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Abstract

This paper is concerned with a characterization of the optimal order of convergence of Tikhonov
regularization for first kind operator equations in terms of the " smoothness" of the data.
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1. Introduction

This paper deals with some aspects of the relationship between the "smoothness"
of a vector b and the rate of convergence of certain regularization methods as
applied to an ill-posed operator equation

(1) Ku = b.

We assume throughout that K is a bounded linear operator from a Hilbert space
Hi into a Hilbert space H2 and our aim is to approximate the minimal norm least
squares solution of equation (1). The Moore-Penrose generalized inverse of K is
the closed linear operator K\ with domain fy(Kf) = R(K) + RiK)1^, which
associates with each vector b G 6D(ATt) the unique least squares solution, with
minimal norm, of equation (1). That is, K^b is the vector of minimal norm which
satisfies the equation

(2) Ku = Qb
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[21 Tikhonov regularization 255

where Q is the orthogonal projection of H2 onto R(K), the closure of the range of
K (see for example [3] for equivalent characterizations).

It is easy to see that (2) is equivalent to the so-called normal equation

(3) K*Ku = K*b

where K* denotes the adjoint of K. Note that K '• = K*K is self-adjoint with
spectrum a(K) C [0, II A: | | 2 ] . If 0 <2 o(K), then from (3) we have K* = K^K*.
However, in general 0 G o(K) but nevertheless a class of approximations to K^
have been investigated in [3] and take the form SX(K)K*, where Sx is a
real-valued continuous function on [0,11 AT ||2] which approximates f"1 in some
sense. In [4] certain asymptotic rates of convergence for methods of this form are
established.

To illustrate the type of result we obtain, consider the method of Tikhonov
regularization. Here Sx(t) — (t + X)"1, where X > 0 is called the regularization
parameter. For b G 6D( A'1') it is well known that

(4) K*b= limSx(K)K*b.

Moreover, we also have

(5) \\K*b-Sx{K)K*b\\ =

if Qb GR(KK) (see for example [8]). Both (4) and (5) are valid for bounded
operators K. In this note we show that the rate of convergence (5) is optimal for
compact A" in the sense that a rate of o(X) implies that K^b — Sx(K)K*b = 0. In
addition we establish the converse of (5). These results may be viewed as relatives
of the "saturation" theorems in approximation theory (see for example [2]).

2. Results

We consider a family of real-valued continuous functions {5A: X €E / } , indexed
by a subset / of positive real numbers with 0 6 / . Each function Sx is defined on
[0, IIK | |2] and satisfies

(6a) Sx(t) -> r 1 as X -» 0 + for / ¥= 0,

(6b) t'\ 1 - tSx(t)\<a(\,p) IOTP>0,

where w(X, v) -» 0 as X -» 0 + and

(6c) oo > liminf ' ,x * , ^' > KV > 0
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for some v0 > 0 and each t > 0. We will find it convenient to use the notation
x '•= K^b, xx = Sx(K)K*b and ex = x — xx. The following result is proved in
[4].

THEOREM 1. If Sx satisfies (6a) and (6b) and Qb — KK"w for some v > 0, then

Under the additional hypotheses that (6c) is valid and K is compact we shall
establish a converse of Theorem 1. Assume then that K: i/, -> H2 is compact with
singular system {un, vn; ftw}^L0- We recall Picard's criterion (see for example [1]):
y G R{K) is in the range of K if and only if

f M2J(.y,OI2<<»-
n = 0

Let K: = KK*, then since {ĵ ^2} are the eigenvalues of K and {«„} are the
corresponding eigenvectors, we may define K": H2 -» H2, for p > 0, by:

&'y= 2/*-B
2'(fiy, «„)«»

n = 0

and Â " has a similar representation in terms of the {vn}. It follows that K" and
K" are self-adjoint and satisfy K*K" = K*K*. A straightforward argument shows
that the nullspaces of K* and K*K" are identical and hence

R(K"K) = N(K*K") = N(K*) = R(K) .

Since {un,vn; n2
n"

+l) is the singular system for K"K, we conclude from Picard's
criterion that y G R (K) is in the range of K "K if and only if

(7) 1 Mr2K^«J|2<oo.
n = 0

We are now in a position to give a partial converse of Theorem 1.

THEOREM 2. Suppose K is compact and Sx satisfies (6) for some P0 > 0. / /
| |ex | | = O(«(X, v0)) then Qb E R(KV°K). Moreover, if \\ej = o(u(X, i>0)) then
Qb = 0 and hence x = xx = 0.

PROOF. Since {«„} is an orthonormal basis for R(K) we have

Qb= 1 (G*. «>„•
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Since K*b = K*Qb and K*un = fX, it follows that

xk = Sx(K)K*b = I tf(Qb, un)Sx(rf)vn.

The minimal norm least squares solution, x — K^b, has the representation (see
for example [7])

00

n = 0

and hence

ex = {l- SK(K)K)x = 2 0 - rtSx(rt))nn(Qb, un)vn.
n = 0

For v > 0, we then have

IKH2= 5 k2r(i-M;2Sx(/i;2))]VB'+

Therefore if ||ex|| = 0(w(\, »*)), there is a constant Cp, which is independent of
X, such that

But by (6c) we have

so that

n = 0

and hence <2ft e R(K"°K) by (7).
If ||ex|| = o(w(A, »-0)), then (8) is valid with CJ,o replaced by CVo(\) where

C^X) -> 0 as X -» 0+ . Using (6c) as before we then find that (Qb, un) = 0 for all
n so that 0> = 0 and hence 0 = x — xx.

In [4] error estimates are also obtained under somewhat different appearing
assumptions on Qb. In Proposition 4 of [4] it is proved that if Qb = K"w for
some p > \, then

(9) | |c x l l 2<«(A,r)co(X,i ' - 1)IMI2.
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In fact, for compact K it is not hard to show that R(K") = R(K"~l/2K) for v
s= \. It follows that (9) may be replaced for v s= { by

\\ex\\<(a(\,v-{)\\z\\

for Kvw = K"-x/2Kz.
Our next result gives, for the vector Kex, a relationship between the asymptotic

order of accuracy and the smoothness of the data. The significance of this result
resides in the fact that

Kex = K*b - Kxx

is a computable quantity, at least in a theoretical sense. The proof of the first part
of the following theorem follows directly from the proof of Proposition 3 in [4].
The proof of the second part is similar to that of Theorem 2.

THEOREM 3. Suppose Sx satisfies (6a) and (6b) and Qb = K'Kw for some v 3= 0,
then

\\Kex\\<w{\,v+ \)\\w\\.

Conversely, if Sx satisfies (6), K is compact and \\Kex\\ = O(a(X, v0 + 1)), then
Qb £ R(Ky°K). Also, if \\Kex\\ = o(u(X, v0 + 1)), then x = xx = 0.

3. Examples and applications

In this section we consider some specific examples of families of functions {Sx}
to which the preceding results apply.

As a first example we consider the choice Sx(t) = (t + X)"1 which results in
ordinary Tikhonov regularization (see for example [8]). One can easily verify that
w( \ , v) — X" for 0 < v < 1 satisfies (6a) and (6b) and for t>0 — 1 satisfies (6c) as
well. For a compact operator Theorem 2 says that, except for the trivial case
Qb = 0, ordinary Tikhonov regularization cannot converge at a rate faster than
O( \ ) . By Theorem 1 this rate is attained if Qb G R(KK). Moreover the comput-
able quantity ||Kex II is O(X2) if and only if Qb G R(KK).

For ordinary Tikhonov regularization it should be noted that the rate of
convergence is O(Xl/2) under the weaker hypothesis Qb G R(K) (see for example
[7], [8]). We now show by example that Theorem 2 is not valid for this nonoptimal
convergence rate. Suppose that K is a compact operator with singular system
{un, vn; « ' /2} and let

n=\
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Then Qb G R(K) if and only if the following sum is finite:

2(n^)A\{Qb,un)\
2= 2 i ,

n = l n = l

and hence Qb & R(K). However,

so that

by the integral test and hence | |ex | | = 0(X1/2).
In order to obtain approximations with the rate «(X, v) = X" for v > 1, one

may use extrapolated regularization [6] or iterated regularization [9]. Saturation
theorems for extrapolated regularization were given in [5].

Extrapolated Tikhonov regularization is defined as follows. Suppose A, — y,X
whereX > 0 and y, are distinct numbers and let a\k), i — 0,1, . . . ,k , satisfy

= 0, y = 1,2 A:.
i=0 (=0

The k th extrapolated Tikhonov approximation is given by

xP = Sik\K)K*b

where S[k\t) = lk
=oa^k)(t + X,)"1. The function S{k) satisfies (see [6])

( = 0

from which it follows immediately that

Therefore, for fc > 0

(10) (K + \kl)xik) = \kxik-1) + K*b,

where, by convention, xjf'* = 0. The family ( 5 ^ ' } satisfies (6a) and (6b) with
w(X, v) = X" if k > v — 1. It can be readily verified that (6c) is satisfied for
v0 — k + 1. Note that S£o> corresponds to ordinary Tikhonov regularization.

Equation (10) shows that the extrapolants may be determined in an iterative
manner and also suggests the iterative method (see [9])

(11) (K+\I)v{k) = \v(
x
k-i) + K*b, A: = 0 , 1 , . . . ,
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where, again by convention, v^{) = 0. This corresponds to the function

k+\

i=l

that is, v{k) = S[k)(K)K*b. The function S^° satisfies

from which it follows that S ^ ' satisfies (6a) and (6b) with «(A, v) = A" for
A: 3= v — 1. Also (6c) is satisfied for v0 = k + 1. Again note that §^0) corresponds
to ordinary Tikhonov regulanzation.

We observe that e[k) • = K^b - v^ satisfies

(K + \I)e[k> =

and hence

Therefore, by Theorem 3, Qb E R(Kk+lK) if and only if the following asymp-
totic rate is valid for the computable quantity II v^ — v^+!) ||:

II©^ - o^*"0!! = O(u(X, k + 2))/A = O(\k+i).

In these examples of Tikhonov regularization and its variants our results say
that the attainment of the optimal convergence rate is equivalent to a "smooth-
ness" condition on the data b (or, equivalently, the vector K*b). Let us examine
this more closely for the prototypical example wherein the compact operator is
given by an integral operator with square integrable kernel.

To be precise we must introduce the appropriate Hilbert spaces. For simplicity
we consider functions which are defined on the interval [0,1]. For r > 1 let Hr

denote the Sobolev space consisting of all functions <f> whosey th derivatives, <j>ij),
are absolutely continuous for 0 <y < r — 1 and also satisfy <>(r) £ L2[0,1]. The
inner product on Hr is given by

(*,*>= 2 WJ

7 = 0

where (•, •) denotes the usual inner product on L2[0,1].
Let k(s, t) be a given function on [0,1] X [0,1] such that k(s, •) e Hr, almost

everywhere in s. We consider the first kind integral equation

(12) Kf(s):= fk(s,t)f(t)dt = g(s),
Jo

where g E L2[0,1] and k E L2([0,1] X [0,1]) are given. Thus K: L2[0,1] -> L2[0,1]
is compact and has adjoint, K*, given by

(13) K*w{t) = (lk(s,t)w(s)ds.
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Tikhonov regularization of order 0 applied to (12) consists in minimizing over
L2[0,1] the functional

(14)

If we denote the minimizer of (14) by xx, then by Theorem 2, || K^g — xx II = O(X)
if and only if Qg £ R(KK). Since K*g £ N(K)1-, it follows from (2) that

£ R(K*K). Hence by (13) and our assumption on the kernel we must have
£ Hr. In particular we see that the rate of convergence O(X) implies the

existence of at least one smooth least squares solution.
We note that if k(s, 1) = 0 or k(s, 0) = 0 for almost all s, then the optimal rate

of convergence imposes the boundary conditions x(l) = 0 or x(0) = 0, respec-
tively, on x — K^g. A specific example of this type is given by the problem of
numerical differentiation. Define the kernel y( •, •) by

and denote the corresponding integral operator by T. For a given g £ L2[0,1]
satisfying g(0) = 0, it follows that Tf- g if and only if / = g' £ L2[0,1]. Since
the nullspace of T is trivial it follows that T^g = g' for g £ Hx satisfying
g(0) = 0. Let

0H
r ={g(E Hr: g(0) = 0} and //0' = (g £ Hr: g(l) = 0}.

Then R(T) = <%(r*) =0H
l and R(T*) = H^.

Now suppose that K: L2[0,1] -» L2[0,1] is a given integral operator whose
kernel satisfies k(s, •) £ Hr and k(s, 1) = 0, for almost all s. Suppose also that
zero order Tikhonov regularization applied to Kf — g results in the optimal rate
of convergence. Then K^g £ Hr and use of higher order regularization is sug-
gested (and justified). For simplicity we consider only regularization of order 1.
Let K denote the restriction of K to the Hilbert space HQ with norm

It is not difficult to see that K is compact so that our results apply. Tikhonov
regularization of order 1 applied to Kf = g consists in minimizing

over HQ. If we denote the minimizer of Gx by xx, then WK^g — JCX||, = O(X)
implies that K*g £ R(K*K). In order to interpret this condition, note that for
<£ £ L2[0,1] and ip £ H^, we have

((r*TK*<t>)', r) = ~ (rK*<£, V) = - (K*<t>, T*Y)
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and hence K* = r*TK*. It then follows that the condition K*g = x e R(K*K),
requires the smoothness condition x G Hr+2 as well as the boundary condition
JC'(O) = x(\) = 0.
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