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Abstract

In this paper we investigate the asymptotic behaviors of the finite- and infinite-time ruin
probabilities for a Poisson risk model with stochastic investment returns which constitute
a general adapted càdlàg process and heavy-tailed claim sizes which are bivariate upper
tail independent. The results of this paper show that the asymptotic ruin probabilities
are dominated by the extreme of insurance risk but not by that of investment risk. As
applications of the results, we discuss four special cases when the investment returns are
determined by a fractional Brownian motion, an integrated Vasicek model, an integrated
Cox–Ingersoll–Ross model, and the Heston model.
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1. Introduction

Throughout this paper, let (�, F , (Ft )t≥0, P) be a filtered complete probability space on
which all stochastic quantities are defined. The filtration (Ft )t≥0 is right continuous and all
stochastic processes to be defined in this paper are adapted to the filtration.

Suppose that the claim sizes {Xn, n ≥ 1} of an insurance business are a sequence of positive
and identically distributed random variables (RVs) with common distribution function (DF)
F satisfying F̄ (x) = 1 − F(x) > 0 for all x > 0. In addition, the claim sizes are bivariate
upper tail independent (see Section 2 for the definition). The interarrival times {Yn, n ≥ 1},
independent of {Xn, n ≥ 1}, form another sequence of independent and identically distributed
exponential RVs with parameter λ > 0. Then, the arrival times of the successive claims,
τn = ∑n

i=1 Yi, n ≥ 1, constitute a homogeneous Poisson process

Nt =
∞∑

n=1

1[τn≤t], t ≥ 0.

Here and in the sequel, 1A denotes the indicator function of an event A. Hence, the total claim

Received 4 May 2010; revision received 28 March 2012.
∗ Postal address: Center of Financial Engineering, Nanjing Audit University, Nanjing 211815, China.
Email address: wangdc@nau.edu.cn

241

https://doi.org/10.1239/aap/1363354110 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354110


242 F. GUO AND D. WANG

sizes up to time t ≥ 0 can be expressed as

St =
Nt∑

n=1

Xn

with St = 0 when Nt = 0.
Suppose that the total premiums up to time t ≥ 0 is ct , where c is a positive constant, and

the surplus process of the insurance business is perturbed by a diffusion. Then, the total surplus
of the insurance business up to time t ≥ 0, denoted by Rt , can be written as

Rt = x + ct − St + σBt ,

where x > 0 is the initial capital, σ > 0 is the constant volatility, and B is a standard Brownian
motion.

Suppose that the surplus of the insurance business can be invested into a portfolio of some
risk-free and risky assets. The price process {Zt , t ≥ 0} of the investment portfolio satisfies

dZt = Zt− dLt , t > 0, Z0 = 1,

where {Lt , t ≥ 0} is a semimartingale. According to Theorem 37 of [24, Chapter II], the
solution to the above stochastic differential equation (SDE) is

Zt = exp

{
Lt − 1

2
[L, L]t

} ∏
0<s≤t

(1 + �Ls) exp

{
−�Ls + 1

2
(�Ls)

2
}

=: eL̂t ,

where �Ls = Ls − Ls− and [L, L] is the quadratic variation process of L. Obviously, L̂ is
also a semimartingale. For more details of semimartingales and stochastic integrals, see [24].

Define the integrated risk process {Ut, t ≥ 0} as the result of the insurance business and the
net gains of the investment, namely, the solution to the SDE

dUt = Ut− dLt + dRt , t > 0, U0 = x.

Provided that the quadratic covariation process [L, R] ≡ 0 almost surely, the solution is

Ut = eL̂t

(
x +

∫ t

0
e−L̂s− dRs

)
, t > 0, U0 = x.

In this paper, instead of the semimartingale {L̂t , t ≥ 0}, we adopt a more general adapted
càdlàg process {ξt , t ≥ 0} with ξ0 = 0, independent of {Xn, n ≥ 1} and {τn, n ≥ 1}, to model
the log investment returns. Namely, we consider the more general risk model

Ut = eξt

(
x +

∫ t

0
e−ξs− dRs

)
, t > 0, U0 = x. (1.1)

The ruin probability up to time t ≥ 0 and the infinite-time ruin probability of model (1.1) are
respectively defined as

�(x, t) = P

( ⋃
0≤s≤t

(Us < 0)

∣∣∣∣ U0 = x

)
, �(x) = P

( ⋃
0≤s<∞

(Us < 0)

∣∣∣∣ U0 = x

)
.
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Many researchers have studied Poisson risk models with risky investments. For example,
Frolova et al. [13], Paulsen and Gjessing [23], Kalashnikov and Norberg [17], and Gaier and
Grandits [14] considered Poisson risk models with investment returns modeled by geometric
Brownian motions. With the prices of risky assets modeled by general exponential Lévy
processes with jumps, Emmer and Klüppelberg [12] investigated the optimization problem of
investment portfolios. Paulsen [22] considered the asymptotic behavior for large initial capital
of the ultimate ruin probability under a Poisson risk model when investment returns are a
general Lévy process. His result showed that the ruin probability behaves like a Pareto function
of the (large) initial capital. The Pareto exponent depends on the interaction between insurance
claims and the investment return process. Cai andYang [6] investigated the ruin probabilities of
a perturbed compound Poisson risk model in which investment returns follow a linear process
or a jump diffusion process. Using the theory of stochastic recurrence equations (see [15] and
[19]), Klüppelberg and Kostadinova [18] studied the tail behavior of the ultimate integrated
risk for a discounted net loss process. They showed that if the order of the finite moment of
the common claim size distribution function is greater than κθ (a constant related to portfolio
investments but not to insurance claims; see their paper for details), the extreme of investment
risk will determine the tail behavior of the ultimate integrated risk for the process. They referred
to this as the case of dangerous investment. If the claim size distribution function has a regularly
varying tail with tail index −α and α < κθ , the extreme of insurance risk will determine the
tail behavior of the ultimate integrated risk for the process. They referred to this as the case of
dangerous claims. Heyde and Wang [16] further investigated the finite-time ruin probability of
the Poisson risk model considered by Klüppelberg and Kostadinova [18] when the claim size
distribution function is in a larger heavy-tailed distribution function class. Their result showed
that in finite time, however, the extreme of insurance risk dominates that of investment risk,
but, for the case of dangerous investment, the extreme of investment risk has a greater effect on
the total risk, and as time passes, the extreme of investment risk finally dominates the extreme
of insurance risk.

Recently, the asymptotic tail probabilities for many discrete-time risk models with
dependence structures have attracted a lot of attention due to their practical importance. Among
them, Mikosch and Samorodnitsky [20] used a two-sided linear process to model the step sizes
of a random walk and investigated the tail asymptotics for the supremum of the partial sums
of the random walk. Under a regular variation tail condition, they showed that the dependence
among the step sizes has an obvious impact on the tail asymptotics. However, the studies of
Wang and Tang [27], Tang [26], and Wang et al. [29] showed that the tail asymptotics for the
partial sums of random walks are insensitive to the case of negatively dependent or negatively
associated step sizes under different heavy tail conditions. It should be noted that the effect of
investment returns was not considered in any of these papers.

The asymptotic tail probabilities for randomly weighted sums
∑n

i=1 �iXi and their
maxima, where the step sizes {Xi, i ≥ 1} are independent of random weights {�i, i ≥ 1},
have important applications in discrete-time risk models. Wang and Tang [28] and Wang
et al. [30] studied them under the condition that {Xi, i ≥ 1} is a sequence of indepen-
dent and identically distributed RVs. Zhang et al. [31] extended their results to the case in
which the step sizes {Xi, i ≥ 1} are bivariate upper tail independent. When the common
distribution function of {Xi, i ≥ 1} has an extended regular varying tail, they proved that
P(max1≤k ≤ n

∑k
i=1 �iXi > x) ∼ P(

∑n
i=1 �iXi > x) ∼ ∑n

i=1 P(�iXi > x) and extended
them to the case n = ∞. In all of these papers the results were applied to the discussion
of discrete-time risk models with random investment returns.
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Chen and Ng [7] investigated the asymptotic behavior of the ultimate ruin probability for a
renewal risk model with constant interest rate and pairwise negatively dependent claim sizes.
For the case of extended regularly varying tails, they proved that �(x) ∼ ∫ ∞

0 F̄ (xeδs) dλs ,
where δ is the constant interest rate.

It is worth pointing out that in all Poisson risk models considered by Paulsen [22], Paulsen
and Gjessing [23], Cai and Yang [6], Klüppleberg and Kostadinova [18], and Heyde and Wang
[16], investment return processes are assumed to have independent and stationary increments
and claim processes are modeled by homogeneous Poisson processes with independent claim
sizes. However, empirical evidence shows that there is often a long-range dependence in
square or absolute returns, and returns and their volatilities are often negatively correlated.
Such evidence indicates that investment return processes usually have nonindependent or
nonstationary increments. Besides, because of the increasing complexity of insurance and
reinsurance products, it is more realistic to investigate insurance risk models with dependent
claim sizes. There are few papers in which ruin problems of continuous-time risk models with
dependence structures are investigated. Collamore [9] discussed random recurrence equations
and the infinite-time ruin probability with a Markov-dependent stochastic investment return
process, which still has a strong constraint on dependence structures.

Until now, no paper has simultaneously addressed continuous-time risk models with general
stochastic investment returns and dependent claim sizes. In this paper we use bivariate upper
tail independence introduced by Zhang et al. [31] to characterize the dependence structure of
claim sizes and adopt a general adapted càdlàg process to model stochastic investment returns.
When the claim size distribution function is heavy tailed and the investment returns satisfy
some mild conditions, we derive some asymptotic formulae for the finite- and infinite-time
ruin probabilities of model (1.1). We thus show that the asymptotic ruin probabilities are
dominated by the extreme of insurance risk but not by that of investment risk. As applications
of the results, we discuss four special cases when the investment returns are determined by a
fractional Brownian motion, an integrated Vasicek model, an integrated Cox–Ingersoll–Ross
model, and the Heston model.

The rest of this paper consists of four sections. In Section 2 we introduce some notation
and state the main results in this paper. In Section 3 we discuss some applications of the main
results. Section 4 provides some important lemmas, and in Section 5 we prove the main results.

2. Notation and main results

Hereafter, all limit relationships are for x → ∞ unless stated otherwise. For two positive
functions a(·) and b(·) satisfying

0 ≤ l− = lim inf
x→∞

a(x)

b(x)
≤ lim sup

x→∞
a(x)

b(x)
= l+ ≤ ∞,

we write a(x) � b(x) if l+ ≤ 1; a(x) � b(x) if l− ≥ 1; a(x) ∼ b(x) if l+ = l− = 1; and
a(x) � b(x) if 0 < l− ≤ l+ < ∞.

We recall two classes of heavy-tailed distribution functions which are crucial for our purpose.
We say that a distribution function F has a regularly varying tail with index −α ≤ 0, denoted
by F ∈ R−α , if

lim
x→∞

F̄ (xy)

F̄ (x)
= y−α for any y > 0.
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We say that a distribution function F belongs to the class C (has a consistently varying tail) if

lim
c↑1

lim sup
x→∞

F̄ (cx)

F̄ (x)
= 1, or, equivalently, lim

c↓1
lim inf
x→∞

F̄ (cx)

F̄ (x)
= 1. (2.1)

The regular property in (2.1) of the tail probability F̄ was first introduced and named the
‘intermediate regular varying property’ by Bingham et al. [2]. The class C has been used in
many studies of applied probability, such as queueing and risk theories, and contains the class
R−α . In fact, Cai and Tang [5] showed that the class C is strictly larger than the class R−α .

For notational convenience, we also say that an RV belongs to one of the two classes if its
distribution function belongs to the class.

Now we recall two significant indices of a general RV. Let X be an RV with a distribution
function F concentrated on (−∞, ∞). For any y > 0, we set

F̄∗(y) = lim inf
x→∞

F̄ (xy)

F̄ (x)
and F̄ ∗(y) = lim sup

x→∞
F̄ (xy)

F̄ (x)
,

and then define

J
+
F = J

+(X) = inf

{
− log F̄∗(y)

log y
: y > 1

}
= − lim

y→∞
log F̄∗(y)

log y
,

J
−
F = J

−(X) = sup

{
− log F̄ ∗(y)

log y
: y > 1

}
= − lim

y→∞
log F̄ ∗(y)

log y
.

Here J
+
F and J

−
F are called the upper and lower Matuszewska indices of the nonnegative and

nondecreasing function f (x) = (F̄ (x))−1, x ≥ 0 (see Chapter 2.1 of [2]). Specifically, if
F ∈ C then 0 ≤ J

+
F < ∞, and if F ∈ R−α with α ≥ 0 then J

−
F = J

+
F = α.

Next, we give the definition of the bivariate upper tail independence of a random sequence,
which was also considered by Zhang et al. [31]. We say that a random sequence {Xn, n ≥ 1} is
bivariate upper tail independent or has no bivariate upper tail dependence if, for any i, j ≥ 1,

i �= j ,

lim
x→∞

P(Xi > x, Xj > x)

P(Xk > x)
= 0, k = i, j. (2.2)

We are now ready to state the main results in this paper.

Theorem 2.1. Consider the Poisson risk model introduced in Section 1 with F ∈ C and claim
sizes satisfying (2.2). If there exists some constant κ > max{J+

F , 2} such that
∫ t

0 Ee−κξs ds < ∞
for some t > 0 then

�(x, t) ∼ λ

∫ t

0
P(X1e−ξs > x) ds as x → ∞. (2.3)

Specifically, if F ∈ R−α for some α ≥ 0 then

�(x, t) ∼ λF̄ (x)

∫ t

0
Ee−αξs ds as x → ∞. (2.4)
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Theorem 2.2. Consider the Poisson risk model introduced in Section 1. Suppose that F ∈ C
with J

−
F > 0 and that the claim sizes satisfy (2.2). If there exist some constants κ > max{J+

F , 2}
and η > κ − 1 + 2κ/J

−
F such that

∫ ∞
0 max{sη, 1}Ee−κξs ds < ∞, then

�(x) ∼ λ

∫ ∞

0
P(X1e−ξs > x) ds as x → ∞. (2.5)

Specifically, if F ∈ R−α for some α > 0 then

�(x) ∼ λF̄ (x)

∫ ∞

0
Ee−αξs ds as x → ∞. (2.6)

Remark 2.1. Theorems 2.1 and 2.2 address only the cases in which the asymptotic ruin
probability is dominated by the extreme of insurance risk but not by that of investment risk.
This can be seen from relations (2.4) and (2.6), which show that the tail probability of the claim
sizes determines the exact decay rate, while the investment uncertainty and the claim frequency
contribute to only the coefficients of these asymptotic formulae. It is well known that if claim
sizes do not have such heavy tails, the investment risk will dominate the ruin asymptotics.

Remark 2.2. If {Xn, n ≥ 1} is a sequence of independent and identically distributed RVs,
assumption (2.2) will be satisfied automatically and the corresponding results of Klüppelberg
and Kostadinova [18] and Heyde and Wang [16] can be derived from Theorems 2.1 and 2.2
with ξs replaced by a Lévy process Lθ(s) specified in their papers.

Remark 2.3. Assumption (2.2) is closely related to the copula-based index of upper tail
dependence. Let X = (X1, X2) be a two-dimensional random vector with continuous and
strongly increasing marginal distribution functions FX1 and FX2 . The index of the upper tail
dependence for X is defined as

λU = lim
v↑1

P(X1 > F−1
X1

(v), X2 > F−1
X2

(v))

P(Xk > F−1
Xk

(v))

= lim
v↑1

P(X1 > F−1
X1

(v), X2 > F−1
X2

(v))

1 − v
, k = 1, 2,

provided it exists. We say that X has upper tail dependence if λU ∈ (0, 1], and has no upper tail
dependence if λU = 0. If the claim sizes {Xn, n ≥ 1} are identically distributed then Sklar’s
theorem (see, e.g. [21]) ensures that assumption (2.2) is equivalent to no upper tail dependence.

3. Applications

In this section we apply our results to some important investment return processes.

3.1. Application to fractional Brownian motions

Suppose that the investment return process {Zt = eξt , t ≥ 0} is modeled by

dZt = µZt dt + δZt dBH (t), t > 0, Z0 = 1, (3.1)

where µ, δ > 0 are two constants and {BH (t), t ≥ 0} is a fractional Brownian motion
with Hurst parameter H ∈ (0, 1). By definition, a process {BH (t), t ≥ 0} is said to be a
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fractional Brownian motion if it is a continuous-time Gaussian process starting from 0 with
mean EBH (t) = 0 for all t ≥ 0 and covariance

E[BH (t)BH (s)] = 1
2 (|t |2H + |s|2H − |t − s|2H ), t, s ≥ 0.

The integral form of (3.1) is

Zt = 1 + µ

∫ t

0
Zs ds + δ

∫ t

0
Zs dBH (s), (3.2)

where
∫ t

0 Zs dBH (s) is a Wick–Itô–Skorokhod integral. For more details of fractional Brownian
motions and Wick–Itô–Skorokhod integrals, see [1].

The following theorem is a consequence of Theorems 2.1 and 2.2.

Theorem 3.1. Consider the Poisson risk model introduced in Section 1. Suppose that the
investment return process {Zt = eξt , t ≥ 0} is modeled by (3.1) or (3.2) with Hurst parameter
H ∈ (0, 1), and that the claim sizes {Xn, n ≥ 1} are bivariate upper tail independent, i.e. they
satisfy relation (2.2). If the claim-size distribution function F ∈ R−α for some α > 0 then, for
arbitrarily fixed t > 0,

�(x, t) ∼ λF̄ (x)

∫ t

0
exp

{
−αµs + δ2(α + α2)

2
s2H

}
ds as x → ∞. (3.3)

Furthermore, for the case H ∈ (0, 1
2 ), we have

�(x) ∼ λF̄ (x)

∫ ∞

0
exp

{
−αµs + δ2(α + α2)

2
s2H

}
ds as x → ∞; (3.4)

for the case H = 1
2 , if δ2(max{α, 2} + 1) < 2µ then relation (3.4) still holds.

Proof. By Itô’s formula for Wick–Itô–Skorokhod integrals (see, e.g. Theorem 4.2.6 of [1]),
we can verify that the solution to (3.1) or (3.2) is

eξt = Zt = exp
{
µt + δBH (t) − 1

2δ2t2H
}
. (3.5)

Note that BH (t) is a Gaussian RV with mean EBH (t) = 0 and variance var(BH (t)) = t2H .
Then, for any κ > 0, we have

Ee−κξt = E exp

{
−κµt − κδBH (t) + κ

2
δ2t2H

}
= exp

{
−κµt + δ2(κ + κ2)

2
t2H

}
. (3.6)

It follows that
∫ t

0 Ee−κξs ds < ∞ for any κ > 0. By Theorem 2.1 and (3.6), relation (3.3)
holds.

Next, we prove relation (3.4). For the case H ∈ (0, 1
2 ), from (3.6) we obtain

∫ ∞
0 max{sη, 1}

Ee−κξs ds < ∞ for any κ > 0 and any η > 0. According to Theorem 2.2 and (3.6), we obtain
(3.4). For the case H = 1

2 , since δ2(max{α, 2} + 1) < 2µ, we can take some κ > max{α, 2}
such that

−κµ + 1
2δ2(κ + κ2) < 0.

For the fixed κ and any η > 0, from (3.6) we obtain
∫ ∞

0 max{sη, 1}Ee−κξs ds < ∞. Thus, by
Theorem 2.2 and (3.6), we obtain (3.4).
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Remark 3.1. If H > 1
2 then {BH (t), t ≥ 0} has a long-range dependence in the sense that

∞∑
n=1

�(n) = ∞

with �(n) = cov{BH (1), [BH (n+ 1)−BH (n)]}. Define �ξ (n) = cov{ξ1, (ξn+1 − ξn)}, where
the ξt , t ≥ 0, are defined in (3.5). From EBH (t) = 0 we obtain

�ξ (n) = δ2
E(BH (1)[BH (n + 1) − BH (n)]) = δ2�(n).

Hence,
∑∞

n=1 �ξ (n) = δ2 ∑∞
n=1 �(n) = ∞, namely, the log-investment return process {ξt , t ≥

0} has a long-range dependence. This is different from the risk model considered by Klüppelberg
and Kostadinova [18] and Heyde and Wang [16] in which the log returns of portfolio investment
are Lévy processes and, hence, have independent increments.

3.2. Application to integrated stochastic short rate models

Suppose that the log-investment return process {ξt , t ≥ 0} satisfies

ξt =
∫ t

0
rs ds, t > 0, ξ0 = 0, (3.7)

where {rt , t ≥ 0} is a stochastic short-rate process satisfying

drt = γ (ι − rt ) dt + δrπ
t dWt. (3.8)

Here γ, ι, and δ are three positive constants, π = 0 or 1
2 , and {Wt, t ≥ 0} is a standard Wiener

process. In mathematical finance, model (3.8) with π = 0 is called the Vasicek model and
model (3.8) with π = 1

2 is called the Cox–Ingersoll–Ross model.
We first consider the case in which {ξt , t ≥ 0} is modeled by (3.7)–(3.8) with π = 0, namely,

the log-investment return process is an integrated Vasicek process. In this case, the following
theorem holds.

Theorem 3.2. Consider the Poisson risk model introduced in Section 1. Suppose that the log-
investment return process {ξt , t ≥ 0} is modeled by (3.7)–(3.8) with π = 0 and that the claim
sizes {Xn, n ≥ 1} are bivariate upper tail independent, i.e. they satisfy relation (2.2). If the
claim size distribution function F ∈ R−α for some α > 0 then, for arbitrarily fixed t > 0,

�(x, t) ∼ λF̄ (x)

∫ t

0
exp{A1(α) + A2(α)s + A3(α)e−γ s + A4(α)e−2γ s} ds as x → ∞,

(3.9)
where

A1(α) = ι − r0

γ
α − 3δ2

4γ 3 α2, A2(α) = −ια + δ2

2γ 2 α2,

A3(α) = r0 − ι

γ
α + δ2

γ 3 α2, A4(α) = − δ2

4γ 3 α2.

Furthermore, if max{α, 2} < 2γ 2ι/δ2 then

�(x) ∼ λF̄ (x)

∫ ∞

0
exp{A1(α) + A2(α)s + A3(α)e−γ s + A4(α)e−2γ s} ds as x → ∞.

(3.10)
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Proof. We will apply Theorems 2.1 and 2.2 to prove this theorem. To verify the conditions
of Theorems 2.1 and 2.2, we need the explicit expression of Ee−κξt . Instead of computing
Ee−κξt directly, we compute the moment generating function of (rt , ξt ). For any pair of real
numbers (a, b), define

M1(a, b, t) = Eeart+bξt = E exp

{
art + b

∫ t

0
rs ds

}
,

where the rt , t ≥ 0, are defined in (3.8) with π = 0. According to Example 4.4.10 of [25],
rt is a Gaussian RV. Then,

∫ t

0 rs ds = (γ ιt + r0 − rt + δWt)/γ is also a Gaussian random
variable. Thus, M1(a, b, t) is finite for any real vector (a, b). Applying Itô’s formula to
exp{art + b

∫ t

0 rs ds} and then taking expectations, we obtain

M1(a, b, t) = ear0 +
(

aγ ι + a2δ2

2

) ∫ t

0
M1(a, b, s) ds + (b − aγ )

∫ t

0

∂M1(a, b, s)

∂a
ds,

where we have used the following property of the moment generating function:

∂M1(a, b, s)

∂a
= E

(
rs exp

{
ars + b

∫ s

0
rv dv

})
.

Differentiating the above integral equation with respect to t , we obtain

∂M1(a, b, t)

∂t
+ (aγ − b)

∂M1(a, b, t)

∂a
=

(
aγ ι + a2δ2

2

)
M1(a, b, t),

M1(a, b, 0) = ear0 .

(3.11)

Now we apply the method of characteristics to solve (3.11). The characteristic equations of
(3.11) are

d

ds
t (c, s) = 1,

d

ds
a(c, s) = aγ − b,

d

ds
z(c, s) = aγ ιz + a2δ2

2
z, (3.12)

with initial conditions

t (c, 0) = 0, a(c, 0) = c, z(c, 0) = ecr0 . (3.13)

The solution to (3.12)–(3.13) is

t (c, s) = s, a(c, s) = b

γ
+

(
c − b

γ

)
eγ s,

z(c, s) = exp

{
cr0 + γ ι

∫ s

0
a(c, y) dy + δ2

2

∫ s

0
a2(c, y) dy

}
.

(3.14)

From (3.14), we can solve for c and s in terms of a and t :

s = t, c = b

γ
+

(
a − b

γ

)
e−γ t . (3.15)

Thus, by (3.14)–(3.15), we obtain

M1(a, b, t) = z(c(a, t), s(a, t))

= exp{Â1(a, b) + Â2(a, b)t + Â3(a, b)e−γ t + Â4(a, b)e−2γ t }, (3.16)
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where

Â1(a, b) = br0

γ
+

(
ι + bδ2

γ 2

)(
a − b

γ

)
+ δ2

4γ

(
a − b

γ

)2

, Â2(a, b) = bι + δ2b2

2γ 2 ,

(3.17)

Â3(a, b) =
(

r0 − ι − bδ2

γ 2

)(
a − b

γ

)
, Â4(a, b) = − δ2

4γ

(
a − b

γ

)2

. (3.18)

Now we are ready to compute Ee−κξt . By taking a = 0 and b = −κ in (3.16)–(3.18), we
obtain

Ee−κξt = M1(0, −κ, t) = exp{A1(κ) + A2(κ)t + A3(κ)e−γ t + A4(κ)e−2γ t }, (3.19)

where

A1(κ) = ι − r0

γ
κ − 3δ2

4γ 3 κ2, A2(κ) = −ικ + δ2

2γ 2 κ2, (3.20)

A3(κ) = r0 − ι

γ
κ + δ2

γ 3 κ2, A4(κ) = − δ2

4γ 3 κ2. (3.21)

It follows that
∫ t

0 Ee−κξs ds < ∞ for any κ > 0. By Theorem 2.1 and (3.19)–(3.21), we obtain
(3.9).

Next, we prove relation (3.10). According to (3.19)–(3.21), we obtain

Ee−κξt ∼ exp

{
ι − r0

γ
κ − 3δ2

4γ 3 κ2 +
(

−κι + δ2κ2

2γ 2

)
t

}
as t → ∞.

Since max{α, 2} < 2γ 2ι/δ2, we can take some κ > 0 such that max{α, 2} < κ < 2γ 2ι/δ2.
Clearly, −κι + δ2κ2/(2γ 2) < 0. Thus, from the above asymptotic relation, we see that∫ ∞

0 max{sη, 1}Ee−κξs ds < ∞ for the fixed κ and any η > 0. By Theorem 2.2 and (3.19)–
(3.21), we obtain (3.10).

Let us now consider the case in which {ξt , t ≥ 0} is modeled by (3.7)–(3.8) with π = 1
2 ,

namely, the log-investment return process is an integrated Cox–Ingersoll–Ross process. In this
case, we have the following result.

Theorem 3.3. Consider the Poisson risk model introduced in Section 1. Suppose that the
log-return process {ξt , t ≥ 0} is modeled by (3.7)–(3.8) with π = 1

2 and that the claim sizes
{Xn, n ≥ 1} are bivariate upper tail independent, i.e. they satisfy relation (2.2). If the claim
size distribution function F ∈ R−α for some α > 0 then, for arbitrarily fixed t > 0,

�(x, t) ∼ λF̄ (x)

∫ t

0
B1(α, s)eB2(α,s)r0 ds as x → ∞, (3.22)

where

�(α) =
√

γ 2 + 2δ2α,

B1(α, s) =
(

eγ s/2

cosh(�(α)s/2) + γ sinh(�(α)s/2)/�(α)

)2γ ι/δ2

,

B2(α, s) = − 2α

γ + �(α) coth(�(α)s/2)
.
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Furthermore,

�(x) ∼ λF̄ (x)

∫ ∞

0
B1(α, s)eB2(α,s)r0 ds as x → ∞. (3.23)

Proof. We will apply Theorems 2.1 and 2.2 to prove this theorem. To verify the conditions
of Theorems 2.1 and 2.2, we need the explicit expression of Ee−κξt . Instead of computing
Ee−κξt directly, we compute the moment generating function of (rt , ξt ). For any pair of real
numbers (a, b), define

M2(a, b, t) = Eeart+bξt = E exp

{
art + b

∫ t

0
rs ds

}
,

where the rt , t ≥ 0, are defined in (3.8) with π = 1
2 . Since both rt and

∫ t

0 rs ds have moment
generating functions (see [11]), M2(a, b, t) is finite for (a, b) in a neighborhood of (0, 0).
Applying Itô’s formula to exp{art + b

∫ t

0 rs ds} and then taking expectations, we obtain

M2(a, b, t) = ear0 + aγ ι

∫ t

0
M2(a, b, s) ds +

(
b + a2δ2

2
− aγ

) ∫ t

0

∂M2(a, b, s)

∂a
ds,

where we have used the following property of the moment generating function:

∂M2(a, b, s)

∂a
= E

(
rs exp

{
ars + b

∫ s

0
rvdv

})
.

Differentiating the above integral equation with respect to t , we obtain

∂M2(a, b, t)

∂t
+

(
−b − a2δ2

2
+ aγ

)
∂M2(a, b, t)

∂a
= aγ ιM2(a, b, t),

M2(a, b, 0) = ear0 .

(3.24)

Now we apply the method of characteristics to solve (3.24). The characteristic equations of
(3.24) are

d

ds
t (c, s) = 1,

d

ds
a(c, s) = −b − a2δ2

2
+ aγ,

d

ds
z(c, s) = aγ ιz, (3.25)

with initial conditions

t (c, 0) = 0, a(c, 0) = c, z(c, 0) = ecr0 . (3.26)

Provided that γ 2 > 2δ2b, the solution to (3.25)–(3.26) is

t (c, s) = s, a(c, s) = γ

δ2 + �̂(b)

δ2 tanh

(
�̂(b)s

2
− arctanh

γ − cδ2

�̂(b)

)
,

z(c, s) = exp

{
cr0 + γ ι

∫ s

0
a(c, y) dy

}
,

(3.27)

where

�̂(b) =
√

γ 2 − 2δ2b. (3.28)
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By (3.27), we can solve for c and s in terms of a and t :

s = t, c = γ

δ2 − �̂(b)

δ2 tanh

(
�̂(b)t

2
+ arctanh

γ − aδ2

�̂(b)

)
. (3.29)

From (3.27)–(3.29), it follows that if γ 2 > 2δ2b then

M2(a, b, t) = z(c(a, t), s(a, t))

= exp

{
ĉ(a, b)r0 + (γ − �̂(b))γ ιt

δ2 − 2γ ι

δ2 ln

(
ζ(a, b) − e−�̂(b)t

ζ(a, b) − 1

)}
, (3.30)

where ĉ(a, b) has an equivalent expression to that of c in (3.29), namely,

ĉ(a, b) = γ − �̂(b)

δ2 − 2�̂(b)

δ2

1

ζ(a, b)e�̂(b)t − 1

and ζ(a, b) = 1 − 2�̂(b)

δ2a + (�̂(b) − γ )
.

(3.31)

Now we are ready to compute Ee−κξt . By taking a = 0 and b = −κ in (3.30)–(3.31), we
obtain

Ee−κξt = M2(0, −κ, t) = B1(κ, t)eB2(κ,t)r0 , (3.32)

where

�(κ) =
√

γ 2 + 2δ2κ, (3.33)

B1(κ, t) =
(

eγ t/2

cosh(�(κ)t/2) + γ sinh(�(κ)t/2)/�(κ)

)2γ ι/δ2

, (3.34)

B2(κ, t) = − 2κ

γ + �(κ) coth(�(κ)t/2)
. (3.35)

It follows that
∫ t

0 Ee−κξs ds < ∞ for any κ > 0. By Theorem 2.1 and (3.32)–(3.35), we obtain
(3.22).

Next, we prove relation (3.23). By (3.32)–(3.35), we obtain

Ee−κξt ∼ C0 exp

{
γ ι

δ2 (γ − �(κ))t

}
= C0 exp

{
γ ι

δ2 (γ −
√

γ 2 + 2δ2κ)t

}
as t → ∞,

where C0 is a positive constant. It follows that
∫ ∞

0 max{sη, 1}Ee−κξs ds < ∞ for any κ > 0
and any η > 0. By Theorem 2.2 and (3.32)–(3.35), we obtain (3.23).

3.3. Application to the Heston model

Suppose that the investment return process {Zt = e−ξt , t ≥ 0} is described by the Heston
model, namely,

dZt = µZt dt + √
νtZt dW

(1)
t , (3.36)

where µ ≥ 0 is the risk-free rate, {W(1)
t , t ≥ 0} is a standard Wiener process, and {νt , t ≥ 0}

is the variance process satisfying

dνt = γ (ι − νt ) dt + δ
√

νt dW
(2)
t , t > 0, (3.37)
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with a constant starting point ν0 > 0. Here ι > 0 is the long-term mean, γ > 0 is the mean
reverting speed, δ > 0 is the volatility of the variance process itself, and {W(2)

t , t ≥ 0} is
another standard Wiener process correlated to the Wiener process {W(1)

t , t ≥ 0} in (3.36) by

dW
(1)
t = ρ dW

(2)
t +

√
1 − ρ2 dW

(3)
t , (3.38)

where {W(3)
t , t ≥ 0} is a standardWiener process independent of {W(2)

t , t ≥ 0} and ρ ∈ [−1, 1]
is the correlation coefficient. A negative correlation (ρ < 0) between {W(1)

t , t ≥ 0} and
{W(2)

t , t ≥ 0} is known as the leverage effect. In addition, we assume that the parameters in
(3.37) satisfy the stability condition

2γ ι

δ2 > 1. (3.39)

This condition ensures that the variance process {νt , t ≥ 0} remains positive, starting from a
positive variance ν0; see [4].

According to Theorems 2.1 and 2.2, the following theorem holds.

Theorem 3.4. Consider the Poisson risk model introduced in Section 1. Suppose that the
investment return process {Zt = eξt , t ≥ 0} is modeled by (3.36)–(3.39) with ρ ∈ [−1, 0] and
ν0 being a positive constant, and that the claim sizes {Xn, n ≥ 1} are bivariate upper tail
independent, i.e. they satisfy relation (2.2). If the claim size distribution function F ∈ R−α for
some α > 0 and the constant α′ = max{α, 2} satisfies

γ + α′ρδ > δ
√

α′(α′ + 1), (3.40)

then, for arbitrarily fixed t > 0,

�(x, t) ∼ λF̄ (x)

∫ t

0
C1(α, s)e−αµs+C2(α,s)ν0 ds as x → ∞, (3.41)

where

�(α) =
√

(γ + αρδ)2 − δ2(α2 + α), (3.42)

C1(α, s) =
(

e(γ+αρδ)s/2

cosh(�(α)s/2) + (γ + αρδ) sinh(�(α)s/2)/�(α)

)2γ ι/δ2

, (3.43)

C2(α, s) = α2 + α

(γ + αρδ) + �(α) coth(�(α)s/2)
. (3.44)

Furthermore, if the constant α′ = max{α, 2} also satisfies

γ ι((γ + ρα′δ) −
√

(γ + ρα′δ)2 − δ2α′(α′ + 1)) < α′δ2µ, (3.45)

then

�(x) ∼ λF̄ (x)

∫ ∞

0
C1(α, s)e−αµs+C2(α,s)ν0 ds as x → ∞. (3.46)

Proof. We will apply Theorems 2.1 and 2.2 to prove this theorem. To verify the conditions
of Theorems 2.1 and 2.2, we need the explicit expression of Ee−κξt = EZ−κ

t . By Itô’s formula,
we can verify that the solution to (3.36) is

Zt = exp

{
µt +

∫ t

0

√
νs dW(1)

s − 1

2

∫ t

0
νs ds

}
= exp

{
µt − 1

2

∫ t

0
νs ds + ρ

∫ t

0

√
νs dW(2)

s +
√

1 − ρ2

∫ t

0

√
νs dW(3)

s

}
. (3.47)
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From (3.40), we can take some κ > α′ = max{α, 2} such that

γ + κρδ > δ
√

κ(κ + 1). (3.48)

For the fixed κ , by (3.47), we can derive

EZ−κ
t = E(E(Z−κ

t | W(2)
s , 0 ≤ s ≤ t))

= e−κµt
E

(
exp

{
κ

2

∫ t

0
νs ds − κρ

∫ t

0

√
νs dW(2)

s

}
× E

(
exp

{
−κ

√
1 − ρ2

∫ t

0

√
νs dW(3)

s

} ∣∣∣∣ W(2)
s , 0 ≤ s ≤ t

))
=: e−κµt

E

(
exp

{
κ

2

∫ t

0
νs ds − κρ

∫ t

0

√
νs dW(2)

s

}
K1(t)

)
. (3.49)

Now we apply Girsanov’s theorem to deal with K1(t). Note that {νt , t ≥ 0} in (3.37) is actually
a Cox–Ingersoll–Ross process. Then, the moment generating function of (νt ,

∫ t

0 νs ds) admits
a similar expression in a certain neighborhood of (0, 0) to that of (rt ,

∫ t

0 rs ds) in (3.30)–(3.31)
but with a different starting point ν0. By (3.48) and ρ ∈ [−1, 0], we have γ 2 > 2δ2b1 when
b1 = κ2(1 − ρ2)/2. Thus, by taking a = 0 and b = b1 in (3.30)–(3.31) with r0 replaced by
ν0, we obtain

E exp

{
κ2(1 − ρ2)

2

∫ t

0
νs ds

}
= M2

(
0,

κ2(1 − ρ2)

2
, t

)
= Ĉ1(κ, t)eĈ2(κ,t)ν0 ,

where

�̂(κ) =
√

γ 2 − κ2δ2(1 − ρ2),

Ĉ1(κ, t) =
(

eγ t/2

cosh(�̂(κ)t/2) + γ sinh(�̂(κ)t/2)/�̂(κ)

)2γ ι/δ2

,

Ĉ2(κ, t) = κ2(1 − ρ2)

γ + �̂(κ) coth(�̂(κ)t/2)
.

Therefore,

E exp

{
κ2(1 − ρ2)

2

∫ t

0
νs ds

}
< ∞

for the κ as specified in (3.48). Applying Girsanov’s theorem to K1(t) in (3.49) gives

K1(t) = E

(
exp

{
−κ

√
1 − ρ2

∫ t

0

√
νs dW(3)

s

} ∣∣∣∣ W(2)
s , 0 ≤ s ≤ t

)
= exp

{
κ2(1 − ρ2)

2

∫ t

0
νs ds

}
. (3.50)
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Substituting (3.50) into (3.49) and using (3.37), we obtain

EZ−κ
t = e−κµt

E exp

{(
κ2(1 − ρ2)

2
+ κ

2

) ∫ t

0
νs ds − κρ

∫ t

0

√
νs dW(2)

s

}
= exp

{
−κµt + κρν0

δ
+ κργ ιt

δ

}
× E exp

{
−κρ

δ
νt +

(
κ2(1 − ρ2)

2
+ κ

2
− κργ

δ

) ∫ t

0
νs ds

}
= exp

{
−κµt + κρν0

δ
+ κργ ιt

δ

}
M2

(
−κρ

δ
,
κ2(1 − ρ2)

2
+ κ

2
− κργ

δ
, t

)
. (3.51)

From (3.48), we see that γ 2 > 2δ2b2 when b2 = κ2(1 − ρ2)/2 + κ/2 − κργ/δ. Then,
M2(a, b, t) exists when a = −κρ/δ and b = b2. Thus, by (3.30)–(3.31) with r0 replaced by
ν0, we have

EZ−κ
t = C1(κ, t)e−κµt+C2(κ,t)ν0 , (3.52)

where

�(κ) =
√

(γ + κρδ)2 − δ2(κ2 + κ), (3.53)

C1(κ, t) =
(

e(γ+κρδ)t/2

cosh(�(κ)t/2) + (γ + κρδ) sinh(�(κ)t/2)/�(κ)

)2γ ι/δ2

, (3.54)

C2(κ, t) = κ2 + κ

(γ + κρδ) + �(κ) coth(�(κ)t/2)
. (3.55)

It follows that
∫ t

0 EZ−κ
s ds < ∞ for the κ as specified in (3.48). By Theorem 2.1 and (3.52)–

(3.55), we obtain (3.41).
Next, we prove relation (3.46). From (3.40) and (3.45), we can take some κ > α′ =

max{α, 2} such that (3.48) and

−κµ + γ ι

δ2 ((γ + κρδ) −
√

(γ + κρδ)2 − δ2κ(κ + 1)) < 0

hold simultaneously. For the fixed κ , by (3.52)–(3.55), we have

EZ−κ
t ∼ C̃0 exp

{
−κµt + γ ιt

δ2 ((γ + κρδ) −
√

(γ + κρδ)2 − δ2κ(κ + 1))

}
as t → ∞,

where C̃0 is a positive constant. It follows that
∫ ∞

0 max{sη, 1}EZ−κ
s ds < ∞ for the fixed κ

and any η > 0. Thus, by Theorem 2.2 and (3.52)–(3.55), we obtain (3.46).

Remark 3.2. Drăgulescu andYakovenko [10] derived the explicit expression for the probability
density function of the Heston process {Zt , t ≥ 0} defined in (3.36)–(3.37) and compared it
with financial data. Using the Dow Jones Industrial Index data for the 20-year period 1982–
2001, they obtained the fitting parameters γ = 11.35, ι = 0.022, δ = 0.618, and µ = 0.143 in
the unit of 1/year when ρ = 0, and found an excellent agreement between the expression and the
Dow Jones data. For the four fitting parameters, the conditions in Theorem 3.4 can be satisfied
over a certain range of α when ρ = 0. Indeed, 2γ ι/δ2 ≈ 1.3; if α′ = max{α, 2} ≤ 17.87 then
γ > δ

√
α′(α′ + 1); and if α′ < 10.66, then γ ι(γ − √

γ 2 − δ2α′(α′ + 1)) < α′δ2µ. Thus, for
the case 0 < α < 10.66, all the conditions in Theorem 3.4 are satisfied.
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Remark 3.3. Theorem 3.4 assumes that the variance process {νt , t ≥ 0} in (3.37) starts from
a positive constant ν0. In practice, however, this constant cannot be determined directly by
financial data through numerical methods. It is more reasonable to assume that ν0 is a positive
RV distributed by the stationary distribution function of the variance process {νt , t ≥ 0}.

Let �t(v | vi) be the probability density function of νt which has variance v at time t given
the initial variance vi at time 0. Then, �t(v | vi) determines the evolution of {νt , t ≥ 0} and
satisfies the well-known forward Kolmogorov equation

∂

∂t
�t (v | vi) = ∂

∂v
[γ (v − ι)�t (v | vi)] + δ2

2

∂2

∂v2 [v�t(v | vi)]. (3.56)

Equation (3.56) has the stationary solution (without relation to vi)

�∗(v) = aa

�(a)

va−1

ιa
e−va/ι, a = 2γ ι

δ2 , (3.57)

which is a gamma density function.
Let ν0 be a positive RV distributed by �∗. The moment generating function of ν0 is

M3(u) = Eeuν0 =
(

2γ

2γ − δ2u

)2γ ι/δ2

(3.58)

provided that 2γ > δ2u. In this case, we have the following theorem.

Theorem 3.5. Under the conditions of Theorem 3.4, if ν0 is a positive RV distributed by �∗ in
(3.57) and the constant α′ = max{α, 2} satisfies (3.40), then, for arbitrarily fixed t > 0,

�(x, t) ∼ λF̄ (x)

∫ t

0
C1(α, s)M3(C2(α, s))e−µαs ds as x → ∞,

where C1(α, s) and C2(α, s) are defined in (3.42)–(3.44), and M3(·) is defined in (3.58).
Furthermore, if the constant α′ also satisfies (3.45) then

�(x) ∼ λF̄ (x)

∫ ∞

0
C1(α, s)M3(C2(α, s))e−µαs ds as x → ∞.

Proof. Following the derivations in (3.47)–(3.55) and further conditioning on ν0 in (3.51)
and (3.52), we obtain

EZ−κ
t = Ee−κξt = C1(κ, t)e−κµt

EeC2(κ,t)ν0 = C1(κ, t)e−κµtM3(C2(κ, t)),

with κ specified in (3.48), C1(κ, t) and C2(κ, t) defined in (3.53)–(3.55), and M3(·) defined in
(3.58). Here we need to show that M3(u) exists when u = C2(κ, t). Indeed, by γ + κρδ −
δ
√

κ(κ + 1) > 0 (see (3.48)) and ρ ≤ 0, we have γ + κρδ > 0 and 2γ > γ + κρδ. Hence,
2γ (γ + κρδ) > (γ + κρδ)2 > δ2κ(κ + 1), from which we obtain

C2(κ, t) = κ2 + κ

(γ + κρδ) + �(κ) coth(�(κ)t/2)
<

κ2 + κ

γ + κρδ
<

2γ

δ2 .

Therefore, M3(u) exists when u = C2(κ, t). Following the discussions after (3.55) in the proof
of Theorem 3.4, we conclude the proof.
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4. Lemmas

To prove the main results in this paper, we need a series of preliminaries. In the sequel, C

always represents a positive constant which may vary in different places. For a distribution
function F ∈ C, it is well known that F is long tailed, namely, for any l > 0,

F̄ (x + l) ∼ F̄ (x). (4.1)

For a distribution function F ∈ C, from Proposition 2.2.1 of [2], we know that, for any p > J
+
F ,

there exist positive constants Cp and Dp such that

F̄ (y)

F̄ (x)
≤ Cp

(
x

y

)p

(4.2)

holds uniformly for all x ≥ y ≥ Dp. Fixing the variable y in (4.2) leads to

x−p = o(F̄ (x)) for any p > J
+
F . (4.3)

Lemma 4.1. Suppose that X is a nonnegative RV with distribution function F ∈ C and that �

is another nonnegative RV independent of X. Then, we have the following three results.

(i) For arbitrarily fixed δ1 > 0 and p > J
+
F , there exists some positive constant C without

relation to δ1 and � such that, for all large x,

P(X� > δ1x | �) ≤ CF̄ (x)(δ
−p
1 �p 1[�>δ1] + 1[�≤δ1]).

(ii) If J
−
F > 0 then, for arbitrarily fixed δ1 > 0 and 0 < p1 < J

−
F ≤ J

+
F < p2 < ∞, there

exists some positive constant C without relation to δ1 and � such that, for all large x,

P(X� > δ1x | �) ≤ CF̄ (x)(δ
−p1
1 �p1 + δ

−p2
1 �p2).

(iii) If � is not degenerate at 0 and
∫ ∞

0 xpP(� ∈ dx) < ∞ for some p > J
+
F , then X� ∈ C

and

P(X� > x) � F̄ (x).

Proof. Result (i) is a direct consequence of Lemma 3.2 of [16] with some obvious
modifications. Result (ii) is from Lemma 4.1.5 of [30] with some adjustment. Result (iii)
is the combination of Theorem 3.3(iv) of [8] and Lemma 2.5 of [30].

The proofs of the following two lemmas are inspired by those of Lemmas 2.2 and 2.3 of
[31], respectively.

Lemma 4.2. Suppose that X1 and X2 are two identically distributed RVs with common
distribution function F ∈ C, and that �1 and �2 are another two positive and bounded
RVs independent of (X1, X2). If X1 and X2 are bivariate upper tail independent, i.e. they
satisfy relation (2.2), then

lim
x→∞

P(X1�1 > x, X2�2 > x)

P(Xk�k > x)
= 0, k = 1, 2.
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Proof. Without loss of generality, we assume that both �1 and �2 are bounded from above
by the same constant b > 1. Denote the distribution function of �i by Hi, i = 1, 2, and the
joint distribution function of (�1, �2) by H . Clearly,

P(X1�1 > x, X2�2 > x)

=
(∫∫

0<u≤v≤b

+
∫∫

0<v<u≤b

)
P

(
X1 >

x

u
, X2 >

x

v

)
dH(u, v)

≤
∫∫

0<u≤v≤b

P

(
X1 >

x

v
, X2 >

x

v

)
dH(u, v)

+
∫∫

0<v<u≤b

P

(
X1 >

x

u
, X2 >

x

u

)
dH(u, v)

≤
∫

(0,b]
P

(
X1 >

x

v
, X2 >

x

v

)
dH2(v) +

∫
(0,b]

P

(
X1 >

x

u
, X2 >

x

u

)
dH1(u)

=: �1(x) + �2(x). (4.4)

From inequality (4.2), we know that, for some fixed p > J
+
F , the inequalities

P(Xk > x/v)

P(Xk > x)
≤ Cpvp, k = 1, 2, (4.5)

hold uniformly for all v ∈ (1, b] and all x > bDp. For arbitrarily fixed ε > 0, by relation (2.2),
there exists some x0 > bDp such that, for all x > x0,

sup
0<v≤b

P(X1 > x/v, X2 > x/v)

P(Xk > x/v)
≤ ε, k = 1, 2. (4.6)

Thus, by (4.5)–(4.6), we can derive, for all x > x0,

�1(x)

P(Xk > x)
=

∫
(0,1]

P(X1 > x/v, X2 > x/v)

P(Xk > x/v)

P(Xk > x/v)

P(Xk > x)
dH2(v)

+
∫

(1,b]
P(X1 > x/v, X2 > x/v)

P(Xk > x/v)

P(Xk > x/v)

P(Xk > x)
dH2(v)

≤
∫

(0,1]
P(X1 > x/v, X2 > x/v)

P(Xk > x/v)
dH2(v)

+ Cp

∫
(1,b]

P(X1 > x/v, X2 > x/v)

P(Xk > x/v)
vp dH2(v)

≤ sup
0<v≤b

P(X1 > x/v, X2 > x/v)

P(Xk > x/v)

(
H2(1) − H2(0) + Cp

∫
(1,b]

vp dH2(v)

)
≤ Cε, k = 1, 2.

By Lemma 4.1(iii), we can take x1 > x0 and C > 0 such that, for all x > x1,

P(Xk > x) ≤ CP(Xk�k > x), k = 1, 2.

Hence, for all x > x1,

�1(x)

P(Xk�k > x)
= �1(x)

P(Xk > x)

P(Xk > x)

P(Xk�k > x)
≤ Cε, k = 1, 2. (4.7)
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Using the symmetry between �1(x) and �2(x), we find that there exist x2 > x1 and C > 0
such that, for all x > x2,

�2(x)

P(Xk�k > x)
≤ Cε, k = 1, 2. (4.8)

Combining (4.7) and (4.8) with (4.4), we have, for all x > x2,

P(X1�1 > x, X2�2 > x)

P(Xk�k > x)
≤ Cε, k = 1, 2.

By the arbitrariness of ε > 0, we conclude the proof.

Lemma 4.3. Suppose that {Xi, 1 ≤ i ≤ n} is a sequence of nonnegative and identically
distributed RVs with common distribution function F ∈ C, satisfying relation (2.2), while
{�i, 1 ≤ i ≤ n} is a sequence of bounded, nonnegative, and not-degenerate-at-zero RVs
independent of {Xi, 1 ≤ i ≤ n}. Then

P

( n∑
i=1

Xi�i > x

)
∼

n∑
i=1

P(Xi�i > x). (4.9)

Proof. Clearly, (4.9) holds for n = 1. Hence, we suppose that n ≥ 2. Note that

P

( n∑
i=1

Xi�i > x

)
≥ P

( n⋃
i=1

(Xi�i > x)

)

≥
n∑

i=1

P(Xi�i > x) −
∑

1≤i,j≤n, i �=j

P(Xi�i > x, Xj�j > x). (4.10)

Note that {Xk, �k, 1 ≤ k ≤ n} are on the probability space (�, F , P). For any 1 ≤ i, j ≤ n,

i �= j , define Bij = {�i > 0, �j > 0}. For the case P(Bij ) > 0, let (� ∩ Bij , F ∩ Bij , PBij
)

be the trace of (�, F , P) on the set Bij , where F ∩ Bij = {F ∩ Bij : F ∈ F } and, for any
A ∈ F ,

PBij
(A ∩ Bij ) = P(A ∩ Bij )

P(Bij )
= P(A | Bij ).

Clearly, (� ∩ Bij , F ∩ Bij , PBij
) is a probability space. From the independence between

(Xi, Xj ) and (�i, �j ) on (�, F , P), we can verify that all the assumptions on {Xk, �k,

k = i, j} in this lemma are preserved on this new probability space. In addition, �i and �j are
also positive on this new probability space. Thus, for arbitrarily fixed ε, a > 0, by Lemma 4.2,
there exists some xij (a) > 0 such that, for all x > xij (a),

P(Xi�i > ax, Xj�j > ax)

= P(Xi�i > ax, Xj�j > ax, �i > 0, �j > 0)

= P(Xi�i > ax, Xj�j > ax | �i > 0, �j > 0)P(�i > 0, �j > 0)

≤ εP(Xi�i > ax | �i > 0, �j > 0)P(�i > 0, �j > 0)

= εP(Xi�i > ax, �i > 0, �j > 0)

≤ εP(Xi�i > ax). (4.11)
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For the case P(Bij ) = 0, it is trivial to show that, for all x > 0 and a > 0,

P(Xi�i > ax, Xj�j > ax) = P(Xi�i > ax, Xj�j > ax, �i > 0, �j > 0)

= 0

≤ εP(Xi�i > ax). (4.12)

Hence, by taking a= 1 in (4.11) and (4.12), we obtain, for all x >x0 = max1≤i,j≤n, i �=j {xij (1)},
∑

1≤i,j≤n, i �=j

P(Xi�i > x, Xj�j > x) ≤ (n − 1)ε

n∑
i=1

P(Xi�i > x). (4.13)

Substituting (4.13) into (4.10), we obtain, for all x > x0,

P

( n∑
i=1

Xi�i > x

)
≥ (1 − Cε)

n∑
i=1

P(Xi�i > x). (4.14)

Next we prove the upper-bound version of relation (4.9). According to Lemma 4.1(iii), the
distribution function Gi of Xi�i belongs to the class C for any 1 ≤ i ≤ n. Then, for arbitrarily
fixed ε > 0, by the definition of C in (2.1), we can take v0 ∈ ( 1

2 , 1) and x1 > x0 such that, for
all x > x1,

n∑
i=1

P(Xi�i > v0x) ≤ (1 + ε)

n∑
i=1

P(Xi�i > x). (4.15)

For the fixed v0, we have

P

( n∑
i=1

Xi�i > x

)
≤ P

( n⋃
i=1

(Xi�i > v0x)

)

+ P

( n∑
i=1

Xi�i > x,

n⋂
j=1

(Xj�j ≤ v0x)

)
=: I1 + I2. (4.16)

For I1, by inequality (4.15), we obtain, for all x > x1,

I1 ≤
n∑

i=1

P(Xi�i > v0x) ≤ (1 + ε)

n∑
i=1

P(Xi�i > x). (4.17)

For I2, we have

I2 = P

( n∑
i=1

Xi�i > x,

n⋂
j=1

(Xj�j ≤ v0x), max
1≤k≤n

Xk�k >
x

n

)

≤
n∑

k=1

P

( n∑
i=1

Xi�i > x, Xk�k ≤ v0x, Xk�k >
x

n

)

≤
n∑

k=1

P

( n∑
i=1, i �=k

Xi�i > (1 − v0)x, Xk�k >
x

n

)

≤
∑

1≤i,k≤n, i �=k

P

(
Xi�i >

(1 − v0)x

n − 1
, Xk�k >

x

n

)
. (4.18)
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Define a0 = (1 − v0)/(n − 1). Since v0 ∈ ( 1
2 , 1) and n ≥ 2, we have 0 < a0 < 1/n < 1. For

all 1 ≤ i, k ≤ n, i �= k, and the fixed ε > 0 as before, by taking a = a0 in (4.11)–(4.12), we
obtain, for all x > xik(a0),

P(Xi�i > a0x, Xk�k > a0x) ≤ εP(Xi�i > a0x). (4.19)

Recall that, by Lemma 4.1(iii), the distribution function Gi of Xi�i belongs to the class C
for any 1 ≤ i ≤ n. Then, for some fixed p > max1≤i≤n{J+

Gi
}, by inequality (4.2), there exist

positive constants Cp and Dp such that, for all x > Dp and all 1 ≤ i ≤ n,

P(Xi�i > a0x) ≤ Cpa
−p
0 P(Xi�i > x). (4.20)

Hence, by (4.18)–(4.20) we obtain, for all x > x2 = max1≤i,k≤n, i �=k{xik(a0), Dp},
I2 ≤

∑
1≤i,k≤n, i �=k

P(Xi�i > a0x, Xk�k > a0x)

≤ (n − 1)ε

n∑
i=1

P(Xi�i > a0x)

≤ (n − 1)Cpa
−p
0 ε

n∑
i=1

P(Xi�i > x). (4.21)

Substituting (4.17) and (4.21) into (4.16), we obtain, for all x > x2,

P

( n∑
i=1

Xi�i > x

)
≤ (1 + Cε)

n∑
i=1

P(Xi�i > x). (4.22)

Therefore, inequalities (4.14) and (4.22) hold for all x > x2. By the arbitrariness of ε > 0, we
conclude the proof.

5. Proofs of the theorems

Clearly, Ut in (1.1) is equivalent to

Ut = eξt

(
x −

∞∑
n=1

Xne−ξτn− 1[τn≤t] +c

∫ t

0
e−ξs ds + σ

∫ t

0
e−ξs dBs

)
.

For notational convenience, define

ϑn(t) = e−ξτn− 1[τn≤t], n ≥ 1.

Then, the ruin probability up to time t > 0 and the infinite-time ruin probability can be
respectively rewritten as

�(x, t) = P

(
sup

0<s≤t

{ ∞∑
n=1

Xnϑn(s) − c

∫ s

0
e−ξv dv − σ

∫ s

0
e−ξv dBv

}
> x

)
(5.1)

and

�(x) = P

(
sup

0<s<∞

{ ∞∑
n=1

Xnϑn(s) − c

∫ s

0
e−ξv dv − σ

∫ s

0
e−ξv dBv

}
> x

)
.
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Proof of Theorem 2.1. We first prove the upper-bound version of relation (2.3). For any
q ≥ 0, we have

∞∑
n=1

nq sn−1λn

(n − 1)!e−λs ≤
{

C max{sq, 1}, q = 0, 1, 2, . . . ,

C max{s[q]+1, 1}, otherwise,
(5.2)

where [q] is the integer part of q. Note that τn is a gamma RV satisfying

P(τn ∈ ds) = sn−1λn

(n − 1)!e−λs ds, s ≥ 0. (5.3)

Then, by Hölder’s inequality and Jensen’s inequality, we can derive, for any 0 < p ≤ κ and
q ≥ 0,

∞∑
n=1

nq
E(ϑ

p
n (t) + 1[ϑn(t)≤1])

=
∞∑

n=1

nq

(∫ t

0
Ee−pξs−P(τn ∈ ds) +

∫ t

0
P(e−ξs− ≤ 1)P(τn ∈ ds)

)

=
∞∑

n=1

nq

(∫ t

0
Ee−pξs

sn−1λn

(n − 1)!e−λs ds +
∫ t

0
P(e−ξs ≤ 1)

sn−1λn

(n − 1)!e−λs ds

)

≤ C max{t [q]+1, 1}
(∫ t

0
Ee−pξs ds + t

)
≤ C

∫ t

0
E

p/κe−κξs ds + C

≤ C

(∫ t

0
Ee−κξs ds

)p/κ

+ C

< ∞. (5.4)

Take J
+
F < p ≤ κ . For arbitrarily fixed ε > 0, by (5.4), we can find some integer N > 1 such

that

∞∑
n=N+1

n2p
E(ϑ

p
n (t) + 1[ϑn(t)≤1]) < ε, (5.5)

∞∑
n=N+1

1

n2 < 1. (5.6)

Note that (5.4) implies that Eϑκ
n (t) < ∞ for any n ≥ 1. According to Lemma 4.1(iii),

Xnϑn(t) ∈ C for any 1 ≤ n ≤ N . Then, by the definition of the class C in (2.1), we can
show that there exist v0 ∈ ( 1

2 , 1) and x1 > 0 such that, for all x > x1,

F̄ (v0x) ≤ (1+ε)F̄ (x) and
N∑

n=1

P(Xnϑn(t) > v0x) ≤ (1+ε)

N∑
n=1

P(Xnϑn(t) > x). (5.7)
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Define D0,t = sup0≤s≤t | ∫ s

0 e−ξv dBv|. For the fixed N and v0, according to (5.1), we derive

�(x, t) ≤ P

( ∞∑
n=1

Xnϑn(t) + σD0,t > x

)

≤ P

( N∑
n=1

Xnϑn(t) > v0x

)
+ P

( ∞∑
n=N+1

Xnϑn(t) >
1 − v0

2
x

)

+ P

(
σD0,t >

1 − v0

2
x

)
=: I1(t) + I2(t) + I3(t). (5.8)

We first deal with I1(t). Note that J
+
F < p ≤ κ and Eϑ

p
n (t) < ∞ for any n ≥ 1. Then, we can

choose L > 0 such that, for all 1 ≤ j, n ≤ N ,

E(ϑ
p
n (t) 1[ϑj (t)>L]) <

ε

Np+2(1 + ε)
, P(ϑj (t) > L) <

ε

N2(1 + ε)
. (5.9)

Relying on this L, we can further split I1(t) into two parts as follows:

I1(t) = P

( N∑
n=1

Xnϑn(t) > v0x,

N⋂
j=1

(ϑj (t) ≤ L)

)

+ P

( N∑
n=1

Xnϑn(t) > v0x,

N⋃
j=1

(ϑj (t) > L)

)
=: I11(t) + I12(t). (5.10)

For I11(t), by Lemma 4.3 and (5.7), we can find some x2 > x1 such that, for all x > x2,

I11(t) ≤ (1 + ε)

N∑
n=1

P(Xnϑn(t) > v0x) ≤ (1 + ε)2
N∑

n=1

P(Xnϑn(t) > x). (5.11)

For I12(t), by Lemma 4.1(i), (5.7) and (5.9), we can find some x3 > x2 such that, for all x > x3,

I12(t) ≤
N∑

j=1

P

( N∑
n=1

Xnϑn(t) > v0x, ϑj (t) > L

)

≤
N∑

j=1

N∑
n=1

P

(
Xnϑn(t) >

v0x

N
, ϑj (t) > L

)

=
N∑

j=1

N∑
n=1

E

(
1[ϑj (t)>L] P

(
Xnϑn(t) >

v0x

N

∣∣∣∣ ϑn(t), ϑj (t)

))

≤ CF̄ (v0x)

N∑
j=1

N∑
n=1

E

(
1[ϑj (t)>L]

(
Npϑ

p
n (t) + 1[ϑn(t)≤1/N ]

))

≤ C(1 + ε)F̄ (x)

N∑
j=1

N∑
n=1

(Np
E(ϑ

p
n (t) 1[ϑj (t)>L]) + P(ϑj (t) > L))

≤ CεF̄ (x). (5.12)
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Substituting (5.11)–(5.12) into (5.10), we have, for all x > x3,

I1(t) ≤ (1 + Cε)

N∑
n=1

P(Xnϑn(t) > x) + CεF̄ (x). (5.13)

For I2(t), by Lemma 4.1(i) and (5.5)–(5.6), we can take some x4 > x3 such that, for all x > x4,

I2(t) ≤ P

( ∞∑
n=N+1

Xnϑn(t) >

∞∑
n=N+1

(1 − v0)x

2n2

)

≤
∞∑

n=N+1

P

(
Xnϑn(t) >

(1 − v0)x

2n2

)

=
∞∑

n=N+1

E

(
P

(
Xnϑn(t) >

(1 − v0)x

2n2

∣∣∣∣ ϑn(t)

))

≤ CF̄ (x)

∞∑
n=N+1

{(
1 − v0

2

)−p

n2p
Eϑ

p
n (t) + E 1[ϑn(t)≤(1−v0)/2n2]

}

≤ CF̄ (x)

∞∑
n=N+1

n2p(Eϑ
p
n (t) + E 1[ϑn(t)≤1])

≤ CεF̄ (x). (5.14)

We next deal with I3(t). By the Burkholder–Davis–Gundy inequalities, Hölder’s inequality,
and Fubini’s theorem, we obtain

EDκ
0,t ≤ CE

(∫ t

0
e−2ξs ds

)κ/2

≤ Ctκ/2−1
E

∫ t

0
e−κξs ds

= Ctκ/2−1
∫ t

0
Ee−κξs ds

< ∞. (5.15)

According to relation (4.3), we can take some x5 > x4 such that x−κ ≤ εF̄ (x) holds for all
x > x5. Hence, by Chebyshev’s inequality and (5.15), we obtain, for all x > x5,

I3(t) ≤
(

2σ

1 − v0

)κ

x−κ
EDκ

0,t ≤ CεF̄ (x). (5.16)

Recall that Eϑκ
1 (t) < ∞. Then, by Lemma 4.1(iii), we can take some x6 > x5 and C > 0 such

that, for all x > x6,

F̄ (x) ≤ CP(X1ϑ1(t) > x). (5.17)
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Substituting (5.13)–(5.14) and (5.16) into (5.8) and using (5.3) and (5.17), we obtain, for all
x > x6,

�(x, t) ≤ (1 + Cε)

N∑
n=1

P(Xnϑn(t) > x) + CεP(X1ϑ1(t) > x)

≤ (1 + Cε)

∞∑
n=1

P(Xnϑn(t) > x)

= (1 + Cε)

∞∑
n=1

P(Xne−ξτn− 1[τn≤t] > x)

= (1 + Cε)

∞∑
n=1

∫ t

0
P(X1e−ξs > x)

sn−1λn

(n − 1)!e−λs ds

= (1 + Cε)λ

∫ t

0
P(X1e−ξs > x) ds. (5.18)

We next prove the lower-bound version of relation (2.3). By taking p = 1 in the derivation of
(5.4), we obtain E

∫ t

0 e−ξs ds = ∫ t

0 Ee−ξs ds < ∞. Recall that J
+
F < p ≤ κ and Eϑ

p
n (t) < ∞

for any n ≥ 1. Let N be specified as in (5.5)–(5.6). Then, by (5.15), we can take some positive
constant A such that, for all 1 ≤ n ≤ N ,

E(ϑ
p
n (t) 1[D0,t>A]) <

ε

Np+1 , P(D0,t > A) <
ε

N
, (5.19)

and

E(ϑ
p
n (t) 1[∫ t

0 e−ξs ds>A]) <
ε

Np+1 , P

(∫ t

0
e−ξs ds > A

)
<

ε

N
. (5.20)

For the fixed A, according to (5.1), we can derive

�(x, t) ≥ P

( ∞∑
n=1

Xnϑn(t) > x + c

∫ t

0
e−ξs ds + σ

∫ t

0
e−ξs dBs

)

≥ P

( N∑
n=1

Xnϑn(t) > x + (c + σ)A, D0,t ≤ A,

∫ t

0
e−ξs ds ≤ A

)

≥ P

( N∑
n=1

Xnϑn(t) > x + (c + σ)A

)
− P

( N∑
n=1

Xnϑn(t) > x, D0,t > A

)

− P

( N∑
n=1

Xnϑn(t) > x,

∫ t

0
e−ξs ds > A

)
=: I ′

1(t) − I ′
2(t) − I ′

3(t). (5.21)

For I ′
1(t), with L > 0 given in (5.9), it follows from Lemma 4.3 that there exists some x7 > x6
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such that, for all x > x7,

I ′
1(t) ≥ P

( N∑
n=1

Xnϑn(t) > x + (c + σ)A,

N⋂
j=1

(ϑj (t) ≤ L)

)

≥ (1 − ε)

N∑
n=1

P

(
Xnϑn(t) > x + (c + σ)A,

N⋂
j=1

(ϑj (t) ≤ L)

)

= (1 − ε)

( N∑
n=1

P(Xnϑn(t) > x + (c + σ)A)

−
N∑

n=1

P

(
Xnϑn(t) > x + (c + σ)A,

N⋃
j=1

(ϑj (t) > L)

))
=: (1 − ε)[I ′

11(t) − I ′
12(t)].

Recall that Xnϑn(t) ∈ C for any n ≥ 1. Then, by (4.1), we can take some x8 > x7 such that,
for all x > x8,

I ′
11(t) ≥ (1 − ε)

N∑
n=1

P(Xnϑn(t) > x).

By the same approach as I12(t), we can show that there exists some x9 > x8 such that, for all
x > x9,

I ′
12(t) ≤

N∑
n=1

P

(
Xnϑn(t) > x,

N⋃
j=1

(ϑj (t) > L)

)
≤ CεF̄ (x).

Therefore, for all x > x9,

I ′
1(t) ≥ (1 − Cε)

N∑
n=1

P(Xnϑn(t) > x) − CεF̄ (x). (5.22)

For I ′
2(t), by Lemma 4.1(i) and (5.19), we can show that there exists some x10 > x9 such that,

for all x > x10,

I ′
2(t) ≤ P

( N∑
n=1

Xnϑn(t) > x, D0,t > A

)
(5.23)

≤
N∑

n=1

P

(
Xnϑn(t) >

x

N
, D0,t > A

)

=
N∑

n=1

E

(
1[D0,t>A] P

(
Xnϑn(t) >

x

N

∣∣∣∣ ϑn(t), D0,t

))

≤ CF̄ (x)

N∑
n=1

[Np
E(ϑ

p
n (t) 1[D0,t>A]) + P(D0,t > A)] (5.24)

≤ CεF̄ (x). (5.25)
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For I ′
3(t), by Lemma 4.1(i) and (5.20), we can show that there exists some x11 > x10 such that,

for all x > x11,

I ′
3(t) ≤ P

( N∑
n=1

Xnϑn(t) > x,

∫ t

0
e−ξs ds > A

)

≤
N∑

n=1

P

(
Xnϑn(t) >

x

N
,

∫ t

0
e−ξs ds > A

)

=
N∑

n=1

E

(
1[∫ t

0 e−ξs ds>A] P

(
Xnϑn(t) >

x

N

∣∣∣∣ ϑn(t),

∫ t

0
e−ξs ds

))

≤ CF̄ (x)

N∑
n=1

[
Np

E(ϑ
p
n (t) 1[∫ t

0 e−ξs ds>A]) + P

(∫ t

0
e−ξs ds > A

)]
≤ CεF̄ (x). (5.26)

By Lemma 4.1(i) and (5.5), we can take some x12 > x11 such that, for all x > x12,

∞∑
n=N+1

P(Xnϑn(t) > x) =
∞∑

n=N+1

E(P(Xnϑn(t) > x | ϑn(t)))

≤ CF̄ (x)

∞∑
n=N+1

E(ϑ
p
n (t) + 1[ϑn(t)≤1])

≤ CεF̄ (x). (5.27)

Substituting (5.22)–(5.26) into (5.21) and using (5.17) and (5.27), we obtain, for all x > x12,

�(x, t) ≥ (1 − Cε)

N∑
n=1

P(Xnϑn(t) > x) − CεF̄ (x)

≥ (1 − Cε)

∞∑
n=1

P(Xnϑn(t) > x) − CεF̄ (x)

≥ (1 − Cε)

∞∑
n=1

P(Xnϑn(t) > x)

= (1 − Cε)λ

∫ t

0
P(X1e−ξs > x) ds. (5.28)

Thus, inequalities (5.18) and (5.28) hold for all x > x12. By the arbitrariness of ε > 0, we
obtain

�(x, t) ∼ λ

∫ t

0
P(X1e−ξs > x) ds. (5.29)

It remains to prove relation (2.4) when F ∈ R−α . Recall that Eϑκ
n (t) < ∞ for any n ≥ 1.

Then, by Proposition 3 of [3], we have

P(Xnϑn(t) > x) ∼ F̄ (x)Eϑα
n (t), n ≥ 1. (5.30)
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Note that (5.4) still holds when p = α. Then, for the fixed ε > 0 as above, we can take some
positive integer, also denoted by N , such that

∞∑
n=N+1

Eϑα
n (t) < ε. (5.31)

On the one hand, by (5.18), (5.30), and (5.3), there exists some x′
1 > x6 such that, for all x > x′

1,

�(x, t) ≤ (1 + Cε)

N∑
n=1

P(Xnϑn(t) > x) + CεP(X1ϑ1(t) > x)

≤ (1 + Cε)F̄ (x)

N∑
n=1

Eϑα
n (t) + CεF̄ (x)Eϑα

1 (t)

≤ (1 + Cε)F̄ (x)

∞∑
n=1

Eϑα
n (t)

= (1 + Cε)F̄ (x)

∞∑
n=1

E(e−αξτn− 1[τn≤t])

= (1 + Cε)F̄ (x)

∞∑
n=1

∫ t

0
Ee−αξs

sn−1λn

(n − 1)! ds

= (1 + Cε)λF̄ (x)

∫ t

0
Ee−αξs ds. (5.32)

On the other hand, according to (5.28) and (5.30)–(5.31), there exists some x′
2 > x12 such that,

for all x > x′
2,

�(x, t) ≥ (1 − Cε)

N∑
n=1

P(Xnϑn(t) > x) − CεF̄ (x)

≥ (1 − Cε)F̄ (x)

N∑
n=1

Eϑα
n (t) − CεF̄ (x)

≥ (1 − Cε)F̄ (x)

∞∑
n=1

Eϑα
n (t) − CεF̄ (x)

≥ (1 − Cε)F̄ (x)

∞∑
n=1

Eϑα
n (t)

= (1 − Cε)λF̄ (x)

∫ t

0
Ee−αξs ds. (5.33)

Thus, inequalities (5.32) and (5.33) hold for all x > max{x′
1, x

′
2}. By the arbitrariness of ε > 0,

we obtain

�(x, t) ∼ λF̄ (x)

∫ t

0
Ee−αξs ds.

This completes the proof.
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Proof of Theorem 2.2. We first prove the upper-bound version of relation (2.5). Define
ϑn = e−ξτn− , and let δ2 > 0 be an arbitrarily fixed constant. From κ > max{J+

F , 2} and
η > κ − 1 + 2κ/J

−
F , we see that η > κ + 1 and there exists some p1 ∈ (0, J

−
F ) such that

η > κ − 1 + 2κ/p1. Then, by Hölder’s inequality and (5.2)–(5.3), we derive, for p = κ or p1,

∞∑
n=1

np logp(1+δ2) nEϑ
p
n

≤ C

∞∑
n=1

n[p]+1
Ee−pξτn−

= C

∞∑
n=1

n[p]+1
∫ ∞

0
Ee−pξs

sn−1λn

(n − 1)!e−λs ds

≤ C

∫ ∞

0
max{s[p]+1, 1}Ee−pξs ds

≤ C

∫ ∞

0
max{s[p]+1, 1}Ep/κe−κξs ds

= C

∫ 2

0
max{s[p]+1, 1}Ep/κe−κξs ds + C

∫ ∞

2

s[p]+2−p/κ log1+δ2 s

s1−p/κ log1+δ2 s
E

p/κe−κξs ds

≤ C

(∫ 2

0
Ee−κξs ds

)p/κ

+ C

(∫ ∞

2
sκ−1+2κ/p log(1+δ2)κ/p sEe−κξs ds

)p/κ

≤ C

(∫ 2

0
Ee−κξs ds

)p/κ

+ C

(∫ ∞

2
sη

Ee−κξs ds

)p/κ

< ∞. (5.34)

Hence, for arbitrarily fixed ε > 0, we can take some integer N > 1 such that

∞∑
n=N+1

(np1 logp1(1+δ2) nEϑ
p1
n + nκ logκ(1+δ2) nEϑκ

n ) < ε, (5.35)

∞∑
n=N+1

1

n log1+δ2 n
< 1. (5.36)

Note that (5.34) implies that Eϑκ
n < ∞ for any n ≥ 1. Then, according to Lemma 4.1(iii),

Xnϑn ∈ C for any 1 ≤ n ≤ N . Hence, by the definition of the class C in (2.1), we can show
that there exist v0 ∈ ( 1

2 , 1) and x1 > 0 such that, for all x > x1,

F̄ (v0x) ≤ (1 + ε)F̄ (x) and
N∑

n=1

P(Xnϑn > v0x) ≤ (1 + ε)

N∑
n=1

P(Xnϑn > x). (5.37)

Again, by (5.34), we have E(ϑ
p1
n + ϑκ

n ) < ∞ for any n ≥ 1. Take L > 0 such that, for all
1 ≤ j, n ≤ N ,

E(ϑ
p1
n 1[ϑj >L]) <

ε

Np1+2(1 + ε)
, E(ϑκ

n 1[ϑj >L]) <
ε

Nκ+2(1 + ε)
. (5.38)
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Define D0,∞ = sup0≤s<∞ | ∫ s

0 e−ξv dBv|. Note that η >κ − 1 + 2κ/J
−
F >κ/2 − 1 > 0. Then,

by the Burkholder–Davis–Gundy inequalities, Minkowski’s inequality, and Hölder’s inequality,
we can derive

EDκ
0,∞ ≤ CE

(∫ 2

0
e−2ξs ds +

∫ ∞

2
e−2ξs ds

)κ/2

≤ C

{
E

2/κ

(∫ 2

0
e−2ξs ds

)κ/2

+ E
2/κ

(∫ ∞

2

s1−2/κ log(1+δ2)(1−2/κ) s

s1−2/κ log(1+δ2)(1−2/κ) s
e−2ξs ds

)κ/2}κ/2

≤ C

{
E

2/κ

∫ 2

0
e−κξs ds + E

2/κ

∫ ∞

2
sκ/2−1 log(1+δ2)(κ/2−1) se−κξs ds

}κ/2

≤ C

{(∫ 2

0
Ee−κξs ds

)2/κ

+
(∫ ∞

2
sη

Ee−κξs ds

)2/κ}κ/2

< ∞. (5.39)

Recall that Eϑκ
1 < ∞. By Lemma 4.1(iii), we can take x2 > x1 and C > 0 such that, for all

x > x2,

F̄ (x) ≤ CP(X1ϑ1 > x). (5.40)

Now, similarly to the derivations in (5.8)–(5.18) but using Lemma 4.1(ii), (5.35)–(5.37), (5.38),
(5.39), and (5.40) instead of Lemma 4.1(i), (5.5)–(5.7), (5.9), (5.15), and (5.17), respectively,
it follows from (5.3) that there exists some x3 > x2 such that, for all x > x3,

�(x) ≤ (1 + Cε)

N∑
n=1

P(Xnϑn > x) + CεP(X1ϑ1 > x)

≤ (1 + Cε)

∞∑
n=1

P(Xnϑn > x)

= (1 + Cε)

∞∑
n=1

P(Xne−ξτn− > x)

= (1 + Cε)

∞∑
n=1

∫ ∞

0
P(X1e−ξs > x)

sn−1λn

(n − 1)!e−λs ds

= (1 + Cε)λ

∫ ∞

0
P(X1e−ξs > x) ds. (5.41)

We next prove the lower-bound version of relation (2.5). Recall that 0 < p1 < J
−
F and

η > κ − 1 + 2κ/p1. Take T0 > 1 such that∫ ∞

T0

Ee−κξs ds ≤
∫ ∞

T0

sη
Ee−κξs ds < εκ/p1 . (5.42)

Trivially, η > κ − 1 + 2κ/p1 > κ/p1 − 1. Then, for the fixed T0, by Hölder’s inequality,
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we obtain ∫ ∞

T0

Ee−p1ξs ds ≤
∫ ∞

T0

E
p1/κe−κξs ds

≤ C

(∫ ∞

T0

sκ/p1−1 log(1+δ2)(κ/p1−1) sEe−κξs ds

)p1/κ

≤ C

(∫ ∞

T0

sη
Ee−κξs ds

)p1/κ

< Cε. (5.43)

By Lemma 4.1(ii), (5.40), and (5.42)-(5.43), there exists some x4 > x3 such that, for all x > x4,∫ ∞

T0

P(X1e−ξs > x) ds ≤ CF̄ (x)

∫ ∞

T0

{Ee−p1ξs + Ee−κξs } ds

≤ CεF̄ (x)

≤ CεP(X1ϑ1 > x)

≤ Cε

∞∑
n=1

P(Xnϑn > x)

= Cελ

∫ ∞

0
P(X1e−ξs > x) ds.

By relation (5.29) with t replaced by T0, we have, for all x > x4,

�(x) ≥ �(x, T0) ∼ λ

∫ T0

0
P(X1e−ξs > x) ds

= λ

(∫ ∞

0
−

∫ ∞

T0

)
P(X1e−ξs > x) ds

≥ (1 − Cε)λ

∫ ∞

0
P(X1e−ξs > x) ds. (5.44)

Thus, inequalities (5.41) and (5.44) hold for all x > x4. By the arbitrariness of ε, we obtain

�(x) ∼ λ

∫ ∞

0
P(X1e−ξs > x) ds.

It remains to prove relation (2.6) when F ∈ R−α . Recall that Eϑκ
n < ∞ for any n ≥ 1.

Then, by Proposition 3 of [3], we have

P(Xnϑn > x) ∼ F̄ (x)Eϑα
n , n ≥ 1. (5.45)

Note that (5.34) still holds when p = α since η > κ − 1 + 2κ/α. Hence, for the fixed ε as
above, we can take some positive integer, also denoted by N , such that

∞∑
n=N+1

Eϑα
n < ε. (5.46)
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On the one hand, similarly to the derivation in (5.32) but using (5.45)–(5.46) instead of (5.30)–
(5.31), respectively, we can show that there exists some x5 > x4 such that, for all x > x5,

�(x) ≤ (1 + Cε)λF̄ (x)

∫ ∞

0
Ee−αξs ds. (5.47)

On the other hand, by (5.44)–(5.46), we can show that there exists some x6 > x5 such that, for
all x > x6,

�(x) ≥ (1 − Cε)λ

∫ ∞

0
P(X1e−ξs > x) ds

= (1 − Cε)

∞∑
n=1

P(Xnϑn > x)

≥ (1 − Cε)

N∑
n=1

P(Xnϑn > x)

≥ (1 − Cε)F̄ (x)

N∑
n=1

Eϑα
n

≥ (1 − Cε)F̄ (x)

∞∑
n=1

Eϑα
n

= (1 − Cε)F̄ (x)λ

∫ ∞

0
Ee−αξs ds. (5.48)

Hence, inequalities (5.47) and (5.48) hold for all x > x6. By the arbitrariness of ε, we obtain
(2.6).
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