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Abstract. The fast rotating solar analogs show a decrease of the dynamo period with an increase
of the rotation rate for the moderate stellar rotation periods in the range between 10 and
25 days. Simultaneously, observations indicate two branches: the “in-active” branch stars shows
short dynamo cycles and the active branch stars show the relatively long magnetic cycles. We
suggest that this phenomenon can be produced by effect of the doubling frequency of the dynamo
waves, which is due to excitation of the second harmonic. It is generated because of the nonlinear
B2 effects in the large-scale dynamo.
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1. Introduction

For our understanding of origin of solar activity, it is extremely important that
magnetic cycles can be seen on other solar-type stars (Soon et al. 1994). Analysis of
Lehtinen et al. (2016); Brandenburg et al. (2017) showed the multiple activity branches
on diagram chromoshpheric activity parameter and ratio of rotation and dynamo cycle
period. Some results of their analysis are illustrated in Figure 1. It is noteworthy that
these surveys deal with the solar type stars with the effective temperature in between
5000 and 6000 K. This set includes G-dwarfs and some amount of the early K and late
F-type stars. The effect of rotation on the turbulent convection inside the stars is quan-
tified by the Coriolis number Co= 2Ωτc, where Ω is the global rotation rate and τc is the
typical convective tunover time. On the given Figure we can identify saturation branch
(green line) for very fast rotators (Co� 1) and two branches for moderate rotators,
Co≤ 20. They represent the so-called active (high chromospheric activity, blue color)
and inactive stars (low chromospheric activity, red color). The last one shows very short
cycle periods.
The active branch stars on diagram Fig. 1 can be is reproduced using the Parker–

Yoshimura dynamo waves (Yoshimura 1975; Parker 1979). In this case the dynamo period
is determined by the wave type of the dynamo solution with the wave frequency (Stix
1976):

ωcyc =

∣∣∣∣αφφkθ
2

r cos θ
∂Ω

∂r

∣∣∣∣1/2 , (1)

where kθ is the latitudinal dynamo wave number, αφφ is the hydrodynamic α effect, and
Ω is the angular velocity profile. It is noteworthy that turbulent diffusion controls the
dynamo wave length. For condition of maximum of the dynamo wave length we can get
(Brandenburg et al. 2017),

ωcyc ∝ (αφφr
∂Ω

∂r
)2/3. (2)
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Figure 1. Relation of the dynamo period with stellar rotation period. The red (active branch)
and black (quiet branch) crosses show the results of Brandenburg et al. (2017) for F- and G-type
stars; the green crosses show the results of Lehtinen et al. (2016) for young solar-type stars; the
black hollow squares show the results of Warnecke (2018); the white stars show the kinematic
dynamo models of Pipin (2021); the black and red stars show the non-kinematic models from
that paper, where the red stars mark the long dynamo period. Updated from Pipin (2021).

Therefore, if αφφ ∝Ω then ωcyc ∝Ω4/3 and Prot/Pcyc ∝Ω1/3. Saturation branch on Fig. 1
corresponds to marginal modes which are determined by the typical diffusive time. Stars
symbols show results for our axisymmetric mean-field dynamo model (Pipin 2021). The
results of the global convective simulation (GCD) of Warnecke (2018) reproduce roughly
the dynamo cycle variations on the saturated branch. The GCD of Warnecke (2018) show
sign of the active branch as well. None of the dynamo simulations reproduce the inactive
branch of stars for the moderate rotators, Co≤ 20. It is noteworthy that the power law
Co0.45 for the non-kinematic dynamo model runs of (Pipin 2021) is only partly due to the
Parker’s dynamo wave law Co0.33. An additional power increment is due to an increase
of the magnetic flux loss because of the magnetic buoyancy. This effect was anticipated
from the standard mean-field theory as well, see, Noyes et al. (1984).

2. Basic ideas and dynamo model

We consider the nonlinear dynamo model with the non-local turbulent electromotive
force developed recently by Pipin (2023). The mean magnetic field follows the induction
equation,

∂tB̄=∇× (Ē+Ū× B̄
)
, (3)

where the mean electromotive force, Ē = u× b expresses the effects of the turbulence
on the mean magnetic field evolution. Here, we assume the large-scale flow, Ū, which
includes effects of the differential rotation and meridional circulation, as given (see, Pipin
2023), and we neglect the magnetic feedback on Ū. To derive the turbulent electro-
motive force either analytically or numerically, the scale separation approximation is
applied. Such an approximation is hardly satisfied from observations of the solar/stellar
dynamos. Following suggestion of Rheinhardt and Brandenburg (2012) we approximate
the integro-differential equation for the mean electromotive force by the reaction–diffusion
type equation, (

1 + τ
∂

∂t
+ aEηT∇2

)
E = E(0)

, (4)

where, aE ≈ 0− 1 is the spatial non-locality parameter, the RHS of the Eq (4) corresponds
to the local expression of the mean electromotive force obtained either numerically, e.g.,
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Figure 2. Time-latitude diagrams for the solar analog rotating with the period of 17 days, the
radial magnetic field at the surface is shown by contours in range of ±10G, and color image
shows the toroidal magnetic field at r= 0.9R; b) show the toroidal magnetic field at the bottom
of the convection zone.

by the test-field method or analytically. It can be written as follows,

E(0)

i = (αij + γij)Bj − ηijk∇jBk, (5)

here, αij describes the turbulent generation of the magnetic field by helical motions (the
α-effect), γij describes the turbulent pumping, and ηijk is the eddy magnetic diffusivity
tensor. The details of the tensors profile in the solar convection zone can be found in
the above cited paper (Pipin 2023). The α-effect tensor includes effects of the magnetic
helicity. The other nonlinear effects are due the mean-field magnetic buoyancy and the
“algebraic” α-quenching. The given generalization of the dynamo evolution equation
results to a number of interesting consequences, such as the decrease of the dynamo
instability threshold, quenching the turbulent dynamo effects in depth of the convection
zone by means of the nonlocal E , excitation of the different dynamo modes with different
localization inside of the convection zone etc (see, Rheinhardt and Brandenburg 2012;
Pipin 2023). The last two effects present a particular interest if we assume that the
active/inactive magnetic cycles correspond to the distinct dynamo modes, which can co-
exist in the nonlinear supercritical dynamo regime. Following the results of Pipin (2021)
we expect the “inactive” magnetic cycle can results from the nonlinear generation of the
sub-harmonic B2 dynamo modes. It is noteworthy that in the solar observations sub-
harmonics of the dynamo cycle is weak. The similar results are demonstrated by the
dynamo model. We search the dynamo solutions on the solar analogs with the rotation
period shorter that for the Sun.
In our previous runs, which were discussed in Pipin (2021), we found the transition of

the main dynamo mode to the mode with the double harmonic frequency happens for
the rotation period of about 15 days. That transition ends with the stationary dynamo
evolution pattern in the asymptotic state. To avoid the steady asymptotic state we add
the small, 20 percents magnitude, random fluctuations of the α effect with the typical
renovation time about 5 years. Below we consider some results for the solar analog which
rotate with the period of 17 days. Figure 2 shows the time latitude diagrams for the large-
scale magnetic field evolution in the upper part of convection zone Fig. 2(a), and at the
bottom, Fig. 2(b). The two dynamo periods are clearly manifest themselves in the run.
Similar to our eigen problem analysis, (Pipin 2021), the nonlocal E results to excitation

https://doi.org/10.1017/S1743921323005343 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921323005343


Origin of active/inactive branches 177

p
o

w
er

[yr]
[yr]

3yr

7yr

2/3

(a) (b)

Figure 3. a) Evolution of the total flux of the unsigned toroidal magnetic field in the bulk of
the convection zone; b) The integral wavelet spectrum (Morlet) for the total toroidal magnetic
field flux, power in relative units.

of two dynamo modes. One mode operate at low latitudes in the bulk of the convection
zone. It has the dynamo period about 7.5 years. A weaker dynamo mode is excited at high
latitudes near the bottom of the convection zone. Its period is as twice as small in compare
with the main dynamo mode. It is noteworthy that the magnetic buoyancy as well as the
turbulent generation by the α effect are suppressed near the bottom of the convection
zone due to the nonlocality effects of the mean electromotive force, which are caused by
the turbulent diffusion of E , see, the Eq (4). The main dynamo mode is from time to time,
because of the magnetic flux loss in the upper part of convection zone. These periods are
characterized by the low activity which is defined by the polar dynamo modes which has
a short dynamo period of about 3. years, and log Prot/Pcyc ∼−1.8, which corresponds to
the inactive branch, the main dynamo mode of this star log Prot/Pcyc ∼−2.2 lies on the
branch, which has power law Co0.45 (see, Fig. 1).

The Figure 3(a) shows evolution of the total flux of the unsigned toroidal magnetic
field in the bulk of the convection zone. The time series is characterized by deep minims.
As we have seen from Fig. 2(a), these minims are attributed to the dynamo mode which
is concentrated to the bottom of the convection zone and it has the short dynamo period.
On the longtime scales the spectrum of the dynamo activity is close to τ2/3, here, τ is
the time scale of the magnetic field evolution.

3. Conclusions

Our results suggest that mean-field stellar dynamo model can support coexistence of
two distinct cycle periods for interval of rotation period less than 20 days. It can explain
upper part of inactive branch on the diagram of Fig. 1. Further investigation are needed
to understand the position of the Sun on that diagram and the nature of active/inactive
stellar activity branches for the moderately rotating solar analogs.
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