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Abstract

A continuous-time model with stationary increments for asset price {Pt } is an extension of
the symmetric subordinator model of Heyde (1999), and allows for skewness of returns.
In the setting of independent variance-gamma-distributed returns the model resembles
closely that of Madan, Carr, and Chang (1998). A simple choice of parameters renders
{e−rtPt } a familiar martingale. We then specify the activity time process, {Tt }, for which
{Tt − t} is asymptotically self-similar and {τt }, with τt = Tt −Tt−1, is gamma distributed.
This results in a skew variance-gamma distribution for each log price increment (return)Xt

and a model for {Xt } which incorporates long-range dependence in squared returns. Our
approach mirrors that for the (symmetric) Student process model of Heyde and Leonenko
(2005), to which the present work is intended as a complement and a sequel. One intention
is to compare, partly on the basis of fitting to data, versions of the general model wherein
the returns have either (symmetric) t-distributions or variance-gamma distributions.
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1. Introduction

The paradigm model for asset price movements, geometric Brownian motion, has afforded
the financial world numerous insights into how markets function, as well as spawning a
multibillion-dollar global derivatives industry. The model, however, is relatively simple, giving
log returns as independent and identically distributed normal random variables, as opposed to
typical asset price data, which display the following characteristics (see, for example, Heyde
and Liu (2001) and the references therein):

(i) a leptokurtic distribution (kurtosis greater than three) – higher peaks above the mean, and
thicker tails, than a normal distribution;

(ii) a heteroscedastic time series (time-dependent variance), unlike the geometric Brownian
motion model;

(iii) a long-range dependence structure in squared returns, violating the independence as-
sumption;
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(iv) occasionally skewed distributions, as opposed to the symmetry of a normal distribution;

(v) little or no autocorrelation present in returns, at least past one or two lags.

To deal with some of these issues, Heyde (1999) introduced a subordinator model (a
model which gives asset prices as geometric Brownian motion driven by some nondecreasing
stochastic ‘activity time’ or ‘market time’ process) based on fractal activity time. Heyde and
Leonenko (2005) expanded on this model to allow for t-distributed asset price increments,
which incorporate self-similarity (a scaling property) and long-range dependence (LRD).

We consider the variance-gamma (VG) process introduced in Madan and Seneta (1990),
show that it can incorporate similar features to the Heyde and Leonenko t-distributed process,
and thus advance the view that it can be regarded as a direct competitor in many respects.
In Section 2 we introduce a general subordinator asset price model. In Section 3 we deal
with option pricing. In Section 4 we compare the model which allows for skewness with the
symmetric model, and discuss volatility and long-range dependence. Section 5 is about the
consequences of specification of the distribution of increments over unit time of the activity
time process as either gamma or inverse gamma. In Section 6 we discuss the concept of self-
similarity and properties that flow from it. In Section 7 we construct a process, {Tt }, for which
{Tt − t} is asymptotically self-similar and {τt } has LRD with a marginal gamma distribution.
This leads to skew VG-distributed asset price returns which exhibit LRD. In Section 8 we
compare the symmetric t-distribution and the symmetric VG distribution, and fit both to data.

2. The general asset price model

LetPt be the price of a risky asset at some time t ≥ 0, and assume thatPt follows subordinated
geometric Brownian motion. Specifically, we have

Pt = P0eµt+θTt+σB(Tt ),

where µ, θ , and σ > 0 are constants and {B(t)} is standard Brownian motion independent of
{Tt }, which is a positive, nondecreasing random process with stationary, but not necessarily
independent, increments and T0 = 0.

We denote the identically distributed increments over unit time by τt = Tt −Tt−1, and these
form a discrete-time stationary process. The corresponding log increments of Pt , which can be
interpreted as continuously compounded returns, are given by

Xt = log Pt − log Pt−1 = µ + θτt + σ(B(Tt ) − B(Tt−1)). (2.1)

Without loss of generality, we take E(τt ) = 1, since any scaling can be absorbed into θ and
σ as required (assuming that E(τt ) < ∞).

When t is a positive integer, as is appropriate when sampling at equally spaced points of
time, the joint probability structure of the Xt is the same as for the model

Xt = µ + θτt + στ
1/2
t Wt , t = 1, 2, . . . , (2.2)

where the Wt, t = 1, 2, . . . , are NID(0, 1) random variables, independent also of the process
{τt }, t = 1, 2, . . . . This may be seen by appealing to joint characteristic functions using (2.1),
and first conditioning on Ti, i = 1, 2, . . . .

We now express some properties of the covariance structure of the process {Xt } in terms of
properties of the process {τt }, assuming finiteness of moments as necessary. For integer k ≥ 1,
we have

cov(Xt , Xt+k) = θ2 cov(τt , τt+k). (2.3)
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If θ = 0 then all such autocorrelations of {Xt } are 0, irrespective of the autocorrelation
structure of the process {τt }. Next consider cov(X2

t , X
2
t+k) for integer k ≥ 1:

cov(X2
t , X

2
t+k) = cov((µ + θτt + στ

1/2
t W1)

2, (µ + θτt+k + στ
1/2
t+kW2)

2)

= (σ 4 + 4θ2µ2 + 4θµσ 2) cov(τt , τt+k) + θ4 cov(τ 2
t , τ 2

t+k)

+ (θ2σ 2 + 2θ3µ)(cov(τ 2
t , τt+k) + cov(τt , τ

2
t+k)). (2.4)

The above expression reduces to

cov(X2
t , X

2
t+k) = σ 4 cov(τt , τt+k) (2.5)

for θ = 0, irrespective of the size of µ. From (2.4) and (2.5) it is clear that structural dependence
properties expressed by the autocovariances for {τt } imply those for {X2

t }.
For a {τt } with dependence structure, {Xt } displays conditional heteroscedasticity (time-

dependent variance). Let Ft = σ({B(Ti), Ti}, i = 1, 2, . . . , t), which can be thought of as
information available up to t . Then

var(Xt | Ft−1) = θ2 var(τt | Ft−1) + σ 2 E(τt | Ft−1).

Under the restricted model with θ = 0, the above expression reduces to var(Xt | Ft−1) =
σ 2 E(τt | Ft−1) (see Heyde and Liu (2001)).

The general form of the continuous-time model for Pt considered in this section arose (see
Seneta (2004)) as an extension of the model in Heyde (1999) and as a generalization of the model
which allows for skewness in the same way, but in the setting of independent, VG-distributed
increments, in Madan et al. (1998). The initial treatment (Madan and Seneta (1990)) was
for independent increments with a symmetric VG distribution. The process with independent,
symmetric t-distributed increments originated in Praetz (1972). More historical details may be
found in Seneta (2004).

3. Option pricing

We may price a European call option in an arbitrage-free way under our model for {Pt }, t ≥ 0,
if the discounted price process, {e−rtPt }, t ≥ 0, is a martingale under a suitable choice of
parameters of {Pt }, where r > 0 is a fixed but arbitrary small number (the interest rate). This is
achieved with the choice µ = r and θ = −σ 2/2: for Fs = σ({{B(u), u ≤ Ts}, {Tu, u ≤ s}})
and F∗ = σ({{B(u), u ≤ Ts}, {Tu, u ≤ s}, Tt }) we have

E(Pt | Fs) = P0 E(exp{rt − 1
2σ 2(Tt − Ts + Ts) + σ(B(Tt ) − B(Ts) + B(Ts))} | Fs)

= P0ers−σ 2Ts/2+σB(Ts)er(t−s) E(exp{− 1
2σ 2(Tt − Ts) + σ(B(Tt ) − B(Ts))} | Fs)

= Pser(t−s) E(E(exp{− 1
2σ 2(Tt − Ts) + σ(B(Tt ) − B(Ts))} | F∗) | Fs) (3.1)

= Pser(t−s) E(exp{− 1
2σ 2(Tt − Ts) + 1

2σ 2(Tt − Ts)} | Fs) (3.2)

= Pser(t−s) E(1 | Fs)

= Pser(t−s).

Here (3.1) follows from the ‘tower’ (repeated expectation) property of conditional expectation,
since Fs ⊂ F∗, and (3.2) follows from the properties of moment generating functions of normal
random variables.
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This martingale requires no knowledge of the characteristic function of Xt , unlike more com-
mon constructions such as the mean-correcting martingale (see Schoutens (2003, pp. 79–80).

Heyde and Leonenko (2005, Section 5.2) reported the same pricing equation for the risk-
neutral setting as that resulting from the preceding argument, even though they begin with the
restricted (symmetric) version of our model for Pt for the real-world situation (that is, with
θ = 0).

4. Comparing the symmetric and skewed models. Volatility

Is it appropriate to use the general model (2.1) for real-world analysis of asset movements?
The preceding discussion indicates that in the risk-neutral universe of asset pricing it is clearly
appropriate. However, even in the real-world there seems, at least sometimes, to be a skewness
in the distribution of returns suggested by the histogram obtained from such data. We need
to comment on whether the generalization of the symmetric model which we are proposing is
an appropriate way to allow for this skewness, compared with the properties of the symmetric
model.

It is readily seen that E(B(Tt ) | {B(Ti), Ti}, i = 1, . . . , t − 1) = B(Tt−1), which may be
interpreted (cf. Campbell et al. (1997, pp. 23–24)) as the efficient markets hypothesis holding for
the symmetric version of model (2.1), since {B(Ti), i = 1, 2, . . . } is a martingale and, hence,
{Xt } is a martingale difference sequence (Heyde and Liu (2001) expressed this in a related,
continuous-time way). The striking property that cov(Xt , Xt+k) = 0 may consequently be
regarded as a manifestation of the efficient markets hypothesis.

For the general model we see from (2.3) and (2.4) that, for k ≥ 1,

corr(Xt , Xt+k) = θ2 cov(τt , τt+k)

θ2 var(τt ) + σ 2 ≤ θ2 corr(τt , τt+k)

σ 2 var(τt ) ≤ θ2 var(τt )

σ 2

when corr(τt , τt+k) > 0. From estimation procedures applied to the asymmetric VG distribu-
tional model for returns (to be discussed in a later section), for three sets of observations {Xt },
each of approximate length N = 2500, evaluation of the right-hand side of this equation resulted
in a bound of about 0.04. The smallness of this value provides some support for our model
from these data sets.

It could be argued that the efficient markets hypothesis in any case would imply the statistical
independence of returns, which would imply that cov(Xr

t , X
r
t+k) = 0, r = 1, 2, . . . . However,

there is evidence that for r = 2 this is not the case, and (2.5) is supported for the symmetric
model. It may also be argued that real-world markets are not entirely efficient, in support of
our general model.

We note that there is an increasing body of evidence, based on data analysis continuing from
that of Heyde and Liu (2001), which suggests that, at least when θ = 0, E(X4

t ) may be infinite.
This corresponds to var(τt ) being infinite, in which case the above argument is not applicable.

In the probabilistic guise of (2.2), when θ = 0 and {τt }, t = 1, 2, . . . , are independent and
identically distributed, the model is the familiar random volatility model (see, for example,
Taylor (1994)). Thus, in our model, in the case θ = 0 it is natural to interpret στ

1/2
t as the

volatility at time t and, hence, the stationary process {στ
1/2
t } as describing a stationary random

process of stochastically dependent volatilities. This can be seen from an equivalent standpoint
by noting that the conditional distribution of the right-hand side of (2.2), given V ≡ τt , is
N(µ, σ 2V ). In the general model (2.1), then, where the conditional distribution of the right-
hand side is N(µ + θV, σ 2V ), we may think of the size and direction of the fluctuation in
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random mean as being driven by volatility. We recognize the (marginal) distribution described
by the above expression as being that of the normal mixed distributions (terminology due to
Barndorff-Nielsen et al. (1982)).

From the symmetric case, in which θ = 0, it is clear that the structure of the distribution
of V , which is a focus of this paper, is central also to the question of the heaviness of tails
(leptokurtosis) of the distribution of Xt . The standard coefficient of kurtosis in this symmetric
case is (see Heyde and Liu (2001)) κ = kurtosis(Xt ) = 3(1 + var(τt )) > 3. In the case of
general θ , if we ignore terms of order θ2, θ3, . . . , we find that for small θ the coefficients of
skewness and kurtosis are approximately

β = 3θ var(τt )

σ
, κ = 3(1 + var(τt )).

However, even in the symmetric case, in comparing the effect on kurtosis of competing
specific distributions for τt , we shall need to make in the sequel a more detailed study of tail
behaviour.

In the case θ = 0, as we have seen, the autocorrelations corr(Xt , Xt+k) are all 0. One of the
motivations for investigating this (symmetric) model of Heyde (1999) and Heyde and Liu (2001)
was apparently to reflect the fact that asset returns, while displaying a sample autocorrelation
function plot characteristic of white noise, no longer do so in sample autocorrelation function
plots of squared returns and absolute values of returns. This, however, should be the case if
the process {Xt } is indeed a sequence of independent, identically distributed random variables.
The corresponding physical interpretation, accordingly, is that LRD of, say, the process {X2

t }
is being empirically manifested, and a plausible model for {Xt } should have the capability of
reflecting this long-term dependence as well as the weak autocorrelation structure of the values
Xt themselves.

Indeed, inasmuch as the values X2
t are themselves measures of volatility, such a model would

impart a desirable dependence structure on the evolution of volatilities.
An investigation of how to express LRD mathematically is contained in a paper, published

prior to those of Heyde already mentioned, by Heyde and Yang (1997). An overview of the
subject of LRD can be found in Beran (1994, pp. 41–43). We shall say that LRD holds for a
stationary process on the integers if it holds in theAllen sense (see, for example, Heyde andYang
(1997)), and denote this by LRD(AV); this criterion is expressible in terms of the autocovariances
{γk}, k ≥ 1, and, in the event that these covariances are ultimately nonnegative, amounts to the
divergence of their sum,

∑∞
k=1 γk . Thus, certainly in the symmetric case (θ = 0), LRD(AV)

of squared returns follows from LRD(AV) of {τt } on account of (2.5), which is in keeping with
the interpretation of {στ

1/2
t } as a sequence of (dependent) volatilities.

To specify the distribution of Xt we need to choose a distribution for τt . We defer the
question of the existence of dependence models in continuous time with specific distributions
for τt and, hence, Xt , and turn to the distributional questions. In what follows, ‘

d=’ denotes
equality in distribution.

5. Specifying the distribution

We say that τt
d= �(α, α) has a marginal gamma distribution (with parameters chosen so

that E(τt ) = 1), when its probability density function (PDF) is of the form

f�(x) = αα

�(α)
xα−1e−αx, x > 0.
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In this case Xt will have a marginal skew VG distribution (see Madan et al. (1998)) with PDF

fVG(x) =
√

2

π

ααe(x−µ)θ/σ 2

σ�(α)

( |x − µ|√
θ2 + 2ασ 2

)α−1/2

Kα−1/2

( |x − µ|√θ2 + 2ασ 2

σ 2

)
.

The case in which θ = 0 was introduced in a financial context by Madan and Seneta (1990). This
distribution was called VG because Xt | V

d= N(µ, σ 2V ), where V has a gamma distribution
as above. The VG distribution is sometimes also known as the Bessel K-function distribution
(see Johnson et al. (1994, pp. 50–51)). (The function Kη(ω) is defined below.)

We say that τt
d= R�(β, β − 1), where β > 1 has marginal inverse gamma distribution

(again with parameters chosen so that E(τt ) = 1), when its PDF is of the form

fR�(x) = (β − 1)β

�(β)
x−β−1e−(β−1)/x, x > 0.

In this case Xt will have a marginal skew t-distribution with PDF (see Sørensen and Bibby
(2003))

ft (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(β + 1
2 )√

2σ 2(β − 1)
√

π�(β)

(
1 +

(
x − µ√

2σ 2(β − 1)

)2)−(β+1/2)

, θ = 0,

√
2

π

(β − 1)βe(x−µ)θ/σ 2

σ�(β)

(
θ2

2(β − 1)σ 2 + (x − µ)2

)(β+1/2)/2

×Kβ+1/2

( |θ |√2(β − 1)σ 2 + (x − µ)2

σ 2

)
, θ �= 0.

The number of degrees of freedom, ν, is defined by ν = 2β, this being a direct generalization
of the concept for the classical t-distribution. In the symmetric case (in which θ = 0), the
distribution is the scaled t-distribution and is well known. It is a slight generalization of
the classical Student t-distribution, and is at the heart of the paper of Heyde and Leonenko
(2005). Seneta (2004, Section 6) discussed its parallelism and duality with the (symmetric) VG
distribution. Here Xt | V

d= N(µ + θV, σ 2V ), where V has an inverse gamma distribution as
above (and, thus, 1/V has a gamma distribution, but not with unit expectation).

Finally, we say that τt
d= GIG(α, β, γ ) has marginal generalized inverse Gaussian distribu-

tion when its PDF is of the form

fGIG(x) = (γ /β)α/2

2Kα(
√

βγ )
xα−1e−(β/x+γ x)/2, x > 0.

Due to the complexity of the generalized inverse Gaussian distribution, we cannot impose the
unit expectation constraint for τt explicitly to reduce the number of parameters.

In the above, α ∈ R, β > 0, and γ > 0. In this case Xt will have a marginal skew generalized
hyperbolic (GH) distribution (see Barndorff-Nielsen (1977)) with PDF

fGH(x) =
(

γ

β

)α/2(
βσ 2 + (x − µ)2

γ σ 2 + θ2

)α/2−1/4

× Kα−1/2

(√(
γ + θ2

σ 2

)(
β + (x − µ)2

σ 2

))
e(x−µ)θ/σ 2

(√
2πσ 2Kα(

√
βγ )

)−1
.
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Wherever it occurs above, Kη(ω), given by Kη(ω) = 1
2

∫ ∞
0 zη−1e−(ω/2)(z+1/z) dz for ω > 0

and η ∈ R, is a modified Bessel function of the third kind (see Erdélyi et al. (1954)) with
index η. As β → 0 for α > 0 and γ → 0 for α < 0, we obtain as limiting cases the gamma
and inverse gamma distributions, respectively, for the distributions of τt , and correspondingly
the (skewed) VG distribution and (skewed) t-distribution from the skew GH distribution.

In Section 8 we compare, in particular, the properties of the two symmetric distributions.
Both have the normal distribution as a limiting case, but are perhaps illuminated in general by
noting that the (symmetric) t-distribution is a generalization of the Cauchy distribution (the case
β = 1

2 in the above), while the symmetric VG distribution is a generalization of the Laplace
distribution (also sometimes called the double exponential distribution), which results from
letting θ = 0 and α = 1 in fVG(x), since K1/2(ω) = e−ω(π/(2ω))1/2 for ω > 0.

In the case when the τt can be taken to be independent as well as exponentially distributed,
the {Tt }, t = 1, 2, . . . , process may be understood to be the sequence of time points at which
events of a Poisson process occur. The consequences of such an attractive interpretation of
the {Tt } process accords with the results of the plethora of ‘Laplace process’ studies currently
appearing in the literature.

6. Self-similarity and long-range dependence

Suppose that {Tt }, with T0 = 0, is a positive process in continuous time with stationary
increments, and that {Tt − t} is self-similar with Hurst index, H , satisfying 1

2 < H < 1;
that is, E(Tt ) = t and for any c > 0, Tct − ct

d= cH (Tt − t), meaning that, for c = 1/t ,
Tt

d= t + tH (T1 − 1). Then with σ 2
1 = var(T1), for t > s we have

σ 2
1 t2H = var(Tt ) = σ 2

1 (t − s)2H + σ 2
1 s2H + 2 cov(Ts, Tt − Ts),

since the increments {τt } are stationary and T0 = 0. Then, for t > s,

cov(Ts, Tt ) = 1
2σ 2

1 (t2H + s2H − (t − s)2H )

and, thus,
cov(τt , τt+k) = 1

2σ 2
1 ((k + 1)2H + (k − 1)2H − 2k2H ).

Hence, we find that ρk , the autocorrelation function of {τt }, is given by

ρk = 1
2 ((k + 1)2H + (k − 1)2H − 2k2H ) (6.1)

= H(2H − 1)k2H−2 +
∞∑
i=2

(
2H

2i

)
k2H−2i

≥ H(2H − 1)k2H−2. (6.2)

From (6.1) it follows that ρk increases with H , with H = 1
2 resulting in ρk = 0 while H = 1

gives ρk = 1. Hence, the value of H determines the strength of dependence between increments.
Equation (6.2) further implies that, for H > 1

2 ,

∞∑
k=1

ρk ≥ H(2H − 1)

∞∑
k=1

k2H−2 = ∞,

indicating long-range dependence. Hence, if {Tt − t} is self-similar with 1
2 < H < 1, then

{τt }, t = 1, 2, . . . , is LRD(AV).
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Now, the continuous-time process, {Tt }, of our general model is additionally supposed
to be nondecreasing, and Heyde and Leonenko (2005) noted (between their Equations (5.4)
and (5.5)) that such a process cannot be exactly self-similar. However there is growing evidence
(see Heyde (1999) and Heyde and Liu (2001)) that at least asymptotic self-similarity of Tt − t ,
to a good degree of approximation, is supported by financial data. Via (2.5), this renders the
stochastic process {X2

t } LRD(AV).
Perhaps the most important consequence of the existence of such a (dependent-stationary-

increment) process {Tt } is that Tt can be taken to have the distribution of t + tH (T1 − 1) =
t + tH (τ1 − 1). As was shown in Heyde and Leonenko (2005, Section 5.2), this distribution is
needed in evaluating the call price of an option expiring at time t by taking the expectation of
the Black–Scholes pricing formula evaluated at Tt .

In the next section we focus on constructing such a process {Tt }, the distribution of whose
increments is VG.

7. Specifying the correlation structure

In this section we show that a continuous-time correlated process of the type described in
Section 6, having skew VG-distributed returns, actually exists.

We draw on Heyde and Leonenko (2005, Sections 3.3 and 5.1) for many of the ideas used.
Their Section 3.3 initiates the successful construction of stationary Student and inverse gamma
processes with given (monotonic) correlation function in continuous time. We note that although
Heyde and Leonenko (2005) constructed a LRD symmetric t-model via a self-similar process,
{Tt − t}, in which τt was inverse gamma distributed, the extension to a skew t-process is trivial.
Note, however, that their construction requires the integer number of degrees of freedom of the
symmetric t-distribution to satisfy ν > 4. This implies that the fourth absolute moment must
be finite. Yet, as we shall see, successful fitting sometimes produces fewer than four degrees
of freedom. Recall that we need τt

d= R�(β, β − 1) with β > 1 and, in fact, β = ν/2.
The mathematics turns out to be somewhat simpler than in the Heyde and Leonenko

(symmetric) t-distributed {Xt } case, due to the fact that the consequences of having a gamma
distribution for τt are easier to handle than the consequences of having an inverse gamma
distribution. It is still necessary to have a positive integer-valued parameter ν, such that
τt

d= �(α, α) with α = ν/2.
Before proceeding, however, we note that other continuous-time approaches to the construc-

tion of stationary LRD (symmetric) Student processes are possible. One such approach was
described in Heyde and Leonenko (2005, Section 3.2).

Let {ηi(t), t ∈ R}, i = 1, . . . , ν, be independent and identically distributed stationary Gaus-
sian processes with zero mean, unit variance, and monotonic correlation function ρη(τ), τ ∈ R.
Define the stationary process {χ2

ν (t), t ≥ 0} by χ2
ν (t) = 1

2 (η2
1(t)+· · ·+η2

ν(t)). Thus, for each
t , χ2

ν (t)
d= �(ν/2, 1) is a scaled χ2

ν random variable and, so,

E(χ2
ν (t)) = ν

2
, var(χ2

ν (t)) = ν

2
,

cov(χ2
ν (t), χ2

ν (t + τ)) = ν

4
cov(η2

1(t), η
2
1(t + τ)) = ν

2
ρ2

η(τ ), (7.1)

implying that

corr(χ2
ν (t), χ2

ν (t + τ)) = ρ2
η(τ ). (7.2)
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Here (7.1) follows from the independence of ηi(t) and ηj (t), i �= j , and the fact that, for (X, Y )

bivariate normal with zero mean, unit variance and correlation coefficient ρ, and Z1, Z2
d=

NID(0, 1), we have (X, Y )
d= (Z1, ρZ1 + √

1 − ρ2Z2), implying that

E(X2Y 2) = E(ρ2Z4
1 + 2ρ

√
1 − ρ2Z3

1Z2 + (1 − ρ2)Z2
1Z2

2) = 2ρ2 + 1. (7.3)

If we now take Tt = (2/ν)(χ2
ν (1) + · · · + χ2

ν (t)), then we have

τt = Tt − Tt−1 = 2

ν
χ2

ν (t)
d= �(α, α)

for α = ν/2. Hence, we can choose α to be any integer multiple of 1
2 . The autocorrelation func-

tion of {τt } is ρ2
η(τ ), by (7.2). It follows that if we take ρη(τ) = (1/(1 + |τ |2))γ /2, 0 < γ < 1

2
(as in Heyde and Leonenko (2005)), then the {τt } process is LRD(AV). Furthermore,

var

( n∑
s=1

(η2(s) − 1)

)
= 2

n∑
s=1

n∑
s∗=1

1

(1 + |s − s∗|2)γ (7.4)

∼ 2
∫ n

0

∫ n

0

ds ds∗

(1 + |s − s∗|2)γ

= 2n2−2γ

∫ 1

0

∫ 1

0

du dv

(1/n2 + |u − v|2)γ (7.5)

∼ n2−2γ c(γ ) as n → ∞.

Here (7.4) follows from (7.3), (7.5) follows by letting u = s/n and v = s∗/n, and

c(γ ) = 2
∫ 1

0

∫ 1

0

1

|x − y|2γ
dy dx = 4

∫ 1

0

∫ x

0

1

(x − y)2γ
dy dx = 2

(1 − 2γ )(1 − γ )

for 0 < γ < 1
2 . Hence, var(

∑n
s=1(η

2(s) − 1)) ∼ c(γ )n2−2γ as n → ∞. Now, from Taqqu
(1975, Theorem 6.1, p. 298, and Proposition 6.1, p. 299) we take the following result. By �x

we denote the integer part of x.

Proposition 7.1. For a stationary Gaussian sequence, Xi , with E(Xi) = 0 and var(Xi) = 1,
such that ρX(τ) ∼ τ−γ L(τ) as τ → ∞, with 0 < γ < 1

2 and L slowly varying,

Zn(t) = 1

n1−γ

�nt
∑
i=1

(X2
i − 1)

converges weakly, as n → ∞, to a process, R(t), which has the following properties, for
H = 1 − γ :

1. R(t) has strictly stationary increments;

2. R(t) is H -self-similar;

3. E(R(t)) = 0 and E(|R(t)|α) < ∞ for α ≤ 1/H ;

4. R(t) is separable and almost surely continuous.
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Furthermore, the characteristic function of R(t) admits the representation

φ(u) = exp

{
1

2

∞∑
k=2

(2iu)k

(k + 1)!Sγ

}
, (7.6)

Sγ =
∫ 1

0
· · ·

∫ 1

0

dx1 · · · dxk

(|x1 − x2| |x2 − x3| · · · |xk−1 − xk| |xk − x1|)γ ,

which is valid for small values of |u|.
A direct result of Proposition 7.1 is that

1

n1−γ

�nt
∑
s=1

(η2(s) − 1)
w−→ R(t) as n → ∞,

where R(t) is the so-called (H -self-similar, strictly stationary-increment) Rosenblatt process,
with H = 1 − γ ∈ ( 1

2 , 1). Here ‘
w−→’ denotes the weak convergence of one stochastic process

to another, which implies the convergence of finite-dimensional distributions. Consequently,
as n → ∞ we have

1

n1−γ
(T�nt
 − �nt
) = 2

n1−γ ν

�nt
∑
s=1

(
χ2

ν (s) − ν

2

)

= 1

ν

ν∑
i=1

(
1

n1−γ

�nt
∑
s=1

(η2
ν(s) − 1)

)

w−→ 1

ν

ν∑
i=1

Ri(t),

where, for i = 1, . . . , ν, Ri(t) are independent Rosenblatt processes.
Hence, we have constructed a process {τt } such that {Tt − t} (appropriately normed) is

asymptotically H -self-similar, being weakly convergent to the sum of ν independent Rosenblatt
processes.

As a final point, we note that R(t) is symmetric, which follows from (7.6) since the
characteristic function of R(t) satisfies

φ(−u) = exp

{
1

2

∞∑
k=2

(−2iu)k

(k + 1)!Sγ

}
= φ(u).

Hence, R(t)
d= −R(t) and, so, the limiting distributions of the self-similar χ2-process con-

structed here (that is, (1/ν)
∑ν

i=1 Ri(t)) and the self-similar inverse χ2-process constructed in
Heyde and Leonenko (2005) (that is, −(1/ν)

∑ν
i=1 Ri(t)) do in fact coincide as n → ∞.

Therefore, it seems that circumstances exist in which there is little to distinguish between
the skew VG process and the skew t-process, as the increment processes that drive the two
models, at least for the asymptotically self-similar examples that we constructed, converge to
a common process. This is supported by fits of real data, as is demonstrated to a limited extent
in the next section.
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8. Comparing symmetric increment distributions

An important question for applications, and for us to address briefly here, is as follows:
What are the relative strengths of the competing models for the increment distribution, the
symmetric scaled t-distribution, and the symmetric VG distribution, the second and third of
whose PDFs are respectively given by ft (x) and fVG(x) when θ = 0? Such a question for
skew distributions in general, and in greater statistical detail for symmetric distributions, will
be addressed elsewhere in a statistical setting.

Possibly the most important question is that of tail weight. To be precise, for θ = µ = 0,
we have

Pt (|Xt | > x) ∼ const(β, σ ) x−2β,

PVG(|Xt | > x) ∼ const(α, σ ) xα−1e−x
√

2α/σ 2
, x → ∞,

where const(·, ·) denotes a constant depending on the stated arguments.
Thus, statistical techniques which indicate the nonexistence of higher moments (as in Heyde

and Liu (2001)) may incline the potential user towards the t-distribution in preference to the
VG distribution for which all moments exist.

However, Heyde and Kou (2004) demonstrated that in practice as many as 100 000 readings
may be necessary to distinguish between exponential (Laplace distribution-type) and power
law (t-distribution-type) tails. Now, as we have seen, the Laplace distribution is a special case
of the symmetric VG distribution. Allowing for a power law modification of exponential decay
as in the symmetric VG case thus makes distinction even more difficult.

For α = 1 (in which case Xt has a Laplace distribution) the above relation is exact and not
just asymptotic. For α > 1 the PDF of the VG distribution is smooth and increasingly bell-
shaped for large α. For 1

2 < α ≤ 1 the PDF is cusped at the origin, while for 0 < α ≤ 1
2 it is

unbounded at the origin. Decreasing the value of α from a value greater than 1 has the effect of
increasing probability near the origin and in the tails, at the expense of probability in the middle
range (see Madan and Seneta (1990)). This may be seen clearly by numerical investigation
of quantiles, similar to the investigation of Heyde and Kou (2004) after standardization (by
the standard deviation). Thus, a symmetric VG distribution would seem to provide a desirable
model in several respects, not least because one may reasonably expect mean-corrected returns
of a not excessively volatile asset to be concentrated round 0, with occasional large fluctuations.

As a concrete application, we fit the normal distribution, the symmetric VG model, the
scaled t-distribution, and the symmetric GH distribution to three data sets obtained from the
wire service Bloomberg. They are the daily closing values of the Australian dollar–US dollar
exchange rate between 14 October 1992 and 13 December 2003 (N = 2864), of the Standard &
Poor’s 500 Index (US market index) between 1 March 1994 and 10 December 2003 (N = 2465),
and the daily closing share price of News Corporation between 2 March 1994 and 2 August
2003 (N = 2473).

We fit the models using a minimum χ2 procedure. Our minimum χ2 fitting involves
numerically minimizing a statistic of the form

χ2
data(µ, σ, α, β, γ ) =

100∑
i=1

(O∗
i − E∗

i )2

E∗
i

(8.1)

with respect to the parameter values, where in our case i = 1, . . . , 100, O∗
i is the total number

of observations in the data set divided by 100, and E∗
i is the expected number of observations

falling within the ith 1% sample quantile band. This procedure is evidently a weighted least-
squares data fit, and has the advantage over a modified method of moments (see Seneta (2004)
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Table 1: Minimum χ2 values for θ = 0.

Model A$–US$ S&P 500 News Corp

Normal 541.8 348.9 409.9
t 364.6 134.4 195.8
VG 343.8 130.9 194.6
GH 343.8 127.9 194.6

and Tjetjep and Seneta (2006)) applied to the same situation, in that the estimated parameters
result in a very good general fit to the data, as measured quantitatively by the minimized χ2

goodness-of-fit value (8.1).
Hsiao (1985) showed that in conventional large-sample applications of the minimum χ2

procedure – assuming, in particular, independence – minimum χ2 estimates have asymptotic
covariances equal, to O(n−1), to those of maximum likelihood estimation. The ergodic
hypothesis ensures that our minimum χ2 procedure, which amounts to minimizing a distance
(in the sense of (8.1)) between two histograms, can sensibly be used even when data are not
independent.

To estimate the model parameters, we used MATLAB® 6 to numerically minimize (8.1) as
a function of those parameters. We omit the estimated parameters here, only noting that the
estimated GH models for the Australian dollar–US dollar exchange rate and News Corporation
data are in effect actually VG models (i.e. the GH model is close to its limiting VG form).
We do, however, present the termination values of the MATLAB algorithm in Table 1. These
correspond to χ2 goodness-of-fit statistics for each model.

The corresponding parameter estimates for (β, α) for the t-distribution and VG distribu-
tion were respectively (2.43, 2.24), (1.54, 1.51), and (2.04, 1.90). Note that for the Stan-
dard & Poor’s 500 Index data, the number of degrees of freedom for the t-distribution is
ν = 2 × 1.54 < 4.

The main point to note is that, while the GH distribution, having one extra parameter and
being a generalization of both the VG distribution and the t-distribution, is overall the slightly
superior model, at least as measured by the empirical size of the minimum χ2 statistic, the
VG distribution in fact equals the GH distribution for the A$–US$ exchange rate and News
Corporation data. This follows from the fact (not detailed here) that the fitted GH models for
the A$–US$ exchange rate and News Corporation data are in fact nearly identical to the fitted
VG models.

In conclusion, we make two further points. First, note that the figures for the normal
(geometric Brownian motion) model are often over twice as large as the next worst model,
indicating that we do indeed gain by considering subordinator models. Finally, given that the
GH distribution improves only marginally on the VG distribution and the t-distribution, if at
all, we postulate that in most cases it is sufficient to consider only the latter two models. The
authors concede that, although the VG distribution seems marginally superior here, modelling
of rare events may be better captured by the t-distribution.
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