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Abstract

We generalize bounds of Liu–Wan–Xiao for slopes in eigencurves for definite unitary
groups of rank 2 to slopes in eigenvarieties for definite unitary groups of any rank. We
show that for a definite unitary group of rank n, the Newton polygon of the charac-
teristic power series of the Up Hecke operator has exact growth rate x1+2/n(n−1), times
a constant proportional to the distance of the weight from the boundary of weight
space. The proof goes through the classification of forms associated to principal series
representations. We also give a consequence for the geometry of these eigenvarieties
over the boundary of weight space.
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1. Introduction

1.1 Background and statement of main theorem
The first ‘eigenvariety’ was constructed by Coleman and Mazur in [CM98]. Now called the
Coleman–Mazur eigencurve, it is a rigid analytic space parametrizing p-adic modular Hecke eigen-
forms with nonzero Up-eigenvalues. Since then, further work by numerous authors has resulted in
a collection of eigenvarieties for p-adic automorphic forms on various other groups. Particularly
relevant for our purposes are the papers of Buzzard [Buz04, Buz07], Chenevier [Che04], and
Belläıche and Chenevier [BC09], in which eigenvarieties are eventually constructed for p-adic
automorphic forms on definite unitary groups of all ranks.

For simplicity of notation in this introduction, let p be an odd prime. We write v for
the p-adic valuation and | · | for the p-adic norm, normalized so that v(p) = 1 and |p| = p−1.
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Slopes in eigenvarieties for definite unitary groups

A weight of a p-adic modular form is a continuous character of Z×
p , and the weight space is the

rigid analytic space W parametrizing such characters. The T -coordinate of a point w ∈ W is the
value T (w) = w(exp(p)) − 1; the space W turns out to be a disjoint union of p− 1 open unit
discs with parameter T . For r ∈ (0, 1), we write W>r for the rigid analytic subset of W where
|T | > r.

We fix a tame level and let Z be the corresponding eigencurve. We let w : Z → W be the
map taking an eigenform to its weight, ap : Z → Gm be the map taking an eigenform to its
Up-eigenvalue, and Z>r be the preimage of W>r in Z . The following conjecture, sometimes
called the ‘halo conjecture’, describes the geometry of the part of the eigencurve lying over the
‘boundary’ of weight space (i.e. Z>r for r sufficiently close to 1).

Conjecture 1.1.1 (Coleman–Mazur–Buzzard–Kilford, as stated by Liu, Wan, and
Xiao [LWX17]). When r ∈ (0, 1) is sufficiently close to 1−, the following statements hold.

(i) The space Z>r is a disjoint union of (countably infinitely many) connected components
Z1, Z2, . . . , such that the weight map w : Zn → W>r is finite and flat for each n.

(ii) There exist nonnegative rational numbers α1, α2, . . . ∈ Q in non-decreasing order and
tending to infinity such that, for each n and each point z ∈ Zn, we have

|ap(z)| = |T (w(z))|αn .

Note that part (ii) of Conjecture 1.1.1 implies that as one approaches the boundary, the slope
v(ap(z)) approaches 0 in proportion to v(T (w(z))).

Liu, Wan, and Xiao [LWX17] proved the equivalent version of this conjecture for automorphic
forms on definite quaternion algebras over Q. The key step in their work is to obtain strong upper
and lower bounds on the Newton polygon of the characteristic power series of the Up-operator.
For consistency with our discussion, we describe these bounds in the context of rank-2 definite
unitary groups over Q, for which the analysis is exactly the same.

Let G be an algebraic group over Q such that G(R) ∼= Un(R) and G(Qp) ∼= GLn(Qp), and
U ⊂ G(Af ) a compact open subgroup satisfying minor technical conditions. The corresponding
eigenvariety Z is now a rigid analytic space of dimension n− 1 lying over the weight space W
parametrizing continuous characters of (Z×

p )n−1. This W is a disjoint union of (p− 1)n−1 open
unit polydiscs of dimension n− 1 with parameters T1, . . . , Tn−1. Let Sw(G,U ) be the space of
p-adic automorphic forms on G of weight w and level U . Then Liu–Wan–Xiao showed that when
n = 2, the Newton polygon of det(I −XUp|Sw(G,U )) is shaped approximately like the curve
y = Av(T1(w))x2, where A is a constant depending only on G, U , and p.

In this paper, we generalize this bound to definite unitary groups of all ranks by showing
that for arbitrary n, the Newton polygon of det(I −XUp|Sw(G,U )) is shaped approximately
like y = Av(Ti(w))x1+2/n(n−1), assuming that the v(Ti(w)) are not extremely different in size.
A more precise statement follows.

Theorem 1.1.2.

(i) There are constants A1, C > 0 (depending only on G, U , and p) such that for all w such
that each |Ti(w)| > 1/p, the Newton polygon of the power series det(I −XUp|Sw(G,U ))
lies above the curve

y =
(
A1x

1+2/n(n−1) − C
)
min
i
v(Ti(w)).

(ii) Suppose that w(a1, . . . , an−1) =
∏
i a
ti
i χi(ai), where (t1, . . . , tn−1) ∈ (Z≥0)n−1 with

t1 ≥ · · · ≥ tn−1, and each χi is a finite character of conductor cond(χi) such that
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cond(χiχ−1
j ) = max(cond(χi), cond(χj)) for all i �= j, cond(χi) ≥ 2 if p ≥ 3, and cond(χi) ≥

4 if p = 2. Let χ(1), . . . , χ(n−1) be the characters χ1, . . . , χn−1 reordered so that cond(χ(1)) ≤
cond(χ(2)) ≤ · · · ≤ cond(χ(n−1)), let c(i) = cond(χ(i)), and let T(i) = T (χ(i)).

Then there is a constant h (depending only on G, U , and p), a polynomial dt1,...,tn−1 of
total degree n(n− 1)/2 in the ti, and a linear function l(t1, . . . , tn−1) such that the Newton
polygon of det(I −XUp|Sw(G,U )) contains at least

hpc(1)+2c(2)+···+(n−1)c(n−1)−n(n−1)/2dt1,...,tn−1

segments of slope at most l(t1, . . . , tn−1), hence passes below the point(
hpc(1)+2c(2)+···+(n−1)c(n−1)−n(n−1)/2dt, hp

c(1)+2c(2)+···+(n−1)c(n−1)−n(n−1)/2dtl(t)
)
.

If for a given ε, the ti satisfy ti − ti+1 ≥ ε(tj − tj+1) for all i �= j, this point can also be
written as(

x,A2

(
v(T(1))

2/n(n−1)v(T(2))
(2·2)/n(n−1) · · · v(T(n−1))

(2·(n−1))/n(n−1)
)
x1+2/n(n−1)

)
for x = hpc(1)+2c(2)+···+(n−1)c(n−1)−n(n−1)/2dt and a constant A2 (depending additionally
on ε). Note that, in particular,

v(T(1))
2/n(n−1)v(T(2))

(2·2)/n(n−1) · · · v(T(n−1))
(2·(n−1))/n(n−1) ≤ max

i
v(Ti).

Remark 1. It will be evident that the condition that cond(χiχ−1
j ) = max(cond(χi), cond(χj)) for

all i �= j is not required for the proof to go through; it is just there to allow us to state the best
and cleanest bound.

We also leverage Theorem 1.1.2 to prove two statements that may be more geometrically
satisfying. First, we prove the following alternative version of the upper bound which provides
infinitely many upper bound points on the same Newton polygon.

Theorem 1.1.3. Suppose that w(a1, . . . , an−1) =
∏
i a
ti
i χi(ai), where (t1, . . . , tn−1) ∈ (Z≥0)n−1

with t1 ≥ · · · ≥ tn−1, and each χi is a finite character of conductor ci such that cond(χiχ−1
j ) =

max(cond(χi), cond(χj)) for all i �= j. Then there is a constant A2 such that for every radius
r > 0, there is a weight s such that |Ti(w) − Ti(s)| < r for all i, |Ti(w)| = |Ti(s)| for all i, and
the Newton polygon of det(I −XUp|Ss(G,U )) lies below an infinite sequence of points (with
x-coordinates going to ∞) lying on the curve parametrized by(

x,A2x
1+2/n(n−1) · (v(T(1)(s))

2/n(n−1)v(T(2)(s))
(2·2)/n(n−1) · · · v(T(n−1)(s))

(2·(n−1))/n(n−1)
))
.

Again, keep in mind that the expression with the T(i) is at most maxi v(Ti(s)).

Recall that the Newton polygon NP (x) of Up at a given weight s is a continuous, concave
up piecewise linear function in the xy-plane such that for every α ∈ Q≥0, the horizontal length
of the segment of NP (x) of slope α equals the number of Up-eigenvalues among forms of weight
s of p-adic valuation α. Hence, Theorems 1.1.2 and 1.1.3 tell us the growth rate of the sizes of
the eigenvalues of Up at s. Specifically they tell us that we should expect the mth smallest slope
to be roughly of size

d

dx
NP (x)

∣∣∣∣
x=m

= O

(
d

dx
x1+2/n(n−1)

∣∣∣∣
x=m

)
= O

(
m2/n(n−1)

)
.
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Furthermore, the implicit constant should be proportional to the v(Ti(s)) (assuming they are
not too different in size), so that the slope approaches 0 as we approach the boundary of weight
space, as part (ii) of Conjecture 1.1.1 implies for the dimension-1 case.

We also use the lower bound of Theorem 1.1.2 to prove the following (vaguely stated)
decomposition result for the boundary of the eigenvariety.

Theorem 1.1.4. Let ap : Z → Gm be the map taking a point of Z to its Up-eigenvalue. For
α ∈ R≥0, let Z (α) be the subset of points z ∈ Z such that v(ap(z)) = αv(Ti(z)). Then over
certain open subsets of the weight polydisc boundary where v(Ti) is much smaller than all the
other v(Tj), Z (α) is disconnected from its complement in Z .

(See Theorem 5.0.1 for the precise statement.) This is similar to the statement of part (i)
of Conjecture 1.1.1, though weaker because the region over which we can prove that Z (α)
is disconnected from its complement depends on α, and becomes arbitrarily small as α goes
to infinity. Hence, Theorems 1.1.2, 1.1.3, and 1.1.4 can all be seen as weak generalizations of
Conjecture 1.1.1 to definite unitary groups of arbitrary rank.

Historically, Conjecture 1.1.1 arose from a question of Coleman and Mazur [CM98] and was
suggested by a computation of Buzzard and Kilford [BK05] for p = 2 and tame level 1. Further
explicit computations for small primes were later done by Roe [Roe14], Kilford [Kil08], and
Kilford and McMurdy [KM12]. The conjecture is given above in the form stated by Liu, Wan,
and Xiao [LWX17], whose proof for definite quaternion algebras builds on the work of Wan, Xiao,
and Zhang [WXZ17]. Ren and Zhao [RZ22] have generalized much of Liu–Wan–Xiao’s theorem
to Hilbert modular forms for definite quaternion algebras over totally real fields in which p is
totally split, Birkbeck [Bir21] has provided computational evidence for more general totally real
fields, and Diao and Yao [DY23] have recently proven it for the original group GL2. Statements
of this nature can have far-reaching consequences for the arithmetic of modular forms; see, for
example, [JN19b] or [NT21], the latter of which uses the case p = 2 of Conjecture 1.1.1 to prove
automorphy lifting for symmetric power Galois representations.

As far as we know, there is little prior work on the shape of the Newton polygon of det(I −
XUp|Sw(G,U )) for any G of rank greater than 2. The only prior result for general rank we
have been able to find in the literature is Chenevier’s weaker lower bound in [Che04] of the form
y = Ax1+1/(2n−n−1), which applies only to the center of weight space. As late as 2018, Andreatta,
Iovita, and Pilloni wrote [AIP18] that there were not even any conjectures about the actual shape
of the Newton polygon for higher-dimensional eigenvarieties in the literature.

1.2 Proof outline
The proof of part (i) of Theorem 1.1.2 is an application of the method of Johansson and
Newton [JN19a]. They construct families of automorphic forms extending over the boundary
of weight space, to points in what can be viewed as an adic compactification of weight space,
and show that the eigenvariety also extends to those points. (See also Gulotta [Gul19] for an anal-
ogous construction extending equidimensional eigenvarieties.) Consequently, we can compute the
matrix coefficients of Up in an explicit basis for the space of forms over the ‘boundary weights’
given by monomials in the matrix coefficients of the dimension n(n− 1)/2 maximal lower unipo-
tent subgroup of GLn(Qp). Explicit bounds on those matrix coefficients arise directly from the
proof of complete continuity of Up. In the case n = 2, the procedure and output are identical to
those of Liu–Wan–Xiao and Johansson–Newton.
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The proof of part (ii) of Theorem 1.1.2 requires a detailed analysis of p-adic automor-
phic representations which may be of independent interest. As in the proof of Proposition 3.22
of [LWX17], we would like to carry out the following steps.

(i) Construct a subspace S of Sw(G,U ) of dimension hpc(1)+2c(2)+···+(n−1)c(n−1)−n(n−1)/2dt
which can be thought of as the space of ‘classical forms of weight w and minimal level’.

(ii) Prove that Up is injective on S, so that all eigenforms in S have finite slope.
(iii) Prove that finite-slope eigenforms in S have slope bounded above by l(t).

In general, it is a fact that a classical form f is finite-slope if and only if the local component
πf,p at p of its associated automorphic representation is a principal series representation of
GLn(Qp). For n = 2 as in Liu–Wan–Xiao, the upper bound then follows from the fact that πf,p
is a principal series if the level of f equals the conductor of its central character, which can be
checked (as in Loeffler and Weinstein [LW12]) by comparing its level to that of the new vectors
in each of the three possible Bernstein–Zelevinsky classes of representations (principal series,
special, and supercuspidal), those new vectors having been written down by Casselman [Cas73].
The dimension of the space of such f is easy to count.

To detect when πf,p is a principal series for all n without brute-forcing through
Bernstein–Zelevinsky classes, we use Roche’s analysis of principal series types [Roc98]. (As a
historical note, much of the analysis we rely on was already done for GLn by Howe and Moy;
see, e.g., [HM90]. For more information on types in general, see Fintzen [Fin21].) For a smooth
character χ of T (Qp), Roche gives a subgroup J ⊂ GLn(Zp) and an extension of χ|T (Zp) to J such
that an irreducible representation π of GLn(Qp) is a principal series associated to an unram-
ified twist of χ if and only if π contains a vector on which J acts by χ, which we will call a
(J, χ)-vector.

To proceed, we construct a space of forms S so that for any eigenform f ∈ S, πf,p admits a
nontrivial map from IndIwp

J χ, where Iwp is the subgroup of GLn(Zp) of matrices that are upper
triangular mod p, hence contains a (J, χ)-vector and is a principal series. The S we construct
is not a priori a subspace of Sw(G,U ), but we can show that it embeds into Sw(G,U ) using
Emerton’s locally analytic Jacquet functor. The dimension of S is proportional to the product
of dim IndIwp

J χ, which is a function of the valuations v(Ti), and the dimension of the algebraic
representation of GLn of highest weight corresponding to the algebraic part of (T1, . . . , Tn−1),
which is a polynomial of total degree n(n− 1)/2 in the weight parameters by a combinatorial
calculation. This covers steps (i) and (ii). Then we do step (iii) by constructing companion forms
fw of f for each w ∈ Sn such that the slopes of all the companion forms sum to l(t).

We can also use S to help understand the standard classical subspaces of Sw(G,U ).
Specifically, when the pair (J, χ) arising from the weight w satisfies the additional technical
condition that cond(χi) < 2 cond(χj) for all i �= j with i, j �= n, we show by a Mackey theory
calculation that IndIwp

J χ is an irreducible representation of Iwp. In this case, S can be embedded
into a classical subspace of Sw(G,U ), and we can show the following.

Theorem 1.2.1. The space S is precisely the space of finite-slope classical forms of weight w.

To do this, we slightly refine the setup of the Belläıche–Chenevier construction of the eigen-
variety in order to precisely define the sense in which S is ‘minimal level’. Consequently, our
upper bound is the best possible with existing methods.

Note that the reason the Newton polygon upper bound resulting from this procedure fails
to be sharp when n > 2 is that it is obtained solely by bounding the slopes of all classical
eigenforms, i.e. those in S. When n = 2, the classical forms account for all of the smallest slopes
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in the Newton polygon, so our argument recovers Proposition 3.22 of [LWX17] and, hence, their
upper bound. When n > 2, we expect there to exist nonclassical forms with small slopes which
decrease the growth rate of the Newton polygon and which there is no known way to detect. We
suspect that if there were a reliable way to find nonclassical forms with small slopes, combining
it with our bounds would be sufficient to prove the full version of Conjecture 1.1.1 for all n.

1.3 Organization
In § 2, we describe the construction of the eigenvarieties we are interested in, primarily following
Chenevier [Che04] and Belläıche and Chenevier [BC09], adding some extra details in places of
particular importance to us. For example, we give a slightly more general definition of local
analyticity of p-adic automorphic forms which allows different radii of analyticity for different
coordinates and prove that it works, which aids in proving Theorem 1.2.1.

In § 3, we analyze the subspaces of classical automorphic forms of locally algebraic weights
and the automorphic representations they generate, thus carrying out steps (i) and (ii), and
proving Theorem 3.6.8, a precise version of Theorem 1.2.1.

In § 4, we carry out Johansson and Newton’s method and step (iii) to prove Theorem 1.1.2
and Theorem 1.1.3.

Finally, in § 5, we state and prove a precise version of Theorem 1.1.4 and discuss other geomet-
ric consequences of Theorem 1.1.2. Unlike in the Liu–Wan–Xiao setting, for higher-dimensional
eigenvarieties, the lower and upper bounds do not match at any point on the Newton polygon,
and we cannot expect them to, because there exist (probably) nonclassical forms of slopes smaller
than some classical forms. As a result, we cannot prove the equivalent of Conjecture 1.1.1 for
these higher-dimensional eigenvarieties. However, we can prove that certain boundary sections of
the eigenvariety decompose into many disconnected components (with the caveat that we cannot
verify that those sections are nonempty, although in fact we expect them to be everything).

2. Belläıche–Chenevier eigenvarieties for definite unitary groups

Let p be a prime. Let q = 4 if p = 2 and q = p otherwise. In this section, we go through the
construction of eigenvarieties for definite unitary groups in the language of Chenevier and
Belläıche–Chenevier. In § 2.1, we define the groups and the spaces of p-adic automorphic forms
we are interested in, notably including the spaces of classical forms whose interpolation was the
original motivation for this construction. In § 2.2, we describe the properties of the space of p-adic
weights. In § 2.3, we define certain coordinates on spaces of functions on the Iwahori subgroup
Iwp, using a convenient hybrid of the language of Chenevier and Belläıche–Chenevier. In § 2.4,
we introduce systematic notation for certain subgroups of Iwp. In § 2.5, we define the space of
families of p-adic automorphic forms over weight space, along with subspaces of locally analytic
families. In § 2.6, we define Up-operators and work through their various important properties in
great detail. In § 2.7, we define the desired eigenvarieties.

2.1 p-adic automorphic forms
Let E be an imaginary quadratic field over Q, and D a central simple E-algebra of rank n2 which
has an involution x 
→ x∗ extending the nontrivial automorphism σ of E over Q (for example,
D could be GLn(E), in which case x∗ would be σ(x)T ). Let G/Q be the group whose R-points,
for a Q-algebra R, are

G(R) = {x ∈ D ⊗Q R | xx∗ = 1}.
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Note that G(Qp) is isomorphic to GLn(Qp) if p is split in E (since then Ep ∼= Qp ⊕ Qp with
σ switching factors) and to Un(Qp) if p is inert in E; we assume that p is split in E and
G(Qp) ∼= GLn(Qp). In addition, G(R) ∼= Us,t(R) for (s, t) the signature of Q(x) = xx∗; we assume
that Q(x) has signature (n, 0) or (0, n), so that G(R) is compact.

As usual, we write B and B for the upper and lower triangular Borel subgroups of GLn,
respectively, T for the diagonal torus, and N and N for the upper and lower unipotent subgroups
of GLn, respectively.

Write A = AQ, Af for the finite adeles of A, and Ap
f for the finite adeles trivial at p. Let U be

a compact open subgroup of G(Af ) of the form Up × U p, where Up is a compact open subgroup
of G(Qp) (called the wild level structure) and U p a compact open subgroup of G(Ap

f ) (called the
tame level structure). We can now define V -valued automorphic forms for any Up-module V .

In general, all our group and monoid actions will be left actions.

Definition 2.1.1. If V is a k[Up]-module for any field k, write V (G,U ) for the k-vector space
of maps

f : G(Q)\G(Af ) → V

such that f(xu) = u−1
p f(x) for all x ∈ G(Q)\G(Af ) and u ∈ U . Equivalently,

V (G,U ) = (Homset(G(Q)\G(Af ), k) ⊗k V )U ,

where the action of U on Homset(G(Q)\G(Af ), k) is right translation and the action on V is
through Up. For any submonoid U ′ ⊇ U of G(Af ) which has an action on V that is trivial for
U , V (G,U ) is a U ′-module with action (uf)(x) = upf(xu).

We frequently express examples using the following notation: if B ⊆ H are groups, R is a
ring, and s : B → R× is a character, let

IndHB s = {f : H → R | f(hb) = s(b)f(h) for all h ∈ H, b ∈ B},
and if P is a property of some functions f ∈ IndHB s which is invariant under left translation by
H, let

IndH,PB s = {f ∈ IndHB s | f has property P}.

Then IndH,PB s is an R-module with a (left) action of H given by (hf)(x) = f(h−1x) for all
h, x ∈ H. Note that our left/right conventions for induction are unusual for convenience.

For example, if k is a field, t = (t1, . . . , tn) ∈ Zn, and we write diag(d1, . . . , dn) for the diagonal
matrix with entries d1, . . . , dn along the diagonal, we can interpret t as the character of the
diagonal torus T (k) of GLn(k) taking diag(d1, . . . , dn) to

∏n
i=1 d

ti
i , and thus as the character of

the upper triangular Borel B(k) obtained by reducing to T (k) and applying t. In the event that
t1 ≥ · · · ≥ tn, the k-vector space

IndGLn(k),alg
B(k) t,

where ‘alg’ stands for algebraic (i.e. f : GLn(k) → k comes from an element of k[GLn]), is the
irreducible algebraic representation of GLn over k of highest weight t (see § 12.1.3 of [GW09] and
Proposition 2.2.1 of [Che04]). We call this representation St(k). Then St(k)(G,U ) is the space
of classical p-adic automorphic forms on G of weight t and level U with coefficients in k.

One way to picture V (G,U ) is as follows. By the generalized finiteness of class groups
(see Theorem 5.1 of [Bor63]), the set G(Q)\G(Af )/U is finite. Fix double coset representatives
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x1, . . . , xh ∈ G(Af ). Then we have an isomorphism

V (G,U ) ∼−→
h⊕
i=1

V x−1
i G(Q)xi∩U

f 
→ (f(x1), . . . , f(xh)).

Because G(R) ∼= Un(R) is compact, G(Q) is discrete in G(Af ) (see, e.g., Proposition 1.4
of [Gro99] or Proposition 3.1.2 of [Loe10]). Since, in addition, U is compact, the group
x−1
i G(Q)xi ∩ U is always finite, and it is trivial if U p is sufficiently small. (For example, by

Proposition 4.1.1 of [Che04], there is an integer en depending only on n such that x−1
i G(Q)xi ∩ U

is guaranteed to be trivial if the image of U p inG(Ql) is contained in Γ(l) = {g ∈ GLn(Zp) | g ≡ 1
(mod l)} for some prime l � en.) It is this fact that makes the construction of the eigenvariety
for G so sleek.

When convenient, we assume that U p is sufficiently small (sometimes called ‘neat’ in the liter-
ature) and, thus, V (G,U ) ∼= V h. As in Remark 2.14 of [LWX17], this does not affect our results,
because the eigenvariety for any U p is a union of connected components of the eigenvariety for
a sufficiently small subgroup of U p.

2.2 Weight space
A weight is a continuous character of T (Zp) ∼= (Z×

p )n. Such a weight can be viewed as a character
ofB(Zp) by reduction to T (Zp). (In the introduction, we defined a weight instead to be a character
of (Z×

p )n−1, that is, a character of T (Zp) that is trivial on the last Z×
p -factor. We will go back

to restricting possible weights to the subset that is trivial on the last Z×
p -factor whenever it

is convenient, because any character of T (Zp) can be twisted by a central character to one in
this restricted subset, and central characters do not change spaces of automorphic forms in an
interesting way.)

The weight space W n is the rigid analytic space over Qp such that for any affinoid Qp-algebra
A, W n(A) is the set of continuous characters (Z×

p )n → A×. Let Δn = ((Z/qZ)×)n. We have

(Z×
p )n ∼= Δn × (1 + qZp)n,

so an A-point of W n is determined by a character of Δn and a character of (1 +
qZp)n. Furthermore, a character s of (1 + qZp)n is determined by the values Ti(s) =
s(1, . . . , 1, exp(q), 1, . . . , 1) − 1 (where the ith entry is exp(q) and all the others are 1), since exp(q)
topologically generates 1 + qZp. By Lemma 1 of [Buz04], the coordinates (T1, . . . , Tn) ∈ An come
from an A-point of W n precisely when they are topologically nilpotent. Thus W n can be pictured
as a finite disjoint union of ϕ(q) open unit polydiscs with coordinates (T1, . . . , Tn), one for each
tame character of Δn.

We use

[·] : (Z×
p )n → Zp[[(Z×

p )n]]

to denote the universal character of (Z×
p )n and Λn to denote the Iwasawa algebra

Λn = Zp[[(Z×
p )n]] ∼= Zp[Δn] ⊗Zp Zp[[(1 + qZp)n]] ∼= Zp[Δn] ⊗Zp Zp[[T1, . . . , Tn]],

where Ti = [(1, . . . , 1, exp(q), 1, . . . , 1)] − 1 with the exp(q) in the ith position; then continuous
homomorphisms χ : Λn → A are in bijection with A-points of W n via χ 
→ χ ◦ [·].
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Example 2.2.1 (Dominant algebraic weights). If t1 ≥ · · · ≥ tn are integers, the algebraic character
(d1, . . . , dn) 
→

∏n
i=1 d

ti
i is a Qp-point of W n with T -coordinates

(exp(t1q) − 1, . . . , exp(tnq) − 1),

such that the valuation of Ti = exp(tiq) − 1 is

v

((
1 + tiq +

(tiq)2

2!
+ · · ·

)
− 1

)
= v(tiq).

We remark that the weight polydisc in which this character appears is determined by (t1, . . . , tn)
(mod ϕ(q)).

If χ : Z×
p → C×

p is a finite-order character, we will borrow the following slightly nonstandard
definition of the conductor cond(χ) of χ from [Roc98, § 3]: it is the least positive integer n such
that 1 + pnZp ⊂ ker(χ). Thus, the conductor of the trivial character is 1 but the conductor of
any other character is the same as with the usual definition.

Example 2.2.2 (Locally algebraic weights). If t1 ≥ · · · ≥ tn are integers and χ1, . . . , χn are finite-
order characters Z×

p → C×
p , the ‘locally algebraic’ character

(d1, . . . , dn) 
→
n∏
i=1

χi(di)dtii

is a Cp-point of W n. If χi is nontrivial with conductor ci, we have

v(Ti) = v(χi(exp(q)) exp(tiq) − 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v(tiq) if p > 2 and ci = 1,
q

pci−1(p− 1)
if p > 2 and ci ≥ 2,

v(tiq) if p = 2 and ci = 3,
q

pci−1(p− 1)
=

1
2ci−3

if p = 2 and ci ≥ 4.

For completeness, we quickly prove the second case; the others are similar. The value χi(exp(q)) =
χi(exp(p)) is a primitive pcith root of unity, say ζpci . Let

f(X) =
Xpci − 1
Xpci−1 − 1

=
∏

a∈(Z/pciZ)×
(X − ζapci ) = Xpci−pci−1

+Xpci−2pci−1
+ · · · +Xpci−1

+ 1.

Then f(1) = p =
∏
a∈(Z/pciZ)×(1 − ζapci ). Each term in the product has the same valuation, since

they are Galois conjugate, and there are pci−1(p− 1) such terms. Thus, v(χi(exp(q)) − 1) =
1/(pci−2(p− 1)). The factor of exp(tiq) has no effect since it is 1 (mod p).

In general, if A is a Banach Qp-algebra, we say that a character s : Z×
p → A× is c-locally

analytic if its restriction to 1 + pcZp is given by a convergent power series with coefficients in A.
Every continuous character s is c-locally analytic for some c: let T = s(exp(q)) − 1 and choose c
such that |T q−1pc | < q−1. Then we have

s(z) = s
(
exp(q)(1/q) log z

)
= [(1 + T )q

−1pc
](1/p

c) log z = [1 + ((1 + T )q
−1pc − 1)](1/p

c) log z

if this converges. But by our choice of c, we have |(1 + T )q
−1pc − 1| < q−1, and if z ∈ (1 + pcZp),

then |(1/pc) log z| ≤ 1. By Lemma 3.6.1 of [Che04], this expression is a convergent power series
in z.

Naturally, if s : (Z×
p )n → A× is a character, we say that it is (c1, . . . , cn)-locally analytic if it

is ci-locally analytic in the ith factor.
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If W is any open affinoid subset of W , we use

[·]W : (Z×
p )n → O(W )×

to denote the universal character of (Z×
p )n with coefficients in O(W ). Note that [·]W is

(c1, . . . , cn)-locally analytic with ci depending on maxs∈W (Cp) |Ti(s)|.

2.3 Coordinates on spaces of functions on Iwp

If A is an affinoid Qp-algebra and s : (Z×
p )n → A× is a weight, we can view any function f ∈

IndIwp

B(Zp) s as a function on Z
n(n−1)/2
p by restricting f to the lower unipotent subgroup N and

applying the map

Zn(n−1)/2
p → N

z = (zij)n≥i>j≥1 
→ N(z) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0
pz21 1 0 · · · 0
pz31 pz32 1 · · · 0

...
...

...
...

...
pzn1 pzn2 pzn3 · · · 1

⎞⎟⎟⎟⎟⎟⎠ ∈ N.

We say that f is continuous if it is continuous as a function on Z
n(n−1)/2
p via z 
→ N(z). Then

Ss := IndIwp,cts
B(Zp) (s), where cts denotes continuous, is an A[Iwp]-module. If s0 : (Q×

p )n → A× is the
trivial extension of s from (Z×

p )n to (Q×
p )n (that is, we set s0(d) = 1 for any d ∈ (Q×

p )n whose

entries are powers of p), Ss is isomorphic to IndB(Qp) Iwp,cts
B(Qp) (s0) by restriction of functions from

B(Qp) Iwp to Iwp. Consequently, it has an action by B(Qp) Iwp.
It will be useful to write out the natural action of Iwp on f ∈ Ss more explicitly in terms of

the coordinates zij . To do this, we interpret them as Plücker coordinates on N(z). Recall that
for any 1 ≤ j ≤ n and subset σ of {1, . . . , n} with #σ = j, the Plücker coordinate Zj,σ associated
to (j, σ) is the algebraic function on GLn given by the determinant of the minor associated to
the rows corresponding to σ and the first j columns.

Give Qn
p the standard basis e1, . . . , en and interpret elements of Qn

p as horizontal vectors.
Give ∧j(Qn

p ) the corresponding standard basis

{eσ = ek1 ∧ · · · ∧ ekj | σ = {k1 < · · · < kj} ⊂ {1, . . . , n}},
ordered lexicographically, and again interpret elements of ∧j(Qn

p ) as horizontal vectors. Let
1j = {1, . . . , j}. IfGLn(Qp) acts on Qn

p by right multiplication of horizontal vectors (the transpose
of the standard action), and ιj : GLn(Qp) ↪→ GL(∧j(Qn

p )) gives the induced action ofGLn(Qp) on
∧j(Qn

p ) (where again GL(∧j(Qn
p )) acts on ∧j(Qn

p ) by right multiplication of horizontal vectors),
then for x ∈ GLn(Qp), Zj,σ(x) is the coefficient of e1j in eσ · ιj(x), or the entry of ιj(x) in the σth
row and first column. If b = (bij) ∈ B(Qp), ιj(b) is also upper triangular, so the coefficient of e1j in
eσ · ιj(xb) = eσ · ιj(x) · ιj(b) is Zj,σ(x) times the top left entry of ιj(b), which is b11 · · · bjj =: tj(b).
That is, we have

Zj,σ(xb) = tj(b)Zj,σ(x).

Thus, Zj,σ is invariant under right multiplication by N , and Zj,σ/1 := Zj,σ/Zj,1j is invariant
under right multiplication by B.

If u ∈ GLn(Zp), we have ιj(u−1x) = ιj(u−1)ιj(x), so the entry of ιj(u−1x) in the σth row
and first column is a linear combination of all the entries of ιj(x) in the first column. Hence, we
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can write
Zj,σ(u−1x) =

∑
#τ=j

aj,σ,τ (u)Zj,τ (x)

(note that aj,σ,τ (u) ∈ Zp, and if u ∈ Iwp, then aj,1j ,1j (u) ∈ Z×
p ), and

Zj,σ/1(u
−1x) =

aj,σ,1j +
∑

#τ=j,τ �=1j
aj,σ,τ (u)Zj,τ/1(x)

aj,1j ,1j +
∑

#τ=j,τ �=1j
aj,1j ,τ (u)Zj,τ/1(x)

.

For i ≥ j, let σij = {1, . . . , j − 1, i} (so σjj = 1j); then we can see that

Zj,σij (N(z)) =

{
Zj,1j (N(z)) = 1 if i = j,

pzij if i > j.

Thus, zij , or technically pzij , is indeed a Plücker coordinate for N(z) when i > j. Now using the
Iwahori decomposition for Iwp, let

u−1N(z) = N(u, z)T (u, z)N(u, z)

for some N(u, z) ∈ N , T (u, z) ∈ T , and N(u, z) ∈ N . Let uz = ((uz)ij)n≥i>j≥1 ∈ Z
n(n−1)/2
p be

the preimage of N(u, z) under Z
n(n−1)/2
p → N , so that N(uz) = N(u, z). Thus, if f ∈ Ss, we

have

(uf)(N(z)) = f(u−1N(z)) = f(N(uz)T (u, z)N(u, z))

= s(T (u, z))f(N(uz)).

We wish to write uz and T (u, z) in terms of u and z. But we have

Zj,σij (u
−1N(z)) = Zj,σij (N(uz)T (u, z)N(u, z))

= Zj,σij (N(uz))tj(T (u, z)).

Thus, in fact, setting i = j, we find

tj(T (u, z)) = Zj,σjj (u
−1N(z)) =

∑
#τ=j

aj,1j ,τ (u)Zj,τ (N(z)),

where Zj,τ (N(z)) is, by definition, a polynomial in the variables {zkl}l≤j,k>l with coefficients in
pZp. Then when i > j, we have

Zj,σij (u
−1N(z)) = Zj,σij (N(uz))tj(T (u, z)) = p(uz)ijZj,σjj (u

−1N(z)),

so

p(uz)ij = Zj,σij/1(u
−1N(z)) =

aj,σ,1j +
∑

#τ=j,τ �=1j
aj,σ,τ (u)Zj,τ/1(N(z))

aj,1j ,1j +
∑

#τ=j,τ �=1j
aj,1j ,τ (u)Zj,τ/1(N(z))

,

where Zj,τ/1(N(z)) is again a polynomial in the variables {zkl}l≤j,k>l with coefficients in pZp.

2.4 Notation for subgroups of Iwp

Since we work with numerous subgroups of Iwp, we introduce some notation to identify them.
If c = (cij) ∈ Zn×n≥0 is any n× n matrix of nonnegative integers, we write

Γ(c) = {(xij) ∈ GLn(Zp) | pcij | (xij − δij) for all i, j}
(where δij is 1 if i = j and 0 otherwise). By Lemma 3.2 of [Roc98], when c satisfies cij ≤ cik + ckj
for all i, j, k and cij + cji ≥ 1 for all i �= j, the set Γ(c) is closed under multiplication and inverses,
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hence is a group. Note that this means that if Γ(c) is a group, then so is T (Zp)Γ(c). If we instead
only have half a matrix of positive integers c = (cij)n≥i>j≥1 ∈ Z

n(n−1)/2
>0 , we write

Γ1(c) = {(xij) ∈ Iwp | v(xij) ≥ cij∀i > j and v(xii − 1) ≥ min{cij |j < i} ∪ {cji|j > i}∀i},
Γ0(c) = {(xij) ∈ Iwp | v(xij) ≥ cij∀i > j} = T (Zp)Γ1(c) ⊂ Iwp .

Definition 2.4.1. We say that c = (cij)n≥i>j≥1 ∈ Z
n(n−1)/2
>0 is group-shaped if cij ≤ cik + ckj

for all i, j, k, where we set cab to be 0 if a ≤ b.

Thus, Γ1(c) and Γ0(c) are subgroups whenever c is group-shaped.

Definition 2.4.2. We call an (n(n− 1)/2)-tuple c = (cij)n≥i>j≥1 ∈ Z
n(n−1)/2
>0 compatible with

an n-tuple (c1, . . . , cn) ∈ Zn>0 if ci ≤ min{cij |j < i} ∪ {cji|j > i} for all i. In this case, if we define
c′ ∈ Zn×n≥0 by c′ij = cij for i > j, c′ii = ci, and c′ij = 0 for i < j, then Γ(c′) is a group.

Then we see that if χ = (χ1, . . . , χn) : T (Zp) → C× is a character of T (Zp), and c ∈ Z
n(n−1)/2
p ,

χ extends to a well-defined character of T (Zp)Γ1(c) = Γ0(c), trivial on Γ1(c), whenever c is
compatible with (cond(χ1), . . . , cond(χn)).

In the following calculations, whenever we write Γ(c), Γ0(c), or Γ1(c) for a matrix or half-
matrix of nonnegative integers c, we implicitly assume that c has been chosen so that it is in
fact a group.

Depending on convenience, we may also overload the notation in the following ways. First,
if r = (rij) ∈ [0, 1]n×n is any n× n matrix of real numbers in [0, 1], we write

Γ(r) = {(xij) ∈ GLn(Zp) | |xij − δij | ≤ rij for all i, j}.
Then Γ(r) is a group whenever rij ≥ rikrkj for all i, j, k. We may define Γ1(r),Γ0(r) similarly.
Second, if c ∈ Z>0 is a single integer, we write

Γ(c) = {(xij) ∈ GLn(Zp) | v(xij − δij) ≥ c for all i, j}.
This is always a group. We may define Γ1(c),Γ0(c) similarly. Finally, if r is a single real number
in [0, 1], we write Γ(r),Γ1(r),Γ0(r) for the obvious final abuse of the same notation.

2.5 The sheaf of p-adic automorphic forms on weight space
If c = (cij)n≥i>j≥1 ∈ Z

n(n−1)/2
>0 , we say that f ∈ Ss is c-locally analytic if, for any a = (aij) ∈

Z
n(n−1)/2
p , the restriction of f to

B(a, c) = {z = (zij)n≥i>j≥1 ∈ Zn(n−1)/2
p | zij ∈ aij + pcij Zp∀i, j}

is given by a convergent power series in the variables zij with coefficients in A.

Definition 2.5.1. We call an (n(n− 1)/2)-tuple c = (cij)n≥i>j≥1 ∈ Z
n(n−1)/2
≥0 analytic-shaped

if we have c(j+1)j = c(j+2)j = · · · = cnj for all j and cnj ≥ cn(j+1) for all j. (Note that if c is
analytic-shaped it is also group-shaped.) We call c compatible with an n-tuple (c1, . . . , cn) ∈ Zn≥0

if cj ≤ minl≤j,k>l ckl for all j. That is, for each j0, all the entries of (cij) corresponding to matrix
entries appearing in or to the left of the j0th column should be at least cj0 .

Definition 2.5.2. If c ∈ Z
n(n−1)/2
>0 is analytic-shaped, we say that s : (Z×

p )n → A× is c-locally
analytic if there is (c1, . . . , cn) such that s is (c1, . . . , cn)-locally analytic and c is compatible with
(c1, . . . , cn).
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Proposition 2.5.3. If s is (c1, . . . , cn)-locally analytic and f ∈ Ss is c-locally analytic for c
analytic-shaped and compatible with (c1, . . . , cn) (so that s is c-locally analytic), then uf is also
c-locally analytic for all u ∈ Iwp.

Proof. By the calculations in § 2.3, we have (uf)(N(z)) = s(T (u, z))f(N(uz)) where:

(i) (uz)ij is a power series in the variables {zkl}l≤j,k>l;
(ii) the jth diagonal entry of T (u, z), or tj(T (u, z))/tj−1(T (u, z)), is also a power series in the

variables {zkl}l≤j,k>l.
So if we restrict to z ∈ B(a, c), the coefficient (uz)ij ranges over a ball of the form a′ij +

pminl≤j,k>l cklZp; since c is analytic-shaped, we have cij ≤ minl≤j,k>l ckl, and we conclude that
uz is also restricted to a ball of the form B(a′, c). Thus, f(N(uz)) is analytic for z ∈ B(a, c).
Similarly, tj(T (u, z))/tj−1(T (u, z)) ranges over a ball of the form a′′jj + pminl≤j,k>l cklZp; since
cj ≤ minl≤j,k>l ckl and sj is analytic on a′jj + pcj Zp, we conclude that sj(T (u, z)) is analytic for
z ∈ B(a, c). Thus, (uf)(N(z)) is analytic for z ∈ B(a, c), as desired. �

By Proposition 2.5.3, if s is c-locally analytic with c analytic-shaped, the space Ss,c =
IndIwp,c-loc.an.

B(Zp) (s), where c-loc.an. denotes c-locally analytic, is well-defined and has an action
by Iwp.

We let S = S[·] = IndIwp,cts
B(Zp) ([·]). If Up = Iwp, we call

S (G,U ) = IndIwp,cts
B(Zp) ([·])(G,U )

the space of integral p-adic automorphic forms for G of level U ; it has an action by B(Qp)U .
This gives a sheaf on W whose fiber over s is

Ss(G,U ) = IndIwp,cts
B(Zp) (s)(G,U ).

Similarly, let SW,c = S[·]W ,c = IndIwp,c-loc.an.
B(Zp) ([·]W ) (for any c such that [·]W is c-locally analytic).

If Up = Iwp, we call

SW,c(G,U ) = IndIwp,c-loc.an.
B(Zp) ([·]W )(G,U )

the space of c-locally analytic p-adic automorphic forms for G of level U ; we show in the next
section that this does not have an action by B(Qp), as some elements of B(Qp) do not preserve
the radius of local analyticity (Remark 2), but it does have an action by a certain submonoid.

2.6 The operators Ua
p

If H is any locally compact, totally disconnected topological group, we write H (H) for the
k-algebra of compactly supported, locally constant k-valued functions on H with the convolution
product

(ϕ1 � ϕ2)(g) =
∫
h∈H

ϕ1(h)ϕ2(h−1g) dμ,

where μ is a Haar measure on H. This algebra usually has no identity, but many idempotents.
If K is a compact open subgroup of H, the idempotent eK = 1K/μ(K) projects H (H) onto the
subalgebra H (H �K) of functions that are both left- and right-invariant under K. If V is a
smooth H-module, it is an H (H)-module via

ϕ(v) =
∫
H
ϕ(h)(hv) dh

and, similarly, V K is an H (H �K)-module.
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In the particular caseH = B(Qp)U , V = Ss(G,U ),K = U , we can rephrase this as follows.
We sometimes write [U ζU ] for the element 1U ζU of H (G(Af ) � U ). If ζ1, . . . , ζr are left
U -coset representatives of U ζU , so that

U ζU =
r∐
i=1

ζiU ,

then for any ϕ ∈ Ss(G,U ) and x ∈ G(Q)\G(Af ), we have

[U ζU ](ϕ)(x) =
∫
G(Af )

[U ζU ](g) · (g.ϕ)(x) dg

=
∫

U ζU
gpϕ(xg) dg =

r∑
i=1

(ζi)p.ϕ(xζi).

The following is Lemma 4.5.2 of [Che04] or Proposition 3.3.3 of [Loe10].

Lemma 2.6.1. Fix coset representatives x1, . . . , xh of G(Q)\G(Af )/U and, thus, an iso-
morphism Ss(G,U ) ∼= S h

s . Then we have

[U ζU ](ϕ)(xj) =
h∑
k=1

∑
i|ζi∈x−1

j G(Q)xkU

(ζiu−1
ij )p.ϕ(xk)

for some uij ∈ U . That is, the action of [U ζU ] on Ss(G,U ) is of the form
∑
Tj ◦ σj , where the

σj are compositions of permutation operators on the entries of vectors in S h
s with projections

onto one of the coordinates, and the Tj are diagonal translations of S h
s by elements of U ζU .

Proof. Write xjζi in the form dijxkijuij where dij ∈ G(Q) and uij ∈ U . Then

[U ζU ](ϕ)(xj) =
r∑
i=1

(ζi)p.ϕ(xjζi)

=
r∑
i=1

(ζi)p.ϕ(dijxkijuij) =
r∑
i=1

(ζiu−1
ij )p.ϕ(xkij ).

The values of i for which kij = k are those for which ζi = x−1
j dxku for some d ∈ G(Q) and u ∈ U ,

that is, ζi ∈ x−1
j G(Q)xkU . �

If a = (a1, . . . , an) ∈ Zn, we write

ua = diag(pa1 , . . . , pan)

and define the subgroup

Σ = {ua = diag(pa1 , . . . , pan) | a = (a1, . . . , an) ∈ Zn} ⊂ GLn(Qp)

and its submonoids

Σ− = {ua = diag(pa1 , . . . , pan) | a1 ≥ a2 ≥ · · · ≥ an} ⊂ Σ,

Σ−− = {ua = diag(pa1 , . . . , pan) | a1 > a2 > · · · > an} ⊂ Σ−.

We frequently choose ζ to be an element of Σ−. Let

Uap = [U diag(pa1 , . . . , pan)U ].

Proposition 2.6.2. If f ∈ Ss and a = (a1, . . . , an) ∈ Zn, ua acts on f by zij 
→ pai−ajzij .
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Proof. We have

f((ua)−1N(zij))

= f

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎝p

−a1 · · · 0

0
... 0

0 · · · p−an

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
pz21 1 0 · · · 0
pz31 pz32 1 · · · 0

...
...

...
...

...
pzn1 pzn2 pzn3 · · · 1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠

= f

⎛⎜⎜⎜⎜⎜⎝
p−a1 0 0 · · · 0

p−a2+1z21 p−a2 0 · · · 0
p−a3+1z31 p−a3+1z32 p−a3 · · · 0

...
...

...
...

...
p−an+1zn1 p−an+1zn2 p−an+1zn3 · · · p−an

⎞⎟⎟⎟⎟⎟⎠

= f

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
1 0 0 · · · 0

pa1−a2+1z21 1 0 · · · 0
pa1−a3+1z31 pa2−a3+1z32 1 · · · 0

...
...

...
...

...
pa1−an+1zn1 pa2−an+1zn2 pa3−an+1zn3 · · · 1

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎝p

−a1 · · · 0

0
... 0

0 · · · p−an

⎞⎟⎠
⎞⎟⎟⎟⎟⎟⎠

= f(N(pai−ajzij))s0(ua) = f(N(pai−ajzij)). �
Corollary 2.6.3. If f ∈ Ss is c-locally analytic and ua ∈ Σ−, then uaf is also c-locally ana-
lytic. Thus, translation by Iwp u

a Iwp preserves Ss,c (and, hence, by Lemma 2.6.1, Uap preserves
Ss,c(G,U )).

Proof. When ua ∈ Σ−, we have ai − aj ≥ 0 for all i > j; thus, if (zij) varies in a ball B(a, c), so
does (pai−ajzij) = (uazij). �

Let c0 ∈ Z
n(n−1)/2
>0 be minimal such that s is c0-locally analytic.

Corollary 2.6.4. If f ∈ Ss is c-locally analytic and ua ∈ Σ−−, then uaf is c−− := (max{cij −
1, c0ij})-locally analytic. Thus, translation by Iwp u

a Iwp takes Ss,c into Ss,c−− (and, hence, by
Lemma 2.6.1, Uap takes Ss,c(G,U ) into Ss,c−−(G,U )).

Proof. When ua ∈ Σ−−, we have ai − aj > 0 for all i > j; thus, if (zij) varies in a ball B(a, c),
then (pai−ajzij) = (uazij) varies in a smaller ball B(a′, c+ 1), where c+ 1 = (cij + 1)n≥i>j≥1. �
Remark 2. Similarly, if ai < aj for some i < j, and f ∈ Ss is c-locally analytic, then uaf need
not be c-locally analytic, because pai−ajzij varies in a larger ball than zij does. This is why
Ss,c(G,U ) does not have an action by B(Qp) and we need to restrict to Σ−.

The space Ss,c is an orthonormalizableA-module, for which we choose the following orthonor-
mal basis: for each a ∈∏

n≥i>j≥1 Zp/p
cij Zp, we choose the set of monomials

∏
n≥i>j≥1 z

eij

ij as an
orthonormal basis for the restriction of Ss,c to B(a, c); then for Ss,c, we may choose as orthonor-
mal basis the set of monomials

∏
n≥i>j≥1(z

a
ij)

eij , with one copy for each a ∈∏
n≥i>j≥1 Zp/p

cij Zp,
where zaij is the function which equals zij on B(a, c) and 0 elsewhere.

Corollary 2.6.5. When a ∈ Σ−−, the operator of translation by ua acts completely continu-
ously on Ss,c, in the sense that it is a uniform limit of operators with finite-dimensional images.
Thus, by Lemma 2.6.1, Uap is completely continuous on Ss,c(G,U ).
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Proof. By Proposition 2.6.2, ua scales
∏
n≥i>j≥1(z

a
ij)

eij by
∏
n≥i>j≥1 p

(ai−aj)eij , which goes to
∞ as any eij goes to ∞. Furthermore, since the formulas in § 2.3 all have integer coefficients, it
is clear that translation by Iwp is norm 1. �

Since Uap is completely continuous on Ss,c(G,U ), for any k, the matrix of the action of Uap
(in any basis) has a finite number of nonzero rows mod pk. Suppose that this matrix has rk rows
that are zero mod pk but nonzero mod pk+1. Then for any N ≥ r0 + r1 + · · · + rk, the coefficient
of XN in the characteristic power series

P as,c(X) = det(1 −XUap |Ss,c(G,U ))

of Uap acting on Ss,c(G,U ), being a linear combination of minors of size N ≥ r0 + r1 + · · · + rk,
is divisible by r1 + 2r2 + · · · + krk. Since this lower bound grows faster than any linear function
of N , P as,c(X) is an entire function of X.

Proposition 2.6.6. The characteristic power series P as,c(X) is independent of c. (So we
henceforth call it P as (X).)

Proof. This follows from applying Corollary 2 of Proposition 7 of [Ser62] to the map Uap :
Ss,c(G,U ) → Ss,c−−(G,U ) from Corollary 2.6.4 and the obvious inclusion Ss,c−−(G,U ) ↪→
Ss,c(G,U ). �

Let UΣ
p be the subring of H (G(Af ) � U ) generated by the elements Uap for a ∈ Σ− and

their inverses (which exist, as discussed in [BC09, § 6.4.1]). By Proposition 6.4.1 of [BC09], the
map from k[Σ] to UΣ

p sending ua to U bp(U
c
p)

−1 where ub, uc are any elements of Σ− such that
ua = ub(uc)−1 is a well-defined isomorphism of rings. Thus, in particular, UΣ

p is abelian. Let H

be a subalgebra of H (G(Af ) � U ) given by the product of Z[UΣ
p ] at p and some commutative

subalgebra of H (G(Ap
f ) � U p) away from p.

We write ui for the image of diag(1, . . . , 1, p, 1, . . . , 1) ∈ k[Σ] in UΣ
p . If f is an element of an

H -module S (such as Ss,c(G,U )) that is a generalized simultaneous eigenvector for H , let
ui(f) = λif . We call these the λ-values associated to f . We call the subspace generated by all
the generalized simultaneous eigenvectors whose associated λ-values are nonzero the finite-slope
subspace of S, and we denote it by Sfs.

Unless otherwise specified, we will generally set U to be a compact open subgroup of G(Af )
given by the product of Iwp at p and a fixed tame level structure away from p chosen so that
x−1G(Q)x ∩ U = 1 for all x (the condition of being ‘sufficiently small’ or ‘neat’ as described at
the end of § 2.1). Call this subgroup U0(p). (Note that for the same reason as in Proposition 3.1.2,
our choice of Iwp as the wild level structure does not actually affect P as (X).)

2.7 The eigenvariety
Given our setup so far, the eigenvariety is easy to define. For a given ua ∈ Σ−−, let Z a be
the subvariety of W × Gm which, in any subset W × Gm where W ⊂ W is open affinoid, is cut
out by the characteristic power series P aW (X) of Uap acting on SW (G,U0(p)). Let w : Z a → W
be the first projection (weight) map, and aap : Z a → Gm the inverse of the second projection
(Uap -eigenvalue) map. Then for any point z ∈ Z a, aap(z) is a nonzero eigenvalue of Uap acting on
Sw(z)(G,U0(p)), and for any w ∈ W , all nonzero eigenvalues of Uap acting on Sw(G,U0(p)) can
be found in the fiber of Z a over w. We call Z a the spectral variety associated to Uap .

It is convenient to fix a particular choice of ua ∈ Σ−−; we choose a = (n− 1, n− 2, . . . , 1, 0).
From now on, we write Up = U

(n−1,n−2,...,1,0)
p and Z = Z (n−1,n−2,...,1,0). We call an eigenform
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f ∈ Sw(G,U0(p)) finite-slope if Upf �= 0 (i.e. the valuation, or slope, of the Up-eigenvalue is
finite, and f appears on the eigenvariety), and infinite-slope otherwise.

Since H is commutative, we can construct the space D whose points correspond to systems
of eigenvalues of all Hecke operators in H , including in particular all Uap simultaneously, by
simply taking D to be the finite cover of Z which, over an affinoid W ⊂ W , is given by the
MaxSpec of the image of H ⊗ Λn in the endomorphism ring of SW (G,U0(p)). Then D inherits
the weight map w : Z a → W and each eigenvalue map aap : D → Gm. Because D → Z a is a
finite map, in general the bounds and geometric properties we get for Z a should also apply
to D . For this paper, we focus on the properties of Z and/or Z a for any fixed a.

For additional details on properties of Z a and D and their proofs, see [Che04] or [Buz07].

3. Locally algebraic weights

In this section, we analyze classical automorphic forms of locally algebraic weights and their
associated automorphic representations. In § 3.1, we define these spaces of classical forms and
check their basic properties, including that they embed into the infinite-dimensional spaces of
§ 2.1. In § 3.2, we reproduce the Belläıche–Chenevier slope criterion guaranteeing that a given
form is classical, phrased to work for locally algebraic weights instead of just algebraic weights;
while this is not directly needed for our purposes, it is useful to give a sense of where classical
forms fit in among the world of all p-adic automorphic forms. In § 3.3, we explain the standard
translation between classical forms and automorphic representations. In § 3.4, we analyze certain
Iwahori subrepresentations that may appear in the local component at p of such an automorphic
representation, including a particularly important irreducible subrepresentation. In § 3.5, we
apply the work of Roche to a calculation of Hecke eigenvalues in ramified principal series. In
§ 3.6, we identify a subspace of forms whose associated automorphic representations have ramified
principal series as their local components at p, and compute their Up-eigenvalues in terms of the
parameters of the corresponding principal series.

3.1 p-adic automorphic forms of locally algebraic weights
In § 2.1, we defined classical forms of algebraic weights via the algebraic representation St(k)
of GLn(Qp). This construction may be generalized to locally algebraic weights as follows. Let
χ = χ1 · · ·χn be a finite character of (Z×

p )n. Then tχ is a locally algebraic character of (Z×
p )n, in

the sense that it is algebraic upon restriction to
∏n
i=1(ai + pciZp) for some choice of ci and any

nonzero ai. Similarly to earlier notation, for a positive integer c, let

B(a, c) = {z = (zij)n≥i>j≥1 ∈ Zn(n−1)/2
p | zij ∈ aij + pcZp∀i, j}.

Then there are two equivalent definitions of the space

Stχ,c := IndIwp,c-loc.alg.
B(Zp) (tχ),

where c-loc.alg. stands for c-locally algebraic. The first is through the usual induction operator,
as follows. We say that f ∈ IndIwp

B(Zp)(tχ) is c-locally algebraic if it has an algebraic extension

to B(a, c) for all a ∈ Z
n(n−1)/2
p of degree bounded as follows: writing f as a polynomial in the

variables Zi,k/1 as in § 2.3, we require that for each fixed i, the degree of f as a polynomial in all
the variables Zi,k/1 should be at most ti − ti+1 =: mi. As in Proposition 2.5.3, one can see using
the formulas in § 2.3 that assuming cond(χi) ≤ c for all i, this condition is invariant under right
translation by Iwp.
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The second definition, coming from the perspective of Loeffler [Loe10, § 2.5], is(
IndIwp,alg

B(Zp) t

)
⊗
(

IndIwp /Γ(c)
B(Zp)/B(Zp)∩Γ(c) χ

)
.

Note that Γ(c) is normal in Iwp because it is the kernel of the reduction map from Iwp to the
corresponding group with coefficients in Zp/p

cZp.
Except for an annoying technical distinction which we discuss at the end of this subsection,

the space IndIwp,alg
B(Zp) t is the same (as an Iwp-representation) as the space St(k) defined in § 2.1,

since Iwp is Zariski-dense in GLn. Let dt = dim IndIwp,alg
B(Zp) t. We now check that the two definitions

just given are actually equivalent.

Proposition 3.1.1. The natural map(
IndIwp,alg

B(Zp) t

)
⊗
(

IndIwp /Γ(c)
B(Zp)/B(Zp)∩Γ(c) χ

)
→ IndIwp,c-loc.alg.

B (tχ)

f ⊗ g 
→ fg

is an isomorphism.

Proof. To construct an inverse, let ϕ ∈ IndIwp,c-loc.alg.
B(Zp) (tχ). Let ϕalg : Iwp → C (the ‘algebraic

part’ of φ) be defined by
ϕalg(bn) = t(b)ϕ′(n)

for all b ∈ B,n ∈ N ∩ Iwp, where ϕ′ is the unique algebraic extension of ϕ|N∩Γ(c) to N ∩ Iwp.
Let ϕsm : Iwp / Iwp ∩Γ(c) → C (the ‘smooth part’ of φ) be defined by

ϕsm(bn) = χ(b)(ϕ/ϕ′)(n),

where b, n are any lifts of b ∈ B/B ∩ Γ(c), n ∈ (N ∩ Iwp)/(N ∩ Γ(c)). Then we have ϕalg ⊗ ϕsm 
→
ϕ, which suffices to prove surjectivity.

Injectivity follows from dimension counting: both sides have dimension dtpc(
n
2). �

Remark 3. There is a simple isomorphism of Iwp-representations

IndIwp /Γ(c)
B(Zp)/B(Zp)∩Γ(c) χ

∼−→ IndIwp

Γ0(c) χ,

so we could just as easily have phrased this section in terms of IndIwp

Γ0(c)
χ. For now, we have no

particular reason to do this, but it may be more convenient for future work.

We call
Stχ,c(G,U ) = IndIwp,c-loc.alg.

B (tχ)(G,U )

the space of classical p-adic automorphic forms on G of weight tχ, radius c, and level U . By the
definitions, it embeds into Stχ(G,U ), and we call its image a classical subspace of Stχ(G,U ).
The following proposition is a quick generalization of part 4 of Lemma 4 of [Buz04].

Proposition 3.1.2. For any positive integers c, d, and e with d ≤ e and c+ d− e ≥ 1, we have
a natural vector space isomorphism

Stχ,c(G,U pΓ0(d)) ∼= Stχ,c+d−e(G,U pΓ0(e))

such that systems of H -eigenvalues on the left (where H is obtained with respect to U pΓ0(d))
go to identical systems of H -eigenvalues on the right (where H is obtained with respect to
U pΓ0(e)).
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Proof. For the purposes of this proposition, let X = G(Q)\G(Af ). The left-hand side is the
subset of

(Homset(X,Cp) ⊗Cp IndIwp,c-loc.alg.
B (tχ))Γ0(e) (1)

that remains invariant under a set of coset representatives A for Γ0(e)\Γ0(d). This subset has a
map by restriction of the second factor to

(Hom(X,Cp) ⊗ O)Γ0(e),

where O is the space of functions on B((pe−dZp)n(n−1)/2, c) that are algebraic on each ball B(a, c).
The map is an isomorphism: if ϕ ∈ (Hom(X,Cp) ⊗ O)Γ0(e), its inverse ψ may be defined by

ψ(x)(z) = ϕ(xa−1)(N−1(N(z)a−1)) for a ∈ A such that za−1 ∈ B
(
(pe−dZp)n(n−1)/2, c

)
.

In N(z)a−1, a should be interpreted as a coset representative for Γ0(e− d+ 1)\ Iwp. Note that
this inverse depends on the choice of coset representatives A. Now B((pe−dZp)n(n−1)/2, c) is
isomorphic to B(Zn(n−1)/2

p , c+ d− e) via multiplication by pd−e, so (Hom(X,Cp) ⊗ O)Γ0(e) is
the desired right-hand side.

To check that the Hecke operator action is preserved, it suffices to note that the Hecke
operator action on the left-hand side can be calculated on its image in (1). �

Corollary 3.1.3. For all positive integers c and group-like d ∈ Z
n(n−1)/2
≥0 , we have a vector

space embedding

Stχ,c(G,U pΓ0(d)) ↪→ Stχ(G,U0(p))

preserving systems of H -eigenvalues.

Proof. Let d = max dij . Then we have an embedding

Stχ,c(G,U pΓ0(d)) ↪→ Stχ,c(G,U pΓ0(d)).

By Proposition 3.1.2, we have an isomorphism

Stχ,c(G,U pΓ0(d)) ∼= Stχ,c+d−1(G,U pΓ0(1)) = Stχ,c+d−1(G,U p Iwp).

The space on the right certainly embeds into Stχ(G,U p Iwp) = Stχ(G,U0(p)) as discussed. �

For future reference, it will be important to note the following distinction between the space
St,1(G,U0(p)) defined here and the space St(k)(G,U0(p)) of classical algebraic automorphic forms
defined in § 2.1, which is that they are identical except for the normalization of the action of the
Up-operator. This is because, as in the beginning of § 2.3, the action of ua on St = IndIwp,alg

B(Zp) t =

IndB(Qp) Iwp,alg
B(Qp) t0 implicitly arises from the extension of t to t0 : (Q×

p )n → C where t0(ua) = 1,
whereas the action of ua on St(k) arises from the algebraic character t : (Q×

p )n → C, for which
we can compute t(ua) = p

∑
i aiti . Thus, we have

Uap |St,1(G,U0(p)) = p
∑

i aitiUap |St(k)(G,U0(p)).

3.2 A classicality theorem following Belläıche–Chenevier
This is essentially Proposition 7.3.5 of [BC09]. We just summarize the proof with modifications
so that it also works for locally algebraic weights.

Theorem 3.2.1. Let f ∈ Stχ(G,U ) where tχ = (t1χ1, . . . , tnχn), in which the ti are integers
such that t1 ≥ · · · ≥ tn and the χi are finite, such that f is an eigenform for all operators
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U
(a1,...,an)
p . Let λ1, . . . , λn−1 be the λ-values associated to f as defined at the end of § 2.6. If

v(λ1λ2 · · ·λi) < ti − ti+1 + 1

for all i = 1, . . . , n− 1, then f is classical (i.e. lies in the image of Stχ,c(G,U ) for any c such that
this is well-defined).

Proof. Let V = Qpv ⊕ QpR be a finite-dimensional vector space generated by a nonzero vector
v and a lattice R. In some basis whose first vector is v, we define the following matrix groups,
where a lowercase letter refers to a single matrix entry, an uppercase letter refers to a larger
submatrix of the appropriate size, a number refers to a submatrix consisting of copies of that
number of the appropriate size, and the subscript after the matrix refers to its coefficient ring:

H = GLQp(V ), P =
(
a B
0 D

)
Qp

⊂ H,

N =
(

1 0
C IR

)
Zp

, J =
(
a B
pC D

)
Zp

⊂ GLZp(V ).

In words, P is the parabolic subgroup of GLQp(V ) stabilizing the line Qpv ⊂ V , N is the
unipotent radical of the opposite parabolic to P , and J is the parahoric subgroup of GLZp(V )
associated to P . We have an Iwasawa decomposition

J = (N ∩ J) × (P ∩ J) =
(

1 0
pC IR

)
Zp

×
(
a B
0 D

)
Zp

and an isomorphism α : N ∩ J → R given by

α

(
1 0
pC IR

)
= C.

We also write

U− =
{(

pk 0
0 pk

′
D

)
| k ≥ k′ ∈ Z, D ∈ GLZp(R)

}
,

U−− =
{(

pk 0
0 pk

′
D

)
| k > k′ ∈ Z, D ∈ GLZp(R)

}
;

these are submonoids of H = GLQp(V ). Finally, we write M for the submonoid of H generated
by U− and J . Let χ : P → Q×

p be the character of P acting on Qpv. We have a Cp[H]-equivariant
isomorphism

Symm(V ⊗Qp Cp)∨ → IndH,algP (χm)

ϕ 
→ (h 
→ ϕ(h(e))).

We get a natural M-equivariant map

IndH,algP (χm) → IndJP,anP (χm)

by restriction. Let δ : M → C×
p be the character such that δ(J) = 1 and δ(u) = pa if

u =
(
pa 0
0 U

)
∈ U−.

Let e1, . . . , en be the standard basis of Qn
p . Let Vi = ∧i(Qn

p ), vi = e1 ∧ e1 ∧ · · · ∧ ei, mi = ti − ti+1

if i < n and mn = tn, and Ri be the Zp-span of the elements ej1 ∧ · · · eji with j1 < · · · < ji and
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(j1, . . . , ji) �= (1, . . . , i). Then for i = 1, . . . , n, we get

Hi, Pi, χi, N i, Ji, αi,U
−
i ,U

−−
i ,Mi, δi

as defined above.
Write Si(Cp)∨ for the space IndHi,alg

Pi
(χmi
i ) viewed as a representation of G(Qp) via ∧i :

G(Qp) → Hi. Write Si(mi) for the space IndHi,an
Pi

(χmi
i ) ⊗ δmi

i viewed as a representation of M

via ∧i. We have surjections
m⊗
i=1

Si(Cp)∨ → St(Cp)∨

⊗̂m

i=1
Si(mi) → St

which are equivariant with respect to G(Qp) and M respectively, both given by the formula

(f1, . . . , fm) 
→
(
g 
→

m∏
i=1

fi(∧i(g))
)
.

Let

Q = St/(St(Cp)∨ ⊗ δt) ⊗
(

IndIwp / Iwp ∩Γ(c)
B(Zp)/B(Zp)∩Γ(c) χ

)
,

Q′ =
⊗̂m

i=1
Si(mi)

/( m⊗
i=1

Si(Cp)∨ ⊗ δmi
i

)
⊗
(

IndIwp / Iwp ∩Γ(c)
B(Zp)/B(Zp)∩Γ(c) χ

)
,

Q′
i =

(⊗̂
j �=iSj(mj)

)
⊗ (

Si(mi)/Si(Cp)∨ ⊗ δmi
i

)⊗ (
IndIwp / Iwp ∩Γ(c)

B(Zp)/B(Zp)∩Γ(c) χ

)
.

Then we have a surjection

Q′(G,U ) � Q(G,U )

and an injection

Q′(G,U ) ↪→
n∏
i=1

Q′
i(G,U ).

We wish to show that if w ∈ Q(G,U ) satisfies the hypotheses of the theorem, that is, ui(w) = λiw
with the λi satisfying the given inequalities, then w = 0. We can instead check this claim for
w′ ∈ Q′(G,U ) satisfying the same condition, and for this it suffices to check that the image w′

i

of w′ vanishes in Q′
i(G,U ) for each i. Let Ui = (

∏i
j=1 ui)/p

mi+1, so that w′
i has Ui-eigenvalue

((λ1λ2 · · ·λi)/pmi+1)w, which has norm > 1. Thus it suffices to check that Ui has norm ≤ 1 on
Q′
i(G,U ), which follows from the claim that any element of the form

g
(∏i

j=1 ui
)
g′

pmi+1

for g, g′ ∈ Iwp has norm ≤ 1 on Q′
i. This follows from Lemma 7.3.6 of [BC09]. �

3.3 Automorphic representations associated to automorphic forms of locally
algebraic weights
Fix an isomorphism ιp : Qp

∼−→ C. Using ιp, we may view algebraic representations of GLn over
Qp as representations over C, or vice versa. Let f ∈ Stχ(G,U0(p)) be a p-adic automorphic
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form coming from some classical subspace Stχ,c(G,U0(p)). Let W = IndIwp,c−loc.alg.
B(Zp) (tχ), so that

f is a function G(Q)\G(Af ) →W . Following the proof of Proposition 3.8.1 of [Loe10], let W =
W sm,c(χ) ⊗ St(C), where, as in § 3.1,

W sm,c(χ) = IndIwp / Iwp ∩Γ(c)
B(Zp)/B(Zp)∩Γ(c) χ,

St(C) = IndIwp,alg
B(Zp) t,

and let ρsm, ρalg denote the actions of Iwp on W sm,c(χ) ⊗ St(C) given by acting on only the first
factor and only the second factor, respectively. Then we can define a function f∞ : G(A) →W
by f∞(g) = ρalg(g−1∞ ιp(gp))f(gf ) which satisfies the relation

f∞(gu) = ρsm(u−1
p )ρalg(u−1

∞ )f∞(g)

for all u ∈ G(R)U0(p). Equivalently, f∞ can be viewed as the function

f∨∞ : (W sm,c(χ)∨ ⊗ St(C)∨) ×G(Q)\G(A) → C

(ϕ, x) 
→ ϕ(f∞(x)),

which satisfies

f∨∞(ϕ, xu) = ϕ(f∞(xu)) = ϕ(ρsm(u−1
p )f∞(x)) = f∨∞(upϕ, x)

for all u ∈ U0(p). Thus, for each ϕ ∈W sm,c(χ)∨ ⊗ St(C)∨, the function f∨∞(ϕ, ·) is an element
of C(G(Q)\G(A),C) which generates under right translation by Iwp a representation containing
an irreducible component of W sm,c(χ)∨. The right translates of f∨∞(ϕ, ·) under G(A) generate an
automorphic representation πf of G(A) which decomposes as a tensor product

⊗′
p πf,p. We are

interested in describing the structure of πf,p.
Note that this process is reversible: suppose given ψ ∈ C(G(Q)\G(A),C) which generates a

representation containing an irreducible component of W sm,c(χ)∨ under right translation by Iwp.
Fixing ϕ ∈W sm,c(χ)∨ ⊗ St(C)∨, we may recover the corresponding f∨∞ such that f∨∞(ϕ, ·) = ψ by
setting f∨∞(upϕ, x) = ψ(xup) for all up ∈ Iwp. Then from f∨∞ we get f∞ : G(A) →W , and finally
we get f ∈ Stχ,c(G,U0(p)) by setting f(gf ) = ρalg(ιp(g−1

p ))f∞(gf ) (where on the right-hand side
gf is the element of G(A) which equals gf at the places in Af and 1 at ∞). Write fψ for the
element of Stχ,c(G,U0(p)) associated to ψ in this way.

3.4 Structure of W sm,c(χ)
We are interested in the representation

W sm,c(χ) = IndIwp /Γ(c)
B(Zp)/B(Zp)∩Γ(c) χ

of Iwp. Note that there is an obvious embedding W sm,c(χ) ↪→W sm,c+1(χ) which takes f ∈
W sm,c(χ) to the composition of f with the reduction map Iwp /Γ(c+ 1) → Iwp /Γ(c).

Let J be the compact open subgroup of GLn(Qp) corresponding to χ defined in § 3 of [Roc98];
we have J = Γ(c) where

cij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = j,⌊
cond(χiχ−1

j )
2

⌋
if i < j,⌊

cond(χiχ−1
j ) + 1

2

⌋
if i > j.
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Then χ extends to a character of J which we will also call χ; it is defined by the
equation χ(j−jj+) = χ(j) when j− ∈ J ∩N(Zp), j ∈ T (Zp), and j+ ∈ J ∩N(Zp). Let U sm(χ) :=
IndIwp

J χ.
Now note that W sm,c(χ) contains the vector

f(x) =

{
χ(j)χ(b) if x = jb ∈ Iwp /Γ(c) with j ∈ J and b ∈ B(Zp),
0 otherwise.

Note, furthermore, that for any j ∈ J and x ∈ Iwp /Γ(c), we have

(jf)(x) = f(j−1x) = χ(j−1)f(x) = χ−1(j)f(x),

so that f is (J, χ−1)-isotypic.

Proposition 3.4.1. Assume χ = (χ1, . . . , χn) satisfies:

(i) for all i �= j, cond(χiχ−1
j ) = max(cond(χi), cond(χj)); and

(ii) for all i �= j with i, j �= n, cond(χi) < 2 cond(χj).

Then U sm(χ) is irreducible.

Proof. By Mackey’s criterion, it is necessary and sufficient to show that for any s ∈ Iwp \J , the
characters χ and χs : j 
→ χ(sjs−1) are not identically equal on J ∩ s−1Js. If s ∈ Iwp \J , let
t = s−1. Then there is a pair i �= j such that tji is not divisible by pcji . Among all such i �= j,
choose a pair such that either:

(a) among the integers ckj + cjk − v(tjk), 1 ≤ k ≤ n, k �= j, cij + cji − v(tji) is the unique
maximal one; or

(b) if this is not possible, among the integers ckj + cjk − v(tjk), 1 ≤ k ≤ n, k �= j, cij + cji −
v(tji) is maximal and i is minimal such that this is the case.

Let x ∈ J be the identity except for the ijth entry; let xij = b. Note that we must have pcij |b.
We show that we can choose b such that sxt ∈ J and 1 = χ(x) �= χ(sxt) and, hence, χ(x) �= χs(x),
as desired.

The matrix xt is the same as t except for the ith row, which is

(ti1 + btj1, . . . , tin + btjn).

The kkth entry of sxt is

sk1t1k + · · · + ski(tik + btjk) + · · · + skntnk = sk1t1k + · · · + skntnk + bskitjk = 1 + bskitjk.

Because of condition (i), one can check that for all j ∈ J , we have χ(j) = χ1(j11) · · · · · χn(jnn).
Thus, we wish to choose b such that

χ1(1 + bs1itj1) · · ·χi(1 + bsiitji) · · ·χj(1 + bsjitjj) · · ·χn(1 + bsnitjn) �= 1.

Note that for all k �= i, j, we have

v(ski) + cij + cji − v(tji) > cjk + ckj − v(tjk).

This is just because we chose i, j such that cij + cji − v(tji) ≥ cjk + ckj − v(tjk), and such that
if equality holds then k > i, in which case v(ski) ≥ 1 since s ∈ Iwp. Thus, if we choose b such
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that v(b) = cij + cji − v(tji) − 1 ≥ cij , then we have

v(bskitjk) ≥ cjk + ckj = cond(χkχ−1
j )

for all k �= i, j, hence χk(1 + bskitjk) = 1. Then we have

χ1(1 + bs1itj1) · · ·χi(1 + bsiitji) · · ·χj(1 + bsjitjj) · · ·χn(1 + bsnitjn)

= χi(1 + bsiitji)χj(1 + bsjitjj) = χi(1 + bsiitji)χj

(
1 + b

(∑
k �=i

skitjk

))
since v(bskitjk) ≥ cond(χj), but this is

χi(1 + bsiitji)χj(1 − bsiitji)

since
∑

k skitjk =
∑

k tjkski = (ts)ji = 0, and this can be rewritten as
χi
χj

(1 + bsiitji)χj(1 − b2s2iit
2
ji) =

χi
χj

(1 + bsiitji)

because if i > j, then v(b2) ≥ 2cij ≥ cij + cji, and if i < j, then v(b2) ≥ 2cij ≥ cij + cji − 1 and
v(tji) ≥ 1. But since v(b) < cij + cji − v(tji), we have v(bsiitji) < cond(χiχ−1

j ), so we can choose
b to make (χi/χj)(1 + bsiitji) �= 1.

Finally, we verify that for this choice of b, we actually have sxt ∈ J . The klth entry of sbt is

sk1t1l + · · · + ski(til + btjl) + · · · + skntnk = δkl + bskitjl.

We have

v(bskitjl) = cij + cji − v(tji) − 1 + v(ski) + v(tjl)

= cij + cji − v(tji) − (clj + cjl − v(tjl)) + clj + cjl − 1 + v(ski)

≥ clj + cjl − 1 + v(ski) ≥ ckl

by condition (ii). �

Remark 4. We do not believe that either condition (i) or condition (ii) of Proposition 3.4.1 should
be strictly necessary. Notably, most of the proof of Proposition 3.4.1 can be easily rephrased to
avoid references to condition (i). Our only sticking point is the calculation of χ(j) in terms of
j11, . . . , jnn.

We call χ ‘simple’ if it satisfies the conditions of Proposition 3.4.1. By Frobenius reciprocity,
we conclude that if χ is simple, W sm,c(χ) contains U sm(χ). Also note that if χ satisfies condi-
tion (i), and the conductors of the nontrivial components of χ = (χ1, . . . , χn−1, 1) are, in order
from least to greatest, c(1) ≤ c(2) ≤ · · · ≤ c(n−1), then the index of J in Iwp is

pc(1)+2c(2)+···+(n−1)c(n−1)−n(n−1)/2 =: pj(χ),

and this is rank(U sm(χ)). Thus, if χ is simple and cond(χi) = c for all i �= n, then W sm,c(χ) and
U sm(χ) have the same dimension and must actually be isomorphic.

3.5 Hecke eigenvalues of ramified principal series
The representations we are interested in will turn out to be ramified principal series of
GLn(Qp), so we now cover the properties of these that we will need. To harmonize with
the literature, for this section only, we use different conventions from the rest of the paper.
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If χ = (χ1, . . . , χn) : (Q×
p )n → C is a smooth character of T (Qp) = (Q×

p )n, we write

i
GLn(Qp)
B(Qp) χ = {f : GLn(Qp) → C | f(bg) = χ(b)f(g) for all g ∈ GLn(Qp) and b ∈ B(Qp)}

for the representation of GLn(Qp) with the given underlying vector space and the right
translation action of GLn(Qp). We let δ1/2 : (Q×

p )n → C be the modulus character

δ1/2 := (| · |(n−1)/2, | · |(n−3)/2, . . . , | · |(1−n)/2).

Then we define

π(χ) := π(χ1, . . . , χn) := i
GLn(Qp)
B(Qp) (χδ1/2).

The representation π(χ) is called the normalized parabolic induction of χ. Assume that for all
i �= j, we have χi(p) �= χj(p)p. Let J = Γ(c) be the subgroup defined at the beginning of § 3.4. Let
H (GLn(Qp) � J, χ) be the subspace of H (GLn(Qp)) generated by the functions ϕ : GLn(Qp) →
C satisfying ϕ(j1xj2) = χ(j1)−1ϕ(x)χ(j2)−1 for all j1, j2 ∈ J and x ∈ GLn(Qp).

Lemma 3.5.1. The (J, χ)-isotypic piece of π(χ) is 1-dimensional.

Proof. By Theorem 6.3 of [Roc98], H (GLn(Qp) � J, χ) is abelian. (To be precise, the theorem
gives an isomorphism between H (GLn(Qp) � J, χ) and H (W 0

χ , S
0
χ) ⊗ C[Ωχ], where by our

assumption that χi(p) �= χj(p)p for i �= j, we have W 0
χ = S0

χ = 1, H (W 0
χ , S

0
χ) = C, and Ωχ =

Zn.) Thus, the (J, χ)-isotypic piece of π(χ) decomposes as a representation of H (GLn(Qp) � J, χ)
into 1-dimensional pieces. But by Theorem 9.2 of [Roc98], because π(χ) is irreducible, the
(J, χ)-isotypic piece of π(χ) is irreducible as a representation of H (GLn(Qp) � J, χ). Thus, it
is itself 1-dimensional. �
Lemma 3.5.2. If a = (a1, . . . , an) is such that a1 ≥ a2 ≥ · · · ≥ an, the action of the element
[JuaJ ] of H (GLn(Qp) � J, χ) corresponding to ua = diag(pa1 , . . . , pan) on the (J, χ)-isotypic
piece of π(χ) is multiplication by

χ(ua)δ1/2(ua)−1 = χ1(pa1) · · ·χn(pan)δ1/2(ua)−1.

Proof. The (J, χ)-isotypic piece is generated by

f(g) =

{
(χδ1/2)(b)χ(j) if g = bj with b ∈ B(Qp) and j ∈ J,

0 otherwise.

This is just because this function f satisfies the (J, χ)-isotypic condition by construction, and is
well-defined because (χδ1/2)(b) = χ(b) for any b ∈ B ∩ J . We claim that

f(jua) = χ(j)χ(ua)δ1/2(ua) = χ(j)χ(ua)δ1/2(ua)f(1) for any j ∈ J. (2)

The lemma follows from this, because if JuaJ =
∐r
i=1 jiu

aJ , then

([JuaJ ]f)(1) =
r∑
i=1

χ(ji)−1f(jiua) =
r∑
i=1

χ(ua)δ1/2(ua)f(1) = χ(ua)δ1/2(ua)−1f(1)

because r = δ(ua)−1 (since the same calculation as in Proposition 2.6.2 shows that the index of
J in [(ua)−1Jua]J is

p
∑

i<j(ai−aj) = p(n−1)a1+(n−3)a2+···+(1−n)an).

To prove (2), first write j = j−j0j+ where j− ∈ J ∩N(Zp), j0 ∈ T (Zp), and j+ ∈ J ∩N(Zp).
Then we have χ(j) = χ(j0). Let j+1 = j0j+(j0)−1; then j+1 ∈ J ∩N(Zp) as well, and j = j−j+1 j

0.

76

https://doi.org/10.1112/S0010437X23007534 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007534


Slopes in eigenvarieties for definite unitary groups

Use Lemmas 3.1 and 3.2 of [Roc98] to write j−j+1 = j+2 j
−
2 c, where j+2 ∈ J ∩N(Zp), j−2 ∈ J ∩

N(Zp), and c ∈ T (Zp) is a correction torus element in the kernel of χ. Then we have

jua = j+2 j
−
2 cj

0ua = ua[(ua)−1j+2 u
a][(ua)−1j−2 u

a](j0c).

We have (ua)−1j+2 u
a ∈ N(Qp), and by the same calculation as in Proposition 2.6.2, we have

(ua)−1j−2 u
a ∈ J ∩N(Zp). Therefore,

f(jua) = f(ua[(ua)−1j+2 u
a][(ua)−1j−2 u

a](j0c))

= (χδ1/2)(ua[(ua)−1j+2 u
a])χ([(ua)−1j−2 u

a](j0c))

= (χδ1/2)(ua)χ(j0) = (χδ1/2)(ua)χ(j),

as desired. �

3.6 Structure of automorphic representations of locally algebraic weights
Let f ∈ Stχ,c(G,U0(p)) be a classical eigenform, and let πf,p be an irreducible component of the
local component at p of the automorphic representation πf associated to f in § 3.3. We first
verify a standard fundamental fact about the structure of πf,p for those f associated to points
on the eigenvariety D .

Proposition 3.6.1. The eigenform f may be associated to a classical point x on D (equivalently,
f is finite-slope) if and only if πf,p has nonzero Jacquet module with respect to B or, equivalently,
is a subquotient of a principal series.

To show this, we use the following proposition of Casselman in [Cas95] on canonical liftings.
Recall the submonoid Σ−− from § 2.6. Also recall that, by definition, the Jacquet module of a
representation (π, V ) of GLn(Qp) with respect to a parabolic subgroup P with Levi factorization
P = MN is the space VN of N -coinvariants of V , which is naturally a representation of M . (See
[Cas95, §§ 3 and 4] for more basic information about Jacquet modules.)

Proposition 3.6.2 (Casselman [Proposition 4.1.4, Cas95]). Let (π, V ) be an admissible rep-
resentation of GLn(Qp), P = MN a parabolic subgroup with Levi factorization, and K0 =
N0M0N0 a compact open subgroup with Iwahori factorization. If ua ∈ Σ−−, then the projection
from V K0 to VM0

N given by [K0u
aK0] is a surjection. If uaN1(ua)−1 ⊆ N0, where N1 is a compact

subgroup of N such that V K0 ∩ V (N) ⊆ V (N1), then the projection is an isomorphism.

Proof of Proposition 3.6.1. We apply Proposition 3.6.2 with P = B and M = T .
Suppose f is such that πf,p = (π, V ) has nonzero Jacquet module. Let v ∈ VN be a nonzero

vector and let M0 be a compact open subgroup of M fixing v. Let K0 be a compact open
subgroup of G such that K0 ∩M = M0. By the proposition of Casselman, [K0u

aK0]V surjects
onto VM0

N �= 0, so is itself nonzero. Thus, [K0u
aK0] has some nonzero eigenvalue, corresponding

to an eigenvector in πf,p which must be the image of an eigenform in Stχ,c(G,U0(p)) by the
procedure of § 3.3.

Now suppose in the other direction that f is finite-slope. Then πf,p = (π, V ) contains a vector
im(f) with nonzero Hecke eigenvalue for [K0u

aK0] for some compact open subgroup K0 and all
a ∈ Σ−. Choose a compact subgroup N1 of N such that V K0 ∩ V (N) ⊆ V (N1). We claim that
for sufficiently large powers (ua)k of ua, we must have (ua)kN1(ua)−k ⊆ N0; this is just the effect
of conjugation by (ua)k on the ijth entry of N1 is scaling by pk(ai−aj), and k(ai − aj) becomes
arbitrarily large as k does. Then [K0(ua)kK0]V ∼= VM0

N , and we must have VM0
N �= 0. �
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Now assume χn is trivial and let c0 = max1≤i<n cond(χi). Let (W sm,c0(χ))⊥ be the comple-
ment of W sm,c0(χ) in W sm,c(χ). We now observe that as c goes to infinity, almost all eigenforms
in Stχ,c(G,U0(p)) are infinite-slope.

Proposition 3.6.3. Suppose that f is an eigenform in

((W sm,c0(χ))⊥ ⊗ St)(G,U0(p)) ⊂ Stχ,c(G,U0(p)).

Then Upf = 0, f is not associated to a point on the eigenvariety, and πf,p is not a subquotient
of a principal series.

Proof. By Proposition 2.6.6, in order for Upf to be nonzero, f must lie in Stχ,c0(G,U0(p)). But
the intersection of Stχ,c0(G,U0(p)) with ((W sm,c0(χ))⊥ ⊗ St)(G,U0(p)) is trivial. �

Now recall the Iwp-representation U sm(χ) := IndIwp

J χ from the beginning of § 3.4. By the dis-
cussion at the end of § 3.4, if χ is simple, (U sm(χ) ⊗ St)(G,U0(p)) is a subspace of Stχ,c(G,U0(p)).
Even if χ is not simple, the following is true.

Proposition 3.6.4. There is a vector space embedding of (U sm(χ) ⊗ St)(G,U0(p))fs (as at the
end of § 2.6) into Stχ,c(G,U0(p)) which preserves systems of H -eigenvalues.

Proof. Let H̃0
la be the space, as in Definition 3.2.3 of [Eme06b] and the discussion surround-

ing it, of continuous Qp-valued functions on G(Q)\G(A) that are locally constant on cosets of
G(Ap

f ) and locally analytic on cosets of G(Qp). Let JB be Emerton’s locally analytic Jacquet
module functor as constructed in [Eme06a]. Finally, let ep be the idempotent of H (G(A)) away
from p corresponding to the tame part of U0(p). According to Proposition 3.10.3 of [Loe10],
Stχ,c(G,U0(p))fs is isomorphic as an H -module to

ep
(
JB
(
H̃0

la

)⊗Q (tχ)
)T (Zp)

,

where we write (tχ) for the representation of T (Zp) given by the character tχ. (Note that
Loeffer uses different conventions from us, hence writes JB instead of JB.) For f ∈ (U sm(χ) ⊗
St)(G,U0(p)), define f∨∞ : (U sm(χ) ⊗ St)∨ ×G(Q)\G(A) → C by the same construction as in
§ 3.3, with U sm(χ) in place of W sm,c(χ). Then if ϕ ∈ (U sm(χ) ⊗ St)∨ is the vector taking an
element of U sm(χ) ⊗ St to its evaluation on id ∈ Iwp, then f∨∞(ϕ, ·) is a continuous Cp-valued
function on G(Q)\G(A) that is locally constant on cosets of G(Ap

f ) and analytic on cosets of the
compact open subgroup J of G(Qp). Thus, we get an inclusion

(U sm(χ) ⊗ St)(G,U0(p)) ↪→ H̃0
la

f 
→ f∨∞(ϕ, ·).
Let π be the G(Qp)-subrepresentation of H̃0

la generated by im((U sm(χ) ⊗ St)(G,U0(p))). By
Proposition 3.6.2, there is a ∈ Σ−− such that Uap gives an isomorphism

(U sm(χ) ⊗ St)(G,U0(p))fs
∼−→ JB(π).

Since T (Zp) acts the same way on JB(π) and on tχ, these identifications combine to an inclusion

(U sm(χ) ⊗ St)(G,U0(p))fs
∼−→ JB(π) ↪→ ep

(
JB
(
H̃0

la

)⊗Q (tχ)
)T (Zp) ∼−→ Stχ,c(G,U0(p))fs. �

Now it turns out that, in fact, all of (U sm(χ) ⊗ St)(G,U0(p)) is finite-slope.

Proposition 3.6.5. Suppose that f is an eigenform in (U sm(χ) ⊗ St)(G,U0(p)). Then πf,p is a
subquotient of a principal series, in particular one of the form π(ψ1, . . . , ψn) where ψi : Q×

p → C
are characters of Q×

p whose restrictions to Z×
p are the same as χ1, . . . , χn in some order.
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Proof. We know that πf,p is an irreducible subrepresentation of C(GLn(Qp),C) whose restric-
tion to Γ0(p) admits a nontrivial homomorphism from (U sm(χ))∨. By Frobenius reciprocity, the
restriction of πf,p to J admits a nontrivial homomorphism from the representation of J given by
χ; that is, it contains a (J, χ)-isotypic vector. By Theorem 7.7 of [Roc98], πf,p is a subquotient
of π(ψ1, . . . , ψn). �

Remark 5. If χ is simple, one can also prove Proposition 3.6.5 by noting that if πf,p admits a non-
trivial homomorphism from the irreducible (U sm(χ))∨, it must, in fact, contain all of (U sm(χ))∨,
in particular the (J, χ)-isotypic vector. (We are grateful to Jessica Fintzen for pointing out the
more general proof above.)

By Propositions 3.6.5 and 3.6.1, Up is injective on the space (U sm(χ) ⊗ St)(G,U0(p)).
Furthermore, for an eigenform f in this space, it is possible to compute the eigenvalues of
Up from the structure of πf,p or vice versa, as follows. From now on, for convenience, we some-
times refer to the algebraic weight (t1, . . . , tn−1, 0), t1 ≥ · · · ≥ tn−1, by its successive differences
m1 = t1 − t2, m2 = t2 − t3, . . . ,mn−1 = tn−1.

Proposition 3.6.6. Suppose that χi(p) �= χj(p)p for all i �= j, and f is an eigenform in
(U sm(χ) ⊗ St)(G,U0(p)). Suppose that we have πf,p = π(ψ1, . . . , ψn) (note that this is an equal-
ity because for such χ, π(ψ1, . . . , ψn) is irreducible). The λ-values associated to x as in § 2.6
satisfy

λi = p(n−1)/2−i+1−mn−mn−1−···−mn−i+1ψi(p).

Proof. We are given that for all ua ∈ Σ−, we have Uap f = λa1
1 · · ·λan

n f . Since any eigenvector of
Uap = [U0(p)uaU0(p)] is also an eigenvector of [JuaJ ], we can calculate its eigenvalue using [JuaJ ]
instead. Let

JuaJ =
r∐
i=1

ζiJ.

Then for any ϕ ∈ U sm(χ) ⊗ St, we have

(Uap f)∨∞(ϕ, x) = ϕ(ρalg(x−1
∞ ιp(xp))(Uap f)(xf ))

= p−
∑
aitiϕ

(
ρalg(x−1

∞ ιp(xp(ζi)p))
r∑
i=1

ρsm((ζi)p)f(xζi)
)
.

Choose ϕ = ϕsm ⊗ ϕalg so that ϕsm is a (J, χ)-isotypic vector in U sm(χ). Then, by definition,

ϕ(ρsm((ζi)p)f(xζi)) = ψ((ζi)p)ϕ(f(xζi)),

so

(Uap f)∨∞(ϕ, x) = p−
∑
aiti

r∑
i=1

ψ((ζi)p)ϕ
(
ρalg(x−1

∞ ιp(xp(ζi)p))f(xζi)
)

= p−
∑
aiti

r∑
i=1

ψ((ζi)p)f∨∞(ϕ, xζi).

That is, we have
r∑
i=1

ψ((ζi)p)f∨∞(ϕ, xζi) = p
∑
aitiλa1

1 · · ·λan
n f

∨
∞(ϕ, x).
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Thus, the image of f∨∞(ϕ, ·) in πf,p is a J-new vector (H (J, ψ)-module). By Lemma 3.5.2, we
have

p
∑
aitiλa1

1 · · ·λan
n = ψ1(pa1) · · ·ψn(pan)δ1/2(ua)−1.

The proposition follows. �
In summary, we have found a finite-slope subspace of Stχ,c(G,U0(p)) of rank

rank((U sm(χ) ⊗ St)(G,U0(p))) = hdtp
j(χ),

where, as before, dt = dim IndIwp,alg
B(Zp) t, h = #(G(Q)\G(Af )/U0(p)), and j(χ) is defined as at the

end of § 3.4. If χ is simple, this subspace is contained in the classical space Stχ,c(G,U0(p)) and,
furthermore, we can extend Proposition 3.6.3 to show that it accounts for all the finite-slope
forms in Stχ,c(G,U0(p)).

Proposition 3.6.7. Suppose that χ is simple and f is an eigenform in (U sm(χ)⊥ ⊗
St)(G,U0(p)) ⊂ Stχ,c(G,U0(p)). Then Upf = 0, f is not associated to a point on the eigenvariety,
and πf,p is not a subquotient of a principal series.

Proof. Let ci = cond(χi), and first assume that c1 ≥ · · · ≥ cn−1. Then the tuple c0 ∈ Z
n(n−1)/2
>0

associated to χ defined immediately before Corollary 2.6.4 satisfies c0ij = ci for all i > j. We claim
that the intersection of Stχ,c0(G,U0(p)) with Stχ,c(G,U0(p)) is precisely (U sm(χ) ⊗ St)(G,U0(p)).

To show that (U sm(χ) ⊗ St)(G,U0(p)) is contained in Stχ,c0(G,U0(p)), it suffices to note
that U sm(χ) ⊗ St is contained in Stχ,c0 , which is true because f ⊗ ϕ ∈ U sm(χ) ⊗ St is clearly
contained in Stχ,c0 for the vector f ∈ U sm(χ) defined at the beginning of § 3.4 and any ϕ ∈ St,
and U sm(χ) ⊗ St is irreducible.

To show that (U sm(χ) ⊗ St)(G,U0(p)) exhausts Stχ,c0(G,U0(p)) ∩ Stχ,c(G,U0(p)), we simply
note that the latter space also has dimension hdtpj(χ), since as a vector space it is h copies of the
locally algebraic vector subspace of Stχ,c0 . By Proposition 2.6.6, in order for Upf to be nonzero,
f must lie in Stχ,c0(G,U0(p)); this completes the proof.

If the ci are not in decreasing order, by the beginning of § 4.2, the finite-slope subspace
of Stχ,c(G,U0(p)) has the same dimension as that of Stχw,c(G,U0(p)) where χw is χ with the
components rearranged so that the ci are in decreasing order. This completes the argument for
all χ simple. �

The combination of Propositions 3.6.5 and 3.6.7 gives us the following precise version of
Theorem 1.2.1.

Theorem 3.6.8. If χ is simple, then the finite-slope classical subspace of Stχ,c(G,U0(p)) is
precisely (U sm(χ) ⊗ St)(G,U0(p)).

4. Bounds on the Newton polygon

In this section, we prove Theorem 1.1.2. We prove part (i) in § 4.1 and part (ii) in § 4.2. In § 4.3,
we prove a modified version of part (ii) which generates infinitely many upper bound points for
the same Newton polygon.

Fix a character of Δn and, thus, a particular polydisc in W n. Over the subset of this polydisc
where Tn = 0, we have

det(I −XUp) =
∑
N≥0

cN (T1, . . . , Tn−1)XN ∈ Zp[[T1, . . . , Tn−1]][[X]]

with c0(T1, . . . , Tn−1) = 1. We want to bound the coefficients cN (T1, . . . , Tn−1).
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4.1 A lower bound on the Newton polygon
We first summarize the theory of Johansson–Newton in [JN19a] that we will apply. As mentioned
in § 1.2, they construct families of automorphic forms for various groups, including our definite
unitary group G, over an extended weight space containing extra points at the boundary. We
do not describe the extended weight space in more detail, since we only need to work with their
families over the following subset of the standard weight space.

Fix an index a, and consider the subset of our chosen polydisc in W n where:

(a) |Ta| ≥ 1/p; and
(b) |Ta| ≥ |Tj | for all j �= a.

If A is an affinoid Qp-algebra, then A-points of W n lying in this subset are in bijection with
continuous homomorphisms R→ A, where R◦ is the Ta-adic completion of

Zp[[T1, . . . , Tn−1]]
[
p

Ta
,
T1

Ta
, . . . ,

Tn−1

Ta

]
and R = R◦[1/Ta]. Let [·]R : (Z×

p )n → R× be the universal character with values in R.
Johansson–Newton automorphic forms with coefficients in R (i.e. families of automorphic

forms over the subset of the boundary where the ath coordinate is closest to the boundary) are
defined as follows. Give R the norm |r| = inf{p−n | r ∈ Tna R

◦
η}. Let D be the continuous R-dual

of IndIwp,cts
B(Zp) [·]R. D is orthonormalizable with the following norm: choose topological generators

n = (n1, . . . , nn(n−1)/2) for N , for example the matrix coefficients pz21, pz31, pz32, . . . , pzn(n−1) of

§ 2.3. Let ni ∈ D be the Dirac distribution at ni on N . For η = (η1, . . . , ηn(n−1)/2) ∈ Z
n(n−1)/2
≥0 ,

write nη :=
∏n(n−1)/2
i=1 n

ηi
i and s(η) =

∑n(n−1)/2
i=1 ηi for short. Then {nη}η∈Zn(n−1)/2 is a basis for

D, and the norm is ∥∥∥∥∑
η

dηn
η

∥∥∥∥
r

= sup
η

|dη|rs(η).

Let Dr be the completion of D with respect to this norm. Then the space of Johansson–Newton
automorphic forms with coefficients in R is D1/p(G,U0(p)). See § 3.3 of [JN19a] for more details.

Evidently, these automorphic forms are not exactly the same as ours, but this does not
matter because eigenvarieties are essentially unique. In particular, Johansson and Newton prove
(Remark 4.1.9 of [JN19a]) that if one constructs an eigenvariety using the action of Up on these
automorphic forms, the result agrees with Hansen’s construction in [HN17] over standard weight
space. Hansen’s construction (see the introduction to [HN17]) agrees with Loeffler’s in [Loe10]
when the latter applies (whenever Gder(R) is compact, which is certainly true for us). Loeffler’s
construction is the same as the one we use except for notational differences.

Consequently, the characteristic power series
∑

N≥0 cN (T1, . . . , Tn−1)XN which we want to
compute agrees with the characteristic power series of Up acting on the space D1/p(G,U0(p)).

Finally, the characteristic power series of Up acting on D1/p(G,U0(p)) can be computed using
its matrix coefficients in the following explicit basis. According to the beginning of [JN19a, § 3.2],
Dr has a potential orthonormal basis given by the elements

er,η := T−n(r,Ta,η)
a nη,

where

n(r, Ta, η) =
⌊
s(η) logp r
logp |Ta|

⌋
.
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It follows that Dr(G,U0(p)) has a potential orthonormal basis given by the elements

etr,η := (0, . . . , 0, er,η, 0, . . . , 0) ⊂
h⊕
t=1

Dr ∼= Dr(G,U0(p)),

where the er,η is in the tth position. Furthermore, by Lemma 6.2.1 of [JN19a], we have

Up(etr,η) =
∑
u,μ

auμe
u
r,μ

with
|auμ| ≤ |Ta|n(r,Ta,μ)−n(r1/p,Ta,μ).

We may now proceed to prove part (i) of Theorem 1.1.2, which states the following.

Theorem 4.1.1. There are constants A1, C (depending on n, p, and h) such that for all
T1, . . . , Tn−1 such that all |Tj | > 1

p , the Newton polygon of
∑

N≥0 cN (T1, . . . , Tn−1)XN lies above
the points (

x,
(
A1x

1+2/n(n−1) − C
) · min v(Tj)

)
for all x.

Proof. We generalize the argument for the case n = 1 given in Theorem 6.3.2 of [JN19a]. In
the notation just defined, we have n(p−1, Ta, μ) = s(μ) and n(p−1/p, Ta, μ) = �s(μ)/p�. Thus,
Lemma 6.2.1 of [JN19a] says that

Up(etr,η) =
∑
u,μ

auμe
u
r,μ

with
|auμ| ≤ |Ta|s(μ)−�s(μ)/p�.

Another way of saying this is that whenever s(μ) = N , every matrix entry of Up in the row eur,μ
has coefficient auμ divisible by |Ta|N−�N/p�. There are

h

(
N + n(n− 1)/2 − 1
n(n− 1)/2 − 1

)
choices of u and μ such that s(μ) = N and, hence, that many rows which we can guarantee are
divisible by TN−�N/p�

a (not counting rows which we can guarantee are divisible by higher powers
of Ta). We conclude that NP(

∑
N≥0 cN (T1, . . . , Tn−1)XN ) passes above the point(

h
M∑
N=0

(
N + n(n− 1)/2 − 1
n(n− 1)/2 − 1

)
, h

M∑
N=0

(
N + n(n− 1)/2 − 1
n(n− 1)/2 − 1

)
(N − �N/p�)v(Ta)

)
for every integer M ≥ 0. Since the x-coordinate of the above expression is a polynomial in M of
degree n(n− 1)/2 and the y-coordinate is v(Ta) times a polynomial in M of degree n(n− 1)/2 +
1, the claim follows. �

4.2 Systems of eigenvalues associated to classical points
A ‘refined principal series’ is a principal series representation π of GLn(Qp) together with an
ordered sequence of characters (ψ1, . . . , ψn) : (Q×

p )n → C× such that π ∼= π(ψ1, . . . , ψn). Thus,
there are n! possible refinements of each π. The language comes from Galois representation
theory. From our setup so far, it is easy to see that an eigenform f ∈ (U sm(χ) ⊗ St)(G,U0(p))
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is naturally associated to a particular refined principal series: the principal series πf,p, together
with, if f has λ-values λ1, . . . , λn, the ordered sequence (ψ1, . . . , ψn) : (Q×

p )n → C× such that
π ∼= π(ψ1, . . . , ψn) and λi = p(n−1)/2−i+1−mn−mn−1−···−mn−i+1ψi(p). Also note that this refined
principal series depends only on the point x on D that f is associated to.

For a character χ : (Z×
p )n → C× or ψ : (Q×

p )n → C×, and for any w ∈ Sn, we write χw =
(χw(1), . . . , χw(n)), and ψw similarly.

Now note that if fx ∈ (U sm(χ) ⊗ St)(G,U0(p)) is an eigenform associated (via
Proposition 3.6.4) to a point x on D with associated refined principal series (π(ψ), ψid), then
the refined principal series (π(ψ), ψw) is also associated to a point xw on D and a form
fwx ∈ (U sm(χw) ⊗ St)(G,U0(p)) (arising from the unique (J, χw)-vector in π(ψ)). The forms fwx
are called companion forms of fx. Having defined these companion forms, it is straightforward
to show that the slopes appearing in (U sm(χ) ⊗ St)(G,U0(p)) are not only finite but bounded
above by a linear function of t, as follows.

Proposition 4.2.1. If f ∈ (U sm(χ) ⊗ St)(G,U0(p)) is a Uap -eigenform with eigenvalue aid
p , and

each companion form fw has Uap -eigenvalue awp , then we have∑
w∈Sn

v(awp ) = la(t),

where la(t) is a linear function of t1, . . . , tn.
In particular, let l(n−1,n−2,...,0)(t) = l(t). Suppose that cond(χiχ−1

j ) = max(cond(χi),
cond(χj)) for all i �= j. Then for each w, the Newton polygon of∑

N≥0

cN (T1(tχw), . . . , Tn−1(tχw))XN

contains hpj(χ)dt slopes of size at most l(t), hence, in particular, passes below the point(
hpj(χ)dt, hp

j(χ)dtl(t)
)
.

Proof. Let πf,p = π(ψ1, . . . , ψn). By Proposition 3.6.6, we have∏
i

λi = p−(nmn+(n−1)mn−1+···+m1)
∏
i

ψi(p).

The λ-values of xw are given by

λwi = p(n−1)/2−i+1−mn−mn−1−···−mn−i+1ψw(i)(p)

for each w ∈ Sn. Then for a = (a1, . . . , an), the Uap -eigenvalue associated to xw is∏
i

(λwi )an−i+1 =
∏
i

pan−i+1[(n−1)/2−i+1−mn−mn−1−···−mn−i+1]ψw(i)(p)
an−i+1 ,

so the product of the Uap -eigenvalues associated to all the xw is

p(n−1)!
∑

i an−i+1[(n−1)/2−i+1−mn−mn−1−···−mn−i+1]

(∏
i

ψi(p)
)(n−1)!

∑
i ai

= p(n−1)!
∑

i an−i+1[(n−1)/2−i+1−mn−mn−1−···−mn−i+1]

(
pnmn+(n−1)mn−1+···+m1

∏
i

λi

)(n−1)!
∑

i ai

.

But
∏
i λi is the eigenvalue associated to the operator U (1,1,...,1)

p , which is just right translation
by the central matrix diag(p, p, . . . , p), which preserves f , so

∏
i λi = 1. Thus, the sum of the

83

https://doi.org/10.1112/S0010437X23007534 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007534


L. Ye

valuations of the Uap -eigenvalues associated to the companion points is

(n− 1)!
∑
i

an−i+1[(n− 1)/2 − i+ 1 −mn −mn−1 − · · · −mn−i+1]

+ (nmn + (n− 1)mn−1 + · · · +m1)(n− 1)!
∑
i

ai

= (n− 1)!
(∑

i

an−i+1((n− 1)/2 − i+ 1) −
∑
j

mj(a1 + · · · + aj) +
∑
j

jmj

(∑
i

ai

))
.

Defining la(t) to be this last expression, we find that
∑

w∈Sn
v(awp ) = la(t) as desired.

The conclusion that each individual v(awp ) is bounded above by la(t) follows because all the
awp are algebraic integers. �

Let ci = cond(χi), let χ(1), . . . , χ(n−1) be the characters χ1, . . . , χn−1 reordered so that
cond(χ(1)) ≤ cond(χ(2)) ≤ · · · ≤ cond(χ(n−1)), let c(i) = cond(χ(i)), and let T(i) = T (χ(i)). To get
from Proposition 4.2.1 to the statement of Theorem 1.1.2, we just need to check that for all t
and χ such that mi ≥ εmj for all i �= j and cond(χiχ−1

j ) = max(cond(χi), cond(χj)) for all i �= j,
(hpj(χ)dt, hp

j(χ)dtl(t)) has the desired numerical qualities. First we check the size of dt.

Proposition 4.2.2. The dimension dt is a polynomial of total degree n(n− 1)/2 in
m1, . . . ,mn−1.

Proof. By Corollary 14.9 of [MS04], IndGLn(Zp),alg
B(Zp) t has a basis indexed by chains in the poset

described in [MS04, § 14.2]. For a subset σ of {1, . . . , n}, let f(σ) =
∑

k/∈σ(n+ 1 − k). We claim
that when you take one step down the poset, f(σ) goes down by 1. This is because, if σ is one
step below τ , there are two possibilities. The first is that |τ | = |σ| and there is some i for which
σi = τi − 1 and σj = τj for all j with j �= i; in this case the complements σc and τ c are the same
except for σi ∈ τ c and σi + 1 = τi ∈ σc, which contribute n− σi and n− σi − 1 to the sums f(σ)
and f(τ), so f(σ) = f(τ) − 1. The second is that |σ| = |τ | + 1 and σ contains n and τ does not,
so again f(σ) = f(τ) − 1.

Thus, a maximal chain in this poset starts with {n}, which has f -value 2 + · · · + n =
n(n+ 1)/2 − 1, and ends with {1, 2, . . . , n− 1}, which has f -value 1; its length is therefore
n(n+ 1)/2 − 1. A leading term of dm1,...,mn−1,0 comes from distributing m1, . . . ,mn−1 among
corresponding variables in a maximal chain. Thus, it is a product

∏(
mi+ci
ci

)
where the ci + 1

sum to n(n+ 1)/2 − 1; that is, the ci sum to n(n+ 1)/2 − 1 − (n− 1) = n(n− 1)/2. �

Since mi ≥ εmj for all i �= j, we can find some Aε such that l(t) ≤ Aεd
2/n(n−1)
t for all such

m1, . . . ,mn−1. Also, by the formula stated in Example 2.2.2, we have

v(T(i)) = v(T (χ(i))) = A1p
−c(i)

for a constant A1 (depending on p). Thus, we have

pj(χ) = pc(1)+2c(2)+···+(n−1)c(n−1)−n(n−1)/2 = A2v(T(1))
−1v(T(2))

−2 · · · v(T(n−1))
−(n−1).
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Thus, if we let x = hpj(χ)dt and y = hpj(χ)dtl(t), we have

y =
(
hpj(χ)dt

)1+2/n(n−1)(
hpj(χ)dt

)−2/n(n−1)
l(t)

= A3x
1+2/n(n−1)

(
pj(χ)

)−2/n(n−1)
d
−2/n(n−1)
t l(t)

≤ A4Aεx
1+2/n(n−1)

(
v(T(1))

−1v(T(2))
−2 · · · v(T(n−1))

−(n−1)
)−2/n(n−1)

= A5

(
v(T(1))

2/n(n−1)v(T(2))
(2·2)/n(n−1) · · · v(T(n−1))

(2·(n−1))/n(n−1)
)
x1+2/n(n−1),

where A5 depends only on n, p, h, and ε, as desired. This proves part (ii) of Theorem 1.1.2.

4.3 Combining upper bound points
We show that Theorem 1.1.3 is a natural consequence of part (ii) of Theorem 1.1.2. First we
need the following lemma of Wan, which is stated in [Wan98] with Zp-coefficients but works
identically with OCp-coefficients.

Lemma 4.3.1 (Wan [Wan98]). Let Q1(X), Q2(X) be two elements in OCp [[X]] with Q1(0) =
Q2(0) = 1. Let Ni(x) be the function on R≥0 whose graph is the Newton polygon of Qi(X).
Assume that ν(x) is a strictly increasing continuous function on R≥0 such that ν(0) ≤ 0, Ni(x) ≥
xν(x) for 1 ≤ i ≤ 2 and x ≥ 1, and limx→∞ ν(x) = ∞. Assume further that the function xν−1(x)
is increasing on R>0, where ν−1(x) denotes the inverse function of ν(x) defined at least on R≥0.
For x ≥ 0, we define the integer-valued increasing function mν(x) =

⌊
xν−1(x)

⌋
. If the congruence

Q1(X) ≡ Q2(X) (mod pmν(α)+1)

holds for some α ≥ 0, then the two Newton polygons Ni(x) coincide for all the sides with slopes
at most α.

Proof of Theorem 1.1.3. By Proposition 4.2.1, NP(tχ) passes below the point(
hpj(χ)dt, hp

j(χ)dtl(t)
)
.

Note that the slope of NP(tχ) at x-coordinate hpj(χ)dt is at most l(t). We may apply Lemma 4.3.1
with ν(x) = A1x

2/n(n−1) mini v(T (χi)), so that

mν(x) � x1+n(n−1)/2(
mini v(T (χi))

)n(n−1)/2
.

Let t(1)i = ti + (n− i)pmν(l(t))+1ϕ(q). By Lemma 4.3.1 applied to P (X, tχ) and P (X, t(1)χ), we
find that NP(t(1)χ) also passes below this point. (The factor of ϕ(q) is to keep t(1)1 , . . . , t

(1)
n−1 in the

same equivalence class as t1, . . . , tn−1 (mod ϕ(q)) so that they fall in the same weight polydisc;
presumably it would also suffice to twist by an appropriate tame character instead.) However,
by Corollary 4.2.1, NP(t(1)χ) also passes below(

hpj(χ)dt(1) , hp
j(χ)dt(1) l(t

(1))
)
.

Repeating this, we find a sequence t = t(0), t(1), t(2), . . . of dominant algebraic weights such that
NP(t(k)χ) passes below(

hpj(χ)dt(0) , hp
j(χ)dt(0) l(t

(0))
)
, . . . ,

(
hpj(χ)dt(k) , hpj(χ)dt(k) l(t(k))

)
.

Evidently the t(k) approach a limit t∞, and NP(t∞χ) passes below(
hpj(χ)dt(k) , hpj(χ)dt(k) l(t(k))

)
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for all k. The result follows as in the end of § 4.2. (Note that since

m
(k)
i = m

(k−1)
i + pmν(l(t(k−1)))+1ϕ(q),

if m(k−1)
i ≥ εm

(k−1)
j for all i �= j, the same is true for the m(k)

i .) �

5. Geometry of the eigenvariety over the boundary of weight space

Fix an index a, and for any ν ∈ Q, let W<ν be the admissible open subset of characters w such
that v(Ta(w)) < ν and v(Ta(w)) < νv(Tj(w)) for all j �= a (so, in particular, v(Ta) = mini v(Ti)).
(We could also use W≤ν , with the analogous definition; this would not only be admissible open,
but would be a rational subdomain upon intersection with an affinoid subdomain of W . See
[BCD+08, Chapter 1, § 2] for more information about the rigid analytic Grothendieck topology
on W .) let Z<ν be the preimage of W<ν in the eigencurve Z . For any real number α, let X(< α)
be the subset of Z of points x for which v(ap(x)) < αv(Ta(w(x))), and define X(= α), X(> α)
similarly.

As in the previous section, fix a polydisc in W . For T = (T1, . . . , Tn−1) in the polydisc and
m = (m1, . . . ,mn−1) ∈ Zn−1

≥0 , write Tm = Tm1
1 · · ·Tmn−1

n−1 for short. Let

det(1 −XUp) =
∑
N≥0

cN (T )XN ,

where

cN (T ) =
∑

m=(m1,...,mn−1)∈Z
n−1
≥0

bN,mT
m ∈ Zp[[T1, . . . , Tn−1]].

Let y = NP(T )(x) be the Newton polygon of
∑

N≥0 cN (T )XN .
For the following theorem, the only input we need is a lower bound for y = NP(T )(x) of the

form y = v(Ta)f(x) where f(x) is a convex function, which we have (with f(x) = A1x
1+2/n(n−1))

from part (i) of Theorem 1.1.2.

Theorem 5.0.1. For every α ∈ R≥0, there is some valuation ν(α) > 0 such that X(= α)<ν(α)

is disconnected from its complement in Z<ν(α).

Proof. Let d(α, T ) be the number of slopes in y = NP(T )(x) of value strictly less than αv(Ta)
(that is to say, the dimension of ST (G,U0(p))<αv(Ta)). Assume v(Ta) < 1.

We claim that the point (d(α, T ),NP(T )(d(α, T ))) lies inside the region bounded by the line
y = αv(Ta)x and the function y = v(Ta)f(x). It lies below y = αv(Ta)x because all slopes of
NP (T ) up to d(α, T ) are less than αv(Ta). It lies above y = v(Ta)f(x) because this is a lower
bound for y = NP(T )(x).

This region lies inside the box whose lower left corner is (0, 0) and whose upper right corner
is (d(α), αd(α)v(Ta)), where d(α) is the nonzero solution to αx = f(x).

We have (d(α, T ),NP(T )(d(α, T ))) = (j, v(cj(T ))) for some j. This is a vertex of y =
NP(T )(x). The vertex immediately preceding it is of the form (i, v(ci(T ))) for some i. The
slope between the two is

v(cj(T )) − v(ci(T ))
j − i

.

This is the largest slope of y = NP(T )(x) less than αv(Ta). We have 1 ≤ j − i ≤ d(α).
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But cj(T ) =
∑

m≥0 bj,mT
m is a sum of terms bj,mTm where v(bj,m) is an integer and

v(Tm) = m1v(T1) + · · · +mn−1v(Tn−1).

Thus, v(cj(T )) = μj + λ1
jv(T1) + · · · + λn−1

j v(Tn−1) where μj , λ
k
j are integers in the range

[0, αd(α)] (since v(cj(T )) ≤ αd(α)v(Ta)). Similarly v(ci(T )) = μi + λ1
i v(T1) + · · · + λn−1

i v(Tn−1)
where μi, λki ∈ [0, αd(α)] as well.

Assume that v(Ta) < 1/αd(α), so that αd(α)v(Ta) < 1 and, furthermore, that v(Ta) <
(1/αd(α))v(Tj) for all j �= a. Then in order to have v(ci(T )), v(cj(T )) ≤ αd(α)v(Ta), we must
have μi = μj = 0 and λk = 0 for all k �= i.

Thus, the largest slope of y = NP(T )(x) less than αv(Ta) is of the form ((λj − λi)/(j − i))
v(Ta), where λj − λi ∈ [0, αd(α)] and j − i ∈ [1, d(α)]. This is a finite, discrete set of points.
Thus, the ratio of the largest slope of y = NP(T )(x) less than αv(Ta) to v(Ta) is bounded away
from α independently of Ta.

Setting ν(α) < 1/αd(α), we conclude that X(< α)<ν(α) is disconnected from its complement
in Z<ν(α).

This argument goes exactly the same if X(< α) is replaced by X(≤ α): either the smallest
slope greater than α is at least α+ 1, or, if not, the next endpoint is again trapped in a box
whose area is at most linear in v(T ), and the same argument applies. Thus, we can choose ν(α)
such that X(= α)<ν(α) is disconnected from its complement in Z<ν(α). �

As Liu, Wan, and Xiao do in Theorem 3.19 of [LWX17], we can also use part (i) of
Theorem 1.1.2 to give a simple proof of the fact that the ordinary part of Z is finite and
flat over W and disconnected from its complement.

Theorem 5.0.2. The subset X(= 0) is finite and flat over W and is a union of connected
components of Z .

Proof. The proof of Theorem 3.19 of [LWX17] goes through almost word-for-word. By part (i) of
Theorem 1.1.2, there is some maximal N such that cN (T1, . . . , Tn−1) is a unit in Zp[[T1, . . . , Tn−1]]
or, equivalently, the constant term of cN (T1, . . . , Tn−1) is a unit in Zp. Then for each
(T1, . . . , Tn−1), the Newton polygon of

∑∞
n=0 cN (T1, . . . , Tn−1)XN starts with N segments of

slope 0 followed by a segment of slope at least max(1, Bminj v(Tj)) for some constant B. Since
max(1, Bminj v(Tj)) is uniformly bounded away from 0 over any affinoid subdomain, X(= 0) is
disconnected from its complement, and it is finite and flat of degree N . �
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