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We study the dynamics of hydraulic fracturing of an elastic solid in a Hele-Shaw cell.
Compared with hydraulic fractures in an infinite elastic bulk, the viscous resistance comes
mainly from the drag by the two parallel plates that forms the Hele-Shaw cell rather than by
the fluid–solid interface. Such a feature leads to a different nonlinear differential–integral
system that describes the coupled evolution of the fracture shape and pressure field. Our
theory leads to hydraulic fractures of cusp shapes in the neighbourhood of the fracture
tip, which is consistent with recent experimental observations. Accordingly, there exists
no pressure singularity at the location of the fracture tip, which is also fundamentally
different from our previous understandings of hydraulic fracturing of elastic solids.
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1. Introduction

Hydraulic fracturing is related to many practical processes in nature and industry, such
as the recovery of fluid-phase resources from porous rocks, the formation of magma
dykes, the drainage of glacier lakes, and the fracturing of ice shelves driven by melt
water. Experimental studies on how a fracture develops upon fluid injection are often
performed in an infinite block of elastic solids, such as solid gelatins (e.g. Lai et al.
2015, 2016; Tanikella & Dressaire 2022) or hydrogels (e.g. O’Keeffe & Linden 2017;
O’Keeffe, Huppert & Linden 2018). These materials are typically soft and transparent,
such that the dynamic development of a hydraulic fracture can be visualised and recorded
during an experiment, which makes possible a comparison with theoretical predictions. In
particular, the time-dependent frontal locations can be measured and fitted according to
power-law forms of time, with the scaling exponents being compared with the prediction
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Figure 1. Hydraulic fracturing of an elastic solid in a Hele-Shaw cell. (a) A typical experimental picture of
the tip region of a hydraulic fracture in a Hele-Shaw cell (e.g. Weitz 2020). (b) Schematic of the experimental
picture. (c) Side view of a hydraulic fracture of the cusp shape near the tip.

of scaling theories. The profile shape evolution can also be recorded, which often exhibits
a certain degree of shape collapse after appropriate rescaling at intermediate times.

We study hydraulic fracturing in a Hele-Shaw cell in this work, with a focus on
theoretical modelling. A major advantage of such a Hele-Shaw configuration is that it
is more convenient to measure the fracture’s shape evolution in an experiment, and this
is because the orientation of a fracture is known (e.g. Weitz 2020; Aime et al. 2021). In
contrast, for the growth of a penny-shaped fracture in an infinite elastic solid, its orientation
is often difficult to predict precisely in an experiment, which makes it more challenging to
measure its shape evolution (e.g. Lai et al. 2015, 2016; O’Keeffe & Linden 2017; O’Keeffe
et al. 2018; Tanikella & Dressaire 2022). Hydraulic fractures in a Hele-Shaw cell are also
different from the classic two-dimensional plane fractures (see e.g. Spence & Sharp 1985;
Spence, Sharp & Turcotte 1987; Lister 1990a,b). This is because the length scale of a plane
fracture is infinite perpendicular to the plane of paper, which is difficult to mimic using
laboratory experiments.

We focus on the ‘slow’ fracturing regime, such that the thin film flow is viscous
rather than turbulent within a fracture (e.g. Lister 1990a; Tsai & Rice 2012; Rice et al.
2015). We are aware of some recent experimental observations of hydraulic fractures in a
Hele-Shaw cell in this regime; see e.g. figure 1(a) for a snapshot from Weitz (2020). It is
of particular interest to note that the fractures evolve into cusp shapes near the tip, e.g. in
the form h ∝ (1 − x/xf )

α , with α ∈ (1, ∞) when x → xf (t)−. Accordingly, there exists
no pressure singularity at the tip, i.e. p ∝ (1 − x/xf )

α−1 → 0+ when x → xf (t)−. This
is fundamentally different from our previous understandings of plane and radial fractures
within an infinite elastic solid, when a pressure singularity exists naturally at the fracture
tip. A primary goal of the current work is to develop a simple theory that captures such a
cusp shape for hydraulic fractures in a Hele-Shaw cell.

This paper is structured as follows. We first present a theoretical model in § 2 based on
the lubrication theory of viscous thin film flow within an elastically deformable cavity,
which is coupled with the linear elastic theory of solid deformation for the distribution of
the normal stress. This is analogous to previous models developed by e.g. Spence & Sharp
(1985), Spence et al. (1987), Lister (1990a,b), Savitski & Detournay (2002), Detournay
(2004) and Roper & Lister (2007) to describe the growth of plane and radial fractures in an
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Hydraulic fractures of the cusp shape in a Hele-Shaw cell

infinite elastic matrix without the influence of material toughness. Nevertheless, we arrive
at a different nonlinear differential–integral system for the coupled evolution of fracture
shape and pressure distribution, which leads to cusp shapes without pressure singularity.
The theory also leads to self-similar solutions for both the fracture shape and pressure
distribution at intermediate times. Then in § 3, we compare the theoretical predictions
with available experimental observations from literature and time-dependent numerical
solutions of the full nonlinear partial differential–integral system. We close the paper in
§ 4 with a brief summary and remarks on potential directions for future explorations.

2. Theoretical model

2.1. Governing equations
The model problem is sketched in figure 1, with a Newtonian liquid being injected into
an elastic solid confined between two parallel plates of gap thickness b. Neglecting the
influence of body forces and interfacial tension, standard lubrication theory of viscous flow
in a Hele-Shaw cell then indicates that the profile shape h(x, t) of a fracture is governed
by a partial differential equation

∂h
∂t

− b2

12μ

∂

∂x

(
h

∂p
∂x

)
= 0, (2.1)

with p(x, t) denoting the distribution of pressure within the liquid film that is to balance
the normal stress of the elastically deformed solid at the fluid–solid interface. Equation
(2.1) is different from (2.25) of Spence & Sharp (1985), since the viscous drag within the
liquid film is due predominantly to the no-slip boundary condition at the inner surface of
the parallel plates rather than at the fluid–solid interface.

We constrain the model problem in the positive half-domain x ∈ [0, ∞]. The pressure
distribution p(x, t) within the liquid film due to elastic deformation is then given by

p(x, t) = − E
2(1 − σ 2)

1
π

∫ xf (t)

0

1
s − x

∂h
∂s

ds, (2.2)

where E is the Young’s modulus of the elastic material, σ is the Poisson ratio, and xf (t)
is the location of the propagating front. The pressure distribution (2.2) due to elastic
deformation is consistent with those in previous studies of plane and radial fractures in
infinite elastic solids (e.g. Spence & Sharp 1985; Lister 1990a,b). Since we focus only on
the positive half-domain x ∈ [0, ∞], to be consistent with the experiment of e.g. Weitz
(2020), the lower limit of integration is x = 0 in (2.2) rather than x = −xf (t), which is the
only difference from the well-cited literature (e.g. Spence & Sharp 1985; Lister 1990a,b).
The prefactor 1/π is introduced from the definition of the Hilbert transform.

The differential–integral system (2.1) and (2.2) is to be solved providing appropriate
initial and boundary conditions (IBCs), e.g. given by

h(x, 0) = 0, (2.3a)

h(xf (t), t) = 0, (2.3b)∫ xf (t)

0
h(x, t) dx = qt. (2.3c)

The initial condition (2.3a) indicates that there exists no fluid initially within the elastic
solid, and fluid injection (i.e. fracturing) starts instantaneously at t = 0. The first boundary
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condition (2.3b) is a standard frontal condition (with compact support). The second
boundary condition (2.3c) is a global constraint for the increase of total area within the
plane of the paper, as covered by the fracturing fluid due to injection that proceeds at a
constant rate q.

The global volume conservation condition (2.3c) can also be shown to be equivalent to
a flux condition at the injection point (x = 0):

− b2

12μ
h

∂p
∂x

∣∣∣∣
x=0

= q. (2.4)

The treatment is similar to that for the propagation of a gravity current (e.g. Zheng
et al. 2015). One can integrate the evolution equation (2.1) from x = 0 towards x = xf (t),
imposing a zero-flux condition at the location of the propagating front x = xf (t) based on
the assumption that there is no fluid loss or entrainment locally at x = xf (t). The integral
constraint (2.3c) then reduces to a nonlinear flux condition (2.4). It is more convenient
to solve the coupled evolution equations (2.1) and (2.2) numerically, subject to initial
condition (2.3a), frontal condition (2.3b) and flux condition (2.4), e.g. with finite-volume
schemes.

2.2. Scaling analysis
The form of the governing equations (2.1), (2.2) and IBCs (2.3) indicates the following
scaling behaviours for the evolution of the length scale x, thickness scale h, and pressure
scale p:

x ∝ t1/2
[

b2Eq
24π(1 − σ 2)μ

]1/4

, (2.5a)

h ∝ t1/2
[

24π(1 − σ 2)μq3

b2E

]1/4

, (2.5b)

p ∝
[

6Eμq
π(1 − σ 2)b2

]1/2

. (2.5c)

These scaling behaviours apply at intermediate times when x � b and h � b, such that
the resistance for the elongation of a fracture comes predominantly from the viscous
drag due to the no-slip condition at the surface of the parallel plates rather than at the
fluid–solid interface. An estimate for the appropriate time scale is immediately available
as t � max([24π(1 − σ 2)b2μ/Eq]1/2, [Eb6/(24π(1 − σ 2)μq3)]1/2).

It is also seen that these scaling laws (2.5a–c) during hydraulic fracturing in a
Hele-Shaw cell (e.g. x ∝ t1/2 and h ∝ t1/2) are different from those (e.g. x ∝ t2/3 and
h ∝ t1/3) for the growth of two-dimensional plane fractures of infinite depth (e.g. Spence
& Sharp 1985). This is due to the difference of the velocity field of the lubricating flow and
the viscous drag, which leads to a different scaling exponent of h in the thin film equation
(2.1).

2.3. Non-dimensionalisation
The scaling results also suggest the existence of self-similar solutions for the evolution
of the fracture shape h(x, t) and pressure distribution p(x, t). It is standard first to rescale
the governing system (2.1) and (2.2) and the IBCs (2.3a–c). Since there exist no natural
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Hydraulic fractures of the cusp shape in a Hele-Shaw cell

time or length scales within the plane of the fracture, we chose the gap thickness b as a
reference length scale, and define hc = b. This would correspond to a time scale tc when
the thickness of a fracture reaches b. Based on this choice, our model would work in the
late-time regime t � tc, when the length and thickness scales are both much greater than
b. Accordingly, we define dimensionless variables as

t̄ ≡ t
tc

, x̄ ≡ x
xc

, h̄ ≡ h
b
, p̄ ≡ p

pc
, (2.6a–d)

where the characteristic time, length and pressure scales are chosen as

tc =
[

b6E
24π(1 − σ 2)μq3

]1/2

, xc =
[

b4E
24π(1 − σ 2)μq

]1/2

, pc =
[

6μqE
π(1 − σ 2)b2

]1/2

.

(2.7a–c)

We then arrive at the dimensionless form of (2.1), (2.2) and IBCs (2.3), and for
simplicity we continue to use t, x, h and p to represent dimensionless variables in this
section and § 3 from now on:

∂h
∂t

= ∂

∂x

(
h

∂p
∂x

)
, (2.8a)

p(x, t) = −
∫ xf (t)

0

1
s − x

∂h
∂s

ds, (2.8b)

and

h(x, 0) = 0, (2.9a)

h(xf (t), t) = 0, (2.9b)∫ xf (t)

0
h(x, t) dx = t. (2.9c)

Meanwhile, the dimensionless flux condition (2.4) is given by

−h
∂p
∂x

∣∣∣∣
x=0

= 1, (2.10)

which is equivalent to the integral constraint (2.9c). A finite-volume scheme is described
in Appendix A that is employed to solve numerically the dimensionless system (2.8a,b)
subject to (2.9a–c) for the coupled evolution of the dimensionless profile shape h(x, t) and
pressure distribution p(x, t).

Representative numerical solutions are shown in figure 2 for the time evolution of the
profile shape h(x, t) and pressure distribution p(x, t) for a hydraulic fracture within a
Hele-Shaw cell. In particular, it is observed that the fracture develops into the cusp shape
in a Hele-Shaw cell, which is consistent with the experimental observation in figure 1(a).
This is also completely different from that of plane fractures of infinite depth with profiles
in the form h ∝ (xf − x)2/3 as x → x−

f . (In the viscous regime, see e.g. Spence & Sharp
1985.) The inset of figure 2(a) also shows that the normalised profile solutions collapse
onto a universal shape, which suggests the existence of self-similarity, as we discuss later.
Meanwhile, numerical solutions for the pressure distribution indicate that the pressure
approaches a finite value as x → x−

f , which is also fundamentally different from the
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Figure 2. (a) Time evolution of cusp-like profile shapes h(x, t) near the front, and (b) time evolution of the
pressure field p(x, t), based on solving numerically the full partial differential–integral system (2.8a,b). The
inset of (a) shows also that the normalised profiles collapse onto a universal shape. The profiles were taken at
time t = 250 × {1–9}. The domain length is L = 600, with 1200 space grids employed here.

well-known pressure singularity of plane and radial fractures in the Cartesian and radial
configurations (e.g. Spence & Sharp 1985; Spence et al. 1987; Lister 1990a,b). Later, in
§ 3.1, these numerical solutions are also rescaled appropriately and compared with the
self-similar solutions that we explore next.

2.4. Self-similar solutions
To look for self-similar solutions of (2.8a,b) and (2.9a–c) at intermediate times (t � 1),
we start by defining a similarity variable as

ξ ≡ x/t1/2. (2.11)

We then look for h(x, t) = t1/2 k(ξ) and p(x, t) = g(ξ) by solving

1
2

k − 1
2

ξ
dk
dξ

= d
dξ

(
k

dg
dξ

)
, (2.12a)

g(ξ) = −
∫ ξf

0

1
s − ξ

dk
ds

ds, (2.12b)

subject to

k(ξf ) = 0 and
∫ ξf

0
k(ξ) dξ = 1. (2.13a,b)
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By definition, ξf ≡ xf /t1/2 represents the frontal location. Meanwhile, the influence of
initial condition (2.9a) no longer exists, as we are looking for intermediate time behaviours
when t � 1.

To solve numerically the ordinary differential–integral system (2.12a,b) for the
self-similar profile shape k(ξ) and pressure distribution g(ξ), we keep the time dependence
by introducing a mathematical transform

τ = ln t and ξ = x/t1/2. (2.14a,b)

The original partial differential-integral system (2.8a,b) then becomes

− ∂k
∂τ

+ 1
2

k − 1
2

ξ
∂k
∂ξ

= ∂

∂ξ

(
k

∂g
∂ξ

)
, (2.15a)

g = −
∫ ξf

0

1
s − ξ

∂k
∂s

ds. (2.15b)

Compared with (2.12a,b), (2.15a,b) now include an additional term of time evolution
∂k/∂τ . We then solve this evolution system for k(ξ, τ ) and g(ξ, τ ) using the same scheme
as described in Appendix A, now subject to appropriate IBCs:

k(ξ, 0) = 0, (2.16a)

k(ξf , τ ) = 0 and k
∂g
∂ξ

∣∣∣∣
ξ=0

= −1. (2.16b)

This system is solved until there is negligible time evolution, as shown in figure 3, due to
the existence of a sink term. The steady-state solutions k(ξ, ∞) → ks(ξ) and g(ξ, ∞) →
gs(ξ) become, effectively, the self-similar solutions of the ordinary differential–integral
system (2.12a,b) that we are looking for. From figure 3, we also obtain the end-point values
as ξf ≈ 2.42, ks(0) ≈ 0.82, gs(0) ≈ 1.37 and gs(ξf ) ≈ −1.35. For g(ξ), relatively more
significant numerical error appears around ξ = ξf , but this does not seem to influence the
bulk structure. The stability of the self-similar solutions obtained here can also be studied
based on the time-dependent system (2.15a,b) by adding small perturbations. Similar ideas
have been employed before to study the development of finite-time singularities for thin
fluid threads (e.g. Eggers & Fontelos 2009). To some extent, the transient dynamics here is
similar to that of a propagating viscous gravity current that suffers also slow drainage from
thin permeable substrates, driven by buoyancy or background flow (e.g. Pritchard, Woods
& Hogg 2001). With fluid supply at a constant rate, the model problem evolves into steady
flow solutions after an initial transition period, when fluid injection balances drainage.

It is of particular interest to note that the normalised solutions in figure 3 suggest that
pressure decreases linearly towards the fracture’s front while the profile shape develops
into a cusp shape. It can also be shown that the following analytical solutions provide very
good predictions:

h/h0 = −π−1
[
(2η − 1)[1 − (2η − 1)2]1/2 + sin−1(2η − 1) − π/2

]
, (2.17a)

p/p0 = (1 − 2η), (2.17b)

where η ≡ ξ/ξf = x/xf ∈ [0, 1], as we included also in figure 3 as well. In particular,
(2.17a) indicates that

h/h0 ∝ (1 − x/xf )
3/2, (2.18)
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Figure 3. The partial differential–integral system (2.15a,b) is solved until there is negligible time evolution,
i.e. k(ξ, ∞) → ks(ξ), and g(ξ, ∞) → gs(ξ). The steady-state solutions are, effectively, the self-similar
solutions of (2.12a,b). Here, the domain length is L = 3 with 300 space grids employed, and we have included
solutions at τ = 0.8 × {1–8}.

as x → xf (t)−, which describes the cusp shape. More discussions on the frontal structure
(2.17a,b) and the universal behaviours of the profile shape and pressure distribution are
provided in Appendix B based on series expansions.

3. Numerical and experimental observations

In this section, we first provide a detailed comparison between the self-similar solutions
and the time-dependent numerical solutions of the full partial differential–integral system
(2.8a,b). We then provide brief remarks on some experimental observations taken from
the literature.

3.1. Comparison with time-dependent numerical solutions
We first provide a comparison between the self-similar solution and the time-dependent
numerical solutions of the partial differential–integral system (2.8a,b). In particular, the
time-dependent numerical solutions for the evolution of the profile shape and pressure
distribution in figure 2 are now rescaled appropriately based on the maximum values in
figure 4, which exhibits very good collapse onto universal curves. We then include in the
same figure the (appropriately stretched) self-similar solutions from solving numerically
(2.15a,b), which provides very good agreement with the collapsed numerical solutions.
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Figure 4. The rescaled solutions of the profile shape and pressure field evolution of the numerical data in
figure 2. They already collapse onto universal curves, which also exhibits reasonably good agreement with the
prediction of the self-similar solutions from solving (2.15a,b) until there is negligible time evolution, shown as
the dashed curves.

Meanwhile, we track the time-dependent frontal location xf (t), inlet thickness
h0(t) ≡ h(0, t), inlet pressure p0(t) = p(0, t) and tip pressure pf (t) ≡ p(xf (t), t) from
numerical solutions of (2.8a,b). In all cases, the numerical solutions (the symbols)
approach the prediction of the self-similar solutions from solving numerically (2.15a,b)
at intermediate times, shown as the solid lines in figure 5, and as described by

xf (t) ∼ 2.42 t1/2, h0(t) ∼ 0.82 t1/2, p0(t) ∼ 1.37 and pf (t) ∼ −1.35. (3.1a–d)

There is very good agreement for both the scaling exponents of time dependence and the
prefactors between the self-similar and numerical solutions. The very small difference, we
believe, is more likely due to numerical error (e.g. on the last digit of solution (3.1a–d))
and is less likely due to unfinished time transition.

3.2. Comparison with available experimental observations
There are also limited experimental pictures available from the literature (e.g. Weitz
2020; Aime et al. 2021). In a typical experiment, a fluid such as air or water is injected
through a syringe pump into a thin layer of colloidal gel that is confined between the two
parallel plates of a Hele-Shaw cell, as shown in figure 6. The porosity of the gel (1.875 %
Ludox Gel, SM 40) is ≈70 %, the modulus is ≈100 kPa, and the yield stress is ≈480 Pa
from measurements. The Hele-Shaw cell has length 7.5 cm, width 5.0 cm, and thickness
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Figure 5. Time evolution of the frontal location xf (t), fracture thickness h0(t) ≡ h(0, t), inlet pressure p0(t) ≡
p(0, t), and tip pressure pf (t) ≡ p(xf (t), t), based on solving numerically the partial differential–integral system
(2.8a,b). The numerical results (symbols) agree very well with the prediction of the self-similar solutions (solid
lines) at intermediate times.

7 μm. The injection rate is small, and typical propagating speed of a hydraulic fracture is
≈1 μm s−1. A typical experiment lasts for 1–10 h.

A comparison between experimentally recorded (e.g. Weitz 2020) and rescaled (and
collapsed) numerical solutions of the full partial differential–integral system (2.8a,b) is
shown in figure 6 for the profile shape of a hydraulic fracture in a Hele-Shaw cell.
Experimental pictures of the near-tip region of the profile shape at three different times are
shown in figures 6(a–c), respectively, with the appropriately stretched numerical solutions
superimposed on each of them. In particular, the length scales at two different times t1 and
t2 must satisfy x1/x2 = h1/h2 = (t1/t2)1/2 at the self-similar stage based on the scaling
laws (2.5a,b). We observe fairly good agreement between the theoretical and experimental
results of this cusp-shaped hydraulic fracture in a Hele-Shaw cell. We do recognise that the
available experimental data are rather limited. So we suggest further experiments being
performed in the future with time-dependent profile shapes and possibly pressure fields
reported, which would allow more thorough comparison with the theory.

4. Summary and final remarks

4.1. Summary
A theoretical model is provided to describe the coupled evolution of the profile shape
and pressure distribution of a hydraulic fracture in a Hele-Shaw cell. The model is based
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(a) (b) (c)

64 % 79 % 100 %

Real duration: 10 h Real duration: 10 h Real duration: 10 h

100 µm 100 µm 100 µm

Figure 6. Experimental pictures at three different times for the profile shape of a hydraulic fracture in
a Hele-Shaw cell (e.g. Weitz 2020), while the appropriately stretched theoretical predictions from solving
(2.8a,b) are superimposed as the cyan curves.

on the lubrication theory of viscous thin film flow in an elastically deformable cavity,
which is coupled with the linear elastic theory of solid deformation for the distribution
of normal stresses at the fluid–solid interface (i.e. the distribution of pressure within the
liquid film). It is of particular interest to note that the model leads to hydraulic fractures
of cusp shapes, which is consistent with recent experimental observations in a Hele-Shaw
cell. The model also suggests the existence of self-similar solutions at intermediate times,
which is verified through a comparison with rescaled numerical solutions of the full
partial differential–integral system (2.8a,b). Compared with the classic results of plane or
penny-shaped fractures, there exists no pressure singularity at the tip of a hydraulic fracture
in a Hele-Shaw cell, which is a fundamental difference. We suggest that more experiments
should be performed in the future to obtain time-dependent data of the fracture shape,
frontal location, and pressure distribution (if possible), which can be used to further verify
the theory and/or suggest new directions for future explorations.

4.2. Time-dependent injection modes
The theoretical model works also when the injection rate is time-dependent, as already
pointed out in earlier studies on the propagation of plane and radial hydraulic fractures
in elastic solids (e.g. Spence & Sharp 1985; Lai et al. 2015). This is also true for the
growth of a hydraulic fracture in a Hele-Shaw cell in the current work. Of particular
interest is the situation when the injection rate follows power-law or exponential forms
of time dependence, in which case self-similar solutions can also be explored to describe
the universal behaviours at intermediate times. Here, we briefly point out that under a
power-law form of fluid injection, such that the total volume (area) follows V(t) = qtα , the
scaling results (2.5a–c) are extended to

x ∝ t(α+1)/4
[

b2Eq
24π(1 − σ 2)μ

]1/4

, (4.1a)
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h ∝ t(3α−1)/4
[

24π(1 − σ 2)μq3

b2E

]1/4

, (4.1b)

p ∝ t(α−1)/2
[

6μqE
π(1 − σ 2)b2

]1/2

, (4.1c)

to describe the time evolution of the length and pressure scales. We stop the discussion
here by noting simply that self-similar solutions for the profile shape h(x, t) and pressure
distribution p(x, t) can also be explored following the procedure in § 2.4 of the current
work.

4.3. The influence of material toughness
It is well known that the propagation of a hydraulic fracture can possibly be resisted
by material breaking at the fracture tip as well. In the well-cited literature of hydraulic
fracturing of an infinite elastic solid that is also brittle (e.g. Spence & Sharp 1985; Lister
1990b; Savitski & Detournay 2002; Roper & Lister 2007), a revised model is to introduce
a propagation condition

Kc ∼ E
23/2(1 − σ 2)

h(x, t)
(xf (t) − x)1/2 , (4.2)

as x → xf (t)−. Condition (4.2) is consistent with those derived based on the theory of
linear elastic fracture mechanics of a mode I crack without the influence of body forces
and that of flow (e.g. Rice 1968; Howell, Kozyreff & Ockendon 2008). The critical
stress intensity factor Kc > 0 is typically named ‘material toughness’ and is an important
property of a brittle material. Detailed analysis of the influence of material breaking on
hydraulic fracturing in a Hele-Shaw cell is left for a future work. In such a context, the
description of (2.1a,b) subject to IBCs (2.3) applies, when fracturing a non-brittle elastic
material as Kc → 0+.
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Appendix A. Numerical scheme

A finite-volume scheme is developed to solve numerically the governing nonlinear
non-local system (2.8a,b) for the coupled profile shape and pressure evolution of a
hydraulic fracture. For simplicity, we use x, t, h and p to denote the dimensionless variables
here. To start, we chose the cell-centred discretisation method for a finite-volume scheme.
The domain of length L is first discretised as xn = (n − 1/2)�x for n = 1, 2, . . . , N,
where the space step is �x = L/(N − 1). Time is also discretised as ti = i �t for
i = 0, 1, 2, . . ., and the time step is chosen as �t = c(�x)3 for a third-order scheme (in
space). The constant c is small enough to ensure that the scheme is stable.
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The evolution system (2.8a) is then rewritten as

hi+1
n = hi

n + �t
�x

(
qi

n+1/2 − qi
n−1/2

)
, (A1)

for n = 1, 2, . . . , N. Meanwhile, the dimensionless flux qi
n+1/2 (or qi

n−1/2) is defined at
the boundary of two neighbouring grids as

qi
n−1/2 = hi

n + hi
n−1

2

pi
n − pi

n−1

�x
, (A2)

with n = 2, . . . , N, and the dimensionless pressure pi
n is given by the discretised version

of the integral equation (2.8b) as

pi
n = −

nf −1∑
1

hi
k+1 − hi

k

(xk+1 + xk)/2 − xn
, (A3)

with nf denoting the location of the propagating front (the crack tip), which locates at
xf = (nf − 1/2)�x. For such a finite-volume scheme, the flux boundary conditions are
convenient to impose as

qi
1/2 = 1 and qi

N−1/2 = 0. (A4a,b)

Then we can obtain numerical solutions for the profile shape hi
n and pressure distribution

pi
n for i = 1, 2, 3, . . . and n = 1, 2, . . . , N, providing the initial conditions such as h0

n = 0
and p0

n = 0 for n = 1, 2, . . . , N.
The scheme is second order in space except at the boundary points, where it is first order,

and first order (explicit) in time. The space and time steps are chosen to be small enough
such that the scheme is stable, and no significant difference appears subject to further
grid refinement. Volume conservation is also checked as time progresses. A typical grid
number is N = O(103), and the constant chosen is c = O(10−3). Similar schemes have
been employed before to obtain numerical solutions for nonlinear differential systems
of gravity current flows in confined porous layers (e.g. Zheng et al. 2015; Hinton &
Woods 2018) and capillary-driven thin film flows (e.g. Zheng et al. 2018). This scheme
has also been modified appropriately to deal with the plane fracture problem without
material toughness (see e.g. Spence & Sharp 1985). We found that it is able to capture the
universal fracture shape h ∝ (xf − x)2/3 as x → x−

f . It is also able to demonstrate clearly
the development of a logarithm singularity for pressure distribution near the fracture tip,
with (local) numerical error as x → x−

f depending significantly on the grid number, as
expected.

Appendix B. Frontal structures

We start by noting that the ordinary differential–integral system (2.12a,b) can be stretched
appropriately by further defining η ≡ ξ/ξf ∈ [0, 1] such that the frontal location is
ηf = 1 in the (η, k) space. For correct balance, we also define K(η) ≡ k(ξ)/ξ3

f and
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G(η) ≡ g(ξ)/ξ2
f , and (2.12) and (2.13a,b) now become

1
2
K − 1

2
η

dK
dη

= d
dη

(
K dG

dη

)
, (B1a)

G(η) = −
∫ 1

0

1
s − η

dK
ds

ds, (B1b)

and

K(1) = 0 and ξf =
[∫ 1

0
K(η) dη

]−1/4

. (B2a,b)

It is more convenient to look for asymptotic solutions for (B1a,b) on η ∈ [0, 1], compared
with looking for solutions for (2.12a,b) on ξ ∈ [0, ξf ] since ξf is unknown.

If we further make the transform η ≡ (r + 1)/2 ∈ [0, 1] such that the domain of the
integral equation (B1b) for elasticity becomes r ∈ [−1, 1], to be consistent with the earlier
works of plane fractures in infinite elastic solids (e.g. Spence & Sharp 1985), for a linearly
decreasing normalised pressure profile G−1

m G(r) = −r (i.e. G−1
m G(η) = 1 − 2η) that is

consistent with the numerical observations in figure 3, standard identities of the Hilbert
transform then indicate that K−1

m dK/dr = −π−1(1 − r2)1/2, as pointed out by a reviewer
of this work. Here, Gm and Km represent the end-point maximum values for the profile
shape and fluid pressure at r = −1 (i.e. η = 0). We can then integrate this solution once
to provide K−1

m K(r) = π−1[r(1 − r2)1/2 + sin−1 r − π/2], which satisfies also the frontal
condition K(1) = 0. Equivalently, these solutions become (see (2.17a,b))

K−1
m K(η) = −π−1

[
(2η − 1)[1 − (2η − 1)2]1/2 + sin−1(2η − 1) − π/2

]
, (B3a)

G−1
m G(η) = (1 − 2η), (B3b)

for η ∈ [0, 1]. Solutions (B3a,b) are found to provide very good agreement with the
normalised self-similar solutions and the rescaled time-dependent numerical solutions
throughout the entire domain, as shown also in figure 3. Solution (B3a) can also be
expanded around the fracture’s tip to provide

K−1
m K(η) ∝ (1 − η)3/2, (B4)

as η → 1−, which is solution (2.18) for the fracture’s cusp-shaped profile near the tip.
In fact, we can show that solutions (B3a,b) are also compatible with the flow equation

(B1a). We start by imposing series solutions of the power-law form for K(η) and G(η) as

K(η) =
∑

Ai(1 − η)α+i−1, (B5a)

G(η) = B0 +
∑

Bi(1 − η)β+i−1, (B5b)

where α > 0, β > 0, and i = 1, 2, . . . , I. By substituting (B5a,b) into the flow equation
(B1a), appropriate balance at different orders of (1 − η)α leads to β = 1, which is
independent on the value of α for the profile shape, and

B1 = 1/2, at O
[
(1 − η)α−1

]
, (B6a)

B2 = 1/4(α + 1), at O
[
(1 − η)α

]
, (B6b)

as η → 1−. We can include more higher-order terms here. It is already shown,
nevertheless, that the pressure distribution must be linear at leading order, which is
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consistent with solution (B3b) and the numerical solutions in figure 3. The value of
α is undetermined as of now. However, if we impose α = 3/2 based on (B4), then by
substituting the leading-order profile shape K(η) ∼ A1(1 − η)3/2 back into the elasticity
equation (B1b), we obtain

G(η) = B0 + 3A1

[
1 − (1 − η)1/2 tanh−1(1 − η)−1/2

]
∼ (B0 + 3A1) − 3A1(1 − η) + O

[
(1 − η)2

]
, (B7)

as η → 1−. At leading order, this provides also a linear pressure distribution from the
elasticity equation. Therefore, solutions (B3a,b) are compatible with both the flow and
elasticity equations. It might be of interest to note that the fractional-power expansions for
the profile shape (B5a) are consistent with previous studies on edge cracks without flow
(from solving a biharmonic equation for stress) (e.g. Williams 1957).
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