- ON UNIVALENT POLYNOMIALS
by DAVID A. BRANNAN
(Received 31 January, 1969)

1. Introduction. Let P, be the class of normalised polynomials of the form
p(2)=z+a,z*+...+a,z" 1.1)

of degree n which are univalent in U = {|z| < 1}. In this note we discuss the coefficients of
polynomials in P, and in some of its subclasses.

Our principal tools will be

LemMA 1.1. (Dieudonné criterion) [6). The polynomial p,(z), of the form (1.1), is univalent
in U if and only if the associated equation of p,(z),

é(x,0) =1+ Y a,x*'sin(k—1)8/sind = 0,
k=2
has no roots in | x| < 1, for any 8 with 0 £ 6 < 3.

LeMMA 1.2. (Cohn rule) [9]. Suppose that
f(x)=ao+a;x+...+a,x"
is a polynomial of degree n, and
fXx)=a,+8, x+...+a5x".
Then, if |ao| = |a,, |, the polynomial
fi(x) = dof(x)—a,f*(x)

has the same number of zeros in | x| < 1 as has f(x).
Finally we recall the definitions of two classes of univalent functions which will appear

later. The analytic function f{(z) is said to be starlike in U if f(0) = 0, and the segment [0, f(z,)]
lies in f(U) for any z, in U [7]; analytically this may be expressed by the condition

Re(zf'[f)>0 (zin U).
Further, the analytic function g(z) is said to be close-to-convex in U if g(0) = 0, and
Re(zg’i[f)>0 (zinU)

for some starlike function f{(z) [8].
I would like to thank Professor J. Clunie for introducing me to the class P,, and for his
help and encouragement over a long period in this work.
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2. A particular subclass of P,. If the polynomial p,(z), of the form (1.1), is univalent in
U, p.(z) cannot vanish in U; consequently |a,‘ l < 1/n. In this section we consider polynomials
in P, where a, = 1/n.

Suppose that

P2 =z+a,z%+...+a,_, 2"t +z"n. Q.1
It was shown in [3] that, if p,(z) belongs to P,, then
(n—Ka,_y=(k+1Dae, (A2k=n-2).
In the opposite direction we have
THEOREM 2.1. Suppose that p,(z) is of the form (2.1). Then, if
(n—=Ka,_,=(k+1)a, (1sksz=n-2) (2.2)
and each a, ., is sufficiently small, p(z) belongs to P,.
Proof. The polynomial p,(z) belongs to P, if the equation

n-2 . :
sin(k+ 1)0xk+ sinnf

1+Y a ! — x""1=0
,El k1 sin nsinf

has no roots in lx| <1 for 06 <3in. Applying the Cohn rule to this equation, since
|sinnB/nsin@| < 1 for 0 < 0 < 4n, we see that p,(z) belongs to P, if

0 1—(Sinn0)2+"§x"<ak+lSin(k+l)0—5 sinnosjn(n;.k)g>

nsinf/ =2, sinf "“* nsinOsind

_1 sinnf 2+"i2 ky sin(k+1)8 (k+1)sinnfsin(n—k)8
- nsinf Xt sin@ (n—k)nsinOsind

k=1

has no rootsin | x| < 1 for 0 < 8 < 4n. Now each coefficient of x” (0 < r < n—2) has a double
zero at 6 = 0, and the constant term is always positive otherwise. Hence, if all the coefficients
of x" are chosen sufficiently small, this equation has no roots in [xl < 1, and p,(z) belongs to
P,

n

In 2 much underestimated paper [1] Alexander showed that the polynomials ) z*/k and
k=1

Y. z2**1j(2k+1) are univalent in U. We can put this result in a more general setting in
k=0

THEOREM 2.2. Suppose that
. n n
p2)=z+ Y a,z% and g 2)=z+ Y by, 2",
k=2 k=1

where ka, and 2k +1)b,, ., decrease as k increases. Then p,(z) and q,(z) are close-to-convex
univalent functions in U.
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Proof. We have, for ze U,

RC{ ZP:.(Z) }= Re{1+(1_2a2)z+nil (kak—(k+1)ak+1)zk_nanz"}

z/(1-2) K=2
n—1

2 1—(1-2a,)— Y, (kay—(k+1)ag,,)—na,
k=2

=0.
Hence p,(z) is close-to-convex in U. Similarly for ¢,(2).

However, in contrast with Theorems 2.1 and 2.2, we have the following surprising result
for starlike polynomials

THEOREM 2.3. Suppose that p,(2), of the form (2.1), belongs to P,. Then p,(2) is starlike
inUifand only ifa, =0 for 2k sn-1.

Proof. fa,=a,=... =a,_, =0, it is easy to show that p,(z) is starlike in U. We
therefore assume that p,(z) is starlike in U, and then show that this implies that a, = 0 for
2<k<n-1. Then

1+2a,z+...4+2""'  py(2)
14+azz+...+2" n~ h(z)

(where A(z) = p,(z)/z) has positive real part in U. Since p,(z) belongs to P,, we have that
(k+1)ay,, = (1—k)d,_, for 1 Sk Sn—2. Consequently, on |z| =1, we may define

aB) = p})""" (z=€")
= 2[cos(n—1)0+2]a,|cos {(n—3)0—-¢,} +...],
where ¢, = arga,. Furthermore, we may define f(6) and y(6) by

pz®) _ pi(2®) [h(Z?)
h(Zz) zn n—1 zn-—l

«6) _ «(8)B(6)— ia(6)y(0)
TEO+n® FO+O

where z = €”, No difficulty arises from the denominator, since the univalency of p,(z) ensures
that

B2(6)+7%(6) = |h(e*)]* = | p(e)}* > 0

for 0 < 6 £2n. We now show that «(f) can have only simple zeros for 0 £ 0 £ 2n. Let ¢
be a zero of a(f). Now, with z = ¢, we have

£(0) = [p,.(zz)]_u[hp (zz)_( _l)p..(zz)]
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Now a(¢) = 0, so that p;(z?) = 0 when z = ¢'*. Hence, if «'(¢) is also zero, we see that py(z*)
is zero at z = e*® as well. But then p,'(z) is zero at z = ¢***. This, however, is impossible,
since the existence of a double zero of pj(z) on |z| =1 is ruled out by the univalency of p,(z)
in U.

Now, the condition Re (zp,/p,) = 0 in U may be written in the form

«(0)BO) =0 for 0<0<2m;

since the zeros of «(#) are simple, this in turn shows that, whenever a(f) = 0, necessarily
B(@) =0. Now all of its 2(n—1) zeros lie in 0 < § £ 27 (corresponding to the n—1 zeros of
p.(2) all on |z| = 1) in the case of a(f), and hence the same must be true of f(6) since it is also
a trigonometric polynomial of degree n—1. Since a polynomial which has its maximum
number of zeros is determined by these zeros to within a constant factor, it follows that, for
some constant C, we have

«(0) = CH(0),

pz)z" ™! = CRe{p,(z})/z""'} on |z|=1.

Expanding both sides of this equation, and equating the highest terms, with z = ', we find
that C = 2n/(n+1). Substituting this value of C, and equating the other terms of the ex-
pansion in turn, we find that ¢, =0 for 2 < k < n—1. This completes the proof.

or

Note. In the case n = 3, this result also appears in [4].
3. Some coefficient bounds for P,. First we give bounds for the central coefficient of
particular trinomials in P,, .
THEOREM 3.1. The polynomial
Pan+1(2) = z4+az"* 142" [(2n 4 1)

belongs to P, , if and only if a is real and
1+ [sin(2n +1)6/(2n + 1)sin 6]
|sin (n + 1)6/sin 6|

Note. By (2.2), a must be real, and so we may assume that a = 0.

|a| = Min

}= n/4n{l+o(1)} for large n.
(0,4n)

Proof. Applying the Cohn rule to the associated Dieudonné equation for p,,,,(2), and
using the fact that | sin(2n+1)8/(2n+1)sin8| < 1 for 0 < 8 < 4, the first inequality follows.
Since (2/n)x <sinx £ x for 0 £ x < 4m, we can show that the above minimum occurs in
0 £ 0 £4n/(2n+1); by elementary differentiation, it must occur at n/2n+1){1+0(1)} for
large n. This gives the last inequality.

COROLLARY. The polynomials z+az*+%z> and z+bz>+4z° are univalent in U if and
only if a and b are real, and |a| < 8/9 and |b| = 3/s.
We now turn to the estimation of the (n— 1)th coefficients of polynomials in P,.
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THEOREM 3.2. Suppose that p,(z), of the form (1.1), belongs to P,. Then

(n=1)|a,-,| S 1+2n|aya,|-n?|a,|* <4; 3.1
in particular,
1+|(12|2, lf |a2| g 1:
(n=Dla,-| = {2|a2|, if |ay <1.

Proof. By the Dieudonné criterion, since p,(z) belongs to P,, the equation

nol sm (k+1)0

1+ a,
k=1

has no roots in | x| < 1 for 0 < 8 < 4n, and |a,| < 1/n. Applying the Cohn rule, we deduce
that the equation

n—2 k 1 - - -
1-|a P(smne) + Z ( sm(. + )O_ana"_ksmn?sm(.n k)()) 0

sinf sin@ sinf@sinf

=0
sin 8

has no roots in | x| < 1.for 0 < 0 < 4n. Consequently

sin n6\? sin(n—1)0  _ sinnBsin20
- |an|2 T 2 (£ - . —a,a; — .
sinf /] ~ sin 8 sinfsin 0
sin(n—1)0 sinnfsin 26
> pin S }
£ |In-1 sin @ ‘ @nG2 sin0sin 0

substituting 6 = 0, we obtain
1-n*|a,|*2 (n—1)|a,-,|-2nl|asa,|.

This gives the first inequality. The next three follow at once by considering the behaviour of
the expression 1+(n|a, |)(2|a;[)—(n]a,|)* where |a,| < 2 and |a,| < 1/n.

Note 1. Suffridge [10] has shown that the polynomial

—k+1 sin(kn/n+1) ,
s 2
n sin(n/n+1)

o n

)

k=1
belongs to P,. Consequently the constant 4 in (3.1) cannot be improved independently of a.
Note 2. Recent work has determined the coefficient regions for P; [3, 5], for starlike

polynomials in P [4], and for the subclass of P, with real Maclaurin coefficients [10]. However,
much work remains to be done on the general coefficient problem for P, (n > 3).
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Note 3. Results similar to Theorems 2.1, 2.3, 3.1, and 3.2 were obtained in [2] for the
class of * psendo-polynomials ™

@)=+ 3§ a2
k=1

analytic and univalent in 0 < |z| < 1.

Note 4. Using the fact that the class of linearly-accessible functions of Biernacki is
exactly the class of close-to-convex functions of Kaplan, we may observe that Alexander {1]
showed that the polynomial

p(2)= jz (A=e®0)...(1—e%11)dt,
0

where0 £ 6, <6, <...<0,_, <2rn £ 0,=0, + 2n, is close-to-convex in U if and only if

Oj41~0; 2 2nf(n+1) (1 £j < n—1).
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