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Abstract. Dirichlet’s theorem, including the uniform setting and asymptotic setting, is one
of the most fundamental results in Diophantine approximation. The improvement of the
asymptotic setting leads to the well-approximable set (in words of continued fractions)

K(�) := {x : an+1(x) ≥ �(qn(x)) for infinitely many n ∈ N};
the improvement of the uniform setting leads to the Dirichlet non-improvable set

G(�) := {x : an(x)an+1(x) ≥ �(qn(x)) for infinitely many n ∈ N}.
Surprisingly, as a proper subset of Dirichlet non-improvable set, the well-approximable set
has the same s-Hausdorff measure as the Dirichlet non-improvable set. Nevertheless, one
can imagine that these two sets should be very different from each other. Therefore, this
paper is aimed at a detailed analysis on how the growth speed of the product of two-termed
partial quotients affects the Hausdorff dimension compared with that of single-termed
partial quotients. More precisely, let �1, �2 : [1, +∞) → R

+ be two non-decreasing
positive functions. We focus on the Hausdorff dimension of the set G(�1)\K(�2). It
is known that the dimensions of G(�) and K(�) depend only on the growth exponent
of �. However, rather different from the current knowledge, it will be seen in some cases
that the dimension of G(�1)\K(�2) will change greatly even slightly modifying �1 by a
constant.

Key words: Dirichlet improvable set, well-approximable set, continued fractions, Haus-
dorff dimension
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1. Introduction
Diophantine approximation aims at quantitative analysis on how well irrational numbers
can be approximated by rational numbers. Dirichlet’s theorem is the first non-trivial
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quantitative result in this aspect and is the starting point of metric Diophantine
approximation.

THEOREM 1.1. (Dirichlet [19]) Let x ∈ R. For any positive numberQ > 1, there exists an
integer q with 1 ≤ q < Q, such that

‖qx‖ ≤ 1
Q

, i.e. min
1≤q<Q,q∈N ‖qx‖ ≤ 1

Q
,

where ‖ · ‖ denotes the distance to integers Z.

As a corollary, one has the following.

COROLLARY 1.2. For any real number x, there are infinitely many integers q ∈ N, such
that

‖qx‖ < 1/q.

The result in Theorem 1.1 is called the uniform Dirichlet theorem and the result in
Corollary 1.2 is called the asymptotic Dirichlet theorem. The study of the improvability of
Dirichlet’s theorem opens up the metric theory in Diophantine approximation.
• The improvability of the asymptotic theorem leads to the ψ well-approximable set

W(ψ) = {x ∈ [0, 1) : ‖qx‖ < ψ(q) for infinitely many q ∈ N}.
The metric theory of W(ψ) and its variants constitute the major topic in metric
Diophantine approximation [20]. For examples, Khintchine’s theorem [10], Jarník’s
theorem [9], the mass transference principle [2], the Duffin–Schaeffer conjecture
[15] etc.

• The improvability of the asymptotic theorem leads to the Dirichlet improvable set

D(ψ) = {x ∈ [0, 1] : min
1≤q<Q ‖qx‖ ≤ ψ(Q) for all Q � 1}.

The work of Davenport and Schmidt [4] draw one’s attention to the improvability
of Dirichlet’s theorem itself instead of its corollary. For examples, uniformly well
approximable sets [12], uniform Diophantine exponent [3], homogeneous and inho-
mogeneous Dirichlet improvability [13, 14] etc.

As far as one-dimensional Diophantine approximation is concerned, the continued
fraction expansion plays a significant role. Indeed, the metric theories, including Lebesgue
measure and Hausdorff dimension, of the sets W(ψ) and D(ψ) are both studied via
continued fractions at the very beginning.

Let x = [a1(x), a2(x), . . .] be the continued fraction of x, and pn(x)/qn(x) be the
nth convergent of x. Then by the best rational approximation of the convergents, more
precisely,

min
1≤q<qn+1(x)

‖qx‖ = ‖qn(x) · x‖,
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the setsW(ψ) andD(ψ) can be rewritten by changing q to qn(x) and Q to qn+1(x). Easy
calculation leads to the following sets:

K(�2) = {x ∈ [0, 1) : an+1(x) ≥ �2(qn(x)) for infinitely many n ∈ N},
G(�1) = {x ∈ [0, 1) : an(x)an+1(x) ≥ �1(qn(x)) for infinitely many n ∈ N}.

(Later we use i.m. for infinitely many.) By taking

�2(q) = 1
ψ(q)q

and �1(q) = ψ(q)q

1 − ψ(q)q
,

one has the inclusions

K(�2) ⊂W(ψ) ⊂ K( 1
2�2

)
and G(�1) ⊂ Dc(ψ) ⊂ G( 1

4�1
)
,

whereDc means the complement set ofD.
Based on these relations, Khintchine [10] (or see his monograph [11]) presented the

Lebesgue measure ofW(ψ) and Jarník [9] showed its Hausdorff measure; forDc(ψ), its
Lebesgue measure is given by Kleinbock and Wadleigh [13] and the Hausdorff measure
and dimension result is given by Hussain et al [7].

The close relation between the sets K(�2) and G(�1) is disclosed in proving the
Hausdorff measure theory ofDc(ψ).

THEOREM 1.3. (Hussain et al [7]) Let ψ be a non-increasing positive function with
tψ(t) < 1 for all large t. Then for any 0 ≤ s < 1,

Hs(Dc(ψ)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if
∑
t

t

(
1

t2�1(t)

)s
< ∞;

∞ if
∑
t

t

(
1

t2�1(t)

)s
= ∞.

More precisely, the divergence theory is followed by just using the simple fact that

K(�) ⊂ G(�)
and the following Jarník’s theorem.

THEOREM 1.4. (Jarník [9]) Let� : N → R
+ be a non-decreasing positive function. Then

for any 0 ≤ s < 1,

Hs(K(�)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if
∑
t

t

(
1

t2�(t)

)s
< ∞;

∞ if
∑
t

t

(
1

t2�(t)

)s
= ∞.

So dimH(G(�)) = dimH(K(�)). It is surprising that the subsetK(�) can give the right
dimension of G(�) from below. So it is desirable to know how much is the difference
between K(�) and G(�).
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THEOREM 1.5. (Bakhtawar, Bos and Hussain [1]) Let � : N → R
+ be a non-decreasing

function. Then

dimH(G(�)\K(�)) = dimH(K(�)). (1.1)

To prove the equality in equation (1.1), the ≤ direction is trivial since dimH(G(�)) =
dimH(K(�)); for the ≥ direction, one considers the following subset:

{
x ∈ [0, 1) : an(x) = 4, an+1(x) ≥ �(qn(x))

4
, i.m. n ∈ N;

and an+1(x) < �(qn(x)) for all n ∈ N

}
.

Since there is already enough room for the choice of an+1(x) and such a room is almost
the same as in finding the lower bound of the dimension of K(�) (see for example [22]),
it should be imagined that this subset should have the same dimension as K(�).

Roughly speaking, only the term an+1(x) contributes the dimension of G(�) while
an(x) does not. One main reason is that the restriction an+1(x) ≤ �(qn(x)) is too loose
that it is already sufficient to ask that an+1(x) is large and an(x) behaves almost freely.

However, if an+1(x) cannot be very large, then an(x) must contribute to realize that
an(x)an+1(x) is large enough. So to have a better understanding about how an(x) and
an+1(x) contribute to the dimension of G(�), we consider the following difference set:

G(�1)\K(�2) = {x ∈ [0, 1) : an(x)an+1(x) ≥ �1(qn(x)), i.m. n ∈ N;

and an+1(x) < �2(qn(x)) for all n ∈ N large}.
When �2 ≤ �1, both an(x) and an+1(x) have to contribute to realize an(x)an+1(x) ≥
�1(qn(x)). Then there will be a selection about how to choose an(x) and an+1(x)

separately: equal or non-equal growth rate, which would be the optimal choice? The
general principle of how an(x) and an+1(x) are chosen will be explained in detail in
the proof. Moreover, one will see that a minor change on � will cause a big difference
on the dimension.

We ask �1 and �2 to take the form as Jarník’s original theorem, that is, �i(q) = qti

and write G(t1)\K(t2) for the set G(�1)\K(�2).

THEOREM 1.6. For any t1, t2 > 0:
• when t1 > t2 + t2/(1 + t2),

G(t1)\K(t2) = ∅;

• when t1 = t2 + t2/(1 + t2),

G(t1)\K(t2) = ∅;

• when t2 < t1 < t2 + t2/(1 + t2),

dimH(G(t1)\K(t2)) = 1 − t1

2 + t2
;

• when t1 ≤ t2,

dimH(G(t1)\K(t2)) = 2
2 + t1

.
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We separate the case t1 = t2 + t2/(1 + t2) from the others, mainly because a different
situation will happen for this case. We give two examples to illustrate this. Denote

E1 = {x ∈ [0, 1) : an(x)an+1(x) ≥ qn(x)
t1 , i.m. n ∈ N,

an+1(x) < qn(x)
t2 for all n ∈ N large},

E2 = {x ∈ [0, 1) : an(x)an+1(x) ≥ 4−t1qn(x)t1 , i.m. n ∈ N,

an+1(x) < 3qn(x)t2 for all n ∈ N large}.
The first set E1 is nothing but G(t1)\K(t2). We duplicate it here mainly for comparison.

PROPOSITION 1.7. If t1 = t2 + t2/(1 + t2), then

E1 = ∅, dimH E2 = 1 − t1

2 + t2
.

These two examples illustrate that as far as the general functions �i are concerned,
minor change on the function will lead to a big difference between the dimensions. So it is
almost hopeless to give a unified formula for the dimension of the set G(�1)\K(�2) (the
formula is hopeful only when �2 is good). Therefore for simplicity, we ask �i to behave
regularly instead of arbitrarily.

THEOREM 1.8. Let �1, �2 be two non-decreasing functions. Assume that

lim
q→∞

log �1(q)

log q
= t1, lim

q→∞
log �2(q)

log q
= t2.

Then the following:
• when t1 > t2 + t2/(1 + t2),

G(�1)\K(�2) = ∅;

• when t2 < t1 < t2 + t2/(1 + t2),

dimH(G(�1)\K(�2)) = 1 − t1

2 + t2
;

• when t1 ≤ t2,

dimH(G(�1)\K(�2)) = 2
2 + t1

.

Even though only special functions are considered here, the proof below will be
sufficient to illustrate how the partial quotients an(x) and an+1(x) contribute to the
dimension of G(�).

Throughout the paper, denote by Hs the s-dimensional Hausdorff measure, dimH the
Hausdorff dimension and ‘cl’ the closure of a set. We use a � b, a � b and a � b

respectively to mean that 0 < a/b ≤ e1, a/b ≥ e2 > 0 and e2 ≤ a/b ≤ e1 for unspecified
positive constants e1, e2.

2. Preliminaries
In this section, we shall collect some basic properties about continued fractions for later
use. For more properties, one is referred to the monographs [8, 11].
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Continued fraction expansion is induced by the Gauss transformation T : [0, 1) →
[0, 1) given by

T (0) := 0, T (x) = 1
x
(mod 1), x ∈ (0, 1).

Then every irrational number x ∈ [0, 1) can be uniquely expanded into an infinite
continued fraction:

x = 1

a1(x)+ 1

a2(x)+ . . .

:= [a1(x), a2(x), . . .],

where a1(x) = 
1/x� and an(x) = a1(T
n−1(x)) for n ≥ 2 are called the partial quotients

of x. The finite truncation
pn(x)

qn(x)
= [a1(x), . . . , an(x)]

is called the nth convergent of x.
The numerator and denominator of a convergent can be determined by the recursive

relation: for any k ≥ 1,

pk(x) = ak(x)pk−1(x)+ pk−2(x), qk(x) = ak(x)qk−1(x)+ qk−2(x), (2.1)

with the conventions p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.
For simplicity, we write

pn(x) = pn(a1, . . . , an) = pn, qn(x) = qn(a1, . . . , an) = qn (2.2)

when the partial quotients a1, . . . , an are clear.

LEMMA 2.1. Let a1, . . . , an, b1, . . . , bm be integers in N. For any 1 ≤ k ≤ n, one has

qn ≥ 2(n−1)/2, and pn−1qn − pnqn−1 = (−1)n, (2.3)

1 ≤ qn+m(a1, . . . , an, b1, . . . , bm)
qn(a1, . . . , an) · qm(b1, . . . , bm)

≤ 2. (2.4)

For any positive integers a1, . . . , an, define

In(a1, . . . , an) := {x ∈ [0, 1) : a1(x) = a1, . . . , an(x) = an}
and call it a cylinder of order n. The length of a cylinder and its position in [0, 1) is
demonstrated in the following propositions.

PROPOSITION 2.2. (Khintchine [11]) For any n ≥ 1 and (a1, . . . , an) ∈ N
n, pk , qk are

defined recursively by equation (2.1) for 0 ≤ k ≤ n. Then

In(a1, . . . , an) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
pn

qn
,
pn + pn−1

qn + qn−1

)
if n is even,

(
pn + pn−1

qn + qn−1
,
pn

qn

]
if n is odd.

(2.5)
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Therefore, the length of a cylinder of order n is given by

|In(a1, . . . , an)| = 1
qn(qn + qn−1)

.

Since every number in [0, 1) has continued fraction expansion, then

[0, 1) =
⋃

a1,...,an

In(a1, . . . , an).

Thus,

1 ≤
∑

a1,...,an

1
q2
n(a1, . . . , an)

≤ 2. (2.6)

PROPOSITION 2.3. (Khintchine [11]) Let In = In(a1, . . . , an) be a cylinder of order n,
which is partitioned into sub-cylinders {In+1(a1, . . . , an, an+1) : an+1 ∈ N}. When n is
odd, these sub-cylinders are positioned from left to right, as an+1 increases from 1 to ∞;
when n is even, they are positioned from right to left.

Next, we introduce the mass distribution principle which is the classic method in
estimating the Hausdorff dimension of a set from below.

PROPOSITION 2.4. [5] Let E be a Borel set and μ be a measure with μ(E) > 0. Suppose
that for some s > 0, there exist constants c > 0, ro > 0 such that for any x ∈ E and
r < ro,

μ(B(x, r)) ≤ crs , (2.7)

where B(x, r) denotes an open ball centered at x and radius r, then dimH E ≥ s.

At the end, we give some dimensional numbers which are related to the dimension of
the set of points with bounded partial quotients.

For any integer M, define

EM = {x ∈ [0, 1) : 1 ≤ an(x) ≤ M for all n ≥ 1}.
For each integer N, define s̃N (M) to be the solution to the equation

∑
1≤a1,...,aN≤M

(
1

q2
N(a1, . . . , aN)

)s
= 1.

PROPOSITION 2.5. (Good [6]) The limit of s̃N (M) as N → ∞ exists and

dimH EM = lim
N→∞ s̃N (M) := s̃(M).

It is well known that the set of points with bounded partial quotients (that is, the set of
badly approximable points) is of Hausdorff dimension 1 (see [18]). Thus,

lim
M→∞ dimH EM = 1, i.e. lim

M→∞ s̃M = 1.

These two results can also be seen by using the words from dynamical systems. More
precisely, a pressure function with a continuous potential can be approximated by the
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pressure functions restricted to the sub-systems in continued fractions (see for example
Mauldin and Urbański [16] or their monograph [17]).

3. A Cantor set
This section is devoted to dealing with the dimension of a Cantor set which is highly related
to the dimension of G(t1)\K(t2) and also may have its own interest and applications to
other problems in continued fractions. Bear in mind the notation in equation (2.2).

Let α1, α2 > 0 be two positive numbers. Denote by E(α1, α2) the set

{x ∈ [0, 1) : c1q
α1
n−1(x) ≤ an(x) < 2c1q

α1
n−1(x), c2q

α2
n (x)

≤ an+1(x) < 2c2q
α2
n (x), i.m. n ∈ N}

where c1, c2 are positive constants.
One will see how the growth of an(x) and an+1(x) affects the dimension of E(α1, α2).

For notational simplicity, we take c1 = c2 = 1 and the other case can be done with verbal
modifications; if an integer n is assumed to be a real number ξ , we mean n = 
ξ�; in the
definition of E(α1, α2), there are qα1

n−1 many choices of an(x).

THEOREM 3.1. For any α1, α2 > 0,

dimH E(α1, α2) = min
{

2
α1 + 2

,
α1 + 2

(α1 + 1)(α2 + 2)

}
.

The proof of Theorem 3.1 is split into two parts: upper bound and lower bound.

3.1. Upper bound. Because of the limsup nature, there are natural coverings for
E(α1, α2). For each n ≥ 1, define

En = {x ∈ [0, 1) : qα1
n−1(x) ≤ an(x) < 2qα1

n−1(x), q
α2
n (x) ≤ an+1(x) < 2qα2

n (x)}.
Then

E(α1, α2) =
∞⋂
N=1

∞⋃
n=N

En ⊂
∞⋃
n=N

En.

So in the following, we search for the potential optimal cover of En for each n ≥ N .
By decomposing the unit interval into the collection of (n− 1)th order cylinders, one

has

En =
⋃

a1,...,an−1∈N
{x ∈ [0, 1) : ai(x) = ai , 1 ≤ i < n, qα1

n−1 ≤ an(x) < 2qα1
n−1,

qα2
n ≤ an+1(x) < 2qα2

n }.
Then there are two potential optimal covers.
• Cover type I. For any integers a1, . . . , an−1 ∈ N, define

Jn−1(a1, . . . , an−1) =
⋃

q
α1
n−1≤an<2q

α1
n−1

In(a1, . . . , an),
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which is an interval of length

|Jn−1(a1, . . . , an−1)| =
∑

q
α1
n−1≤an<2q

α1
n−1

∣∣∣∣pnqn − pn + pn−1

qn + qn−1

∣∣∣∣ � 1

q
α1+2
n−1

.

Then,

En ⊂
⋃

a1,...,an−1

Jn−1(a1, . . . , an−1).

Therefore, an s-dimensional Hausdorff measure of E(α1, α2) can be estimated as

Hs(E(α1, α2)) ≤ lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1

|Jn−1(a1, . . . , an−1)|s

≤ lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1

1

q
(α1+2)s
n−1

.

Recall equation (2.6) where

∑
a1,...,an−1

1
q2
n−1

≤ 2, and qn−1 ≥ 2(n−2)/2.

Thus for any ε > 0 and by taking s = (2 + 2ε)/(α1 + 2), it follows that

Hs(E(α1, α2)) ≤ lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1

(
1

q2
n−1

· 1
2(n−2)ε

)

≤ 2 lim inf
N→∞

∞∑
n=N

1
2(n−2)ε < ∞.

This shows that

dimH E(α1, α2) ≤ 2
α1 + 2

.

• Cover type II. For any integers a1, . . . , an−1 ∈ N and qα1
n−1 ≤ an < 2qα1

n−1, define

Jn(a1, . . . , an) =
⋃

q
α2
n ≤an+1<2q

α2
n

In+1(a1, . . . , an+1),

which is an interval of length

|Jn(a1, . . . , an)| � 1

q
α2+2
n

.

Then,

En ⊂
⋃

a1,...,an−1

⋃
q
α1
n−1≤an<2q

α1
n−1

Jn(a1, . . . , an).
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Therefore, an s-dimensional Hausdorff measure of E(α1, α2) can be estimated as

Hs(E(α1, α2)) ≤ lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1

∑
q
α1
n−1≤an<2q

α1
n−1

|Jn(a1, . . . , an)|s

≤ lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1

∑
q
α1
n−1≤an<2q

α1
n−1

1

q
(α2+2)s
n

.

Recall that

qn = anqn−1 + qn−2 ≥ anqn−1.

Thus it follows that

Hs(E(α1, α2)) ≤ lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1

q
α1
n−1

q
(1+α1)(α2+2)s
n−1

.

Then with a similar choice of s and the argument as in the first case, one has

dimH E(α1, α2) ≤ 2 + α1

(1 + α1)(2 + α2)
.

In summary, we have shown that

dimH E(α1, α2) ≤ min
{

2
α1 + 2

,
α1 + 2

(α1 + 1)(α2 + 2)

}
.

3.2. Lower bound. We use the mass distribution principle (Proposition 2.4) to search for
the lower bound of the dimension of E(α1, α2): define a measure supported on E(α1, α2)

and then estimate the Hölder exponent of μ.
Recall α1 > 0. For any integers N , M , define the dimensional number s = sN(M) as

the solution to ∑
1≤a1,...,aN≤M

1

q
(2+α1)s
N

= 1. (3.1)

Then by Proposition 2.5, one has

lim
M→∞ lim

N→∞ sN(M) = 2
α1 + 2

. (3.2)

So fix ε > 0 and then choose integers M , N sufficiently large such that

s >
2

α1 + 2
− ε, (2(N−1)/2)ε/2 ≥ 2100.

Fix a sequence of largely sparse integers {lk}k≥1, say,

lk � el1+···+lk−1 , and take nk − nk−1 = lkN + 1 for all k ≥ 1,

such that

(2�k(N−1)/2)ε/2 ≥
k−1∏
t=1

(M + 1)�tN(1+α2)
k−t (1+α1)

k−t
. (3.3)
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Then define a subset of E(α1, α2) as

E = {x ∈ [0, 1) : qnk−1(x)
α1 ≤ ank (x) < 2qnk−1(x)

α1 , qnk (x)
α2 ≤ ank+1(x)

< 2qnk (x)
α2 for all k ≥ 1; and an(x) ∈ {1, . . . , M} for other n ∈ N}. (3.4)

For ease of notation, we perform the following.
• Use a symbolic space defined as D0 = {∅}, and for any n ≥ 1,

Dn = {(a1, . . . , an) ∈ N
n : qα1

nk−1 ≤ ank < 2qα1
nk−1, qα2

nk
≤ ank+1 < 2qα2

nk

for all k ≥ 1 with nk , nk + 1 ≤ n; and aj ∈ {1, . . . , M} for other j ≤ n},
which is just the collection of the prefix of the points in E.

• UseU to denote the following collection of finite words of length N:

U = {w = (σ1, . . . , σN) : 1 ≤ σi ≤ M , 1 ≤ i ≤ N}.
In the following, we always use w to denote a generic word inU.

3.2.1. Cantor structure of E. For any (a1, . . . , an) ∈ Dn, define

Jn(a1, . . . , an) =
⋃

an+1:(a1,...,an,an+1)∈Dn+1

In+1(a1, . . . , an, an+1)

and call it a basic cylinder of order n. More precisely, for each k ≥ 0:
• when nk−1 + 1 ≤ n < nk − 1 (by viewing n0 = 0),

Jn(a1, . . . , an) =
⋃

1≤an+1≤M
In+1(a1, . . . , an, an+1);

• when n = nk − 1 or n = nk ,

Jnk−1(a1, . . . , ank−1) =
⋃

q
α1
nk−1≤ank<2q

α1
nk−1

Ink (a1, . . . , an, ank ),

Jnk (a1, . . . , ank ) =
⋃

q
α2
nk

≤ank+1<2q
α2
nk

Ink+1(a1, . . . , an, ank+1).

Then define

Fn =
⋃

(a1,...,an)∈Dn
Jn(a1, . . . , an)

and call it level n of the Cantor set E. It is clear that

E =
∞⋂
n=1

Fn =
∞⋂
n=1

⋃
(a1,...,an)∈Dn

Jn(a1, . . . , an).

We have the following observations about the length and gaps of the basic cylinders.

LEMMA 3.2. (Gap estimation) Denote byGn(a1, . . . , an) the gap between Jn(a1, . . . , an)
and other basic cylinders of order n. Then

Gn(a1, . . . , an) ≥ 1
M

· |Jn(a1, . . . , an)|.
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Proof. This can be observed from the positions of the cylinders in Proposition 2.3. Recall
the definition of Jn given above and note that different cylinders In are disjoint. When
n = nk − 1 or n = nk , the basic cylinder Jn lies in the middle part of In, so there are large
gaps between Jn with other basic cylinders of order n. For other n, note that

⋃
a>M

In+1(a1, . . . , an, a)

falls in the gap of Jn(a1, . . . , an) and other basic cylinders in its right/left side (when n is
odd/even). Then one needs only estimate the length of these gaps. A detailed proof can be
found in [21] or [22].

Recall the definition ofU. Every element x ∈ E can be written as the form

x = [w(1)1 , . . . , w(1)�1
, an1 , an1+1,w(2)1 , . . . , w(2)�2

, an2 , an2+1,

. . . ,w(k)1 , . . . , w(k)�k , ank , ank+1, . . .],

where w(k)i ∈ U for all 1 ≤ i ≤ �k , k ≥ 1, and

q
α1
nt−1 ≤ ant < 2qα1

nt−1, qα2
nt

≤ ant+1 < 2qα2
nt

for all t ≥ 1.

We estimate the length of basic cylinders Jn(x) for all n ≥ 1. For nk + 1 ≤ n <
nk+1 − 1, we have

|Jn(x)| =
∣∣∣∣pn + pn−1

qn + qn−1
− (M + 1)pn + pn−1

(M + 1)qn + qn−1

∣∣∣∣ = M

(qn + qn−1)((M + 1)qn + qn−1)
≥ 1

8q2
n

,

and similarly,

|Jnk−1(x)| = q
α1
nk−1

(q
α1
nk−1qnk−1 + qnk−2)(2q

α1
nk−1qnk−1 + qnk−2)

,

so
(

1
qnk−1(x)

)α1+2

> |Jnk−1(x)| ≥ 1
8

·
(

1
qnk−1(x)

)α1+2

,

(
1

qnk−1

)(a1+1)(α2+2)

≥
(

1
qnk (x)

)α2+2

> |Jnk (x)|

≥ 1
8

·
(

1
qnk (x)

)α2+2

≥ 1
27+2α2

(
1

qnk−1

)(a1+1)(α2+2)

.

Here for the last inequality, we used qα1
nk−1 ≤ ank < 2qα1

nk−1.
Recall equation (3.3) for the choice of the largely sparse sequence {�k}. Consequently,

we have the following lemma.

LEMMA 3.3. (Length estimation) Let x ∈ E and an integer n with nk − 1 ≤ n <

nk+1 − 1.
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• n = nk − 1,

|Jnk−1(x)| ≥ 1
23 · 1

q
α1+2
nk−1

≥ 1
23 ·

(
1

2�k
·
�k∏
i=1

1

qN(w
(k)
i )

· 1
qnk−1+1

)α1+2

≥
( �k∏
i=1

1

qN(w
(k)
i )

)(α1+2)(1+ε)
. (3.5)

• n = nk ,

|Jnk (x)| ≥ 1
23

1

q
α2+2
nk

≥ 1
23 · 1

42+α2
· 1

q
(α1+1)(α2+2)
nk−1

. (3.6)

• n = nk + 1,

|Jnk+1(x)| ≥ 1
23 · 1

q2
nk+1

≥ 1
27 · 1

q
2(1+α2)
nk

. (3.7)

• For each 1 ≤ � < �k+1,

|Jnk+1+�N (x)| ≥ 1
23 ·

(
1

22� ·
�∏
i=1

1

q2
N(w

(k+1)
i )

)
· 1
q2
nk+1

≥
( �∏
i=1

1

q2
N(w

(k+1)
i )

)1+ε
· 1
q2
nk+1

. (3.8)

• For nk + 1 + (�− 1)N ≤ n < nk + 1 + �N with 1 ≤ � ≤ �k+1,

|Jn(x)| ≥ c · |Jnk+1+(�−1)N (x)|, (3.9)

where c = c(M , N) is an absolute constant.

Proof. Applying equation (2.4) in Lemma 2.1 for �k times allows us to arrive the third
inequality in equation (3.5), while the last inequality just follows from the choice of �k and
ε in equation (3.3).

For the relation in (3.9), one notes that the partial quotients are all bounded by M except
at the positions n = nk , nk + 1. The constant c can be taken as

1
23 ·

(
1

M + 1

)2N

.

3.3. Mass distribution. We define a probability measure supported on the Cantor set E.
Still express an element x ∈ E as

x = [w(1)1 , . . . , w(1)�1
,an1 , an1+1, w(2)1 , . . . , w(2)�2

, an2 , an2+1,

. . . , w(k)1 , . . . , w(k)�k , ank , ank+1, . . .],

where

w
(k)
i ∈ U for all i, k ∈ N, and qα1

nt−1 ≤ ant < 2qα1
nt−1, qα2

nt
≤ ant+1 < 2qα2

nt
for all t ≥ 1.
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We define the measure along the basic cylinders Jn(x) containing x as follows.
• Let n ≤ n1 + 1:

– for each 1 ≤ � ≤ �1, define

μ(JNl(x)) =
�∏
i=1

(
1

qN(w
(1)
i )

)(α1+2)s

.

Recall the definition of s (see equation (3.1)) and then once μ is a measure, it is a
probability measure. Because of the arbitrariness of x, this defines the measure on
all basic cylinders of order �N ;

– for each integer n with (�− 1)N < n < �N for some 1 ≤ � ≤ �1, define

μ(Jn(x)) =
∑

J�N⊂Jn(x)
μ(J�N(x))

where the summation is over all basic cylinders of order �N contained in Jn(x).
This is designed to ensure the consistency of a measure;

– when n = n1. Note that n1 = �1N + 1, then define

μ(Jn1(x)) = 1
q
α1
n1−1

μ(Jn1−1(x)) = 1
q
α1
n1−1

�1∏
l=1

1

qN(w
(1)
l )(α1+2)s

;

– when n = n1 + 1, define

μ(Jn1+1(x)) = 1
q
α2
n1

· μ(Jn1(x)) = 1
q
α2
n1

· 1
q
α1
n1−1

�1∏
l=1

1

qN(w
(1)
l )(α1+2)s

.

• Let nk−1 + 1 < n ≤ nk + 1. Assume the measure of all basic cylinders of order
nk−1 + 1 has been defined:
– for each 1 ≤ � ≤ �k , define

μ(Jnk−1+1+N�(x)) =
( �∏
i=1

1

qN(w
(k)
i )(α1+2)s

)
· μ(Jnk−1+1(x)); (3.10)

– for each integer n with nk−1 + 1 + (�− 1)N < n < nk−1 + 1 + �N for some 1 ≤
� ≤ �k , define

μ(Jn(x)) =
∑

Jnk−1+1+�N (x)⊂Jn(x)
μ(Jnk−1+1+�N(x));

– for each n = nk and n = nk + 1, define

μ(Jnk (x)) = 1
q
α1
nk−1

· μ(Jnk−1(x)), μ(Jnk+1(x)) = 1
q
α2
nk

· μ(Jnk (x)); (3.11)

– define the measure of the basic cylinders of other orders as the sum-
mation of the measure of its offsprings to ensure the consistency of a
measure.

Look at equation (3.10) for the measure of a basic cylinder of order nk + 1 + �N and its
predecessor of order nk + 1 + (�− 1)N : the former has one more term than the latter, that
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is the term (
1

qN(w
(k+1)
� )

)(α1+2)s

,

which is uniformly bounded. Thus there is an absolute constant c > 0, such that for each
integer n:
• when nk + 1 + (�− 1)N ≤ n ≤ nk + 1 + �N ,

μ(Jn(x)) ≥ c · μ(Jnk+1+(�−1)N (x)); (3.12)

• when n �= nk − 1 and n �= nk ,

μ(Jn+1(x)) ≥ c · μ(Jn(x)). (3.13)

3.4. Hölder exponent ofμ: for basic cylinders. We compare the measure with the length
of Jn(x).
(1) When n = nk − 1. Recall equations (3.5) and (3.10) on the length and measure of

Jnk−1. It follows that

μ(Jnk−1) ≤
�k∏
i=1

1

qN(w
(k)
i )(α1+2)s

≤ |Jnk−1(x)|s/(1+ε) ≤
(

1

q
α1+2
nk−1

)s/(1+ε)
.

(2) When n = nk . Recall equations (3.11) and (3.6).

μ(Jnk (x)) = 1
q
α1
nk−1

· μ(Jnk−1(x)) ≤ 1
q
α1
nk−1

·
(

1

q
α1+2
nk−1

)s/(1+ε)
:=

(
1

q
(α1+1)(α2+2)
nk−1

)t

≤ c|Jnk (x)|t ≤ c ·
(

1

q
α2+2
nk

)t
,

where t is chosen as

t = α1 + (α1 + 2)s/(1 + ε)

(α1 + 1)(α2 + 2)
.

(3) When n = nk + 1. Recall equations (3.11) and (3.7). Note that 0 ≤ t ≤ 1.

μ(Jnk+1(x)) = 1
q
α2
nk

· μ(Jnk (x)) ≤ 1
q
α2
nk

· c ·
(

1

q
α2+2
nk

)t

≤ c

(
1

q
2α2+2
nk

)t
≤ c2|Jnk+1(x)|t ≤ c2

(
1

q2
nk+1

)t
.

(4) When n = nk + 1 + �N for some 1 ≤ � ≤ �k . Recall equations (3.5) and (3.10).

μ(Jnk+1+�N ) =
�∏
i=1

1

qN(w
(k+1)
i )(α1+2)s

· μ(Jnk+1(x))

≤ c2 ·
�∏
i=1

1

qN(w
(k+1)
i )2s

·
(

1
q2
nk+1

)t
(by neglecting α1).
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Recall equation (3.8) for the length of Jnk+1+�N . It follows that

μ(Jnk+1+�N (x)) ≤ c2|Jnk+1+�N (x)|min{s/(1+ε),t}.

(5) Remaining cases. Then we are in the case that nk + 1 < n < nk+1 − 1. Let 1 ≤
� ≤ �k+1 be the integer such that nk + 1 + (�− 1)N < n < nk + 1 + �N . Recall
equation (3.9). Then

μ(Jn(x)) ≤ μ(Jnk+1+(�−1)N (x)) ≤ c2|Jnk+1+(�−1)N (x)|min{s/(1+ε),t}

≤ c2 · c · |Jn(x)|min{s/(1+ε),t}.

In summary, we have shown that for some absolute constant c3, for any n ≥ 1 and
x ∈ E,

μ(Jn(x)) ≤ c3 · |Jn(x)|min{s/(1+ε),t}. (3.14)

3.5. Hölder exponent of μ: for a general ball. Write

so = min
{

s

1 + ε
, t

}
.

Recall Lemma 3.2 about the relation of the gap and the length of the basic cylinders:

Gn(x) ≥ 1
M

· |Jn(x)|.

We consider the measure of a general ball B(x, r) with x ∈ E and r small. Let n ≥ 1 be
the integer such that

Gn+1(x) ≤ r < Gn(x).

Then the ball B(x, r) can only intersect one basic cylinder of order n, that is, the basic
cylinder Jn(x), and so all the basic cylinders of order n+ 1 which have non-empty
intersection with B(x, r) are all contained in Jn(x).

Let k be the integer such that

nk−1 + 1 ≤ n < nk + 1.

(1) When nk−1 + 1 ≤ n < nk − 1. By equations (3.13) and (3.14), it follows that

μ(B(x, r)) ≤ μ(Jn(x)) ≤ c · μ(Jn+1(x)) ≤ c · c3 · |Jn+1(x)|so
≤ c · c3 ·M · (Gn+1(x))

so ≤ c · c3 ·M · rso .
(2) When n = nk − 1. The ball B(x, r) can only intersect the basic cylinder Jnk−1(x) of

order nk − 1. Now we estimate how many basic cylinders of order nk are contained
in Jnk−1(x) and intersected with the ball B(x, r).

We write a general basic cylinder of order nk contained in Jnk−1(x) as

Jnk (u, a) with qα1
nk−1 ≤ a < 2qα1

nk−1.
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It is clear that for each a, the basic cylinder Jnk (u, a) is contained in the cylinder
Ink (u, a) and the latter interval is of length 1/qnk (qnk + qnk−1) with

1
qnk−1(u)2α1+2 ≥ 1

qnk (qnk + qnk−1)
≥ 1

25 · 1
qnk−1(u)2α1+2 .

• When

r <
1
25 · 1

qnk−1(u)2α1+2 .

Then the ball B(x, r) can intersect at most three cylinders Ink (u, a) and so three
basic cylinders Jnk (u, a). Note that all those basic cylinders are of the same
μ-measure, thus

μ(B(x, r)) ≤ 3μ(Jnk (x)) ≤ 3 · c3 · |Jnk (x)|so
≤ 3 · c3 ·M ·Gn+1(x)

so ≤ 3 · c3 ·M · rso .
• When

r ≥ 1
25 · 1

qnk−1(u)2α1+2 .

The number of cylinders Ink (u, a) for which the ball B(x, r) can intersect is at
most

26 · r · qnk−1(u)
2α1+2 + 2 ≤ 27 · r · qnk−1(u)

2α1+2,

so at most this number of basic cylinders of order nk can intersect B(x, r). Thus,

μ(B(x, r)) ≤ min
{
μ(Jnk−1(x)), 27 · r · qnk−1(u)

2α1+2 ·
(

1
q
α1
nk−1

· μ(Jnk−1(x))

)}

≤ c3 · |Jnk−1|so · min{1, 27 · r · qnk−1(u)
α1+2}

≤ c3 ·
(

1
qnk−1(u)α1+2

)so
· 11−so · (27 · r · qnk−1(u)

α1+2)so

= c4 · rso .
(3) When n = nk . By changing nk − 1 and α1 in case (2) to nk and α2 respectively

and then following the same argument as in case (2), we can arrive at the same
conclusion.

We conclude by mass distribution principle (Proposition 2.4) that

dimH E ≥ min
{

s

1 + ε
,
α1 + (α1 + 2)s/(1 + ε)

(α1 + 1)(α2 + 2)

}
. (3.15)

Recall equation (3.2) on s = sN(M). Letting N → ∞ as then M → ∞, we arrive at

dimH E(α1, α2) ≥ min
{

2
α1 + 2

,
α1 + 2

(α1 + 1)(α2 + 2)

}
.

This finishes the proof.
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4. Simple facts for G(t1)\K(t2)
4.1. The condition for G(t1)\K(t2) non-empty. Recall that

G(t1)\K(t2) = {x ∈ [0, 1) : an(x)an+1(x) ≥ qn(x)
t1 , i.m. n ∈ N;

and an+1(x) < qn(x)
t2 for all n ∈ N large}.

It is clear that if t1 is very large and t2 is very small, one must have G(t1)\K(t2) = ∅.
So there should be some boundary value between t1 and t2 ensuring the non-empty of
G(t1)\K(t2).
LEMMA 4.1. When t1 > t2 + t2/(1 + t2), the set G(t1)\K(t2) is empty.

Proof. It is sufficient to show that under the restriction that an+1 < q
t2
n for all n large, one

ultimately has

anan+1 < qt1n .

It should be easy to see thatG(t1)\K(t2) is non-empty when t1 ≤ t2. So in the following,
we ask t1 > t2. Thus,

anan+1 < qt1n ⇐� an < qt1−t2n

⇐� an < at1−t2n q
t1−t2
n−1 ⇐� a1−t1+t2

n < q
t1−t2
n−1 .

This is obviously true if t1 − t2 ≥ 1, so assume that t1 − t2 < 1. Let us continue the above
argument.

anan+1 < qt1n ⇐� q
t2(1−t1+t2)
n−1 < q

t1−t2
n−1

⇐� t2(1 − t1 + t2) < t1 − t2 ⇐⇒ t1 > t2 + t2

1 + t2
.

In conclusion, we have shown the desired claim.

5. Hausdorff dimension of G(t1)\K(t2) when t2 < t1 < t2 + t2/(1 + t2)

5.1. Lower bound. First we give some rough words for finding a suitable subset ofG(t1)\
K(t2). Initially, we separate the restriction posed on the product anan+1. This leads us to
consider the following set:

F := {x : an � q
α1
n−1, an+1 � qα2

n , i.m. n ∈ N, and 1 ≤ an ≤ M for all other n ∈ N}.
We hope that F is a subset of G(t1)\K(t2) and at the same time, the dimension of F should
be as large as possible.
• It is clear that the smaller α1, α2 will result in a larger dimension of F. So, we may

choose α1, α2 satisfying

q
α1
n−1q

α2
n = qt1n .

Combining with qn � anqn−1, one has that

q
α1
n−1q

(1+α1)α2
n−1 = q

(1+α1)t1
n−1 ⇔ α1 + (1 + α1)α2 = (1 + α1)t1

⇔ α2 = t1 − α1

1 + α1
. (5.1)

https://doi.org/10.1017/etds.2022.51 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.51


Dirichlet non-improvable set versus well-approximable set 2725

• However, we need that α1 < t2 and α2 < t2 which gives the range of α1, α2. More
precisely,

‘α1 < t2, α2 < t2’ ⇐⇒ ‘α1 < t2, α2 = t1 − α1

1 + α1
< t2’

⇐⇒ ‘
t1 − t2

1 − t1 + t2
< α1 < t2’ (expressed in the range of α1) (5.2)

⇐⇒ t1 − t2

1 + t2
< α2 < t2 (expressed in the range of α2). (5.3)

Now we give a rigorous argument in defining a subset of G(t1)\K(t2). Recall the set
defined in equation (3.4) with a suitable choice of the constants c in E(α1, α2):

E = {x : qnk−1(x)
α1 ≤ ank (x) < 2qnk−1(x)

α1 , 22t1qnk (x)
α2

≤ ank+1(x) < 22t1+1qnk (x)
α2

for all k ≥ 1; and an(x) ∈ {1, . . . , M} for other n ∈ N}. (5.4)

PROPOSITION 5.1. For any pair (α1, α2) satisfying equations (5.1) and (5.2), for any
integer sequence {nk}k≥1, the set E in equation (5.4) is a subset of G(t1)\K(t2) and
thus

dimH G(t1)\K(t2) ≥ min
{

2
α1 + 2

,
α1 + 2

(α1 + 1)(α2 + 2)

}
.

Proof. The fact that an(x)qn−1(x) ≤ qn(x) ≤ 2an(x)qn−1(x) will be used. Take a general
element x ∈ E. We check that x ∈ G(t1) but x �∈ K(t2).
• x ∈ G(t1). This is done by checking that

ank (x)ank+1(x) ≥ qnk (x)
t1 for all k ≥ 1. (5.5)

More precisely, on one hand,

ank (x)ank+1(x) ≥ q
α1
nk−1 · 22t1 · qα2

nk
≥ 22t1 · qα1

nk−1(ankqnk−1)
α2

≥ 22t1 · qα1
nk−1 · q(α1+1)α2

nk−1 .

On the other hand,

qt1nk ≤ (2ankqnk−1)
t1 ≤ 22t1 · q(α1+1)t1

nk−1 .

Then the inequality in equation (5.5) follows by recalling the first equivalence in
equation (5.1).

• x �∈ K(t2). This is clear since α1 < t2, α2 < t2 by equation (5.2).
The dimensional result follows directly by recalling the dimension of E in equation

(3.15).

We claim that the second term is the minimal one under the condition in
equation (5.1).
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LEMMA 5.2. Under the condition in equation (5.1), one has

min
{

2
2 + α1

,
2 + α1

(1 + α1)(2 + α2)

}
= 2 + α1

(1 + α1)(2 + α2)
.

Proof. At first, rewrite the relationship between α1 and α2:

α2 = t1 − 1 + 1
1 + α1

, so
1

1 + α1
= α2 − t1 + 1.

Thus,

2 + α1

(1 + α1)(2 + α2)
= 1
(1 + α1)(2 + α2)

+ 1
2 + α2

= α2 − t1 + 1
α2 + 2

+ 1
2 + α2

= 1 − t1

2 + α2
.

As a consequence,

2
2 + α1

≥ 2 + α1

(1 + α1)(2 + α2)
⇐⇒ 2

2 + α1
≥ 1 − t1

2 + α2

⇐⇒ t1

2 + α2
≥ α1

2 + α1
⇐⇒ t1(1 + 2

α1
) ≥ 2 + α2 = t1 + 1 + 1

α1 + 1

⇐⇒ 2t1
α1

≥ 1 + 1
1 + α1

⇐⇒ 2t1 ≥ α1 + α1

α1 + 1
.

Let

f (x) = x + x

1 + x
= x + 1 − 1

1 + x
, x ∈ [0, t2].

Clearly f is increasing with respect to x and when x = t2, it attains its maximal value

t2 + t2

1 + t2
.

So, what we need is to show that

2t1 ≥ t2 + t2

1 + t2
⇐� 2t2 ≥ t2 + t2

1 + t2

⇐� 2 ≥ 1 + 1
1 + t2

,

which is clearly true.

As a consequence,

dimH G(t1)\K(t2) ≥ sup
{

1 − t1

2 + α2
: t1 − t2

1 + t2
≤ α2 ≤ t2

}

= 1 − t1

2 + t2
.

In other words, the supremum is achieved at α2 = t2.

https://doi.org/10.1017/etds.2022.51 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.51


Dirichlet non-improvable set versus well-approximable set 2727

5.2. Upper bound. Recall that the lower bound of dimH G(t1)\K(t2) given above is
attained at

α2 = t2, α1 = t1 − t2

1 + t2 − t1
.

LEMMA 5.3. For any x ∈ [0, 1),

an(x)an+1(x) ≥ qt1n (x), an+1(x) < qt2n (x) �⇒ an(x) ≥ qn−1(x)
(t1−t2)/(1+t2−t1).

Proof.

qt1n ≤ anan+1 ≤ anq
t2
n �⇒ qt1−t2n ≤ an �⇒ at1−t2n q

t1−t2
n−1 ≤ an

�⇒ q
t1−t2
n−1 ≤ a1−t1+t2

n �⇒ an ≥ q
(t1−t2)/(1+t2−t1)
n−1 .

This lemma almost convinces us that the lower bound given above is the right dimension
of dimH G(t1)\K(t2). Denote α1 = (t1 − t2)/(1 + t2 − t1). Lemma 5.3 implies that

G(t1)\K(t2) ⊂
{
x : an(x) ≥ qn−1(x)

(t1−t2)/(1+t2−t1), an+1(x)

≥ qn(x)
t1

an(x)
, i.m. n ∈ N

}
:= G.

Fix s > 1 − t1/(2 + t2). At first, it is easy to check that

s(1 + t1) > 1 ⇐⇒ s >
1

1 + t1
⇐⇒ 1 − t1

2 + t2
>

1
1 + t1

⇐⇒ t1

1 + t1
>

t1

2 + t2
⇐⇒ 2 + t2 > 1 + t1

⇐⇒ 1 + t2 > t1.

The last inequality is clearly true since we are in the case that

t1 ≤ t2 + t2

1 + t2
.

Now we search an upper bound of the dimension of G. Still due to the limsup nature,
there is a natural cover of G. For any a1, . . . , an ∈ N, define

Jn(a1, . . . , an) =
⋃

an+1≥qt1n /an
In+1(a1, . . . , an, an+1),

which is of length

|Jn(a1, . . . , an)| � an

q
2+t1
n

� 1

q
2+t1
n−1 a

1+t1
n

.

It is clear that

G =
∞⋃
N=1

∞⋃
n=N

⋃
a1,...,an−1∈N

⋃
an≥qα1

n−1

Jn(a1, . . . , an).
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Thus, the s-dimensional Hausdorff measure of G can be estimated as

Hs(G) ≤ lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1

∑
an≥qα1

n−1

(
1

q
2+t1
n−1 a

1+t1
n

)s

� lim inf
N→∞

∞∑
n=N

∑
a1,...,an−1

(
1

q
2+t1
n−1

)s( 1

q
α1[(1+t1)s−1]
n−1

)
,

where we used the fact that s(1 + t1) > 1. The above series converges if

(2 + t1)s + α1[(1 + t1)s − 1] > 2 ⇐⇒ (2 + t1)s + α1(1 + t1)s > α1 + 2

⇐⇒ s >
α1 + 2

2 + t1 + α1(1 + t1)
.

Substituting the choice of α1 into the last term gives that

α1 + 2
2 + t1 + α1(1 + t1)

= (t1 − t2)/(1 + t2 − t1)+ 2
1 + (1 + t1)(1 + α1)

= (1/(1 + t2 − t1))+ 1

1 + (1 + t1)
1

1+t2−t1

= 2 + t2 − t1

1 + t2 − t1 + 1 + t1
= 2 + t2 − t1

2 + t2

= 1 − t1

2 + t2
.

This is what we choose about s. As a conclusion, we have shown that

dimH G(t1)\K(t2) ≤ dimH G ≤ 1 − t1

2 + t2
.

6. Hausdorff dimension of G(t1)\K(t2) when t1 ≤ t2

(1) When t1 = t2. In this case, for any t ′ with t2 + t2/(1 + t2) > t ′ > t1 = t2, we have
that

G(t ′)\K(t2) ⊂ G(t1)\K(t2).
Thus

dimH G(t1)\K(t2) ≥ 1 − t ′

2 + t2
,

then letting t ′ → t1 gives the lower bound. The upper bound is clear, since

G(t1)\K(t2) ⊂ G(t1).
Thus we have

dimH G(t1)\K(t2) = 2
t1 + 2

.

(2) When t1 < t2. Take t ′2 = t1, that is, we decrease t2 to t ′2. Then

G(t1)\K(t ′2) ⊂ G(t1)\K(t2).
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Then we are in case (1). So,

dimH G(t1)\K(t2) ≥ 2
t1 + 2

.

The upper bound of the dimension is trival since it is always bounded by dimH G(t1).

7. The two examples
Assume that

t1 = t2 + t2

1 + t2
.

• Example 1.

E1 = {x ∈ [0, 1) : an(x)an+1(x) ≥ qn(x)
t1 , i.m. n ∈ N,

an+1(x) < qn(x)
t2 for all n ∈ N large}.

We show that E1 is an empty set. The proof is rather the same as that for case t1 > t2 +
t2/(1 + t2). Let x ∈ [0, 1) and assume that for all n � 1, an+1(x) < qn(x)

t2 . Then

anan+1 < qt1n ⇐� an(x) · qn(x)t2 < qn(x)
t1

⇐� an(x) < qn(x)
t1−t2 ⇐� an(x) ≤ (an(x)qn−1(x))

t1−t2

⇐� an(x)
1−(t1−t2) ≤ qn−1(x)

t1−t2 ⇐� qn−1(x)
t2(1−t1+t2) ≤ (qn−1(x))

t1−t2

⇐� 1 ≤ 1

by noticing that

t2(1 − t1 + t2) = t1 − t2 ⇔ t1 = t2 + t2

1 + t2
.

• Example 2.

E2 = {x ∈ [0, 1) : an(x)an+1(x) ≥ 4−t1qn(x)t1 , i.m. n ∈ N,

an+1(x) ≤ 3qn(x)t2 , for all n ∈ N large}.

Choose α2 = t2 and α1 such that α2 = t1 − α1/(1 + α1) (in fact, α1 = t2 too). Then
consider the set

F := {x : qn−1(x)
α1 ≤ an(x) < 2qn−1(x)

α1 , qn(x)α2 ≤ an+1(x) < 2qn(x)α2 , i.m. n ∈ N;

and 1 ≤ an(x) ≤ M for all other n ∈ N}.

We show that F is a subset of E2. Let x ∈ F . At first,

qn(x) ≤ 2an(x)qn−1(x) ≤ 4qn−1(x)
1+α1 �⇒ qn−1(x) ≥ (qn(x)/4)1/(1+α1).

Therefore,
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• the first requirement in E2:

an(x)an+1(x) ≥ qn−1(x)
α1qn(x)

α2 ≥
(
qn(x)

4

)α1/(1+α1)

· qn(x)α2

≥
(
qn(x)

4

)α2+α1/(1+α1)

= 4−t1qn(x)t1 .

• The second requirement in E2: the relation between t1 and t2 and the choice of α1, α2
yield that α1 = α2 = t2. So it is clear

an+1(x) < 2qn(x)α2 ≤ 3qn(x)t2 , an(x) < 2qn−1(x)
α1 ≤ 3qn−1(x)

t2 .

This means that F is a subset of E, so we have that

dimH E ≥ 1 − t1

2 + t2
.

The upper bound of the dimension of E2 is clear by the result for the case t1 < t2 +
t2/(1 + t2), since E2 is enlarged if we decrease the value of t1.

Acknowledgements. The authors show their sincere appreciations to the referee for
careful reading and helpful comments. This work is supported by NSFC of China
(No.11831007, 11871208).

REFERENCES

[1] A. Bakhtawar, P. Bos and M. Hussain. The sets of Dirichlet non-improvable numbers versus
well-approximable numbers. Ergod. Th. & Dynam. Sys. 40(12) (2020), 3217–3235.

[2] V. Beresnevich and S. Velani. A mass transference principle and the Duffin–Schaeffer conjecture for
Hausdorff measures. Ann. of Math. (2) 164(3) (2006), 971–992.

[3] Y. Bugeaud, Y. Cheung and N. Chevallier. Hausdorff dimension and uniform exponents in dimension two.
Math. Proc. Cambridge Philos. Soc. 167(2) (2019), 249–284.

[4] H. Davenport and W. Schmidt. Dirichlet’s theorem on diophantine approximation. Symposia Mathematica,
Volume IV (INDAM, Rome, 1968/69). Academic Press, London, 1970, pp. 113–132.

[5] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons,
Chichester, 1990.

[6] I. J. Good. The fractional dimensional theory of continued fractions. Math. Proc. Cambridge Philos. Soc.
37 (1941), 199–228.

[7] M. Hussian, D. Kleinbock, N. Wadleigh and B. Wang. Hausdorff measure of sets of Dirichlet
non-improvable numbers. Mathematika 64(2) (2018), 502–518.

[8] M. Iosifescu and C. Kraaikamp. Metrical Theory of Continued Fractions (Mathematics and Its Applications,
547). Kluwer Academic Publishers, Dordrecht, 2002.

[9] I. Jarník. Zur metrischen Theorie der diopahantischen Approximationen. Proc. Mat. Fyz. 36 (1928), 91–106.
[10] A. Y. Khintchine. Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen

Approximationen. Math. Ann. 92(1–2) (1924), 115–125 (in German).
[11] A. Y. Khintchine. Continued Fractions. University of Chicago Press, Chicago–London, 1964.
[12] D. Kim and L. Liao. Dirichlet uniformly well-approximated numbers. Int. Math. Res. Not. IMRN 2019(24)

(2019), 7691–7732.
[13] D. Kleinbock and N. Wadleigh. A zero-one law for improvements to Dirichlet’s theorem. Proc. Amer. Math.

Soc. 146(5) (2018), 1833–1844.
[14] D. Kleinbock and N. Wadleigh. An inhomogeneous Dirichlet theorem via shrinking targets. Compos. Math.

155(7) (2019), 1402–1423.
[15] D. Koukoulopoulos and J. Maynard. On the Duffin–Schaeffer conjecture. Ann. of Math. (2) 192(1) (2020),

251–307.

https://doi.org/10.1017/etds.2022.51 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.51


Dirichlet non-improvable set versus well-approximable set 2731
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