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Abstract

This paper is concerned with the growth rate of susceptible–infectious–recovered epi-
demics with general infectious period distribution on random intersection graphs. This
type of graph is characterised by the presence of cliques (fully connected subgraphs).
We study epidemics on random intersection graphs with a mixed Poisson degree dis-
tribution and show that in the limit of large population sizes the number of infected
individuals grows exponentially during the early phase of the epidemic, as is generally
the case for epidemics on asymptotically unclustered networks. The Malthusian param-
eter is shown to satisfy a variant of the classical Euler–Lotka equation. To obtain these
results we construct a coupling of the epidemic process and a continuous-time multitype
branching process, where the type of an individual is (essentially) given by the length of
its infectious period. Asymptotic results are then obtained via an embedded single-type
Crump–Mode–Jagers branching process.
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process approximation; Malthusian parameter; regenerative branching processes
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1. Introduction

In the earliest epidemic models, it is assumed that the disease spreads in a population con-
sisting of indistinguishable individuals exhibiting homogeneous mixing. Since the advent of
those early models, there has been considerable interest in incorporating realistic elements
from real-world social structures that depart from the simplistic assumption of homogeneity.
Such realistic features may take the form both of heterogeneity in social behaviour (some indi-
viduals may have a higher proclivity to being socially active than others, or the population
may exhibit a more complex social structure than homogeneous mixing) and of biological
differences in the ‘susceptibility’ and ‘infectivity’ of individuals.

To give some examples, for deterministic epidemic models this has been manifested through
models where the population is stratified into a relatively small number of classes and individ-
uals interact with each other at a rate that is determined by their classes. Individuals may, for
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2 C. FRANSSON AND M. DONÀ

instance, be spatially separated or stratified by age or sex. This typically gives rise to a system
of differential equations, which governs the dynamics of the epidemic [18, 33].

A similar development of increasingly complex social structures has taken place in the
field of stochastic epidemic modelling on networks. In particular, a large body of epidemic
models that aim to capture the tendency of individuals who know each other to have mutual
acquaintances has appeared in the literature. In the context of models where the social network
of the population is fully specified by a graph, this means that the graph is clustered (i.e. it
contains a considerable number of triangles and other short circuits). Some examples include
the great circle model [1, 3, 25] and the closely related small-world network model [34], where
individuals typically have both local contacts in a local environment, which exhibits clustering,
and global contacts.

In a similar vein, several models that include the presence of small, closely connected
groups, or cliques, with intense within-clique interactions have been introduced [1, 11]. A
clique may, for instance, represent a household, workplace, or school. Models with this feature
have been investigated in various forms; see, for instance, [2, 4, 6–8, 30], to name a few.

In the present paper, we study the real-time growth rate of an epidemic that spreads on a
random graph whose structure, like that of the above-mentioned models, is characterised by the
presence of small (possibly overlapping) highly connected cliques. During the early phase of
an epidemic, the number of infectious individuals typically grows exponentially; this is the case
for many theoretical models and has also been observed in empirical data [15, 27]. The growth
rate is one of the most readily available attributes of an emerging epidemic and it is arguably
one of the most natural parameters by which to describe the seriousness of the epidemic. For
many models of epidemics on random graphs with clustering, obtaining results that concern
the real-time growth rate is, however, more challenging than analysing the final outcome of
the epidemic. The reason for this is that results on the final outcome of an epidemic may
be obtained without taking the actual chain of transmission into account. This idea was first
mentioned in a paper devoted to epidemic modelling [24] but was, however, implicitly present
in earlier literature on percolation [14, 17]. For this reason, many models lend themselves
more readily to analysis of the final outcome than of the real-time growth rate. In [31] the
authors proposed approximate methods for estimating the so-called household reproduction
number based on observations of the real-time growth rate in a population structured into small
(possibly overlapping) communities, both in the Markovian case and under the arguably strong
assumption that the total “infectivity” of an infectious individual and the time points at which
the individual transmits the disease are independent. On a related note, [5] provided methods
to estimate the within-household infection rate for a susceptible–infectious–recovered (SIR)
epidemic among a population of households from the observed real-time growth rate.

As mentioned before, the real-time growth rate of an epidemic in a population with house-
holds, schools, and workplaces has previously been studied in [31], where (among other things)
heuristic results similar to those presented here were obtained. In this paper we provide rig-
orous proofs of these results. It is worth pointing out that the methods employed here can be
applied to a more general class of random graphs with cliques than the model considered in this
paper, and also a more general class of household/school/workplace models than that studied
in [31]. In particular, previous results concern only the case where the clique or household sizes
are bounded and do not trivially extend to the setting with unbounded clique sizes, whereas the
current paper deals with the unbounded case.

The key tool of this paper is a single-type branching process, which we embed in the epi-
demic process. Our approach is inspired by [19], where a similar embedding was used to
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obtain the polynomial rate of convergence of multi-type branching processes. The techniques
employed here are also related to what [32] calls regenerative Galton–Watson processes and to
the concepts of local infectious clumps and global contacts in [2]; see also [29], which treats
multitype branching processes with local dependencies.

To be more specific about the graph model, here we consider the real-time growth rate
of epidemics on a random intersection graph [23]. Simply put, a random intersection graph
is constructed by dividing the nodes of the graph into groups (a node may belong to zero,
one, or several groups) and then connecting nodes that belong to the same group, so that the
groups form fully connected (possibly overlapping) subgraphs. Thus, a random intersection
graph does, in general, contain a non-negligible number of short circuits, which makes the
widely used branching process approximation of the early phase of the epidemic somewhat
delicate. Here we consider the real-time growth rate of epidemics on a random intersection
graph [23] in which the degree distributions are mixed Poisson. Epidemics on graphs of this
type have previously been studied in [9], where expressions for the asymptotic probability of
a major outbreak, the final size of a major outbreak, and a threshold parameter were derived.
Epidemics on random intersection graphs were also studied in [13], where the clustering of the
underlying network is tunable.

This paper is structured as follows. In Section 2.1 we present the notation conventions and
abbreviations. Section 2.2 contains an introduction to the underlying graph model, in Section
2.3 we define the epidemic model, and in Section 2.4 we define the approximating branch-
ing process. The main results are presented in Section 3. Sections 3.1 and 4 contain some
background theory and proofs of the main results.

2. Epidemics on random intersection graphs

2.1. Notation and abbreviations

This section contains a summary of the notation conventions and abbreviations that will be
used frequently in this paper.

For any B ⊂R and x ∈R we use the notation B≥x = B ∩ [x, ∞), and B>x, B≤x, and B<x are
defined analogously.

For x ∈R, 	x
 = sup Z≤x. For real numbers x and y, x ∨ y = max (x, y) and log+ (x) =
log (1 ∨ x). For any n ∈Z≥1, [n] = {1, . . . , n}.

Let f : R→R and g : R→R>0. We write f (x) =O(g(x)) as x → ∞ to indicate that
lim supx→∞ |f (x)|/g(x) < ∞ and f (x) = o(g(x)) as x → ∞ to indicate that lim supx→∞ |f (x)|/
g(x) = 0. Similarly, f (x) = �(g(x)) as x → ∞ if f (x) =O(g(x)) and lim infx→∞ |f (x)
|/g(x) > 0.

For a random variable X and an event A, we use the notation E(X;A) = E(X1(A)) where 1(A)
is the indicator of A. For a non-negative random variable X, we say that the random variable
Y has mixed Poisson distribution with intensity given by (the law of) X if (Y | X = x) ∼ Po(x),
and we denote it by MP(X). For any non-negative integrable random variable X with E(X) > 0,
we denote the size-biased version of X by X, i.e. for any Borel set B ⊂R,

P(X ∈ B) = E(X; X ∈ B)

E(X)
. (2.1)

We will make frequent use of the abbreviations MP (mixed Poisson) and SIR (susceptible
→ infectious → recovered). Throughout this paper, Gn denotes a random graph on n vertices
generated via the random intersection graph model. We say that an event occurs with high
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4 C. FRANSSON AND M. DONÀ

FIGURE 1. Construction of Gn for n = 17 with |V ′
n| = |{v′

1, . . . , v′
6}| = 6 cliques. Top: the auxiliary graph

Gaux
n . Bottom: the resulting directed graph Gn.

probability (w.h.p.) if the probability of the event tends to 1 as n → ∞, where n is the number
of vertices of the graph Gn under consideration.

2.2. The random intersection graph with mixed Poisson degrees

We consider a random intersection graph model where the degrees of the nodes follow a
mixed Poisson distribution. Epidemics on this particular type of graph have previously been
investigated in [9], which used a branching process coupling to derive expressions for the
asymptotic probability of a major outbreak (i.e. that a fraction �(1) of the population contracts
the disease in the limit as n → ∞, where n is the population size), the final size of a major
outbreak, and a threshold parameter. In the present paper, we focus on the (exponential) real-
time growth rate of an epidemic on a random intersection graph in the early phase of a major
outbreak. We give a somewhat brief description of this graph model and refer the reader to [9]
for a more detailed account.

A graph Gn on n vertices can be constructed via the mixed Poisson random intersection
graph model as follows (see Figure 1 for an illustration of this construction). Let A and B be
two random variables with expected values E(A) = μA and E(B) = μB. We make the following
assumption on A and B.

Assumption 2.1.

(i). P(A ≥ 0) = P(B ≥ 0) = 1.

(ii). P(A = 0) < 1 and P(B = 0) < 1.
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(iii). E(A2 log+ A) < ∞ and E(B2 log+ B) < ∞.

We will refer to the condition of Assumption 2.1(iii) as the x2 log x-condition.

Remark 2.1. This version of the random intersection graph can be constructed under less
strict assumptions than the x2 log x-condition (see [9]); it is, however, needed here for the
approximating branching process to satisfy the classical x log x-condition (see [20, p. 10]).

Let {Ak}k and {Bk}k be two sequences of independent copies of A and B, respectively.
Further, let Vn = {v1, . . . , vn} be the vertex set of Gn, and assign the weight Ai to the ver-
tex vi, i = 1, . . . , n. As an intermediate step, we construct an auxiliary graph Gaux

n with vertex
set Vn ∪ V ′

n, where V ′
n = {v′

1, . . . , v′
m} and m = m(n) := 	nμA/μB
. Assign the weight Bj to the

vertex v′
j, j = 1, . . . , m. Given the weights of the vertices of Vn and V ′

n, for each pair vi, v′
j of

vertices of Gaux
n such that vi ∈ Vn and v′

j ∈ V ′
n, let the number of edges of Gaux

n shared by vi and
v′

j have distribution Po(AiBj/nμA), independently for pairs vi, v′
j. Thus, in Gaux

n the degree of
vi ∈ Vn has distribution

Po

(
Ai

μ
(n)
B 	nμA/μB


nμA

)
, (2.2)

where μ
(n)
B := ∑m

j=1 Bj/m. Similarly, in Gaux
n the degree of v′

j ∈ V ′
n has distribution

Po

(
Bj

μ
(n)
A

μA

)
, (2.3)

where μ
(n)
A := ∑n

i=1 Ai/n. There are no edges of Gaux
n between pairs vi1 , vi2 ∈ Vn. Similarly,

there are no edges of Gaux
n between pairs of vertices of V ′

n.
We now obtain the graph Gn from Gaux

n by letting two distinct vertices vi1 , vi2 ∈ Vn of Gn

share an edge if and only if vi1 and vi2 of Gaux
n have at least one common neighbour in V ′

n.
Next, we replace each edge of the undirected graph Gn by two directed edges pointing in the
opposite direction. The reason for this modification is that in the epidemic model considered
in this paper (see Section 2.3) infectious contacts are directed.

For later reference, we note that every vertex v′ ∈ V ′
n corresponds to a clique C, with vertex

set VC consisting of neighbours of v’ in Gaux
n , and with edge set EC that makes C a simple

directed complete graph (that is, for any pair u, v ∈ VC of distinct vertices there are precisely
two edges (u, v), (v, u) ∈ EC, and EC contains no self-loops).

2.3. The epidemic model

We consider a stochastic SIR epidemic on Gn. In the SIR model, individuals are classified
as susceptible (S), infectious (I), or recovered (R) depending on their current health status.
An individual who is classified as infectious can transmit the disease to other individuals in
the population; if an infectious individual contacts a susceptible individual then transmission
occurs and the susceptible individual immediately becomes infectious. An infectious individ-
ual will eventually recover from the disease after some period of time, which we refer to as
the infectious period of the individual in question (in our model we allow for the infectious
period of an individual to be ∞, which means that once the individual in question has con-
tracted the disease it will remain infectious forever). Recovered individuals are fully immune
to the disease; once recovered, an individual plays no further role in the spread of the disease.
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6 C. FRANSSON AND M. DONÀ

For simplicity, we assume that the epidemic starts with one initial infectious case and that the
rest of the population is initially fully susceptible to the disease. We assume that the disease
spreads in a population of size n, where the underlying social network of the population is
represented by Gn. In our model, a ‘close contact’ (a contact that results in transmission if a
susceptible individual is contacted by an infectious individual) can only occur between indi-
viduals who are neighbours in Gn. Throughout the paper, we will use the terms individual and
vertex interchangeably.

To be precise, the epidemic process can be defined as follows. Let I be a random variable
with support in R≥0 ∪ {∞}. Each vertex vi of Gn is equipped with an infectious period Ii,
where {Ii}i is a sequence of independent copies of I. Let {Tij}ij be a sequence of independent
and identically distributed random variables with support in [0, ∞), and assume that they are
independent of the infectious periods (Ii)i≥1. Here, Tij represents the time elapsed from the
event that vi contracts the disease (which might or might not occur) to the event that vi contacts
vj. In many standard models, Tij are exponentially distributed. For each (directed) edge (vi, vj),
we equip (vi, vj) with the transmission weight

T ′
ij :=

{
Tij if Tij ≤ Ii,

∞ if Tij > Ii.

The transmission weight T ′
ij represents the time elapsed from the event that vi contracts the

disease to the event that vi makes an infectious contact with vj, which results in transmission of
the disease to vj if vj is still susceptible. We make the following assumption on the distribution
of T ′

ij.

Assumption 2.2. P(T ′
ij = 0) < 1/(μAμB) and the distribution of T ′

ij is non-lattice (i.e. P(T ′
ij ∈{∞, 0, s, 2s, . . .}) < 1 for any s > 0).

The first part of Assumption 2.2, P(T ′
ij = 0) < 1/(μAμB), ensures that the approximating

branching process does not explode (i.e. that the branching process population does not grow
infinitely large in finite time).

A path ς = (vi1 , vi2 , . . . , vik ) is any finite sequence of vertices of Gn such that (vir , vir+1 ) is
an edge of Gn, r = 1, . . . k − 1. We define the length �(ς ) of a path ς = (vi1 , vi2 , . . . , vik ) as
�(ς ) =∑k−1

r=1 T ′
irir+1

. Denote the collection of all paths from a vertex u to a vertex v by �uv. The
distance (transmission time) from u to v is given by d(u, v) := minς �(ς ), where the minimum
is taken over all paths ς ∈ �uv. We make the conventions d(u, u) = 0 and d(u, v) = ∞ if �uv is
empty for two distinct vertices u and v.

Remark 2.2. Strictly speaking, d is a quasi-distance rather than a distance since it is not
symmetric. We do, however, abuse terminology for convenience.

The initial infected case u∗ is then selected according to some rule; a common choice,
which we will adhere to here, is to select the initial case uniformly at random. We assume
that the initial case u∗ contracts the disease at time 0. The time evolution of an outbreak can
now be fully specified as follows. An individual vi, i = 1, . . . , n, has contracted the disease at
time t ≥ 0 if and only if d(u∗, vi) ≤ t, and vi has recovered from the disease at t if and only if
d(u∗, vi) + Ii ≤ t.

We will also need the within-clique distance. Let C be a clique of Gn. For two vertices u and v
let �C

uv be the collection of paths from u to v restricted to C. That is, a path ς from u to v belongs
in �C

uv whenever every edge of ς is also an edge of EC. Note that �C
uv is empty if u and v are not

both members of C. The distance from u to v restricted to C is given by dC(u, v) := minς �(ς ),
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where the minimum is taken over all paths ς ∈ �C
uv. As before, dC(u, u) = 0 holds whenever

u ∈ VC, and dC(u, v) = ∞ if �C
uv is empty.

For any clique C, we refer to the first individuals of C to contract the disease as the primary
cases of C. That is, given that the disease reaches C (i.e. minw∈VC d(u∗, w) < ∞), a vertex
u ∈ VC is a primary case of C if d(u∗, u) = minw∈VC d(u∗, w). If v ∈ VC contracts the disease
but is not a primary case of C, we say that v is a secondary case of C, regardless of whether
v is infected directly by a primary case or via some other path (which may or may not go via
u). Notice that, if we assume that the transmission weight distribution has no atoms, then the
primary case is almost surely unique.

2.4. Branching process approximation

At the beginning of an epidemic outbreak, with high probability, infectious individuals con-
tact individuals that are still susceptible. For this reason, in those early stages the epidemic
graph is structured as a tree and can therefore be approximated by a branching process. We
point out that a salient feature of branching processes is that the lives of individuals that belong
to different branches of the branching process tree are independent (conditioned on their types
in the multitype case). In the epidemic process, even in the large-population limit, the infec-
tious individuals in a clique ‘compete’ in transmitting the disease to the remaining susceptible
individuals in the clique. Therefore, naive attempts to couple a finite-type branching process
with the epidemic process will in general give rise to non-local dependencies between the
individuals of the branching process tree.

For our scopes, we need a more formal description of a general branching process Z (see,
e.g., [21] for a full formal framework).

Let N be the set of positive integers, N0 := ∅, and N0 := N∪ {0}. The set of all (potential)
individuals S corresponds to the set of all finite tuples of positive integers, i.e. S := ⋃

n≥0 N
n.

An individual x is identified with a tuple (x1, . . . , xn) ∈ S, indicating that x is the xnth child
of the . . . of the x2nd child of the x1st child of the ancestor, the latter being a0 := ∅. We will
refer to the common ancestor a0 ∈ S as the first ancestor of Z. We write |x| = n to indicate
that x belongs to the nth generation of Z, which is x ∈N

n, and we say that a0 is in genera-
tion 0. If x = (x1, . . . , xn) and y = (y1, . . . , ym), we denote by xy the concatenated individual
(x1, . . . , xn, y1, . . . , ym). If x = (x1, . . . , xn−1, xn), mx = (x1, . . . , xn−1) is the mother of x. The
individuals of Z can be partially ordered by descent. If x = mny for some n ∈N0, then we write
x � y (or equivalently y � x) to indicate that x is an ancestor of y (we make the convention that
an individual is an ancestor of itself and that m0x := x) and x ≺ y (or y � x) to indicate that
x � y and x �= y. Similarly, for J⊂ S and x ∈ S we write J≺ x to indicate that y ≺ x for some
y ∈J, and J� x to indicate that y � x for some y ∈J. Note that if x ∈J and ther exists y ∈J
such that y ≺ x, then we still write J≺ x.

Let (�∅,A∅) be a measurable space. Using the terminology in [21], we call ω ∈ �∅ a pos-
sible life career of an individual; any property of an individual can be seen as a measurable
function on (�∅,A∅). For any individual x ∈ S, we denote by τx ∈ [0, ∞] the time at which it is
born; we say that x is realised if τx < ∞, while τx = ∞ means that x and its (possible) descen-
dants are never born. At birth, any child gets a type in the type space E, which is equipped
with a countably generated σ -algebra E. We denote by σ (x) ∈ E the type of x. For each x ∈ S
we create an independent copy (�x,Ax) of the space (�∅,A∅); each space (�x,Ax) carries a
point process ξx on R+ × E, defined as

ξx(A × B) := #{k ∈N : τxk − τx ∈ A, σ (xk) ∈ B}, A ∈ B, B ∈ E,
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8 C. FRANSSON AND M. DONÀ

with B denoting the Borel σ -algebra of R+, and with xk being the concatenated individual
(x1, . . . , xn, k). A point (t,r) of ξx indicates a type-r individual produced by x at time t, and
there’s a one-to-one correspondence between the children of x and the points of ξx.

The population space of Z is then (�,A) := (
E ×∏

x∈S �x, E ×∏
x∈S Ax

)
. An element of

(�,A) consists of a type for the ancestor and a life career for all individuals of S.
The epidemic process on Gn can be approximated, in its early phase, by a multi-type branch-

ing process whose individuals correspond to infectious individuals in the epidemic process.
Following the description above, we will now define a branching process Z, similar to the
one presented in [9], that describes the initial course of the epidemic. From now on, we will
talk about individuals of Z and infectious individuals of the epidemic model interchangeably,
keeping in mind their correspondence.

The type space of Z is Tθ := T∪ {θ}, where T is the support of the generic infectious
period I, and the extra point θ is an atom for the reproduction kernel of Z, in the sense of
[28, Definition 4.3]. If an infectious individual is, in the epidemic process, the secondary case
of a clique of size two, then the corresponding element in the branching process is assigned
type θ . The type of any other individual, apart from the ancestor (i.e. the first infectious indi-
vidual), is taken to be the length of its infectious period. We notice that the infectious period
Iv of v ∈ S is an independent copy of the general infectious period if σ (v) = θ or if v = a0;
Iv = σ (v) otherwise. For this reason, θ -individuals generate independent and identically dis-
tributed branches of the branching process. This feature is crucial for the embedded process
defined in Section 3.1. The individuals of Z are divided into generations by attributing all sec-
ondary cases in a clique to the primary case of the clique in question, even though it may well
be that a secondary case does not get infected directly by the primary case. In other words,
if we follow the epidemic trail from v back to the initial case v∗ then the generation of v in
Z corresponds, in the epidemic process, to the number of cliques that have to be traversed to
reach v∗ (including the cliques of v and v∗).

Each space (�v,Av), v ∈ S, is equipped with a point process ξv. The law of ξv can be
described as follows. Given the type of an individual v, its point process of reproduction is
independent of the lives of the individuals that do not stem from v. A point (t, r) of ξv corre-
sponds to a secondary type-r case u ∈ VC for which the time elapsed since the corresponding
primary case v contracted the disease is dC(v, u) = t.

Observe that the law of the life of a0 is usually different from the laws of the other branch-
ing process individuals since the initial case is assumed to be selected uniformly at random
from the population, whereas individuals of subsequent generations represent infectious cases
whose degree distribution is size biased. For this reason, the initial case is a member of MP(A)
cliques while the number of cliques that a non-initial case is a member of is distributed as D
cliques, where D is distributed as MP(A). It is readily verified (see also [9]) that, if D has MP(A)
distribution, then (D − 1) has MP(A) distribution. Thus, asymptotically, a non-initial case is a
member of MP(A) cliques that are not yet affected by the disease. Note that the size-biased dis-
tribution appears here because the probability that a vertex belongs to a clique is proportional
to its number of edges. Similarly, the size of a clique (excluding the primary case of the clique)
reached during the early phase of the epidemic has asymptotic distribution given by MP(B).
Here, the size biasing is present because the size of a clique is proportional to the number of
edges of its correspondent vertex in the auxiliary graph; see the construction in Section 2.2.
Thus, the points of ξa0 correspond to the secondary cases where the corresponding primary
case has infectious period Ia0 and is a member of MP(A) cliques of independent sizes with dis-
tribution MP(B). Similarly, if v �= a0, the points of ξv correspond to the secondary cases where
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the corresponding primary case has infectious period Iv and is a member of MP(A) cliques,
each of size MP(B).

The number |Zt| of individuals of Z that are alive at time t ≥ 0 corresponds to the number
of infectious individuals at t and is given by the cardinality of the set {u ∈ S : τu ≤ t < τu + Iu}.

If the extinction probability of Z is strictly smaller than 1 then Z is said to be supercritical,
and we say that we are in the supercritical regime.

3. Main results

In this section we present the main results and give a rough outline of the ideas behind the
proofs. These proofs rely on asymptotic results on finite-type branching processes (see, e.g.,
[26]) via a coupling of an epidemic process on Gn and a single-type branching process.

The main idea of this section is to embed a single-type branching process Y in Z by letting
the type-θ individuals of Z be the individuals of Y . This allows us to employ the almost sure
(a.s.) asymptotic results (see Section 3.1 for an overview) that are available for single-type
branching processes.

We now need to introduce some extra notation. Let Fk, k ∈N≥2, be the cumulative distri-
bution function of the transmission time from the primary case in a clique of size k to another
(specific) member of the clique. That is to say, for a clique C with |VC| = k and two fixed
individuals u, v ∈ VC, Fk is the cumulative distribution function of the within-clique distance
dC(u, v). Let pB

k := P(MP(B) = k) and define the vector �� = μA(1 · pB
1 , 2 · pB

2 , . . . ), where
μA =E(A) =E(A2)/μA. For a clique C of size |VC| = k and any λ ≥ 0, let

L(λ)
k :=

∫
R≥0

e−tλFk(dt) (3.1)

be the Laplace transform of the transmission time within C, and define the vector

L(λ) = (
L(λ)

2 ,L(λ)
3 , . . .

)�. (3.2)

Note that, for λ = 0, the mass at infinity is typically not included in the integral defined in (3.1).
As we will prove in Section 4, the Malthusian parameter can be found by solving the Euler–

Lotka equation.

Definition 3.1. The Malthusian parameter is the unique solution α > 0 of � · L(α) = 1.

We are now ready to state our main results.

Theorem 3.1. Under Assumptions 2.1(i)–(iii) and 2.2, and if the Malthusian parameter α > 0
exists, then there exists a non-negative integrable random variable W such that |Zt|/eαt a.s.→ W,
where W satisfies P({|Zt| �→ 0}�{W > 0}) = 0.

Here, � denotes the symmetric difference, i.e. A�B = (A \ B) ∪ (B \ A), and |Zt| denotes
the number of individuals of Z that are alive at time t. In the notation {|Zt| �→ 0} it is implicit
that the limit is taken as t tends to ∞. So, {|Zt| �→ 0} is the event that the branching process
population of Z ultimately avoids extinction.

Theorem 3.2. Let (Gn)n be a sequence of graphs generated via the random intersection graph
model and assume that the assumptions of Theorem 3.1 hold. Let (εn)n≥1 be a sequence in
(0, ∞) that satisfies εn log (n) → ∞ as n → 0. Then, for any q ≥ 2, q �= 3, that satisfies E(Aq) <

∞ and E(Bq) < ∞ there exist couplings of the epidemic process on the Gn and Z such that the
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two processes agree w.h.p. until at least nγ−εn individuals have contracted the disease. Here,
γ = min

( 1
2 ,

(
q − 3

2

)
/q

)
.

3.1. Branching processes counted with random characteristics

This section contains a brief overview of some preliminaries from the theory of branch-
ing processes, which we include for completeness. More detailed accounts of the branching
process theory can be found in [26], and also in the more recent paper [19].

Before proceeding, we introduce some additional notation to Section 2.4. To arrive at
Theorem 3.1, as anticipated before, we embed a single-type branching process Y into the
above-described branching process Z. To this end, we partition the individuals of Z into blocks.
Let Sθ ⊂ S be the set of the type-θ individuals of Z. For x ∈ Sθ , define the block Bx as follows:

Bx := {y ∈ S : x � y, and whenever x ≺ z for some z ∈ Sθ then z �� y}. (3.3)

In words, for any x ∈ Sθ the block Bx is the set of descendants of x for which the line of
descent back to x does not contain an individual of type θ . The embedded branching process
Y is then obtained by letting the individuals of Y be the individuals of Sθ and the children of
x ∈ Sθ (seen as an individual of Y) the type-θ children of individuals of Bx (in Z). That is, if
we define Jn, n ≥ 1, recursively as J0 = {a0} and

Jn = {x ∈ Sθ : x � Jn−1 and whenever Jn−1 ≺ z ≺ x then z �∈ Sθ },
then Jn consists of the individuals of generation n of Y , n ≥ 0. Since we are interested in
the number of infected individuals at each time point t ∈R≥0 we count the population of the
embedded single-type branching process Y with a certain random characteristic (see, e.g., [26])
which provides the link between the size |Zt| of the branching process population of Z at t
and the embedded branching process Y . Here we consider the special case where the random
characteristic φ is defined as

φx(t) = |{y ∈ Bx : τy ≤ t < τy + Iy}| (3.4)

for each x ∈ J = ∪n≥0Jn, and we say that Yφ
t := ∑

x∈J φx(t − τx) is the branching process
population of Y counted with the characteristic φ. In words, φx(t) can be thought of as the num-
ber of infectious individuals which belong to the block Bx at τx + t, where τx is the time point
when x contracts the disease. Thus, the total population size |Zt| of the approximating branch-
ing process Z at the time point t can be recovered from the embedded single-type branching
process Y via the relation |Zt| = Yφ

t , where Yφ
t =∑

x∈J φx(t − τx) is the branching process
population of Y counted with the characteristic φ defined in (3.4) at t.

Remark 3.1. It is worth pointing out that the embedding technique employed here does not
require the presence of cliques of size two in the underlying graph model. Indeed, in a more
general setting, an embedding of a single-type branching process may be obtained by letting
the individuals of the single-type branching process be represented by the vertices that are the
last to be infected in their clique, if all clique members get infected. This embedding relies
on the observation that if a clique C (of size |VC| = d ≥ 2, say) is fully infected then the dth
individual of C to be infected does not compete with the other infected cases of C in transmitting
the disease to the remaining susceptible individuals of C. Thus, given that v is the dth infected
case of C, the infectious period of v is independent of the actual paths of transmission within C.
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We begin by stating an asymptotic result for single-type branching processes where the type
of the ancestor is the same as the type of the other individuals. To this end, let Z̃ be a branching
process that behaves like a copy of Z, where Z is the branching process in Section 2.4, except
that the first ancestor of Z̃ is of type θ . Further, let Ỹ be the corresponding embedded single-
type branching process. In what follows, we will recycle the notation from Section 2.4 for ease
of notation. That is, we denote the type space of Z̃ by Tθ , S denotes the space of individuals of
Z̃, the block Bx and the random characteristic φ are analogous to the definitions in (3.4) and
(3.3), respectively, and so forth.

Let the random measure ξ be the point process of reproduction on R≥0 of a generic indi-
vidual of the single-type branching process Ỹ , and let ξ (α) = ∫

R≥0
e−αtξ (dt) =∑

x∈J e−ατx ,

where J = ∪n≥0Jn is the space of all individuals of Ỹ and α is the Malthusian parameter,
i.e. E(ξ (α)) = 1. We define the measure η on R≥0 by η(t) = η[0, t] := E(ξ (t)). Theorem 3.3 is
a special case of [26, Theorem 5.4] and will lead us to the a.s. convergence of Theorem 3.1. In
order to state Theorem 3.3 we need the following conditions.

Condition 3.1. (Finite mean age at childbearing.) The mean age at childbearing β defined by
β := E

( ∫
R≥0

te−αtξ (dt)
)

is finite.

Condition 3.2. (x log x.) The random variable ξ (α) log+ (ξ (α)) has finite expectation.

Condition 3.3. There exists some non-negative, real-valued, non-increasing, integrable func-
tion g1 such that

∫
R≥0

e−αt/g1(t) η(dt) < ∞.

Condition 3.4. There exists some non-negative, real-valued, non-increasing, integrable func-
tion g2 such that the expectation of supt≥0 e−αtφ(t)/(g2(t) ∧ 1) is finite. Recall that φ is the
random characteristic defined in (3.4).

Theorem 3.3. ([26, Theorem 5.4].) Under Conditions 3.1–3.4, almost surely, |Ỹφ
t |/eαt →

Ŵm∞ as t → ∞, where the random variable Ŵ has mean E(Ŵ) = 1 and P({Ŵ = 0}) =
P(|Zt| → 0), and m∞ ∈ (0, ∞) is a constant that depends on φ.

Remark 3.2. Under the conditions of Theorem 3.3, applying Theorem 3.3 to each of the
children of the first ancestor of Z gives

|Zt|
eαt

= |Yφ
t |

eαt
→ W := (Ŵ(1)e−ατ1 + · · · + Ŵ(J)e−ατJ )m∞ (3.5)

almost surely as t → ∞, where J is the number of children of the first ancestor of Z that are born
in [0, ∞), the time points τ1, . . . , τJ are the birth times of those children, and Ŵ(1), . . . , Ŵ(J)

are J copies of Ŵ (which are not independent in general).

4. Proofs

In Section 4.1 we prove Theorem 3.1 by showing that there is a coupling of the branch-
ing process Z and a single-type branching process whose Malthusian parameter is given in
Definition 3.1. In Section 4.2 we prove Theorem 3.2. The main step in the proof is to establish
upper bounds on the total variation distance of the degree distribution in (2.2) and Po(A), and
of the distribution in (2.3) and Po(B).
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4.1. Proof of Theorem 3.1

Recall that the random measure ξ (defined in Section 3.1) is the point process of repro-
duction on R≥0 of a generic individual v of Ỹ , and that the measure η on R≥0 is defined as
η(t) = η[0, t] := E(ξ (t)). Also recall that � = (γk)k is the vector with elements of the form
γk = μAkpB

k , where pB
k = P(MP(B) = k) for k ∈Z≥1, and that L(α) is the vector displayed in

(3.2).

Lemma 4.1. In the supercritical regime, the Malthusian parameter α > 0 of Y exists if and
only if P(T ′

ij = 0) < 1/(μAμB) and is then the unique solution of � · L(α) = 1.

Proof. Here, ∗ denotes convolution, i.e. for two cumulative distribution functions F and G,
F ∗ G(t) = ∫ ∞

−∞ G(t − s) F(ds). Note that the convolution function is symmetric. The expected
number of children of v that are θ -individuals born up to time t is given by

η(t) = γ1F2(t) +
∑

r

∑
(m1,...,mr)

γm1γm2 · · · γmr Fm1+1 ∗ · · · ∗ Fmr+1 ∗ F2(t)γ1, (4.1)

where the sums run over Z≥1 and Z
r≥1. To see this, we look at v’s offspring in Z. If v belongs

to a clique of size two, then we can have a θ -newborn in the first generation, and this is taken
into account by the first addend of (4.1). After this, we consider the second generation (corre-
sponding to r = 1 in the formula) and we look for all possible paths that pass via a clique of
generic size m1 + 1 and end on a clique of size two, and so on. Taking the Laplace transform of
the right-hand side in (4.1) and writing this in vector form gives that the Malthusian parameter
α of Y is the solution of∫

R≥0

e−αtη(dt) = γ1L(α)
2

∞∑
n=0

(
�≥2 · L(α)

≥3

)n = 1, (4.2)

where ��≥2 = (γ2, γ3, . . . ) and the elements of L(α)
≥3 = (

L(α)
3 ,L(α)

4 , . . .
)� are defined in (3.1).

Since �≥2 · L(α)
≥3 < 1 (shown below), (4.2) reduces to

γ1L(α)
2

1 − �≥2 · L(α)
≥3

= 1.

That is, � · L(α) = 1.
It remains to show that �≥2 · L(α)

≥3 < 1. By the x2 log x assumption, for all λ ≥ 0, � ·
L(λ) ≤ � · (1, 1, . . . , 1)� < ∞ and, since the approximating branching process is supercritical,
� · L(0) > 1. Since � · L(λ) is continuous and strictly decreasing in λ with � · L(λ) → P(T ′

ij =
0)μAμB < 1 as λ → ∞, there exists an α such that γ1L(α)

2 + �≥2 · L(α)
≥3 = 1; given that γ1 > 0,

for that α we have �≥2 · L(α)
≥3 < 1. We conclude that the Malthusian parameter exists and is

unique. �

To proceed, we need some additional notation and terminology. For two kernels K1 and K2
(defined on the same measurable space (E, E)), we define the convolution kernel K1K2 as

K1K2(r, A) :=
∫

E
K1(r, ds)K2(s, A), A ∈ E, r ∈ E.
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For any m ≥ 1, Km
1 := K1Km−1

1 and K0
1 := I, where I is the identity kernel I(r, A) := 1(r ∈ A)

for any A ∈ E. If f is an E-measurable function on E then we define the function K1f
as K1f ( · ) := ∫

E f (s)K1(·, ds), and similarly, for a measure η on (E, E) we define ηK( · ) =∫
η(ds)K(s, ·). For any A ∈ E, let IA be the kernel IA(r, B) = I(r, A ∩ B).
Recall that we denote (a generic copy of) the point process of reproduction on Tθ ×R≥0

of a type-r individual of Z̃ by ξr, and let μ(r, A × B) =E(ξr(A × B)) be the expected num-
ber of offspring of a type in A ⊂ Tθ produced by a type-r individual (born at time 0) in B ⊂
R≥0. For λ ∈R, define the kernel K(λ)(r, ds × dt) := e−λtμ(r, ds × dt). Also let K̂(r, ds) :=∫
R≥0

K(α)(r, ds × dt), and let Gθ =∑∞
n=0 (I{θ}c K̂)n be the potential kernel of I{θ}c K̂. Here,

{θ}c = Tθ \ {θ} and
I{θ}c (r, B) = I(r, B ∩ Tθ \ {θ}). (4.3)

Remark 4.1. Note that, for any A ⊂ T and s ∈ Tθ , Gθ (s, A) is the expected number of descen-
dants of an individual u of Z̃, σ (u) = s, that are members of the same block as u and whose type
belongs to A discounted by their time of birth. Similarly, Gθ (s, {θ}) is the expected number of
type-θ individuals stemming from u whose mother belongs to the same block as u discounted
by their time of birth.

Define the function h by h(x) = Gθ (x, {θ}) and the measure π by π (A) = K̂Gθ (θ, A). The
kernel K̂ is 1-recurrent in the sense of [28, Definition 3.2]; see [21, 22]. Then, from [28,
Proposition 4.6], it follows that h is harmonic for K̂, i.e. h = K̂h. Similarly, π is invariant
for K̂, i.e. π = πK̂.

In order to use the finite-type branching process toolbox, we need to verify that the mean
age at childbearing β of Y is finite, i.e. that β = ∫

te−αtη(dt) < ∞, where η is the measure in
(4.1).

Lemma 4.2. 0 < β < ∞.

Proof. Let ε > 0 be small so that �≥2 · L(α−ε)
≥3 < 1; note that such an ε exists: �≥2 · L(λ)

≥3 is

continuous and �≥2 · L(α)
≥3 < 1, as shown in the proof of Lemma 4.1. Let the constant Cε be

such that Cεe−(α−ε)t ≥ te−αt for all t ≥ 0. Then

β =
∫

te−αtη(dt) ≤ Cε

∫
e−(α−ε)tη(dt) = Cεγ1L(α−ε)

2

∞∑
n=0

(
�≥2 · L(α−ε)

≥3

)n
< ∞.

�

4.1.1. Optimal lines and the x log x condition. In this paper, we consider two ways of dividing
the individuals of the approximating branching process Z̃ into generations: either generation n
consists of the individuals of Sn := {x ∈ S : |x| = n} (i.e. of the individuals separated from the
first ancestor by a line of descent of length n), or generation n consists of the individuals of
Jn, which leads us to the embedded branching process Ỹ . There is a close connection between
these two ways of viewing generations and the concept of stopping lines (see [21] or [12]).

Following [21], we say that a set of individuals L ⊂ S is a stopping line if, for any pair
y, x ∈ L, x �≺ y. In other words, a stopping line L cuts across the branching process tree Z in
the sense that if x ∈ L then no descendants or ancestors of x (apart from the individual x itself)
are members of L. For any x ∈ S, let Gx be the σ -algebra generated by the lives (infectious
periods and reproduction processes) of the ancestors of x (including x), and for any non-random
stopping line �, let G� := σ ( ∪x ��� Gx) be the σ -algebra generated by the lives of the individuals
that do not have an ancestor in �. Mirroring the concept of optimal stopping times, we say that
a line L is optimal if, for any non-random stopping line �, the event {L � �} belongs to G�.
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Here, L � � means that for any x ∈ � there is y ∈ L such that y � x. Note that Jn is an optimal
line for each n ≥ 0. Note also that Sn is an optimal line, n ≥ 0.

For each n ∈Z≥0, define

Ŵn :=
∑

x∈Jn

e−ατx (4.4)

and

∼
Wn= 1

h(θ )

∑
|u|=n

e−ατu h(σu), (4.5)

where the sums run over all individuals of generation n of Ỹ and Z̃, respectively. It is well

known (see, e.g., [12]) that { ∼
Wn}n∈Z≥0 is a martingale with respect to F := {Fn}n, where Fn :=

GSn is generated by the lives of the individuals up to generation n (of Z̃) for n ≥ 1 (we make the
convention that G∅ is the trivial σ -algebra). Similarly, {Ŵn}n∈Z≥0 is a martingale with respect
to {GJn}n. For later reference, we now state a special case of results presented in [12].

Proposition 4.1. (c.f. [12, Theorem 6.1 and Lemma 6.2].) Let {Ŵn}n and { ∼
Wn}n be as in

(4.4) and (4.5). Then, with probability 1, the limits limn
∼
Wn and limn Ŵn exist and limn

∼
Wn=

limn Ŵn.

Now, the x log x condition for the single-type branching process Ỹ takes the form

E(Ŵ1 log+ Ŵ1) < ∞. (4.6)

The following two lemmas assert that Ỹ satisfies the x log x condition under the x2 log x
condition.

Lemma 4.3. Let J have MP(X) distribution, where X is a non-negative integrable random vari-
able with P(X = 0) < 1. Then E(X2 log+ X) < ∞ is necessary and sufficient for E(J log+ J) <

∞ to hold.

Proof. First, note that E(J log+ J) =E(J2 log+ J)/E(J) =E(J2 log+ J)/E(X).

Since x �→ x2 log+ x is convex, necessity now follows from Jensen’s inequality for condi-
tional expectations. Sufficiency follows from

E(J2 log+ J) =E

(∑
k≥0

k2 log+ k
Xke−X

k!

)

=E

(
X
∑
k≥0

(k + 1) log+ (k + 1)
Xke−X

k!

)

=E

(
X
∑
k≥0

log+ (k + 1)
Xke−X

k!

)
+E

(
X
∑
k≥0

k log+ (k + 1)
Xke−X

k!

)

=E

(
X
∑
k≥0

log+ (k + 1)
Xke−X

k!

)
+E

(
X2

∑
k≥0

log+ (k + 2)
Xke−X

k!

)
≤E(X log+ (X + 1)) +E(X2 log+ (X + 2)),
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where the inequality follows from Jensen’s inequality applied to the concave (on R≥0)
functions x �→ log+ (x + 1) and x �→ log+ (x + 2). �
Lemma 4.4. Under Assumption 2.1, {Ŵn}n satisfies the x log x condition in (4.6).

Proof. It is known (see [19, Proposition 4.1]) that the inequality in (4.6) holds if and only
if {Ŵn}n is uniformly integrable, which is also equivalent to E(Ŵ) = 1, where Ŵ is the almost

sure limit limn Ŵn. By Proposition 4.1, limn Ŵn = limn
∼
Wn almost surely. Thus, in order to

verify that {Ŵn}n is uniformly integrable it is sufficient to verify that the almost sure limit of
∼
Wn has mean 1.

Now note that h is bounded: for any x ∈ Tθ we have

h(x) = Gθ (x, {θ}) ≤ 1 +E(A)E(B)π ({θ}) = 1 +E(A)E(B).

Combining this with Assumption 2.1, Lemma 4.3 and [12, Corollary 2.1], the x log x condition
holds for Y if we can show that, almost surely,

sup
x>2

(∑
i 1(H(ςi) ≥ x−1)

log+ (x)

)
< ∞, (4.7)

where ς = (ς0, ς1, . . . ), ς0 = (θ, 0), is a Markov chain on Tθ ×R≥0 with transmission
measure given by

R((r, 0), A × B) := 1

h(r)

∫
A×B

h(s)K(α)(r, ds × dt),

R((r, t), A × B) := R((r, 0), A × (B − t)≥0),

where B − t = {b − t : b ∈ B} and H((r, t)) = e−αth(r).
Let p1 : Tθ ×R≥0 → Tθ and p2 : Tθ ×R≥0 →R≥0 be the projections onto the first and sec-

ond coordinate, respectively, and put ς ′
j = p1(ςj) and ς ′′

j = p2(ςj) for j ≥ 0. Then {ς ′
0, ς ′

1, . . .}
is a Markov chain on Tθ with transition measure R1:

R1(r, B) = 1

h(r)

∫
B

h(s)K(α)(r, ds ×R≥0) = 1

h(r)

∫
B

h(s)K̂(r, ds)

for (measurable) B ⊂ Tθ .
Now, it is easily verified that θ is a (positive) recurrent state of {ς ′

0, ς ′
1, . . .}. Indeed, let Mi,

i ≥ 1, be the number of steps until {p1(ς0), p1(ς1), . . .} revisits θ for the ith time, given that
p1(ς0) = θ : M0 := 1 and, for i ≥ 1, Mi = inf{m > Mi−1 : p1(ςm) = θ}. Then, for m ≥ 1 (recall
that I{θ}c is the operator in 4.3),

P(M = m) = R1(I{θ}cR1)m−1(θ, {θ})
=

∫
R

m−1
≥0

K(α)(rm−1, {θ} ×R≥0)K(α)(rm−2, drm−1 ×R≥0) · · ·

× K(α)(r1, dr2 ×R≥0)K(α)(θ, dr1 ×R≥0)

= γ1L(α)
2

(
�≥2 · L(α)

≥3

)m−1 = (1 − �≥2 · L(α)
≥3)

(
�≥2 · L(α)

≥3

)m−1.

Thus, P(M = ∞) = 0 and M is geometrically distributed, and hence the inequality in (4.7)
holds almost surely by the law of large numbers applied to {ς ′′

Mk
+ · · · + ς ′′

Mk+1−1}k. �
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We now turn our attention to Conditions 3.3 and 3.4.

Lemma 4.5. Conditions 3.3 and 3.4 are satisfied under Assumption 2.1.

Proof. The mapping t �→ e−ϕt satisfies Conditions 3.3 and 3.4 if ϕ > 0 is small enough.
Indeed, let ϕ ∈ (0, α) be small, so that �≥2 · L(α−ϕ)

≥3 < 1, and put g(t) = e−ϕt. Then

∫ ∞

0

1

g(t)
e−αtη(dt) =

∫ ∞

0
e−(α−ϕ)tη(dt) = γ1L(α−ϕ)

2

∞∑
n=0

(
�≥2 · L(α−ϕ)

≥3

)n
< ∞.

In the following, x is a generic type-θ individual of Z with φ = φx, B = Bx, and τx = 0.
Clearly, since e−αt/g(t) is non-increasing in t we have

e−αtφ(t)

g(t)
≤

∑
y∈B

e−ατy

g(τy)

for any t ≥ 0. Thus

E

(
sup
t≥0

e−αtφ(t)

g(t)

)
≤E

( ∑
y∈B

e−(α−ϕ)τy

)
=

∞∑
n=1

(
�≥2 · L(α−ϕ)

≥3

)n
< ∞.

If the random characteristic φ is as in (3.4 ), then the same function g also satisfies
Condition 3.4. �

Proof of Theorem 3.1. Assume that Assumptions 2.1(i)–(iii) hold. By Lemma 4.1, the
Malthusian parameter for the single-type branching process Ỹ is the unique solution α > 0
of � · L(α) = 1. By Lemma 4.2, Condition 3.1 holds; by Lemma 4.4, Condition 3.2 holds; and
by Lemma 4.5, Conditions 3.3 and 3.4 hold. Hence, the conditions of Theorem 3.3 are satisfied,
and by Remark 3.2 the convergence in (3.5) holds.

4.2. Proof of Theorem 3.2

Here we describe a probabilistically equivalent construction of Gaux
n , that was defined in

Section 2.2. This alternative way of constructing Gaux
n is useful in the branching process

approximation of the epidemic process since it allows us to run the epidemic process and
construct Gn in unison.

Throughout this section we denote the probability measure of A by p, i.e. p([0, x]) = P(A ≤
x) for x ∈ [0, ∞). Similarly, we denote the probability measure of the size-biased version A of
A by p. Given the weights A1, . . . , An, let A(n) be a random variable that follows the empirical
distribution of A1, . . . , An, and let pn be the corresponding probability measure, i.e.

pn([0, x]) = P(A(n) ≤ x | A1, . . . , An) = 1

n

n∑
i=1

1(Ai ≤ x)

for x ∈ [0, ∞). Also let A(n) denote the size-biased version of A(n), and let pn be the
corresponding probability measure (see the definition in (2.1)), i.e.

pn([0, x]) = 1

nμ
(n)
A

n∑
i=1

Ai1(Ai ≤ x).
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Similarly, conditioned on the weights B1, . . . , Bm, let B(n) be a random variable that follows
the empirical distribution of B1, . . . , Bm, and let B(n) be the size-biased version of B(n).

To construct Gaux
n , start by picking some vertex u of Vn according to some rule (e.g. uni-

formly at random). Typically, u represents the initial case of the epidemic. Put E0 = E′
0 =N0 =

∅. The component of Gaux
n that contains u is now constructed by iterating the following steps

for t = 1, 2, . . .:

(i). If t = 1, let v = u be the vertex that is currently being explored. Generate the downshifted
(i.e. reduced by one) group degree D of v from the distribution given in (2.2). Here, D
represents the (additional) number of cliques of which v is a member.

(ii). Draw D elements, B(1), . . . , B(D), from the multiset of (realised) weights {B1, . . . , Bm}
independently with replacement. The probability of selecting Bk ∈ {B1, . . . , Bm} in a
specific draw is given by Bk/mμ

(n)
B , where μ

(n)
B =∑m

k=1 Bk/m. In other words, we
generate D independent copies of B(n).

(iii). Let v′
(j) ∈ V ′

n be the vertex that corresponds to B(j), j = 1, . . . , D. For each v′
(j) ∈

{v(1), . . . , v(D)}, if v′
(j) is not a member of the set E′

t−1 ⊂ V ′
n of hitherto explored vertices,

carry out the following steps 3a to 3d. If v′
(j) ∈ E′

t−1 then the clique that corresponds to
v′

(j) is already explored, so v′
(j) is excluded from these steps.

(a) Generate the downshifted clique size D′
j of v′

(j) from the distribution given in (2.3)
with B(j) in place of Bj.

(b) Select D′
j elements Aj

(1), . . . , Aj
(D′

j)
from the multiset of (realised) weights

{A1, . . . , An} independently with replacement. The probability of selecting Ak in
a specific draw is given by Ak/nμ

(n)
A , where μ

(n)
A =∑n

k=1 Ak/n. In other words, we
generate D′

j independent copies of A(n).

(c) Let vj
k ∈ Vn be the vertex that corresponds to Aj

(k), k = 1, . . . , D′
j.

(d) Add an edge between each pair of distinct vertices in {v} ∪ {vj
k}

D′
j

k=1 \ Et−1 to Gn.

(iv). Update the set E′
t of explored cliques by putting E′

t = E′
t−1 ∪ {v′

(1), . . . , v′
(Di)

}.
(v). Update the set Nt of neighbours of explored vertices by putting Nt =Nt−1 ∪ {vj

k : j =
1, . . . , Di and k = 1 . . . , D′

j}.
(vi). Update the set Et of explored vertices by putting Et = Et−1 ∪ {v}.

(vii). If Nt = Et then the construction of the component is complete and we exit the algorithm.
Otherwise, update v by picking some new vertex in Nt \ Et. If Gaux

n is constructed as the
epidemic progresses, then the new vertex v is the tth non-initial case.

If the nodes v′
(1), . . . , v′

(D) are not distinct or {v′
(1), . . . , v′

(D)} ∩ Et−1 �=∅ in step (iii) for
some iteration t ∈ {0, 1, . . .} then the coupling of the approximating branching process and the
epidemic process breaks down. Similarly, if in some iteration t the vj

k are not all distinct, or

vj
k ∈ Et−1 for some j ∈ {1, . . . , D} and k ∈ {1, . . . , D′

j}, then the coupling breaks down.
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18 C. FRANSSON AND M. DONÀ

The following lemma, which is a variant of the birthday problem, ensures that w.h.p. the
coupling of the approximating branching process and the epidemic process holds during the
first o(

√
n) steps of the construction algorithm. The proof is included here for completeness.

Lemma 4.6. Let jn = o(
√

n), and let A have finite second moment. Suppose that we draw ele-
ments from the multiset {A1, . . . , An} independently with replacement, and that the probability
that Ai ∈ {A1, . . . , An} is selected in a specific draw is proportional to Ai. Then the first jn
drawn elements are distinct with P-probability tending to 1 as n → ∞.

Proof. For k = 1, 2, . . ., let A(k) be the kth element that is drawn from {A1, . . . , An}, and let
En( · ) be the conditional expectation operator given A1, . . . , An. Conditioned on A1, . . . , An,
for k ≥ 2 the probability that A(k) is not distinct from A(j) for some j ∈ {1, . . . , k − 1} is less
than or equal to

En

(
A(1) + · · · + A(k−1)

A1 + · · · + An

)
= (k − 1)

A2
1 + · · · + A2

n

(A1 + · · · + An)2
.

Thus, by the union bound, conditioned on {A1, . . . , An} the probability that the first jn drawn
elements are not distinct is less than or equal to

jn∑
k=1

(k − 1)
A2

1 + · · · + A2
n

(A1 + · · · + An)2
= (jn − 1)jn(A2

1 + · · · + A2
n)

2(A1 + · · · + An)2

=
(

(jn − 1)jn
n

)(
(A2

1 + · · · + A2
n)/n

2
(
μ

(n)
A

)2

)
.

Since A has finite second moments,

(A2
1 + · · · + A2

n)/n

2
(
μ

(n)
A

)2

converges to E(A2)/2μ2
A in P-probability as n → ∞. Hence,

P
(
A(1), . . . , A(jn) are distinct

)≥ 1 −E

(
1 ∧

(
(jn − 1)jn

n

)
(A2

1 + · · · + A2
n)/n

2
(
μ

(n)
A

)2

)
,

where the right-hand side tends to 1 as n → ∞. �

In the construction algorithm described previously, the weights of explored vertices in Vn

and V ′
n are generated from the distributions of A(n) and B(n), whereas the weights in the approx-

imating branching are generated from the distributions of A and B. Therefore, in order to prove
Theorem 3.2 we find upper bounds on the coupling error between MP(A(n)) and MP(A), and
between MP(B(n)) and MP(B), which we state in Proposition 4.2 and Lemma 4.7.

Given the weights A1, . . . , An, for a coupling C of A and A(n) we denote the corresponding
probability measure and expectation by PC and EC, respectively. A coupling of two random
variables with distributions MP(A) and MP(A(n)) can be constructed by first constructing a

coupling C of their respective intensities A and A(n), then generating a joint realization (A
′
, A

′
(n))

of these intensities according to C and in the next step using these intensities to generate two
random variables from the Poisson distribution. If in the last step a maximal coupling is used
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then the (conditional) probability of a miscoupling is given by 1
2 dTV(Po(A

′
), Po(A

′
(n))). Here,

dTV denotes the total variation distance, i.e. for a, b ∈R≥0,

dTV(Po(a), Po(b)) =
∑
k≥0

∣∣∣∣ake−a

k! − bke−b

k!
∣∣∣∣.

Thus, given the distribution of A(n), the probability of a miscoupling is given by
1
2EC(dTV(Po(A), Po(A(n)))).

Let the coupling Cn of A
′

and A
′
(n) be given by

Cn := argmin
C

EC

∣∣√A −
√

A(n)
∣∣ (4.8)

for each n ≥ 1, where the minimum extends over all couplings C of A and A(n).
In the following proposition, A1, . . . , An are random with respect to P. Thus, under P, Cn

is a coupling of p and the random probability measure pn.

Proposition 4.2. Assume that E(Aq) < ∞ for q > 3
2 . Let (εn)n≥1 be a sequence in (0, ∞) such

that if q �= 3 then εn log (n) → ∞ as n → 0 and if q = 3 then εn log (n) − log ( log (n)) →
∞ as n → 0. Then P(ECn (dTV(Po(A), Po(A(n)))) ≥ n−γ+εn ) → 0 as n → ∞, where γ = 1

2 ∧(
q − 3

2

)
/q.

Remark 4.2. Proposition 4.2 also holds if A, A, and A(n) are replaced by B, B, and B(n).

Proof of Proposition 4.2. We have (the first inequality following from [10, Theorem 1.C])

ECn (dTV(Po(A), Po(A(n)))) ≤ECn

⎛⎝ 1√
A(n) ∨ A

∣∣A − A(n)
∣∣⎞⎠

≤ECn

⎛⎝ 1

1
2

(√
A +

√
A(n)

) ∣∣√A +
√

A(n)
∣∣ · ∣∣√A −

√
A(n)

∣∣⎞⎠
= 2ECn

(∣∣√A −
√

A(n)
∣∣).

Hence, by Proposition 4.3,

E
(
ECn (dTV(Po(A), Po(A(n)));Dn

)=

⎧⎪⎨⎪⎩
O
(
n−(q−3/2)/q

)
if 3

2 < q < 3,

O
(
n−1/2 log (n)

)
if q = 3,

O
(
n−1/2

)
if q > 3,

where Dn is the event maxi∈[n] (Ai) > 0. The assertion of the proposition now follows from
Markov’s inequality and P(Dc

n) = p(0)n, p(0) < 1. �
By the degree distributions of Gaux

n given in (2.2) and (2.3), in order to arrive at Theorem

3.2 we will also need a bound on the coupling error of MP(B(n)μ
(n)
A /μA) and MP(B(n)), and of

MP(A(n)μ
(n)
B 	nμA/μB
/nμA) and MP(A(n)).

Proposition 4.3. (c.f. [16, Theorem 1].) If E(Aq) < ∞ for q > 3
2 then

E
(
ECn

(∣∣√A −
√

A(n)
∣∣); Dn

)=

⎧⎪⎨⎪⎩
O
(
n−(q−3/2)/q

)
if 3

2 < q < 3,

O
(
n−1/2 log (n)

)
if q = 3,

O(n−1/2) if q > 3,
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where Cn is the coupling in (4.8 ) and Dn is the event that maxi∈[n] (Ai) > 0.

Proof. This proof is, in part, analogous to the proof of [16, Theorem 1] and is presented here
in full for completeness. The differences arise mainly due to the size-biasing of the weights.

Throughout, C1, C2, . . . are positive constants that depend only on q and the distribution of
A, and U ⊂ [0, ∞) is a generic Borel set.

Note that ECn

∣∣√A −
√

A(n)
∣∣ is the 1-Wasserstein distance between the distributions of

√
A

and
√

A(n). Hence, with the notation 2mF = {2mu : u ∈ F} for any event F, by [16, Lemmas 5
and 6],

ECn

∣∣√A −
√

A(n)
∣∣≤ C1

∑
m≥0

2m
∑
�≥0

2−�
∑

F∈P�

|ηn(2mF ∩ Um) − η(2mF ∩ Um)|, (4.9)

where P� is the partition of [0, 1] that consists of {0} and 2−�+1k + (0, 2−�+1] for k ∈
{0, 1, . . . , 2�−1 − 1}, U0 = [0, 1] and Um = [0, 2m] \ [0, 2m−1] for m ≥ 1, and η and ηn are the

probability distributions of
√

A and
√

A(n), respectively. Now, with the notation U2 = {u2 : u ∈
U}, by the triangle inequality,

|ηn(U) − η(U)| = |pn(U2) − p(U2)|

=
∣∣∣∣∑n

i=1 Ai1(Ai ∈ U2)

nμ
(n)
A

− E(A1(A ∈ U2))

μA

∣∣∣∣
≤ 1

nμ
(n)
A

n∑
i=1

Ai1(Ai ∈ U2)

∣∣∣∣1 − μ
(n)
A

μA

∣∣∣∣
+ 1

μA

∣∣∣∣∣1

n

n∑
i=1

Ai1(Ai ∈ U2) −E(A1(A ∈ U2))

∣∣∣∣∣. (4.10)

The second term on the right-hand side in (4.10) satisfies (with the first inequality following
from Jensen’s inequality)

E

(∣∣∣∣∣1

n

n∑
i=1

Ai1(Ai ∈ U2) −E(A1(A ∈ U2))

∣∣∣∣∣
)

≤
√√√√Var

(
1

n

n∑
i=1

Ai1(Ai ∈ U2)

)

≤ ( sup U)2

√
1

n
p(U2) (4.11)

and, again by the triangle inequality,

E

(∣∣∣∣∣1

n

n∑
i=1

Ai1(Ai ∈ U2) −E(A1(A ∈ U2))

∣∣∣∣∣
)

≤ 2( sup U)2p(U2). (4.12)

Combining (4.11) and (4.12) gives that the second term on the right-hand side in (4.10) satisfies

1

μA

∣∣∣∣∣1

n

n∑
i=1

Ai1(Ai ∈ U2) −E(A1(A ∈ U2))

∣∣∣∣∣≤ C2( sup U)2
(√

1

n
p(U2) ∧ p(U2)

)
. (4.13)
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In order to find a similar upper bound on the first term on the right-hand side in (4.10) we
define the event Sn as

Sn := {
μ

(n)
A ≤ μA − κ

}
, (4.14)

where κ ∈ (0, μA) is a fixed constant such that e(μA−κ)
E(e−A) < 1. Then, with the second

inequality following from Hölder’s inequality and the last inequality from
∑n

i=1 1(Ai ∈ U2) ∼
Bin(n, p(U2)),

E

(
1

nμ
(n)
A

n∑
i=1

Ai1(Ai ∈ U2)

∣∣∣∣1 − μ
(n)
A

μA

∣∣∣∣; Sc
n ∩ Dn

)

≤ ( sup U)2

(μA − κ)

(
1

n
E

(
n∑

i=1

1(Ai ∈ U2)

∣∣∣∣1 − μ
(n)
A

μA

∣∣∣∣
)

∧ (2p(U2))

)

≤ ( sup U)2

(μA − κ)

(√√√√ 1

n3
E

((
n∑

i=1

1(Ai ∈ U2)

)2)
Var

(
A

μA

)
∧ (2p(U2))

)

≤ ( sup U)2

(μA − κ)

(√
1

n3
np(U2)(np(U2) + 1)Var

(
A

μA

)
∧ (2p(U2))

)
≤ C3( sup U)2

(√
1

n
p(U2) ∧ p(U2)

)
. (4.15)

By the inequalities in (4.13) and (4.15), together with the fact that, for any G ⊂ [0, ∞),
sup (G ∩ U2

m) ≤ sup (U2
m) = 22m, we have

∑
F∈P�

E
(|ηn(2mF ∩ Um) − η(2mF ∩ Um)|; Dn ∩ Sc

n

)
≤ C4

(
22m

∑
F∈P�

(√
1

n
p(22mF2 ∩ U2

m) ∧ p(22mF2 ∩ U2
m)

))
(4.16)

and (with the second inequality following from the Cauchy–Schwarz inequality and the fact
that, since E(Aq) is finite, P(U2

m) ≤E(Aq)2−2qm)

∑
F∈P�

(√
1

n
p(22mF2 ∩ U2

m) ∧ p(22mF2 ∩ U2
m)

)
≤

(
1√
n

∑
F∈P�

√
p(22mF2 ∩ U2

m)

)
∧ p(U2

m)

≤ C5

((
1√
n

√
|P�|p(U2

m)

)
∧ 2−2qm

)
≤ C5

((
1√
n

√
2�E(Aq)2−2qm

)
∧ 2−2qm

)
≤ C6

(
1√
n

2�/2−qm ∧ 2−2qm
)

. (4.17)
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Hence, by (4.9), (4.16), and (4.17),

E
(
ECn

(∣∣√A −
√

A(n)
∣∣); Sc

n ∩ Dn
)≤ C7

∑
m≥0

2m
∑
�≥0

2−�+2m
(

1√
n

2�/2−qm ∧ 2−2qm
)

≤ C7

∑
m≥0

23m
∑
�≥0

2−�/2
(

1√
n

2−qm ∧ 2−2qm
)

≤ C8

∑
m≥0

(
1√
n

2m(3−q) ∧ 2−m(2q−3)
)

.

If q > 3 then

C8

∑
m≥0

(
1√
n

2m(3−q) ∧ 2−m(2q−3)
)

≤ C9
1√
n

.

If q ∈ ( 3
2 , 3

)
then, with mn = 	log(n)/(2q log(2))
,

C8

∑
m≥0

(
1√
n

2m(3−q) ∧ 2−m(2q−3)
)

≤ C8

mn∑
m=0

1√
n

2−m(q−3) + C8

∞∑
m>mn

2−m(2q−3) = O
(
n−(1−3/2q)).

If q = 3 then, with an = 	log(n)/log(2)
,

C8

∑
m≥0

(
1√
n

2m(3−q) ∧ 2−m(2q−3)
)

≤ C8
an√

n
+ C8

∞∑
m≥an

2−m(2q−3) = O
(
n−1/2 log (n)

)
.

Thus, it only remains to bound the expectation of ECn

(∣∣√A −
√

A(n)
∣∣) on Sn ∩ Dn, where

Sn is the event in (4.14). Now, with the third inequality following from the fact that on Sn we
have

√
Ai ≤ √

n(μA − κ) for i = 1, . . . , n,

E
(
ECn

(∣∣√A −
√

A(n)
∣∣); Sn ∩ Dn

)≤ P(Sn ∩ Dn)E
(√

A
)+E

(√
A(n); Sn ∩ Dn

)
= P(Sn ∩ Dn)E

(√
A
)+E

(∑n
i=1 A3/2

i∑n
i=1 Ai

; Sn ∩ Dn

)

≤ P(Sn ∩ Dn)E
(√

A
)+E

(
n∑

i=1

√
Ai; Sn ∩ Dn

)
≤ P(Sn ∩ Dn)E

(√
A
)+E(n3/2√μA − κ; Sn ∩ Dn)

=O
(
n3/2

P(Sn)
)=O

(
n3/2en(μa−κ)

E(e−A)n),
where the last step follows from the Chernoff bound P(Sn) ≤ en(μa−κ)

E(e−A)n. The assertion
now follows by recalling that e(μa−κ)

E(e−A) < 1. �
Lemma 4.7. Let εn be as in Proposition 4.2, and E(A2),E(B2) < ∞. Then, w.h.p.,

dTV
(
Po

(
B(n)μ

(n)
A /μA

)
, Po(B(n))

)≤ n−1/2+εn , (4.18)

dTV
(
Po

(
A(n)μ

(n)
B 	nμA/μB
/nμA

)
, Po(A(n))

)≤ n−1/2+εn . (4.19)
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Proof. Define Hn := {∣∣1 − μ
(n)
A /μA

∣∣≤ n−1/2+(1/2)εn
}
. By Chebyshev’s inequality, P(Hc

n) =
O(n−εn ). Now (again by [10, Theorem 1.C]),

E
(
dTV

(
Po

(
B(n)μ

(n)
A /μA

)
, Po(B(n))

)
; Hn

)≤E
(∣∣B(n)μ

(n)
A /μA − B(n)

∣∣; Hn
)

≤E
(
B(n)n

−1/2+(1/2)εn
)=O

(
n−1/2+(1/2)εn

)
.

This implies, using the union bound and Markov’s inequality,

P
(
dTV

(
Po

(
B(n)μ

(n)
A /μA

)
, Po(B(n))

)≥ n−1/2+εn
)≤ P(Hc

n) +O
(
n−1/2εn

)
.

This proves the inequality in (4.18), and the proof of the inequality in (4.19) is completely
analogous. �

Proof of Theorem 3.2. Let εn, q, and γ be as in Theorem 3.2, and let T ∈N0 be the number
of iterations in the construction algorithm on page 16 (i.e. NT = ET ). By Lemma 4.6, w.h.p. the
vertices of Vn and V ′

n that are explored in the first 	nγ−εn
 ∧ T steps of the construction algo-
rithm are distinct. Combining Lemma By Lemma 4.6 with Proposition 4.2 gives the assertion
of Theorem 3.2 by the union bound. �
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