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Abstract. The rank 4 locus of a general skew-symmetric 7� 7matrix gives the Pfaf¢anvariety in
P20 which is not de¢ned as a complete intersection. Intersecting this with a general P6 gives a
Calabi^Yau manifold. An orbifold construction seems to give the 1-parameter mirror-family
of this. However, corresponding to two points in the 1-parameter family of complex structures,
both with maximally unipotent monodromy, are two different mirror-maps: one corresponding
to the general Pfaf¢an section, the other to a general intersection of G�2; 7� � P20 with a
P13. Apparently, the Pfaf¢an and G�2; 7� sections constitute different parts of the A-model
(KÌhler structure related)moduli space, and, thus, representdifferentpartsofthe same conformal
¢eld theory moduli space.
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1. The Pfa¤an Variety

Let E be a rank 7 vector space. For N 2 E ^ E non-zero, we look at the locus ofV3 N � 0 2V6 E: the rank 4 locus of N if viewed as a skew-symmetric matrix. This
de¢nes a degree 14 variety of codimension 3 in P�E ^ E� � P20. As N is
skew-symmetric, this variety is de¢ned by the Pfaf¢ans, i.e. square roots of the
determinants, of the 6� 6 diagonal minors of the matrix. Intersecting this with
a general 6-plane in P�E ^ E� � P20 will give a three-dimensional Calabi^Yau ([7]).
In coordinates xi on P6, the matrix N can be written NA �

P6
i�0 xiAi where the

Ai 2 E ^ E are skew-symmetric matrices spanning the P6. Denote this variety
XA � P6. The Pfaf¢an variety in P20 is smooth away from the rank 2 locus which
has dimension 10. Hence, by Bertini's theorem, the variety XA is smooth for general
A.

DEFINITION 1. Let NA �
P6

i�0 xiAi where Ai are 7� 7 skew-symmetric matrices.
Let XA � P6 denote the zero-locus of the Pfaf¢ans of the 6� 6 diagonal minors
of NA: ie., the rank 4 locus of the matrix.
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For P � N3 2V6 E, O � OP�E�, there are exact sequences

0ÿ!�
7̂

E_�2 
O�ÿ7� ÿ!P
7̂

E_ 
 E_ 
 O�ÿ4�

ÿ!N
7̂

E_ 
 E 
O�ÿ3� ÿ!P Oÿ!OXÿ!0

�1�

and

0ÿ!�
7̂

E_�2 

2̂

E_ 
 O�ÿ8� ÿ!N� �
7̂

E_�2 
 �Hom�E;E�=IdE� 
 O�ÿ7�

ÿ!�N �
7̂

E_�2 
 S2E 
O�ÿ6� ÿ!P

2
J 2

Xÿ!0

�2�
or more simply, for P � �pi� the Pfaf¢ans with proper choice of sign and ordering,

0ÿ!OP6 �ÿ7� ÿ!P
T

7OP6 �ÿ4� ÿ!N 7OP6�ÿ3� ÿ!P OP6ÿ!OXÿ!0 �3�
and

0ÿ!21OP6�ÿ8�ÿ!48OP6�ÿ7�ÿ!28OP6 �ÿ6� ÿ!P

2
J 2

Xÿ!0: �4�
These sequences together with 0! J 2

X ! J X !N_X ! 0, 0!N_X ! OP6 jX !
OX ! 0, and 0! OP6 jX ! 7OX �ÿ1� ! OX ! 0 give the cohomology of the
general, smooth manifold:

PROPOSITION 2. The general variety XA � P6 is smooth with h1;0 � h2;0 � 0,
h3;0 � 1, h1;1 � h2;2 � 1, h1;2 � h2;1 � 50, w � ÿ98, and oX � Ext3�OXA ;oP6� �
OXA; hence, it is a Calabi^Yau manifold. When XA is singular, we have trivial
dualizing sheaf, o�XA

� OXA.

2. The Canonical Bundle

In order to ¢nd the Picard^Fuchs operator, a global section of the canonical bundle
is needed. In the case of a complete intersection, one could simply have used the
dual of

V
j dpj or its residue form

V
i dxi=

Q
j pj . The Pfaf¢an variety, however, is

not a complete intersection. For pi the Pfaf¢an ofN with row and column i removed,
the polynomials pm0 ; pm1 ; pm2 , mi a permutation of Z7, give a complete intersection
wherever the submatrix Nm3m4m5m6 of N containing rows and columns m3, m4, m5,
and m6 has rank 4: ie., its Pfaf¢an �N�m3m4m5m6�� is different from zero. This follows
from N � P � 0. Hence,

�ÿ1�m dpm0 ^ dpm1 ^ dpm2
Pf�N�m3m4m5m6��

�5�

gives a global section of OP6 �7� 
OP6

V3N_X � o�X
_. As o�X � OX , this section must
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be non-vanishing and independent of m, that is, independent of m up to a constant
which proves to be �ÿ1�m: checked with Maple. Hence, the dual section in o�X is
non-vanishing. For smooth varieties, the canonical and dualizing sheaves are
identical, o � o�, so we get:

PROPOSITION 3.On the varieties XA, we have a global section of the dualizing sheaf
given by*

O � �ÿ1�
m�2pi�3�N�m3m4m5m6��O0

dpm0 ^ dpm1 ^ dpm2
� Res

�ÿ1�m�N�m3m4m5m6��O0

pm0pm1pm2
; �6�

where O0 is the global section of oP6 �7� � OP6 given by

O0 � x70
�2pi�6

6̂

i�1
d

xi
x0

� �
: �7�

The general XA is smooth, making O a global section of the canonical bundle.
Actually, Pf�N�m3m4m5m6�� 6� 0 speci¢es the appropriate component of pm0 � pm1 �

pm2 � 0.

3. The Orbifold Construction

There are maps s : ei 7!ei�1 and t : ei 7!eiwi, where w � e2pi=7 and �ei� is a ¢xed basis
for E, forming a group action on E. The commutator is multiplication with a con-
stant, so in the projective setting, these two maps commute giving an abelian
7� 7-group G: e.g., it gives an action on P�E ^ E�. We take the family of
6-planes in P�E ^ E� � P20 such that these maps restrict to them: i.e.,
SpanfPi�j�k yiÿjei ^ ejgk2Z7

or in matrix representation, N � �xi�jyiÿj�i;j2Z7
, where

we take xi to be coordinates on P6 and yi � yÿi � 0. This gives a P2-family of 6-planes
as parametrized by �y1 : y2 : y3�, thus de¢ning a P2-subfamily of XA. These have
double-points at the 49 points �xi�i2Z7

2 fg��yi�i2Z7
�jg 2 Gg.

For any 7-subgroup of G, there are 7 ¢xed-points in P6 under its action, and three
lines in the P2 parameter space such that these ¢xed points lie in the corresponding
varieties. We are free to choose any such subgroup, and any of the three lines,
without loss of generality, as the normalizer of G ([8]) acts transitively on the eight
triplets of lines.

LetH be the subgroup generated by t, and choose the line y3 � 0. Wemay then use
the coordinate y � y2=y1 to parametrize our P1-family. We then have a matrix Ny

whose rank 4 locus de¢nes a degree 14 dimension 3 variety Xy � P6. In addition
to the 49 double-points, the 7 ¢xed-points under t are also double-points. In general,

*For convenience, k-forms should contain the coefficient �2pi�ÿk:This places the closed forms in
the integral cohomology.
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these are the only singular points. (This has been checked using Macaulay ([17]) for
the case y � 1:�

For y � 0 and y � 1, the variety Xy decomposes into 14 distinct 3-planes
intersecting on the coordinate planes.

In addition to the line-triplet we have chosen, there are seven other equivalent
line-triplets. These intersect our chosen line in 21 points: y21 ÿ 289y14ÿ
58y7 � 1 � 0. For these values of y, the variety gains seven further double-points.

Using a construction similar to that of Candelas et al. ([3]), let My � gXy=H by a
minimal (canonical) resolution of the quotient ([14]).

The map xi 7!xiw5i2 in the normalizer has the same effect as y 7!yw.
Hence, the natural parameter is f � y7, and the manifold is denoted Mf.
To give a brief review of the de¢nition (in matrix notation):

DEFINITION 4. Let N be the skew-symmetric matrix �xi�jyiÿj�i;j2Z7
where

yi � yÿi � 0, and P � �pi� the Pfaf¢ans of the 6� 6 diagonal minors; denote by
XY , Y � �yi�, the zero locus of P.

For y3 � 0, let y � y2=y1 and denote the variety Xy. Let H � hti be the group acting
on Xy by t : xi 7!wxi. We take a minimal resolution of Xy=H, parametrize this family
by f � y7, and denote the resulting family of threefolds Mf.

Gaining and resolving double-points corresponds to collapsing an S3 to a point
and then blowing it up to a P1 ([4]): e.g., by blowing up along Si � fxi � xiÿ3 �
xi�3 � xiÿ2xi�2 ÿ y2xiÿ1xi�1 � 0g, i 2 Z7. This increases the Euler-characteristic
by 2, either by increasing h1;1 and h2;2 by one each or by reducing h1;2 and h2;1

by one each. The blow-ups are along codimension 1 surfaces going through the
double-points, and each such blow-up provides us with an extra �1; 1�-form. Neither
of these processes, the collapsing and the blowing up, affect the dualizing sheaf as
both processes are local and contained in a set containing no codimension 1 sub-
variety.

The creation and resolving of the 49� 7 double-points thus increases the
Euler-characteristic to 14. The action of H has 14 ¢xed points: two on each P1 from
the blowing up of the initial ¢xed-points. These quotient singularities can be resolved
without affecting the dualizing sheaf ([14]). The Euler characteristic of the resolved
quotient is given by Roan in [13] to be 98 using

w�gV=H� � X
g;h2H

w�Vg \ Vh�
jHj �8�

for any smoothV , Vg the ¢xed-point set in V of g,H an Abelian group. Determining
the Betti numbers may now be done by ¢nding the dimension of the deformation
space.

For Calabi^Yau varieties with double-points, the moduli space is smooth ([12],
[15]) with Def eX ,!Def X ([5]). This factors through Def eX � Def
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�X;P1; . . . ;Pk� which is the deformations of X with marked double-points at Pi. We
have dim Def XA � h1�XA;YXA � � h1;2 � 50; for XY and Xy, the dimension is the
same. On XY , we have the action of G and may decompose the inclusion
Def fXY ,!Def XY into sums of G-eigenspaces. These give local systems on the
P2 parameter space. Deformations along the P2 parameter space give G-¢xed sub-
spaces of the deformation space, thus giving lower bounds of the dimensions of these:
2 and 1 for fXY andfXy respectively. The action of the normalizer of G ([8]), acting on
the P2 parameter space and permuting the non-identity elements of G, ensures that
the G-eigenspaces on which G is not the identity all have the same dimension.
Knowing that the inclusions Def fXy,!Def fXY ,!Def XA are all proper inclusions,
we ¢nd dim Def fXy � 1 and dim Def fXY � 2 which gives the Betti number h1;2 of
the respective varieties.

The Xy (resp. XY ) should be resolved so as to make the group H act on fXy (resp.fXY ); this may be done by ¢rst resolving the 7 double-points of XY=H and use this
to determine fXY . The betti numbers of the resolution of the 14 quotient singularities
is given in [1]: h1;1 and h2;2 increases by 3 for each ¢xed-point, thus making
h1;1 � h2;2 � 50.

The variety now being smooth, the trivial dualizing sheaf is again identical to the
canonical sheaf, which must therefore be trivial too. It should be pointed out that
the resolution may not be unique. However, different resolutions will merely cor-
respond to different parts of the A-model (KÌhler structure related) moduli space:
e.g., a £op corresponds to changing the sign of one component of H1;1, thereby
moving the KÌhler cone ([10]).

PROPOSITION 5. For general y 2 P1, the manifolds My � gXy=H are Calabi^Yau
manifolds having w�My� � 98, h1;1 � h2;2 � 50, and h1;2 � h2;1 � 1; the global section
of the canonical sheaf inherited from XA as given by 3. At the points f � 0 and
f � 1, the variety decomposes into 14 3-planes, and for 1ÿ 57fÿ 289f2�
f3 � 0, where y lies on an intersection between two special lines in the P2 parameter
space, there is an extra double-point.

The families My and XA thus look like good mirror candidates.

4. Mirror Symmetry

We now have a 1-parameter family of Calabi^Yau manifolds Mf with a global sec-
tion O�f� of the canonical bundle given. By the mirror symmetry conjecture, there
is a special point in our moduli space corresponding to the `large radius limit'.
Around this point, H3 should have maximally unipotent monodromy. As Mf

degenerates into 14 3-planes for f � 0 (and for f � 1) we will start off with this
as the assumed special point.

Following Morrison ([9]), there should be Gauss^Manin £at families of 3-cycles
g0; g1, i.e. sections of R3p�C, de¢ned in a punctured neighborhood of f � 0 with
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fi�f� �
R
gi�f� O�f�, such that f0 extends across f � 0 and f1=f0 � g� logf where g

extends across f � 0. The natural coordinate t � t�f� is then given by t � f1=f0: ie.,
the complexi¢ed KÌhler structure on the mirror iso � to0 whereo0 is a ¢xed KÌhler
form (the dual of a line). As this enters only as exp

R
Z o, we may use the coordinate

q � et � feg.
The curve count on the mirror is arrived at using the mirror symmetry assumption:

that the B-model Yukawa coupling derived from the variation of complex structure
(Hodge-structure) should be equal to the A-model Yukawa coupling on the mirror.
The A-model Yukawa coupling is expressed in terms of the corresponding KÌhler
structure given by the natural coordinate and the number of rational curves in
any curve class (ie., of any given degree) by

kttt � n0 �
X1
d�1

nd
d3qd

1ÿqd : �9�

The B-model Yukawa-coupling kttt may be de¢ned as in [9], by

kttt � kd
dt

d
dt

d
dt
� k � ddt
 d

dt
 d
dt �

Z
Mf

Ô ^ r3
d
dt
Ô �10�

with t the parameter on the moduli-space, �d=dt� seen as a tangent vector on the
moduli space, r the Gauss^Manin connection, and Ô � O=f0 the normalized canoni-
cal form. (In the following, I will write ru � r d

du
for any parameter u.)

All of this can be determined from knowing the Picard^Fuchs equation ([9]). The
Picard^Fuchs equation is a differential equation on the parameter space whose sol-
utions are

R
g�f� O�f� for g Gauss^Manin £at sections on R3p�C: ie.,

g�f� �Pi uini�f� where ni�f� 2 H3�Mf;Z�, ui 2 C. This equation has order 4: ie.,
for f � Rg O, where g � g�f� 2 G�R3p�C� is any r-£at section of 3-cycles, we haveZ

g�f�

X4
i�0

Ai�f��rf d
df
�iO �

X4
i�0

Ai�f�Di
f f �f� � 0 �11�

for Df � f�d=df� � d=d logf the logarithmic derivative. Maximally unipotent
monodromy around f � 0 is equivalent to having Ai�0� � 0 for i < 4 and A4�0� 6� 0.

First, I will ¢nd g0 and calculate f0. From this, I will determine the Picard^Fuchs
equation. Knowing the Picard^Fuchs equation, f1 can be found as another special
solution. Furthermore, the Yukawa coupling, k, satis¢es a differential equation
expressed in terms of the A-coef¢cients.

5. The Pfa¤an Quotient Near } � 0

For simplicity, all calculations are pulled back from the manifold Mf to the variety
Xy � P6. At y � 0, the variety Xy � P6 degenerates into 14 3-planes intersecting
along coordinate axes, the group H acting on each 3-plane. One of these planes
is given by x4 � x5 � x6 � 0. Let g0�0� be the cycle given on this 3-plane (minus
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the axes) by jxi=x0j � e for i � 1; 2; 3. We may extend this de¢nition by continuity to
a neighborhood of y � 0.

Rather than working with g0, it is more convenient to work with the 6-cycle G on
P6 n Xy given by jxi=x0j � e for i � 1; 2; 3 and jxi=x0j � d for i � 4; 5; 6, and view
O as the residue of

C � O ^ dpn0
2pipn0

^ dpn1
2pipn1

^ dpn2
2pipn2

� �ÿ1�
n�Nn3n4n5n6�

�2pi�6pn0pn1pn2
� x70

6̂

i�1
d

xi
x0

� �
�12�

for any permutation n of 0; . . . ; 6. We now get

f0�f� �
Z
g0�f�

O�f� �
Z
G
C�f�; �13�

where the last integral is over a cycle which is independent of f.
In order to make the numerator as simple as possible, choose n1; n2; n3 � 0; 3; 4.

This makes �Nn1n2n5n6 � � x3x4. Setting x0 � 1 for simplicity (or writing xi for
xi=x0), the integral becomesZ

G

x3x4
p0p3p4

�
6̂

i�1

dxi
2pi
�
Z
G

1Q
i�0;3;4�1ÿ

P4
j�1 vi;j�

�
6̂

i�1

dxi
2pixi

; �14�

where

�vi;j� i�0;3;4
j�1;...;4

�

x2x5
x3x4
� y x4x6

x3
� y2 x1x3

x4
� y2 ÿ x1x6

x3x4
� y3

x1x4
x2x3
� y x2

x3x6
� y2 x3x5

x2x6
� y2 ÿ x5

x2x3
� y3

x3x6
x4x5
� y x5

x1x4
� y2 x2x4

x1x5
� y2 ÿ x2

x4x5
� y3

26664
37775: �15�

Taking the power expansion of the right hand fraction in terms of vi;j, the only
terms that give a contribution are products vn �Qi;j v

ni;j
i;j that are independent of

the xi. The ring of products of vi;j which do not contain xi is C�ri�where (see appendix
for description of method for ¢nding the rk)

r1 � v1;4v2;3v3;3 � ÿy7 � ÿf;
r2 � v1;2v2;3v3;4 � ÿy7;
r3 � v1;3v2;4v3;3 � ÿy7;
r4 � v1;2v2;2v2;3v3;1 � y7 � f;

r5 � v1;3v2;1v3;2v3;3 � y7 � f;

r6 � v1;1v2;1v2;3v3;1v3;3 � y7 � f:

�16�

Instead of evaluating the sum over vn, we may now evaluate the sum over rm

including as weights the number of times the term rm � vn occurs. This makes
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the integral, using the appropriate correspondence between m and n,

Z
G
C�f� �

X
�mi�2N6

0

m�
P

i
mi

�ÿ1�m1�m2�m3fm
Y
i

ni
ni;1; ni;2; ni;3; ni;4

� �

�
X

m1;m6;u1;u22N0
m�m1�m6�u1�u2

�ÿ1�m1fm � m!

m1!m6!u1!u2!�mÿ u1�!�mÿ u2�!�

�
X

m2�m4�u1
�ÿ1�m2

�m�m4 �m6�!
m2!m4!�m4 �m6�! �

X
m3�m5�u2

�ÿ1�m3
�m�m5m6�!

m3!m5!�m5 �m6�!

�
X

m1;m6;u1;u22N0
m�m1�m6�u1�u2

�ÿ1�m1fm � m
u1

� �2 m
u2

� �2 m�m6

m

� � m�m6

m1; u1 �m6; u2 �m6

� �

� 1� 5f� 109f2 � 3317f3 � 121501f4 � � � �
�17�

This function, f0, should be a solution to a Picard^Fuchs equation given byP4
i�0 AiDff0�f� � 0, where Df � f�d=df� and Ai are polynomials in f with

Ai�0� � 0 for i < 4. Entering general polynomials for Ai, we ¢nd a solution for
degAi � 5:

X4
i�0

AiDi
f � �1ÿ 57fÿ 289f2 � f3��fÿ 3�2D4

f

� 4f�fÿ 3��85� 867fÿ 149f2 � f3�D3
f

� 2f�ÿ408ÿ 7597f� 2353f2 ÿ 239f3 � 3f4�D2
f

� 2f�ÿ153ÿ 4773f� 675f2 ÿ 87f3 � 2f4�Df

� f�ÿ45ÿ 2166f� 12f2 ÿ 26f3 � f4�:

�18�

This is the so called Picard^Fuchs operator.
Solving for f1�f� � f0�f� � �g�f� � logf�, we get g�f� � a� 14f� 287f2 � � � �,

where a is a constant. The natural coordinate is t � g�f� � logf or
q � et � c2�f� 14f2 � 385f3 � � � �� where c2 � ea.

We then calculate the Yukawa coupling. This is a symmetric 3-tensor on the par-
ameter space, P1, which will be globally de¢ned but with poles. The Yukawa
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coupling is given by ([9],[3])

kttt � d logf
dt

� �3

klogf logf logf

� d logf
dt

� �3Z
Mf

Ô ^ r3
f d
df
Ô

� d logf
dt

� �3

1f0�f�2
Z
Mf

O ^ r3
f d
df
O:

�19�

To move f0 to outside the differential, we use Grif¢ths transversality property which
implies that O ^ riO � 0 for i < 3.

The term
R
Mf

O ^ r3
fddfO satis¢es a differential equation ([9]):

f
d
df

log

Z
Mf

O ^ r3
f d
df
O

 !
� ÿA32A4: �20�

This gives usZ
Mf

O ^ r3
f d
df
O � c1�3ÿ f�

1ÿ 57fÿ 289f2 � f3 �21�

for some constant c1. The denominator may be seen to have zeros at three points in
the parameter space. These are the points where the manifold has singularities: where
our particular special line in the bigger parameter space P2 intersects other special
lines, and, hence, has an additional double point coming from the seven extra double
points on Xy.

The ¢nal step is to express kttt in terms of q. Using the power series expansion
q � q�f� and its inverse series giving f � f�q�, and d logf

dt � q
f
df
dq, we may express

kttt as

kttt � q
f�q�

d
dq

f�q�
� �3 1

f0�f�q��2
� c1�3ÿ f�
1ÿ 57fÿ 289f2 � f3

� c1 3� 14
q
c2
� 714

q
c2

� �2

�24584 q
c2

� �3

�906122 q
c2

� �4

� � � �
 !

� c1 3� 14
13� qc2�

1

1ÿ� qc2�
1 � 714ÿ 14c2

8
23� qc2�

2

1ÿ� qc2�
2 � � � �

� �
:

�22�

In order that there be only non-negative integer coef¢cients in the last line, we set
c2 � 1. Putting c1 � 2m, we get

kttt � m � 6� 28 q
1ÿq� 17523q2

1ÿq2 � 182033q3

1ÿq3 � 2829443q4

1ÿq4 � � � �
� �

: �23�

The actual value of m cannot be seen from this series alone. However, m is supposed
to have a ¢xed value as determined by the value of the Yukawa coupling.
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PROPOSITION 6. The manifold Mf has maximally unipotent monodromy around
f � 0, the Picard^Fuchs equation is given by (18). Assuming c2 � 1 and c1 � 2m,
the mirror has degree 6m, and the rational curve count is 28m lines, 175m conics,
1820m cubics, etc.

As the general XA that was initially assumed to be the mirror, has degree 14, and
the ¢rst term of the q-series of kttt gives the degree of the mirror to be a multiple
of 6, this cannot be the case. However, the point f � 1 remains to be checked.
There is another striking observation:* the Picard^Fuchs equation is exactly the
same as for the A-model of G�2; 7� � P20 intersected by a general P13 ([2]). In this
case, m � 7.

6. The Pfa¤an Quotient Near } � 1
Initially, the Picard^Fuchs equation seems to be regular at in¢nity, which would be
most surprising as M1 degenerates into 14 3-planes just like M0. However, global
sections of the canonical bundle G�oMf � may be viewed as a line-bundle on the par-
ameter space, and as such it is isomorphic to OP1 �1�. To see this, recall that the
global section O was of degree ÿ7 in y, hence, degree ÿ1 in f. In order to get a
global section of the canonical bundle near f � 1, one should use ~O � f � O. This
modi¢cation and changing coordinate to ~f � 1=f amounts to the change
Df 7! ÿD ~f ÿ 1 in the Picard^Fuchs operator, making it

X4
i�0

~AiDi
~f
� �1ÿ 289 ~fÿ 57 ~f2 � ~f3��1ÿ 3 ~f�2D4

~f

� 4 ~f�3 ~fÿ 1��143� 57 ~fÿ 87 ~f2 � 3 ~f3�D3
~f

� 2 ~f�ÿ212ÿ 473 ~f� 725 ~f2 ÿ 435 ~f3 � 27 ~f4�D2
~f

� 2 ~f�ÿ69ÿ 481 ~f� 159 ~f2 ÿ 171 ~f3 � 18 ~f4�D ~f

� ~f�ÿ17ÿ 202 ~fÿ 8 ~f2 ÿ 54 ~f3 � 9 ~f4�:

�24�

We now see that the monodromy is maximally unipotent around f � 1.
We may now proceed as for the previous case, but calculating ~f0 from the Pi-

card^Fuchs equation rather than the opposite. This gives a Yukawa-coupling in
terms of ~q:

k~t ~t ~t � ~c1 1� 42
~q
~c2
� 6958

~q
~c2

� �2

� � � �
 !

; �25�

where ~c1 � c1 � 2m: just enterf � 1 into the Yukawa-coupling 21 after multiplying

*This observation was made by Duco van Straten.
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with f2 owing to the transition to ~O � f � O. Putting ~c2 � 1, we get

k~t ~t ~t � m 2� 84 ~q
1ÿ~q� 172923 ~q2

1ÿ~q2 � 8341233 ~q3

1ÿ~q3 � 590844843 ~q4

1ÿ~q4 � � � �
� �

: �26�

PROPOSITION 7. The manifold Mf has maximally unipotent monodromy around
f � 1, the Picard^Fuchs equation is given by (24). Assuming ~c2 � 1 and m � 7
to give the mirror degree 14, the rational curve count is 588 lines, 12103 conics,
583884 cubics, etc.

The lines on the general Pfaf¢an have been counted by Ellingsrud and Str�mme
and is 588 (private communication).

7. The Grassmannian G(2,7) Quotient

Due to the equality between the B-model Picard^Fuchs operator at f � 0 for the
Pfaf¢an quotient and the A-model Picard^Fuchs operator for an intersection of
G�2; 7� � P20 with a general P13, it is natural to take a closer look at G�2; 7�. In
particular, it is possible to perform an orbifold construction on this which is `dual'
to that on the Pfaf¢an.

The Pfaf¢an quotient was constructed from an intersection between the general
Pfaf¢an in P20 and a special family of 6-planes: P6

y. We may take the family P13
y

of 13-planes in P�E_ ^ E_� � P20 dual to P6
y, and take Yy � G�2; 7� \ P13

y � P20.
Again, we have a group action by t : xi;j 7!xi;jwi�j which restricts to this intersection,
and the natural coordinate being f � y7. The t-¢xed points, ei ^ ei�3, are
double-point singularities, as are the images under t of �ei�1 ÿ eiÿ1�^
��ei�3 ÿ eiÿ3� � y � �eiÿ2 ÿ ei�2��. Let Wy be the resolved quotient gYy=t. This is a
Calabi^Yau manifold ([2]). I will proceed without going into the resolution as this
has no impact on the B-model.

To summarize the de¢nition (in matrix notation):

DEFINITION 8. Let Uy � �xi;j�i;j2Z7
, xi;j � xj; i � 0, be the skew-symmetric matrix

with xi�4;iÿ4 � ÿyxi�1;iÿ1. (This amounts to specializing to the 13-planes P13
y dual

to theP6
y used for the Pfaf¢ans, and giving a speci¢c coordinate system.) Let Yy denote

the rank 2 locus of Uy in P13. Divide this out with the group action generated by
t : xi;j 7!xi;jwi�j , take a minimal resolution of this, parametrize the resulting family
of threefolds by f � y7 denoting it Wf.

In order to get an expression for the canonical form, we may look at an af¢ne piece
of G�2; 7� given by u1 ^ u2 where ui � �ui;j �, i � 1; 2, j � 0; . . . ; 6, and where
u1;0 � u2;2 � 1, u1;2 � u2;0 � 0. The de¢ning equations then become

u1;iu2;i�1 ÿ u1;i�1u2;i � y � �u1;iÿ2u2;i�3 ÿ u1;i�3u2;iÿ2�; i 2 Z7: �27�
Now, as we have a complete intersection, we may de¢ne the canonical form O as the

THE PFAFFIAN CALABI^YAU 145

https://doi.org/10.1023/A:1001847914402 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001847914402


residue of

C �
V

i�1;3;4;5;6 du1;i ^ du2;i
�2pi�10Qi2Z7

�u1;iu2;i�1 ÿ u1;i�1u2;i ÿ y � �u1;iÿ2u2;i�3 ÿ u1;i�3u2;iÿ2��
: �28�

For y � 0, the variety decomposes. One of the components may be given in af¢ne
coordinates by u1 ^ u2 where u1 � �1; 0; 0; 0; 0; 0; 0�, u2 � �0; 0; 1; u2;3; u2;4; u2;5; 0�.
We may de¢ne the 3-cycle g0�0� by ju2;jj � e for j � 3; 4; 5, and extend this to a
neighborhood: say, jyj < d. As for the Pfaf¢an, we will rather use the 10-cycle G
in P20 de¢ned by jui;jj � ei;j, where again ui � �ui;j� with u1;0 � u2;2 � 1,
u1;2 � u2;0 � 0. The actual choices of d the ei;j will be made so as to make the
quotients vi;j de¢ned below suf¢ciently small, but will otherwise be of no importance.

We may now rewrite the residual form so as to suite our purpose of evaluating it as
a power series in y:

C � 1Q
i�1ÿ

P
j vi;j�
�

^
i�1;3;4;5;6

du1;i ^ du2;i
�2pi�2u1;iu2;i

; �29�

where

v1;1 � ÿy � u1;5u2;3u2;1
; v1;2 � y � u1;3u2;5

u2;1

v2;1 � ÿy � u1;6u2;4u1;1
; v2;2 � y � u1;4u2;6

u1;1

v3;1 � y � u2;5
u1;3

v4;1 � u1;3u2;4
u1;4u2;3

; v4;2 � y � u1;1u2;6
u1;4u2;3

; v4;3 � ÿy � u1;6u2;1u1;4u2;3

v5;1 � u1;4u2;5
u1;5u2;4

; v5;2 � ÿy � 1
u1;5u2;4

v6;1 � u1;5u2;6
u1;6u2;5

; v6;2 � y � u1;3u2;1
u1;6u2;5

; v6;3 � ÿy � u1;1u2;3u1;6u2;5

v7;1 � y � u1;4
u2;6

:

�30�

In order that the power series expansion converge, we need
P

j jvi;jj < 1. In order to
obtain this, set e1;i=e2;i < e1;j=e2;j for 3W i < jW 6, and d suf¢ciently small.
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If we look at the ring generated by the vi;j, the subring of elements that do not
contain terms ui;j is C�ri�, where

r1 � v1;1v2;1v3;1v4;2v5;2v6;2v7;1 � y7 � f

r2 � v1;2v2;1v3;1v4;3v5;2v6;1v6;3v7;1 � ÿy7 � ÿf

r3 � v1;1v2;1v3;1v4;1v4;3v5;1v5;2v6;1v6;3v7;1 � y7 � f

r4 � v1;1v2;2v3;1v4;1v4;3v5;2v6;3v7;1 � ÿy7 � ÿf:

�31�

For any monomial rm � Qi r
mi
i , the corresponding un � Qi;j u

ni;j
i;j appears

Q
i

ni
ni;1;...

� �
number of times, ni �

P
j ni;j. The power series expansion for f0 �

R
g0
O will then

be given byZ
G
C �

X
�mi�2N4

0

m�
P

i
mi

�ÿ1�m2�m4fm �
Y7
i�1

ni
ni;1; . . .

� �

�
X
�mi�2N4

0

m�
P

i
mi

�ÿ1�m2�m4fm� m
m2

� �
m
m4

� � m�m3

m

� �

� m�m2 �m3

m1;m2 �m3;m2 �m3 �m4

� �
m�m3 �m4

m1;m3 �m4;m2 �m3 �m4

� �
� 1� 5f� 109f2 � 3317f3 � 121501f4 � 4954505f5 � � � �

�32�
which may be recognized as exactly the same series as for the Pfaf¢an quotient.
Hence, the Picard^Fuchs operator etc. all become the same as for the Pfaf¢an
quotient.

The global sections of the canonical sheaf again forms a OP1�1� line-bundle on the
P1 parameter space. Hence, this grassmannian quotient has the same Picard^Fuchs
operator at f � 1 as the Pfaf¢an quotient.

PROPOSITION 9. The B-models of My and Wy have the same Picard^Fuchs
operator. Hence, the Yukawa-coupling may at most differ by a factor.

Of course, it is natural to conjecture that the Yukawa-couplings are equal, making
the B-models isomorphic.

8. Comments on the Results

Apparently, there is a strong relation between the varieties de¢ned by the Pfaf¢ans
and the Grassmannian G�2; 7�. The B-models of the My and Wy are isomorphic,
and according to mirror symmetry and assuming that we actually have the mirrors,
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the A-models of the general Pfaf¢an and general G�2; 7� sections should also be
isomorphic, and vice versa. It may of course be possible that we have found models
with the same B-model but different A-models, in which case they would not be
mirrors. Assuming that we actually have mirror symmetry, it would appear that
varying the complex structure on My or Wy leads to a transition from the KÌhler
structure on the Pfaf¢an section XA to that of the Grassmannian section YA.

CONJECTURE 10. The pairs My �Wy is the mirror family of XA � YA where My

andWy (resp. XA and YA) form different parts of the A-model (KÌhler) moduli space.

Such transitions are known using Landau^Ginzburg models to model the analytic
continuation to `negative' KÌhler structures ([6], [16]).

It is worth noting that the smooth varieties XA and YA cannot be birationally
equivalent. As h1;1 � 1, this has a unique positive integral generator (the dual of
a line); if birational, these two must correspond up to a rational factor. Integrating
the third power of this over the variety gives the degree; the ratio of the degrees
would then be the third power of a rational number, which is not possible for
42=14 � 3.

For the P2 families of varieties XY and YY , however, a birational map has been
found ([11]).

Appendix: Finding Generators of Subring

Assume that we have a list of variables xi, i � 1; . . . ; n, and Laurent-monomials
vj � aj

Q
i x

aj;i
i , j � 1; . . . ;m, with aj;i 2 Z. We wish to ¢nd rk �

Q
j v

bk;j
j such that

rk�x� is independent of xi and generates the ring of polynomials in vj�x� independent
of xi (or some extension of this ring).

An optimistic approach is simply the ¢nd a set of linearly independent vectors with
integer coef¢cients generating the kernel of the matrix A � �aj;i� : Cm ! Cn. In the
nicest cases, in particular in the two cases that we are treating, one may even ¢nd
such vectors with non-negative integer coef¢cients. If these vectors are
bk � �bk;j�j , k � 1; . . . ;mÿ n, de¢ne rk �

Q
j v

bk;j
j .

More generally, there is a risk that some of the rk will not be monomials, but
Laurent monomials: some bk;j will be negative. These can still be used as generators,
but in the sum over monomials in rk, only those which are monomials in vj, ie.
without negative powers of vj, are considered.
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