free market. In our
context, the FK PDE depends on multiple variables and is difficult to solve using classical finite difference
approximations. In comparison, PINNs constitute an efficient alternative that can evaluate GMABs with
various specifications without the need for retraining. To illustrate this, we consider a market with four
risk factors. We first derive a closed-form expression for the GMAB that serves as a benchmark for the
PINN. Next, we propose a scaled version of the FK equation that we solve using a PINN. Pricing errors are
analyzed in a numerical illustration.

Keywords: Neural networks; variable annuities; Feynman-Kac equation; life insurance

1. Introduction

A physics-inspired neural network (PINN) incorporates principles from physics into its learning
process, enhancing its efficiency in solving complex scientific problems. Compared to existing
approaches, PINNs reduce the reliance on large datasets and provide accurate predictions even
with sparse or noisy measurements. Researchers have employed PINNs to address a diverse
range of problems, including fluid dynamics, solid mechanics, heat transfer, and quantum
mechanics.

In this study, we demonstrate that PINNs can be used for the valuation and design of specific
variable annuities (VAs) known as guaranteed minimum accumulation benefits (GMABs). This
retirement savings vehicle guarantees the policyholder the higher of the account value or a spec-
ified amount upon maturity, assuming survival. The proposed model incorporates the following
risk factors: interest rates, equity prices, and mortality rates. We also consider four asset classes:
cash, zero-coupon bonds, stocks, and mortality-linked bonds. Our goal is to develop a single neu-
ral network capable of pricing GMABs with various specifications, including different investment
strategies and maturities.

In summary, a PINN serves as an approximate solution to a nonlinear partial differential equa-
tion (PDE) that describes the dynamics of a model. The neural network is trained by minimizing
the approximation error at sampled points within the PDE domain and on its boundaries. This
method originates from the work of Lee & Kang (1990) and has since been applied to various
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nonlinear PDEs. For example, Raissi et al. (2019) used PINNs for solving two main classes of
mathematical problems: data-driven solutions and data-driven discovery of PDEs. In the field
of physics, Carleo & Troyer (2017) and Cai (2018) employed PINNSs to accurately approximate
quantum many-body wave functions. For further information and recent developments and appli-
cations of PINNs, we recommend referring to Cuomo et al. (2022) for a comprehensive literature
review.

The literature on the valuation of financial and actuarial liabilities using neural networks is
relatively recent. Hejazi & Jackson (2016) developed a neural network to price and estimate the
"Greeks" for a large portfolio of VAs. Doyle & Groendyke (2019) priced and hedged equity-linked
contracts using neural networks. They constructed a dataset of variable annuity prices with vari-
ous features through Monte Carlo (MC) simulations. The neural network was then estimated by
minimizing prediction errors using a scaled conjugate gradient descent. Sirignano & Spiliopoulos
(2018) introduced a deep Galerkin method (DGM) based on a network architecture inspired
by long short-term memory (LSTM) neural cells. Their approach was tested on a class of high-
dimensional free boundary PDEs and on high-dimensional Hamilton-Jacobi-Bellman PDEs and
Burgers’ equation. Gatta et al. (2023) evaluated a suitable PINN for the pricing of American mul-
tiasset options and proposed a novel algorithmic technique for free boundary training. Al-Aradi
et al. (2022) extended the DGM in several directions to solve Fokker-Planck and Hamilton-
Jacobi-Bellman equations. More recently, Jiang et al. (2023) demonstrated, under mild assump-
tions, the convergence of the deep Galerkin and PINNs method for solving PDEs. Glau &
Wunderlich (2022) formalized and analyzed the deep parametric PDE method for solving
high-dimensional parametric PDEs.

A close alternative to PINN is developed in Weinan et al. (2017), where they solve parabolic
PDEs in high dimensions using neural networks connected to backward stochastic differen-
tial equations (BSDEs). This approach employs two separate networks for the solution and
its gradient. They apply their algorithm to price options in a multivariate Black and Scholes
model. Beck et al. (2019) introduce a similar method for solving high-dimensional PDEs
based on a connection between fully nonlinear second-order PDEs and second-order back-
ward stochastic differential equations. They illustrate the accuracy of their method with the
Black and Scholes and Hamilton-Jacobi-Bellman equations. Using this principle, Barigou &
Delong (2022) evaluate equity-linked life insurances with neural networks by solving a BSDE,
building upon previous results from Delong et al. (2019). Unlike PINNs, BSDE methods rely
on two networks instead of one, and any modification of contract specifications requires
retraining.

Another valuation approach based on neural networks relies on simulations. Buehler et al.
(2019) present a framework for pricing and hedging derivatives using neural networks that are
trained on simulated sample paths of risk factors. In this case, the neural network approximates
the optimal investment strategy, and the value is determined by averaging discounted payoffs
obtained through simulations. Similarly, Horvath et al. (2021) studied the performance of deep
hedging under rough volatility models, while Biagini et al. (2023) developed a neural network
approximation using simulations for the superhedging price and replicating strategy. As with
BSDE approaches, any modification of contract specifications requires retraining. For a compre-
hensive review of algorithms based on neural networks for stochastic control and PDEs in finance,
we recommend referring to Germain et al. (2021).

In the financial and insurance industry, four dominant numerical methods are commonly used
for pricing contingent claim contracts: MC simulations, bi- or trinomial trees, PDE solving, or fast
Fourier transform (FFT) inversion. For situations involving more than two risk factors, trees, PDE
solving, or FFT methods become too complex, making MC simulations the only viable alterna-
tive. In contrast, the valuation using a PINN does not require the simulation of sample paths
of underlying risk factors. Furthermore, once the PINN is trained, valuation becomes nearly
instantaneous. Another noteworthy feature is the ability to parameterize a PINN with contract
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features such as asset-mix or contract durations. This provides a quick solution for understanding
the impact of asset-liability management (ALM) on pricing without the need to retrain the net-
work for each setting. This presents a significant advantage compared to BSDE or deep hedging
approaches.

This article makes the following contributions. First, we develop a closed-form expression for
the price of a GMAB with participation in a market consisting of five classes of assets, includ-
ing a mortality bond for hedging exposure to longevity risk. This analytical formula enables us
to assess the pricing accuracy of a large set of contracts using PINNs without the need for MC
simulations. Next, we introduce a specific type of neural network in which intermediate layers
are fed with both the output of the previous layer and the initial input vector. Such a network
better captures the nonlinear behavior of GMAB prices compared to classical feed-forward net-
works. Third, we consider risk factors (interest and mortality rates) driven by mean-reverting
processes, whereas the existing literature on PINNs predominantly focuses on high-dimensional
geometric processes. Lastly, we train the network for various investment strategies, asset mixes,
and contract durations. In this sense, our model is parametric and offers significant flexibil-
ity compared with BSDE or deep hedging methods, which require retraining for each specific
setting.

The article is structured as follows. The next section introduces the financial and biometric
risk factors. We consider a multivariate Brownian setting to maintain the analytical tractability
needed for benchmarking the PINN. In Section 3, we develop the closed-form expressions for
zero-coupon bonds, survival probabilities, and pure endowments. Section 4 provides detailed
specifications of the GMAB, including the assumption that assets are invested in a portfolio
of cash, bonds, stocks, and mortality bonds. We offer the analytical formula for pricing the
GMAB within this framework. Section 5 presents a scaled version of the Feynman-Kac equa-
tion that GMAB prices satisfy. In Section 6, we outline the architecture of the neural network
used to solve this PDE and explain the training procedure. The final section offers a compre-
hensive analysis of pricing errors based on a validation set of 500,000 contracts with various
features.

2. Risk factors

Our objective is to demonstrate the effectiveness of PINNs in valuing GMABs and establish-
ing investment strategies for them. To validate our methodology, we compare the exact GMAB
prices to the estimates generated by the neural network. To facilitate this comparison, we con-
sider Brownian financial and biometric risk factors and derive a closed-form expression for
the GMAB price. An alternative validation approach would involve evaluating GMAB prices
through MC simulations, but this method is computationally intensive and less accurate. This
section introduces the dynamics of risk factors, while Section 3 provides analytical expressions
for bond prices and survival probabilities. Finally, we obtain the analytical value of the GMAB in
Section 4.

The GMABs provide policyholders with a promise that the value of their investment, con-
ditionally to their survival, will reach a minimum predetermined amount at expiry, regardless
of how the underlying investments perform. The value of GMABs depends both on biomet-
rical and financial risk factors that we detail in this section. We consider an hybrid mar-
ket in which we invest in cash, stocks, interest rate bonds, and mortality bonds. The stock
indice and the interest rate are, respectively, denoted by (S¢);>0, (r1);>0. The insured is x;
year old, and the reference force of mortality is denoted by (itx4+¢);~o. The insurer can also
invest in mortality bonds written on a reference population of age x; and mortality rates

(Mutt) o
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The financial and biometric processes are defined on a probability space (£2, F, P) associated
_ - - - N T

to four independant Brownian motions under P, W; = (Wt(l), Wt(z), Wt(3), Wt(4)> . The state
t>

variables (S, 7t, fx, +1> Ax; +1) are driven by the following SDEs:

(rt + vsos) St

S SiosTJ
rt Kr (Vr(t) - Vr,g_’: - rt) ; SZTS
t — O’M(t) Ty

Hox,+t Ky ()’M(f) Ve T /‘Lx,ﬁ-t) o*M(t)E;F'—
A HY
Bt K, (J/A(f) — Vkaﬁ_it) - )‘xx+t> (D,

dw,, (1)

where &, Ky, K3, 05, and o, belong to R, whereas y,(t), Vi (1), ya(t), 0, (t), and 0y (t) are positive
functions of time. y,(t) y,.(t), and y, (¢) are fitted to term structures of interest and mortality rates.
Details about the estimation procedure are provided in Appendix. Notice that y,,(£), y,.(t), o, (1),
and 0, () depend on the initial age of the insured and of the hedging population; x,, x € [0, Xpax),
Xmax > 0.

In our framework, mortality rates have a mean-reverting Gaussian dynamic, which offers a
good trade-off between complexity and analytical tractability. Milevsky & Promislow (2001) were
among the firsts to consider mean-reverting stochastic processes for modeling mortality. Luciano
& Vigna (2005) developed a jump-diffusion affine model for modeling rates and showed that
constant mean reverting process are not adapted for describing the mortality. Luciano & Vigna
(2008) calibrated various time homogeneous mean-reverting models to different generations in
the UK population and investigate their empirical appropriateness. Jevtic et al. (2013) studied and
calibrated a cohort-based model which captures the characteristics of a mortality surface with
a continuous-time factor approach. Zeddouk & Devolder (2020) modeled the force of mortality
with mean reverting affine processes, where the level of reversion is time dependent. Hainaut
(2023) proposed a mortality model based on a mean reverting random field indexed by time and
age.

In Equation (1), the parameters vs, vy, vy, and v, tune the risk premiums vgos, —v,o,,
—,0,(t), —vrox(t) of processes. Furthermore, we assume that the standard deviation of mortal-
ity rates is related to age through the relations o, (t) = o, /1) and 0y (t) = @; HHHD_ 3g, 3,
>, and X, are vectors such that ¥ = (ZST, E;r ZII, Z}T)is the (upper) Choleski decomposition
of the correlation matrix:

=y €sS €Sy €Sy €S 1 psr psu  Psi

5 E;«: _ 0 € €u €nm ’ PsSr 1 Priv Pra _yyT ’
EIJ« 0 0 €up €un PSS Pru 1 Pur
E; 0 0 0 1 Psr Pra Pur 1

where psr, Osu> OSi> Prus Pras and g € (=1, 1). This model incorporates the correlation between
financial and mortality shocks, which can be relevant in the context of events such as a pandemic

like COVID-19. We assume that costs of risk, noted @ = (0]-) T

=1, are constant, i.e., the Brownian

motions with drift under P,
aw? = aw¥ + o;dt,

https://doi.org/10.1017/51748499524000095 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499524000095

Annals of Actuarial Science 5

are Brownian motions under Q. To keep identical dynamics under PP and Q, the risk premium
parameters, stored in a vector 6 = (01, 65, 03, 94)T, are such that

Vs = €ssth + €5:0; + €503 + €504,
Vr = — (Grr92 + €rubs + 6r)ﬂ4) >

vy = — (GMLQQ, + E/LA94) ,
V), = —94 .
Under the risk neutral measure (Q, financial and biometric processes are ruled by the following
SDEs:
StO'S E;r
St Ty St
i ey (ye(£) = 7) 0%
Mo, +t K (Vu(f) - ,va,ﬁ-t) Gu(t)E,I
Ay +t 1. (Ya(t) = A, +1) T
o (t) Ek

We will use later these equations to build the valuation equation fulfilled by the GMAB. As
mentioned earlier, we have chosen a pure Brownian model specifically for the purpose of bench-
marking exact GMAB prices against PINN predictions. The following two sections present
intermediate analytical results that are essential for deriving a closed-form expression for the
GMAB.

3. Bonds and survival probabilities

We denote by P(t, T) the present value of a zero-coupon bond that pays one monetary unit
at expiry date, T. The survival probabilities of an x, + ¢ year old individual up to time ¢ are
noted rp7 ., for z € {u, A}. Pure endowments provide a lump sum payment at expiry in case
of survival and nothing if the policyholder dies before the term. We denote them by 7E7 for
z € {i, A}. Zero-coupon bonds, survival probabilities, and pure endowents are valued by the
following expectations under the risk neutral measure:

P, T) =E2 (eI 7))
T
Tpfcz+t = EQ (eift Gzl | ‘Ff) z€ {/'La )"}a
TE; = N;‘E@ (e_ ng (rst2x,45)ds | ft) ze{m A}

The model being affine, we derive the closed-form expressions of these products. In the remainder
of this article, we adopt the following notation

1 — e NT-1)
By(t) T) = e— >
Y

where y € R is a positive parameter. Various combined integrals of By(t, T), 0,(t), and o0y (2)
are provided in Appendix B and serve to analytically evaluate the GMAB. From Proposition 4 in
Appendix A, y,(T) matches the initial yield curve of interest rate if

2
(1 _ e—2K,T> ,
Ky

o
22

1
yr(T) = ——d21In P(0, T) — 37 In P(0, T) +
Kr

where —dr In P(0, T) is the instantaneous forward rate. In a similar manner, for a given initial
mortality curve TP§Z> the function y,(u) is such that

o 5 ezﬂzxz

1
v(T) = ——87In 7p} —drln 7pf + (ezﬂzT - 6_2K2T> .

Kz 26, (kz + B2)
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Bond prices, survival probabilities, and endowments admit closed-form expressions presented in
the next proposition.

Proposition 1. The price at time t < T of a discount bond of maturity T is linked to the initial
interest rate curve at time t = 0 by the relation

3)

P(t, T) = exp (—rtBKr(t, T) — (3; In P(0, t)) By, (t, T) +1In P(0, T))

P(0,t)
2
X exp (—Z—r ((1 - e_z"’t) B, (t, T)z)) .

Kr

In a similar manner, we can show that, when alive at age x, + t, the survival probability up to time
T depends on the initial survival term structure as follows for z € {11, 1}

TP
TPyt = €Xp (_ZXZ+[BKZ(t; T)— (9 In tpfcz) B (t,T)+In —;Z) X (4)

txz

2 ,2B,(x,+T)

oe

exp <22K—2 (Bap.(t: T) — 2Bag, 44, (t, T) + Bap, 12, (1 T))) X
z

2 ,2B:x;
exp (L (ezﬂzTBZﬂﬁKZ(t, T) — e By (1, T))) x

2Kz (k2 + B2)
2,28,
aze < —2ic,t —kz(T+t)
exp ( —2— (e 2By (t, T) — e *=(TH0p z(t,T)) ,
P <2KZ(KZ + B2) ZK ‘
whereas the pure endowment contracts are valued by
0,21 500, ePn (Gt T)
TEf = N{ 1pl 4 P(6T) exp( R R (5)
KKy
x exp (Bg, (t, T) — By, +8,(t T) = Be,ip, (8, T) + Be, 4.5, (6 T))
and
0,2 % efr et
rE; =N} TP;AcHt P(t,T) exp ( — Kok ©)
,

X €xXp (Bﬂx(t’ T) = B+, (; T) = Be, 4.8, (6 T) + Be; 1,4, (8, T)) .
The sketch of the proof is provided in Appendix A. Using standard developments, the bond
price dynamic is equal to

dP(t, T)
P(t,T)

= (1t + By, (t, T)oyv,) dt — By (t, )0, 2,1 AW, . 7)

We assume that policyholder’s savings is invested in cash, stocks, zero-coupon bonds, and in
mortality bonds written on a reference population of age x; at time t = 0. We denote by D(t, T),
the value of this mortality linked bond expiring at time T. Its return depends on the benchmark
mortality rate, Ay, 4+, and is valued at by the following expectation:

D(t, T) = EC (ef ST s [ s E)

— e fot }Lx)ﬁrst]EQ (e— LT(Ts+}Lx)L+S)d5|ft> )
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This product is designed in such a way that, in the event of over- or undermortality, the bond-
holder realizes a capital loss or gain at maturity. The dynamics of this bond are described in the
next proposition, which is proven in Appendix A.

Proposition 2. Under the risk neutral measure Q, the mortality bond earns on average the risk-free
rate and its price obeys to the SDE:
dD(t, T)
D(t, T)

Under P, the risk premium of the mortality bond is proportional to interest and mortality volatilities:

= ridt — (B (6 Doy =] + B, (6, D05 ) AW, (8)

daD(t, T
D((tl: T)) = (rt + By, (t, T)oyvr + By, (¢, T)O')L(t)vk) dt ©)

- (BK,(t, T)6, S + By, (1, T)o3 ()T, ) AW,

4. Contract and analytical valuation

GMABs are retirement savings products which promises in case of survival, the maximum
between investments, and a guaranteed capital. The policyholder savings are invested in cash,
stocks, risk-free and mortality bonds of maturity T. We denote by (A;);>( the total value of
these investments. The percentages of stocks, risk-free and mortality bonds are assumed constant
and denoted by w = (75, p, Tp) ;. We assume that the investment policy is self-financed, the
dynamic of assets under management is equal to

dA¢ dS; n dP; n dD; ‘a )1, dt

— =ns— +np— +71p— — s — mwp — p) 1 dt,

A s s, PP, DD, §—Tp—Tp) 1t
where dS;, dP(t, T), and dD(t, T) are, respectively, provided in Equations (1), (7), and (9). We can
therefore reformulate the differential of A; under P as follows

dA ~
= (nrTva®) de+x T SA (AW,
t
where v () is a time-varying vector of risk premiums,
ogVs
va(t) = BK,(L T)orv, >

BK,(t> T)oyv, + B/q (t, T)o(t)vy
and X4 (¢) is a volatility 3 x 4-matrix :

Osst
Tat) = —By,(t, T)o, 2,
_Bkr(ta T)Grz;l— - BK)L(ta T)U)L(t)EI

Under the risk neutral measure, investments earn on average the risk-free rate and the differential
of A; is ruled by

dA

— = rdt+ 1 S4()dW,.

Ay
The contract is subscribed by an individual of age x,, and guarantees at the expiry date, denoted
by T*, a payout equal to the maximum between a guaranteed capital G,, and the portfolio A7+, in
the event of survival. However, the benefit is eventually bounded by Gys. In practice, G,y is often
set to the initial investment, Ao, or to a percentage of Ag. Whereas, the participation is most of the
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time unbounded (Ga = 4+-00). We denote by 7, € R, the random time of insured’s death and
Nt = 1{z,>1)- The payoff in case of survival is

H(A7r+, Gm) = (Gr+ + (A1 — G)3 — (Apx — Gy ) (10)

The fair value of such a policy, denoted by L;, is equal to the expected discounted cash flows under
the chosen risk neutral measure, noted Q. This is a function of all state variables:

T*
L= N#EQ (e_ff (r5+“xu+5)dsGm | ft) (11)
T*
+N§LEQ (eff (rstpxy +)ds ((AT* _ Gm)+) I]_“t)

T*
_N;‘E@ (e—ft (rst iy +5)ds ((AT* _ GM)+) |~7:t) .

In order to obtain a closed form expression of the saving contract (10), we perform a change of
measure using as Radon-Nykodym derivative:

T*
d]F _fO (rs+itx, +s)ds
dQ T* EQ (e— fOT (rs+uxu+s)d5|]:0>

From Equations (A6), this change of measure is rewritten as follows:

0’262 T* 5 T* 5
=exp (-7 / By, (u, T*)du — 0,6, / By, (u, T*) dW?
T* 0 0

dF
dQ

T*
X exp <—/ (oremBkr(u, T*) + o ()€ By, (u, T*)) dWL(f))
0

1 (T
X exp (—— / (or€rpBe, (u, T*) + 0, ()€1 B, (1, T*))2 du)
0

[\

T*
X exp <— / (oremBK,(u, ) + o (u)€pn By, (u, T*) 4 o (u)By, (u, T*)) dW»(z4)>
0

1 T
e <_5 / (or€rnBe, (1, T*) + 0, ()€, Bi, (1, T*) + 03 () By, (1, T"‘))2 du)
0

We recognize a Doleans-Dade exponential and then under the measure F. We denote by WE the
vector of F-Brownian motions (Wt(l)]F, W;z)F, Wt(3)F, Wt(4)]F), defined by

AW} = dW, + (0,B,,(t, T)E, + 0u(t)By, (t, T)E, + 0. (1)By, (t, T*) X)) dt . (13)
The dynamic of the total asset under the [F- measure is then equal to
dA;

R =rdt+ 71 SAH)dWE — T SA(t) x (14)
t

(0rBi, (t: T*) Sy + 0, (1) By, (1, T*) Sy + 04 (1) By, (1, T*) T5.) dt

As Aps = %, we focus on the dynamics of dﬁ in order to prove that this ratio is a log-
normal process.
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Ags /P(T*,T*)

Proposition 3. The quantity % has a log-normal distribution, In AT

N (up(t), vp(t)), with a time dependent variance equal to

T*
v (t) = / (B, 70 5] + 2754 (0)) (B 1, T0, 2+ Saw) ) i, (15)
t

and a time dependent mean given by
_ ! D) " T T*)d
HF(t)—_EV]F(t)—O'r rZu ) 0 ()By, (u, T*)By, (u, T*) du (16)
T*
-0, %, / 03.() By, (1, T*)By, (u, T*)du
t
T*
- / Y Ao, (u)By, (u, T)du =,
t

T*
- ! / ¥ 4(u)03 () By, (u, T*)du 5, .
t

The proof is provided in Appendix A, while the full analytical expressions of vp(t) and up(t)
are detailed in Appendix C. As 57 fw T* is log-normal under the forward measure, we can evaluate
the call options embedded in the GMAB

Corollary 1. Let us denote by ®(.) is the cumulative distribution function (cdf) of a N(0, 1). If we
define

R O )
dr(t) = AT () = da(t) — /(D)

dM(t) _ 1n<At/1C’;€;{T*))_MF(t) dM(t) _ dM(t) \/_t
2 - NIO) > dh =4a, — /vE(t)

then expected positive differences between Ar«, Gr+, and Gy under the forward measure are
given by

(17)

EF (A1 — Gy 1) = Au)ew(”ﬁ%‘”@ (—di (1) = Gu® (—da(0)) .
EF ((Are — G4 | Fi) = gyt ® 02 5 (=) — Gu® (- () .

This corollary is proven using standard Black & Scholes developments. This last result allows
us to infer that the market value of the GMAB (11) is given by

Li= 1<E} Gp, (18)
B ()
A euu?(t)—i-VFT
. tP(t—T*)CD (—di (1)) — G @ (—da(1))
- (O]
A eM]F(t)+VFT
— B tP(t—T*)(D (—d () — Gu® (-d3 (1)) | ,

where 1+E} is given by Equation (5). This closed form is used to measure the accuracy of the
PINN for predicting GMAB prices.
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5. Scaled Feynman-Kac equation

A PINN integrates principles from physics, including PDEs governing the behavior of state vari-
ables. In a financial context, we adopt the Feynman-Kac (FK) equation as our guiding principle.
The FK equation is a PDE satisfied by all assets traded in an arbitrage-free market. In this sec-
tion, we construct this equation for the model under consideration in this article. In the following
section, we utilize a neural network to solve it for various investment strategies, contract maturi-
ties, and bond maturities. To lighten future developments, we denote the vector of state variables,
augmented with the total asset value, by

-
Y= (Sts 7> toxy 46> Ay 41> At)
Under the risk neutral measure (Q, this multivariate process is ruled by the following SDE:
dy, = [Ly(t, ydt+ X, (t,y,)dW,,

where [Ly(.) is a vector of dimension 5 and X,(.) isa 5 x 4 matrix:

StO'SES
1 S T
ke (ye(t) —1¢) o,
ILj;(tJ’t) =\ Ku ((V;L(t) - Mx,ﬁ-t)) > Ey(t,)’t) = Gu(t)zl—,[
K (Va(t) = Ax, 4 T
1A, O‘A(t)z)\
Atn'TEA(t)

The GMAB is a function of time and state variables parameterized by the investment policy x, the
duration of the contract T*, and the maturity of bonds, T. As we aim to understand the relation
between assets and liabilities, we emphasize the dependence to investment parameters by denoting
the contract price as follows:

L=V (ty,N/ |m, T"T) .

Under the assumption of arbitrage-free market, all traded securities, including the insurance
contract, earn on average the risk-free rate, i.e. :

E (dLH_ | .Ft) = Lt It dt. (19)

Let us, respectively, denote the gradient and the Hessian of V(.) with respect to y by V,V and
Hy(V):

asV dssV 95,V aSuV s,V 054V
3,V 3,V 0V 0,V 0V 9,4V
V=8,V |, Hy(V)=] 8.V 80V 80V 8,5V 8uaV
9,V 0y V 0.V 9,V 0V )4V
oAV 0sAV 0,4V 8MAV AV 044V

Applying the Itd’s lemma to V (.) allows us to rewrite (19) as a partial differential valuation
equation:

0=tV — (rt + psr) V+my(6,3)TVyV (20)

1
+5tr (Zy(t,yt)zy(t,yt)THy(V)) :

This last expression is called the “Feynman-Kac (FK) equation”. The boundary constraints on
V(.) are

{V(T*,yT*,l |7, T, T) =H (Ars, G Gr1) » 1)

V(t,y,0|m, T T) =0.

https://doi.org/10.1017/51748499524000095 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499524000095

Annals of Actuarial Science 11

Notice that we have 5 state variables and 4 Brownian motions. The model is, therefore, over-
specified, and we can remove one state variable from y, for example, the stock price, which is
redundant with respect to the total asset value, A;. Nonetheless, we have retained all state variables
in the numerical illustration to observe how the PINN handles this naive over-specification.

Due to the numerous risk factors involved, solving numerically the PDE (20) is numerically
challenging. Implementing either an explicit or implicit finite difference method necessitates con-
structing a 6-dimensional grid in the spacetime of time and state variables, with relatively fine
meshes to ensure convergence. In practice, this becomes intractable. As an alternative, we approx-
imate the solution to the FK Equation (20) using a neural network that takes as input the time,
state variables, asset mix, and durations of GMAB and bonds. The mathematical definition of a
neural network will be revisited in the following section, but it is worth noting that a neural net-
work employs bounded activation functions, such as sigmoid or hyperbolic tangents. To mitigate
convergence issues associated with the vanishing gradient problem, we must standardize and scale
the network’s inputs. This preprocessing step slightly modifies the FK equation. Let us define the
vectors a, b € R® as follows

a= (aS> Ars Ay A)s aA)T > (22)
b= (bs, by, by, b, ba) " .

a and b are chosen to normalize a random sample of state variables. This point is discussed in the
next section. The vector of centered and scaled state variables is denoted by

yy=a+bOy,, (23)

where © is the elementwise product. In a similar manner, we center and scale the time with coef-
ficients aj, and by, that will depends on the horizon of valuation. The centered scaled time and
durations are defined as follows:

t :ah—i—bht,
T =ay+b,T, (24)
T* =ay + b, T*.

We do not need to scale the vector & € [0, 1]°. The normalized state variables are ruled by the
SDE:

dy, = py(t, y)dt + Z5(t, y,)dW,,

where j45(.) is a 5xvector and ¥;(.) is a 5x4 matrix:

(S —as) “5 (3 — as) o5 =y
Kr (bryr(t) +ar— rt) b,arZrT
wy(t,3) = | K Guvie® +ap = il +0) || 550, 5) = buo (%]
K, (bxn(l‘) +ay), — Ay, 4t bron(t) X,
(A — ag) i (A —aa) m[ Za®)

The value of the contract may be seen as a function of time and rescaled state variables, L; =
V(t, Vi NfL , |, T*, T). The valuation Equation (20) is then rewritten in rescaled form:

0=by, &V — (rt;a' + “"Jr;_a“) V+u(t5,) V5V (25)
r w

1 - -
+ Etr (E;,(t,yt)Ej,(t, yt)THy(V)) >
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Figure 1. Feed forward network with skip connections toward intermediate layers.

where V;V and H;(V) are, respectively, the gradient and the Hessian of V' with respect to
standardized state variables, y. The rescaled version of boundary conditions (21) is

14 T*’j’T*’ 1| m, T*, T) =H ((AT* — aA) /bA,GT*) S

- S~ (26)
v(ige01m T T) =0
The next section explains how to solve Equation (25) with a neural network. Notice that the stock
and total asset values exhibit geometric dynamics. An alternative formulation of the FK equa-
tion may be derived by considering log-stock and log-asset prices as state variables. This has the
advantage of partially reducing the nonlinearity of the FK PDE. However, in the existing litera-
ture, such a transformation is not applied and does not adversely affect the accuracy of PINNs. For
instance, Sirignano & Spiliopoulos (2018), Glau & Wunderlich (2022), or Gatta et al. (2023) evalu-
ate European or American basket options by solving the Feynman-Kac equation in a multivariate
geometric market without prior log-transform.

In practice, a log-transform is deemed unnecessary because the partial derivatives of the
approximated GMAB prices are computed precisely through automatic differentiation, not finite
differences. This ensures the robustness of the valuation of the Feynman-Kac equation.

6. Neural networks

We approximate the value function solving Equation (25) using a particular type of neural net-
work. This network takes as input a vector of dimension 11, denoted by z, containing the scaled
time and state variables, the asset mix vector, and scaled contract and bond maturities:

AT
2= (L3m T T) 27)

There is no systematic procedure for determining the optimal structure of a neural network.
As proven by Hornik (1991), we know that single-layer neural networks can approximate reg-
ular functions arbitrarily well, but achieving reasonable accuracy may require a high number
of neurons. An alternative approach is provided by feed-forward networks, where information
flows forward through several neural layers. However, these networks often struggle to replicate
non-linear functions with a limited number of layers.

To address this challenge, we adopt a network with an architecture illustrated in Fig. 1 This
network is a basic version of recurrent neural networks. During the valuation of the network
response, the outputs of neurons in hidden layers, added to the initial data vector, serve as inputs
for the immediate next layer. The long short-term memory (LSTM) networks are built on the
same principle and are powerful tools for time-series prediction (see, e.g., Denuit et al., 2019,
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Chapter 8). The deep Galerkin method (DGM) network, initially proposed by Sirignano &
Spiliopoulos (2018) for PINN pricing of basket options, belongs to the family of LSTM mod-
els. Recurrent neural networks better replicate non-linear functions than classical feed-forward
networks. The same network as the one proposed in this article is successfully applied in Hainaut
& Casas (2024) for pricing European options in the Heston model.

The network used in this work presents the same drawbacks as a classical recurrent architec-
ture. A model with too many layers becomes untrainable due to the phenomenon of the “vanishing
gradient,” as revealed by Hochreiter et al. (2001). The lagged responses from hidden neural lay-
ers pass through several intermediate activation functions, having an indirect feedback effect on
the final response of the network. This effect may become marginal when considering too many
intermediate layers, rendering the network untrainable.

Definition Let I, ng, ni, ..., 1y € N be, respectively, the number of layers and neurons in each
layer. ng is also the size of input vector. The activation function of layer k=1,2,...,1 is noted
dk():R—R. Let C; e R" x R™,¢; e R™M, Cp € R"™ x R™T-1, ¢p e R™ for k=2,...,1—1,
C e R x R"-1,¢; € R"be neural weights defining the input, intermediate, and output layers. We
define the following functions

Vi(x) = ¢r (Crx +¢x) » k=1,1

V(% 2) = oy <ck <’ZC> +ck) , k=2,...,1—1

where activation functions ¢(.) are applied componentwise. The residual neural network is a
function F:R"™ — R™ defined by

Fz) =Y1-1091-1(-2) . ..oY2 (2) 0 Y1(2) .

After having chosen a network architecture, the model is trained by minimizing a loss function that
is proportional to errors of approximation. This error is measured by replacing V(.) with F(.) in the
scaled FK Equation (25), at random points in the domain.

At time t € [0, T*], the domain of the state vector y, = (St, Tt Mo, +t> )\X#H,At)—ris RT xR x
R+ 3. We approximate this domain by a closed convex subspace:
D}’ : [Sl) Su] X [rl> ru] X [Ml’ Hu] X [)\la )‘«u] X [AI’AM] .
In order to fit the neural network, we draw a sample of np realizations of y, in D?, at random

times. We also sample parameters (]t s T]?", TJ> under the constraints:
j=L...,nD

the[O,l] x [0,1] x [0,1],

T;k e [0, T;knux] > TJ € [0, Trmax]
i< T]* =Tj.
The set of sampled state variables and parameters is noted Sp = (tj, Vj Tjs T;k, T]) - We
j=l,...,7’lD

next center and scale state variables and times. The mean and standard deviation of sampled state
variables are computed with the standard formulas:

1 & 1 & 2
LA o (,-5)
Y nDjzly] 7 1’11)-1; Yi—¥

The scaling vectors (22) are defined by a = _sy_y and b= % Forl,...,np,we deﬁne)7j =a+bo®

¥j- The times, contract, and bond maturities are also rescaled with relations (24) and coefficients
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1
__1 _
ap= —7%> bh_ T
max

The set of sampled normalized state variables and parameters is denoted by

During the training phase, the error of approximation is measured for all points of this sample
sets with the scaled FK Equation (26). The error at expiry is measured with another sample set,

denoted by S+, of ny+ realizations of state variables and parameters:

S = 1),

j=L...np )

l,...,}’lT*

Let us denote by @, the vector containing all neural weights (Cy, cx);—; ;.- At points of Sp, we
define for j=1, ..., np, the error in Equation (25) when V is replaced by the neural network as
follows:

D@y — b AT hi—ar  Rj—ay
¢; (@)_bhath ( ™ + b, )F (28)

- 1 - -
(8 3) T VoF + St (25055 5505, 5) TH3(P))

We refer to ejD as the error on the interior domain since it measures the goodness of fit before

expiry. The average quadratic loss on Sp is the first component of the total loss function used to
fit the neural network,

1 &
Lo (©)=-— Y e, (29)
j=1

Since the error ejD((')) depends on first- and second-order partial derivatives, special attention
must be given to the accuracy of their calculation. Computing these derivatives using a standard
finite difference method may introduce numerical instabilities. Therefore, we opt for an alter-
native approach known as automatic or algorithmic differentiation. Automatic differentiation
leverages the fact that every computer calculation executes a sequence of elementary arithmetic
operations and elementary functions, allowing us to compute partial derivatives with accuracy
up to the working precision. Automatic differentiation is implemented in TensorFlow through
functions such as GradientTape(.) and tape.gradient(.). For a more in-depth introduction and
perspectives, we refer the reader to van Merriénboer et al. (2018).

On the boundary sample set Sr+, we define the error el (@) for k=1,...,nr+, as the

difference between the output of the neural network and the payoff at expiry:
et (©) = F(T}, 3y, mi, Ty, Te) — H (A% — as) /bs, Gi) -
The average quadratic loss at expiry is the second component of the total loss function.

N

1 -
L (@)= — > el (). (30)
k=1

The optimal network weights are found by minimizing the losses in Sp and St+,
Oop =argmin [Lp (©) + L1+ (O)] . (31)
In practice, the minimization is performed with a gradient descent algorithm. For an introduction,

we refer, e.g., to Denuit et al. (2019), Section 1.6.
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Table 1. Financial and biometric parameters

Parameters

Kr 0.20482 os 0.18061
.p;,. e _002301 R or e 000786
}0,. B 003550 e
X 50 Bu 0.11094
au e 5277e7 e KH e 083925
MO e 3325903 e psu e _005000
vbmﬂ B 000000 e ,pﬂ,k. S ,.0.85,00(,).
X 50 B 0.9 B,

au e ogau e ,q e 09 K‘L .
)LO R oguo T pSA e _005000
Ora v 0;00000 v ' P 6.85000

7. Numerical illustration

We fit a Nelson-Siegel model to the Belgian state yield curve! on the 1/9/23. Initial survival proba-
bilities, ; pﬁf and 0, (1), are fitted to male Belgian mortality rates.? Details are provided in Appendix
D. Parameters of survival probabilities ;p?, of the reference population for the mortality bond, are
assumed proportional to these of ;pY . Reference ages, x,, and x;, are set to 50 years. Other market
parameters are estimated from daily time series of the Belgian stock index BEL 20 and of the 1 year
Belgian state yield from the 1/9/10 to the 1/9/23. The correlations ps,, and p, , are set to -5% and
0%. Parameter estimates are reported in Table 1.

We first build a sample set, Sp, of contract features, asset-mixes, and durations. We ran-
domly draw np =100, 000 combinations of risk factors and investment-duration parameters.
Most of these quantities are drawn from uniform distributions whose characteristics are reported
in Table 2. The contract and bond maturities are drawn from exponential distributions to ensure
a smoother allocation of durations than what would be obtained with uniform distributions. As
7s, p, and 7p are randomly distributed in [0, 1], we allow for short positions in cash. Using the
same distributions as for Sp, we generate a boundary sample set S7+ of size, n+= = 50, 000. The
last step consists in scaling and centering the sample sets, as described in the previous section.
Notice that setting G,, = 100 is not constraining. As the payoff is piecewise linear, we can use the
rule of thumb to evaluate any contract with another minimum capital. If V(A;, G,) is the GMAB
price at time £, for an asset value A; and a guarantee Gy, the value of a contract with a guaranteed

capital Glm # Gy is equal to:

/
/ G G
V(A5 Gy) ==V [ 745G | -
Gm G
m

The neural network is implemented in TensorFlow using Python. As mentioned earlier, the
necessary partial derivatives for evaluating the inner loss are computed through automatic dif-
ferentiation. This procedure is implemented in TensorFlow functions like GradientTape(.) and
tape.gradient(.), allowing for accurate derivative calculations without relying on finite differences.
To train the network, we employ the ADAM optimizer and utilize random batches containing

34,000 and 17,000 samples from SD and ST*, respectively. Over the course of one epoch, neural

1Source: national bank of Belgium (www.nbb.be).
2Source: Human mortality database (www.mortality.org)
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Table 2. Model parameters and features of contracts

Parameters for sampling contracts and risk factors

Minimum Maximum Distribution Additional info.
t >010years un.form e
YT.* e Y.Ztv e Hlovyeérsv S ”e*boﬁenﬁa[(vl‘%f‘)” B vf*vcabbevdtcv,'lo
T >T* 15years exponential(%) T capped to 15
At 23.82 414.15 uniform Gm = 100, Gy = 00
$t2382 41415 umform
rt e 000 e .0..0.8.. e umform e r0:44187%
MXH 000 001 umform M0:01365%
Axtt 0.00 0.01 uniform Ao = 0.1229%
nsooo 1 umform
nPOOOlumform
ND 000 1 umform

Table 3. Learningrate in function of

Epochs

Epochs Learning rate
4000 0.01
4001-8000 0.005
14001-20000 0.0005

Table 4. Information about training time and loss values after training for three neural configurations

Number of Neurons Times in sec., Number of Total Lp (©) L1+ (©)
hidden layers per layer 200 epochs parameters loss

3 32 685 4641 0.0437 0.0269 0.0168
4 32 853 6049 0.0093 0.0055 0.0038

weights are updated three times. We run a total of 26,000 epochs and adjust the ADAM learning
rate based on the pattern provided in Table 3, to expedite calibration. The training is conducted
on a laptop equipped with an AMD Ryzen 7 5825U processor and 16 Gb of RAM (without a
CUDA compatible GPU). The training time depends on the network configuration. As indicated
in Table 4, running 200 epochs takes approximately 12-18 minutes for networks with 3 and 5 hid-
den layers with 32 neurons, respectively. The entire calibration process spans from 26 to 40 hours.
Choosing 32 neurons per hidden layer strikes a good balance between accuracy and training time.
Tests conducted with 16 neurons over 8000 epochs revealed that this configuration performed less
effectively compared to the 32-neuron networks.

Table 4 reports the losses on Sp, St+ and their total, computed with Equations (29) and
(30). We observe a significant reduction of losses between 3 and 4 hidden layers models with
32 neurons. The reduction is relatively smaller when we switch from a 4 to a 5 layers model.
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Table 5. Relative errors computed on the 100 000 contracts of the training set Sp and on a validation set of

same size
Relative errors, training set

P -
Number of Mean Standard R
hidden layers Deviation 5% 25% 50% 75% 95%
3 0.0027 0.0071 2.05e-05 10.88e-05 30.30e-05 147.51e-05 1.51e-02
4 0.0014 0.0057 7.63e-06 3.90e-05 9.23e-05 32.60e-05 0.74e-02
5 0.0016 0.0057 7.39e-06  3.96e-05  10.40e-05  52.50e-05  0.87e-02

Relative errors, validation set

P til
Number of Mean Standard ercentries
hidden layers Deviation 5% 25% 50% 75% 95%
3 0.0027 0.0070 2.03e-05 10.84e-05  30.44e-05 148.94e-05 1.50e-02
4 0.0014 0.0055 7.73e-06 3.91e-05 9.28e-05 32.93e-05 0.73e-02
5 0.0016 0.0056 7.45e-06 3.93e-05 10.43e-05 52.45e-05 0.86e-02

Table 5 presents statistics about relative errors® between PINN and exact prices obtained with
formula (18). These statistics are computed for the 100,000 contracts in the training data set Sp
and for a validation set of same size and built in the same manner. The similarity of figures on
both sets does not reveal that we overfit the training dataset. The average relative errors are small
and around 0.15% for 4 and 5 hidden layers models. The 95% confidence level is also below 1%
for these networks which is quite acceptable.

In the remainder of this section, we focus on the network with 4 hidden layers as it yields the
lowest relative errors on training and validation sets. Fig. 2 compares exact and approximated
PINN prices for an 8-year GMAB. The upper plots show the values at issuance and at expiry for
various values of the total asset. Market conditions are as of September 1, 2023. Across a wide
range of asset values, the exact and PINN prices closely align. The largest deviations are observed
for the lowest and highest values of A;. The lower plots display the value at issuance of the same
contract with Ay € {90, 100} for r( ranging from 0% and 8%. We observe that the spreads between
true and approximated prices depend on both parameters. However, it is noteworthy that the error
remains under 1% in most cases.

To understand the circumstances in which relative errors are the highest, we analyze them
by subgroups of contracts. In order to have a sufficient number of representatives in each sub-
category, we generate a third validation set, this time consisting of 500,000 contracts instead of
100,000. Table 6 presents the averages and standard deviations of relative errors for 20 classes of
contracts grouped by asset values. We observe that the highest errors occur with the lowest asset
values. The left heatmap in Fig. 3 displays relative errors by categories of asset values and residual
contract maturities, T* — t. We draw two conclusions from this graph. First, for A; < 80, the error
increases with the residual contract duration and may be significant. Second, the errors in the
usual pricing range, around the guarantee level G, = 100, remain close to 0.01% regardless of the
time horizon.

It is worth noting that for low asset values, GMAB is deeply out of the money, and the contract
price is very close to that of a pure endowment for which we have a closed-form expression. One
way to improve accuracy would be to add a third penalty term to the loss function (31). This
term would penalize the quadratic spread between PINN and endowment prices for low asset
values. However, we deliberately avoided this solution to observe how the network behaves when
provided with minimal information.

|Exact price—PINN price|

3By relative absolute error, we mean Fractprice
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Figure 2. Comparison of exact and PINN prices of a T* = T = 8 years GMAB with: So = 100, = = (0.50, 0.25, 0.25), (ro, /t0, *0)
of Table 2. Upper plots: values at issuance and expiry, for A; € [23.82, 414.15]. Lower plots: values at issuance with Ay = 100
and 90, for ry € [0.00, 0.08].

Table 7 presents the means and standard deviations of errors for 10 groups of contracts, cate-
gorized by ranges of interest rates, r;. Regardless of the category, the average relative error remains
close to 0.14%. The right heatmap in Fig. 3 suggests that, on average, errors increase with matu-
rity. However, this observation should be qualified by the noticeable variability of errors between
consecutive interest rate classes for the same maturity. This variability indicates that the increase
in errors is partly attributed to other factors, such as the low asset values present within each of
the interest rate classes.

Tables 8 and 9 provide information about errors for contracts categorized by classes of mortality
rates. Similar to interest rates, the average error remains small and close to 0.14% across all class.
The heatmaps of Fig. 4 show a slight increase in errors with the contract time to expiry. Once
again, we observe a higher variability of errors for longer maturities. As mentioned earlier, this
variability signals that the increase in errors is influenced by factors beyond mortality rates.
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Table 6. Mean and standard deviations (std) of relative errors for contracts grouped by asset values

At e [23.8,43.3) [43.3,62.8) [62.8,82.3) [82.3,101.8) [101.8,121.4)
mean 0.0075 0.0072 0.0067 0.0039 0.001
Std ............................ 0 0133 .............................. 001 29 ............................. 00114 .............................. o 0062 .............................. 0 0021 ........
At € [121.4,140.9) [140.9, 160.4) [160.4,179.9) [179.9,199.5) [199.5,219.0)
mean 0.0003 0.0002 0.0001 0.0001 0.0001
Stdoooog .............................. 00006 ............................. 00004 .............................. o 0002 .............................. 00002 ........
At e [219.0,238.5) [238.5,258.0) [258.0,277.5) [277.5,297.0) [297.0, 316.5)
mean 0.0001 0.0001 0.0001 0.0001 0.0001
Stdooo()]_ .............................. 00001 ............................. 00002 .............................. 0 0002 .............................. 00003 ........
At e [316.5, 336.1) [336.1, 355.6) [355.6,375.1) [375.1,394.6) [394.6, 414.2)
mean 0.0001 0.0001 0.0002 0.0003 0.0004
. Std ............................ 0 : 0005 .............................. 0 0005 ............................. 00008 .............................. o 0012 .............................. 0 0015 ........

Table 7. Mean and standard deviations (std) of relative errors for contracts grouped by interest rates
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Figure 3. Left plot: heatmap of relative errors per asset and maturity classes. Right plot: heatmap of relative errors per
interest rate and maturity classes.
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Table 8. Mean and standard deviations (std) of relative errors for contracts grouped by mortality rates x4

Ut € [0.0,1.0) [1.0,2.0) [2.0,3.0) [3.0,4.0) [4.0,5.0)
mean 0.0015 0.0014 0.0015 0.0014 0.0015
. Std ............................. 0 0055 ............................ 00057 ........................... 0 0059 ........................... o o 053 .............................. 0 0059
t € [5.0, 6.0) [6.0,7.0) [7.0,8.0) [8.0,9.0) [9.0, 10.0)
mean 0.0014 0.0014 0.0014 0.0014 0.0014
Std ................................ 0 0058 ............................. 00058 ............................. 00057 ............................. 0 0055 ............................... 0 0057

Table 9. Mean and standard deviations (std) of relative errors for contracts grouped by hedging mortality

rates A4t
At € [0.0, 1.0) [1.0,2.0) [2.0,3.0) [3.0, 4.0) (4.0, 5.0)
mean 0.0014 0.0014 0.0014 0.0014 0.0014
P oy oo oo oo I
At € [5.0, 6.0) [6.0,7.0) [7.0,8.0) [8.0,9.0) [9.0, 10.0)
mean 0.0014 0.0015 0.0015 0.0014 0.0015
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Figure 4. Left plot: heatmap of relative errors per uy¢ (in °/oo) and maturity classes. Right plot: heatmap of relative errors
per Ax+t (in °/oo) and maturity classes.

Tables 10 and 11 provide statistics on relative errors for contracts categorized by fractions of
stocks and bonds (including interest rate and mortality bonds). The left plot in Fig. 5 displays a
heatmap of errors based on these two parameters. Interestingly, we do not observe any particular
trend, and the pricing error remains acceptable regardless of the asset mix. This indicates that the
PINN can be used for ALM purposes, particularly in approximating the impact of changes in asset
mix on contract fair values.
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Table 10. Mean and standard deviations (std) of relative errors for contracts grouped by fraction of stocks

s € [0.0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5)
mean 0.0014 0.0014 0.0014 0.0014 0.0014
std .............................. 0 0059 ........................... 0 0059 00057 ............................ 00058 ........................... 00057 )
s € [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0)
mean 0.0014 0.0014 0.0015 0.0015 0.0015
Std ................................. 0 0057 .............................. 0 0056 ............................. 00057 .............................. 0 0055 .............................. 00055

Table 11. Mean and standard deviations (std) of relative errors for contracts grouped by fraction of bonds

(mp +mp) € [0.0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1.0)
mean 0.0016 0.0015 0.0015 0.0014 0.0014
Std S 0006 ........................ 00058 ...................... 00058 00056 ........................ 00057 )
(mp +mp) € [1.0,1.2) [1.2,1.4) [1.4,1.6) [1.6,1.8) [1.8,2.0)
mean 0.0014 0.0014 0.0014 0.0014 0.0014
Std ........................................... 00057 ........................... 00056 ........................... 0 005600055 ........................... 00053
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Figure 5. Heatmap of relative errors per 7rs and (p + 7p) asset allocation classes.

Nevertheless, the right heatmap of Fig. 5 reveals that the error increases with the time to expiry.
To illustrate this, we compare the exact and PINN prices of a 5- and 8-year contract in Fig. 6, where
7s ranges from 0 to 1 and mp =y = 1_2”5. This graph shows that the PINN captures the trend
of the relationship between prices and the fraction of stocks, but the error may reach 1% for cer-
tain combinations of parameters and risk factors. While this error may appear relatively high, it
should be considered in the context of existing alternatives. For instance, in risk management, a
common approach to valuing a contract at a future date relies on the least aquare Monte-Carlo
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Figure 6. Comparison of exact and PINN prices of a 5- and 8-year GMAB with: So = 100, s € [0, 1] and 7p = 7y = 5.
(ro, o, Ao) of Table 2. Upper plots: values at issuance and expiry, for A € [23.82,414.15]. Lower plots: values at issuance
with Ag = 100 and 90, for ry € [0.00, 0.08].

(LSMC) method. As demonstrated in Hainaut & Akbaraly (2023) for a similar contract, the aver-
age valuation error often exceeds 1% and can even surpass 3% in extreme cases. Replacing LSMC
with the PINN in such a context would clearly reduce the overall valuation error.

We conclude from the error analysis that the average accuracy of a PINN is sufficient for risk
management and ALM purposes. The significant advantage of using this approach is the substan-
tial time savings once the calibration is completed. Computing prices for a sample set of 500,000
contracts, each with varying durations, asset mixes, and market conditions, takes less than 45 sec-
onds. In contrast, evaluating the same portfolio using a standard MC method would require a
considerable amount of time because we would need to regenerate a sufficient number of sam-
ple paths for each initial combination of risk factors. The PINN model is capable of pricing an
impressive range of contracts, and with additional computing power, it is likely possible to further
improve both accuracy and the diversity of contracts.

8. Conclusions

In this work, we explore the capability of PINNs to price GMABs. The first part of the article
introduces market and biometric risk factors within a Gaussian framework. We also develop an
analytical formula for GMAB pricing to serve as a benchmark for the PINN. Next, we propose a
scaled version of the Feynman-Kac (FK) equation, which helps mitigate the vanishing gradient
phenomenon during training. An approximate solution is constructed using a neural network
with skip connections. We conclude with a detailed analysis of pricing errors.

This study highlights several advantages of PINNs. First, they excel in evaluating products
exposed to multiple risk factors. Alternative procedures, such as those based on finite differences
or FFT, become challenging and time-consuming when dealing with more than two risk factors.
Second, PINNS offer parameterization options, allowing flexibility in incorporating contract fea-
tures such as duration or asset mix. This flexibility sets them apart from other methods that require
retraining for each unique combination of contract features. Third, once trained, PINNs provide
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nearly instantaneous valuation. We can appraise a portfolio of 500,000 GMABs with various mar-
ket conditions and features in less than a minute. In contrast, performing the same exercise with
a MC method would entail simulating sample paths for each initial risk factor combination.

However, PINNs also have some drawbacks. First, there is no systematic procedure to deter-
mine the optimal network architecture and training set size. After several attempts, we opted for a
network with direct connections between input and hidden layers. Second, the training time can
be lengthy, although parallelization on GPUs may help reduce it. On a positive note, updating the
network to adapt to new market conditions is expected to be less time-consuming when initialized
with neural weights obtained after the initial training.

Numerical results are undeniably encouraging. Within the typical range of risk factors, a
PINN with four intermediate layers approximates prices with a relative error smaller than ten
basis points. Furthermore, the PINN effectively captures the relationship between GMAB prices,
risk factors, and asset mix. Its accuracy is sufficient to conduct sensitivity analyses on contract
specifications and test various asset allocation strategies.

However, we do observe non-negligible errors for very low asset values. In these cases, the
embedded call option in the GMAB is deeply out of the money, and the contract price closely
resembles that of a pure endowment. Additionally, we notice that errors tend to slightly increase
with the contract’s maturity. While errors may appear relatively high in certain configurations,
it is crucial to consider these results in the context of existing alternatives. For example, in risk
management, the common approach for valuing contracts at a future date relies on the LSMC
method, which is known to be significantly less accurate (as demonstrated in Hainaut & Akbaraly,
2023).

This article lays the groundwork for future experiments. First, errors for deep out-of-the-
money contracts can be reduced by introducing a third penalty term into the loss function (31). As
mentioned earlier, in such cases, the GMAB value is nearly identical to the value of a pure endow-
ment, which can be calculated analytically. Therefore, we can include a term in the loss function
that penalizes the quadratic spread between PINN and endowment prices when the asset value
falls below a certain threshold. We deliberately avoided this solution initially to assess how the
network performs with minimal information. Second, it would be interesting to expand the range
of parameters and contract features to generalize the procedure. Lastly, we have not explored all
possible neural architectures, and there may be room for optimization to enhance accuracy and
reduce computing time.
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Appendix A

The next proposition enable us to infer the expressions of y,(t) and y,e(;,2(¢) matching the initial
term structures of interest and mortality rates.
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Proposition 4. At time 0 <t < T, the value of the discount bond of maturity T is equal to

T
P(t,T) = exp <—rtB,(,(t, T) —/ ve(1) (1 _e—xr(T—u)> du)
t

2 T
X exp (%/ By, (u, T)Zdu> ,
t

The survival probability up to time T for z € {j1, A}, is given by
' T
TPx, +t = €Xp | —Zx, 4B, (t, T) —/ () (1 — el _”)) du
t

T
X exp (% / (GZ(M)BKZ(L{, T))2 du) ,
t

The pure endowments admit the following expressions:

2 T
o
TE{ = 1{z, =) exp <—TtB;<r(t) T) — px,+tBe, (6, T) + _2r f By, (u, T)zdu> x
t

exp <— /tT ye(u) (1 — e_"’(T_“)> du — ftT V(1) (1 — e_"/*(T_”)) du) X

T

T
exp (mEIEH / 0. () By, (u, T)By, (u, T)du + % / (Uu(”)BKM(u, T))2 du) ,
t t

and
A of (T 2
TE; = 1jz, >y exp | =7¢Bi, (t, T) — Ay 4Bi, (£, T) + 7’ / By, (u, T)*du | x
t
T T
exp —f v (1) <1 —e_K’(T_”)> du—/ v (1) (1 —e_’“(T_”)> du | x
t t
T T 1 T 2
exp | 0,2, E,\/‘ 0,.(u)By, (u, T)By, (u, T)du + 5/ (G;L(u)B,Q(u, T)) dul ,
t t
Sketch of the proof.

We can show by direct differentation that interest and mortality rates are equal to

Ts e Kr(s=ty, Ky fts ye(u)e ¥ dy
M, +s | = e_KM(S_t)qu+t + | xu fts Yu(w)e  ub=Wdy
Axyts e b= 1y Ky, f: o (we =1 dy

GrZrT fts e—Kr(S—U)qu
+| =) [} ou(we n"Haw,

L

Al N oy (w)e = gw,
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The integrals of interest and mortality rates are obtained by direct integration

f;T rst rtBl(,(t) T) ftT yr(u) (1 — e_Kr(T—M)) du
ftT /Lx#—s-sds = /’LX#-‘!‘?BK;/,(t’ T |+ ftT V(1) (1 — e—"u(T—u)) du (A6)
ftT )\xrl‘sds AﬂxA+tBKk(t) T) ftT Vk(u) (1 _ e—K)L(T—M)) du

erT fts B, (u, T) dW,
+ ZII ftS 0 (u)By, (u, T) dW,,
=7 [ 03 (W)Be, (u, T) AW,

T
The results follow from the log-normality of e~ Jizsds for 7 € {r, u, A}, from 6,2, + 6fM + erzk =1
and efm + 612M =1.

end
From Equation (A1), we deduce that the function y, (1) must satisfy the next relation to match the
initial yield curve of zero-coupon bond:

T 02 T
/ Vr(1) (1 —e—'fr<T—”>) du = —InP(0,T) = 1By, (0. T) + — / By, (u, T)du. (A7)
0 0

Deriving twice this expression leads to the following useful reformulation of y,(T):

1 o2
yi(T) = ——02In P(0, T) — a7 In P(0, T) + ~1= (1 - e*”rT) , (A8)
Kr 2k

where —d7 In P(0, T) is the instantaneous forward rate. For a given initial mortality curve Tpfcz,
z € {i, A}, we show in a similar manner that the function y,(u) satisfies the relation

1 1 T
Vo(T) = ——21In 7p° — drln 7p° + —/ o, (u)? <e_2Kz(T—M)) du
: © k2 Jo

Kz
= _laz In p2 —orln pp2 + ﬂ (esz - efz"zT) (A9)
Kz T 2 = 2k + Bz)
Equations (A8) and (A9) allows us to rewrite bond prices, survival probabilities and endowments
as function of initial term structures of mortality and interest rates. Analytical expressions are
provided in Proposition 1 the proof is summarized below.

Proposition 1: sketch of the proof By direct integration of Equations (A8) and (A9), we obtain that

r P(0,T) o2
1— "‘f”‘”’) du = (8;1In P(0, ) B..(t, T) — 1 ’ (T —t
| (1= W= Gl PO,0) B (6. ) ~In o) 4 (T -
_ %y (t,T) — 9 g (t, T)?
2Kr2 K\t 4/{, Ky \b> >
and
TPQZCZ agezﬂzxz

T
1—e*T=1) gy = (3,In ;p%) B..(t, T) —1
/t VZ(”)( ¢ ) u= (@ p3) Be (6 T) —In 0%, 2c(icz + Be)

x (T Bag, (1, 1) — €' Ba (1, T) = €5 Byp s (1, T) + e TH0B, (1,7))

Combining these expressions with these of Proposition 4.
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end

Proposition 2 : sketch of the proofLet us denote the mortality indexed discount factor by
T
Tm?‘ =EQ (ef Ji (rsths 45)ds |]'—t> such that D(t, T) = e~ Jo o+ Tm?‘. The differential of D(t, T)

then equal to
t
AD(t, T) = —hy, ¢ pml dt + e Jo P59 d ol (A10)
From Proposition 5, we infer that the mortality indexed discount factor is ruled by the SDE:

d rm*
IO — (1 + dy 41) d — B, (t, T, S, AW — By, (£, T)op (DS, AW .
Tyt

From Equation (A10), we infer the dynamics under QQ, Equation (8). As dW;=d W, + 0dt with
vy = —E;r 0,
V), = —Z;ﬂ ,

we obtain Equation (9).

end
The next result presents the dynamics of the discount bond and endowment under the pricing
measure. This is a direct consequence of the Itd’s lemma applied to Proposition 4.

Proposition 5. Under the risk neutral measure Q, the dynamics of the zero-coupon bond and of the
pure endowment at time t < T are given by

}2&;5 = r dt — B, (t, T)o, S dW;, ]
B = (rt + pix, 1) dt + dliz, > — B (1, T)oy S, dW,

—By, (t, T)o, (t)Z,) dW; (A11)
dTTEEg = (1t + Axpt) dt + dl{g, > — By, (t, T)o, X, dW,

=By, (t, )o,. (D E,] dW;

AsEQ (d1{z,>1)) = —itxrdt for, we check that the pure endowment has a return equal to the risk-
free rate: EQ (d TE’{L) = TEf 1 dt.

Proposition 3: sketch of the proof
From the Itd’s lemma, the dynamic of ﬁ under the risk neutral measure Q is equal to

1 Tt BK (t) T*)Zo,z BK (t) T*) T
d - dt + 24 r ot 4 2k »Tdw,.
T P T TRy T ey O AW

From Equation (13), we infer that under F, this ratio is ruled by

1 rt B, (t, T2 B (t,T*) _+. &
d =" dt + — St + = = dw A12
P(t, T%) P(t, T*) + P(t, T*) + P(t, T%) Or 2y t ( )
Bl(r(t) T*)

P(t, T*)

or (arBK,(t, T*) + 0, ()%, 2By, (& T + 0,()%, 3By, (1, T*)) dt .
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On the other hand, the differential of % is related to dA; and d (1/P(t, T*)) by the relation:

At 1 dAt T At
d =A;d YA Z0,B, (8, T* dt
<P(t, T*)) t (P(t, T*)) +P(t, ) +r ZA() 2,0, Kr( )P(t, )

From Equations (A12) and (14), we rewrite this last expression as follows:

d (A;/P(t, T*)) . "
m =1 " Sa(t) (0,(t)By, (t, T*)E,, + 0. (£)By, (t, T*)T;) dt

— B (t, T, (au(t)Z;r By, (6 T*) + 0,(O)S, 5B, (8, T*)) dt

+ (BK,(t, ™o, %, + ETZA(t)> dwy .
Applying the Itd’s lemma to In (A;/P(t, T*)), leads to the following result:

dln (A;/P(t, T)) = — T ZA() (04 (DB, (t, T )E, + 01 (1)By, (t, T*) ) dt
—B (t, T))o, (au(t)E;r 2uBe, (b T + 0, ()5 5B, (1, T*)) dt

1
=3 (Bo (. T0r 2] + 2T S4(0) (Be (6 To,Z, + Za(t) T ) e

+ (Bo (6, Torm] 427 EAD) AWy

This last equation emphasizes that In % ~ N (up(t), vr(t)).

end

Appendix B

This appendix provides various integrals used for calculating analytical prices. For t < T*, T* < T,
T* < Sand y € R, we have the following expressions:

T 1 1 .
/ By(u,S) du=~ (T* —t) — —e7S=TIB,(t, T%),
t y y
L 1 .
/t By(u, 8)? du= )7 [(T* - t) —2e VST )By(t, )

+e B (0,74
r 1 .
/ By (u, $)By(u, T) du = 7 [(T* —1t) —e?S"TIB,(t, T)
t

—e TR, (4, T 4+ e XS D T By (1,77 |
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The combined integrals of B (t, T, o,,(t) and 0, (t) are:

T*
/ 0By, S)du = = =TI By (1, T%)
t y

_ %2 (et T (ST By (1, T,
Y

T* azeﬂz (Xz“rT*)
/ o2(u)By(u, $)By, (u, T) du = ———— (Bg, (1, T*)
t YK

z

—e S TBg L, %) — e =TTy 1 (1, T%)
+e*Y(S*T*)f'(Z(TiT*)BerKZJrﬁz(t’ T*)) >

o, bz (3 +T*

T* ) 2
/ 02(1)*Be, (u, B, (u, T)du:( ) (Bap. (1, T)
t

Kz
—e STy o (1, T) — e T TRy o (1, T%)
eI (T gy (8, T *)> ,

0ty Pt T (T

T*
/ au(u)ax(u)BKM(u, S$)By, (u, T) du =
t Kk,

(Bﬂu-i-ﬁx(t’ T*) — e_KM(S_T*)BﬂM-Fﬂ)\-FKM(t’ ")

_e_KA(T— T*)Bﬂu_ Bt (t, T*)

+e_Kﬂ(S_T*)_KA(T_T*)BK,L+KA+,3#+,3)L(ta T*)> .

Appendix C

This appendix, provides the full analytical expressions of the variance and mean of the lognor-
mal random process, In %

following sum:

(see Proposition 3). The variance vp(t) is developed as the

T* T*
v(t) = / 0By, (u, T*)* du+ 2 " / S a(u)By., (u, T*) du X0, (C1)
t t
T*
'’ / BAWZa(w) dum.
t
The integral in the second term of the right hand side is a 3 x 4 matrix equal to

T*
/ Sa(u)By, (u, T*) du = (C2)
¢

osE;r ftT* By, (u, T*) du
—0,=7 [ By (u, T)By, (u, T*) du
—arZ,T f*tT* By, (u, T)By., (u, T*) du — Z;
x [1 03.(u)Be, (u, T*)By, (u, T)du
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The integral in the third term of the right hand side of Equation (3) is a symmetric 3 x 3 matrix:

T* c11(t) cra(t) c13(t)
/ Ta)aw)" du=| c12(t) ena(t) ca3(®) |, (C3)
t c13(t) c23(t) c33(t)

with the following entries:
c1(t) = O’S2 (T* — t) ,

T*
cp(t) = _GSE;F pINeS / BK,(U; T) du,
t
T* T*
c13(t) = —0s T4 T,0, / By, (u, T)du — 05%4 Ty, / 0.(u)By, (u, T)du,
t t

T*
cn(t) =0} / Be,(u, T)?du,
t

T T
23(t) = o / B, (u, T)?du+ 0,2 %), / 03.(4)By, (u, T)By, (u, T)du,
t t
T* T*
c33(t) =07 / By, (u, T)*du + / 03 (4)* By, (u, T)*du
t t

T*
+20,2, %) / 03.(w)By, (1, T)By, (4, T)du.
t

The mean function, ur(t), is developed as follows

1

T*
pr() =5 ve(0) — 02T 3, ]t 03 (1)Br (1, T)Big, (1, T) (ca)

T*
—0,2' %, / 03.(1) By, (4 T)By, (1, T*)dus
t
T*
- ' f Y Aoy (u)By, (u, T )du =,
t

T*
—nT/ Ya(w)o(u)By, (u, T*)du Ty, .
t

The integrals in the third and fourth terms of Equation (C4) are respectively equal to

T*
f Ta(u)oy, (u)By, (u, T9)du = (C5)
t

GSEST*ftT* 0 (4)By, (u, T*) du
—0, =) [ 0, ()By, (1, T)By, (u, T) du
-0,z *ftT 0, ()By, (1, T)By, (u, T*)du — ;1 ’
x [ 0, (o3 (u)Be, (1, T*)Be, (u, T) du
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and

T*
/ S (), (1) By, (11, T*)dt = (C6)
t

o5%d f 0By, (u, T du
~0, 2] [ 03.(u)By, (u, T)By, (u, T*) du

- ff:‘ 02.()Be, (uy T)By, (4, T*)du — B
X ftT 03 ()2 By, (u, T*)By, (u, T) du

The integrals in Equations (C2), (C3), (C5) and (C6) are detailed in Appendix B.

Appendix D

In the numerical illustration, we model the initial yield curve with the Nelson-Siegel (NS) model.
In this framework, initial instantaneous forward rates are provided by the following function:

£, 0= =0 In P(0,0) = b + (b{7) + b)t) exp (—cr) .

Parameters {bo, b1g, b11, c1} are estimated by minimizing the quadratic spread between market
and model zero-coupon yields:

1647 @ 1 b)) ")
P(0,t) = exp bg) + -0 (1 —e a t) +-—1u (1 - (cgr)t-i— 1) e A t)
t C(") t ( (r)>2
1 o
We fit the NS model to the yield curve of Belgian state bonds observed on the first of September
2023 and obtain estimates reported in Table D.1.

The volatility of mortality rates is fitted by least square minimization of spreads between oy(.)

and empirical deviations of variations of mortality rates by cohort (ages between 20 and 90 years

from 1950 to 2020). If uiy ) is the observed mortality rates at age x during the calendar year y, we

denote by Au,(cy ) = uiy ) _ ,uiy__ 11) and by Sy the standard deviation of A/Liy ) for y=1950 to 2020.

The «;, and B, are obtained by minimizing the sum

90
. 2
s B =argmin » " (Sy — e e¥)”
x=20

On the other hand, the initial curve of survival probabilities is described by a Makeham’s model,
ie.
x+t s
tPiL = exp _/ <a(u) + A <C(M)) ) ds
X

_ exp(—a(“)t) exp (_1:(:;“ ((C(M))x+t _ (C(u)>x>) .

where a®, b, (W) ¢ R*, These parameters and the reversion speed «, are obtained by least
square minimization of spreads between prospective and model survival probabilities. Prospective
survival probabilities are computed with a Lee-Carter model fitted to Belgian mortality rates from
1950 to 2020 for 0 to 105 years, male population. Model (p, are computed with Equation (25) for
x = 20 years old. Estimated parameters are provided in Table D.2.
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Table D.1. Nelson-Siegel param-
eters, Belgian state bonds, 1/9/23

Parameter Value

s 0.040535

byt 0.003652

b —0.022349
at 0.449268

Table D.2 Mortality parameters, Belgian male mortality rates,

year 2020
Parameters

a) 1.006349e-03 Ky 0.83925
b 2.790903e-07 a, 8.5277e-7
T ﬂu e
a™ 1.05 W i 0.9k,
bl 10550 v o 0.9,
e ﬂu !
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