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Abstract We prove the existence of GSpin2n-valued Galois representations corresponding to cohomologi-
cal cuspidal automorphic representations of certain quasi-split forms of GSO2n under the local hypotheses
that there is a Steinberg component and that the archimedean parameters are regular for the standard
representation. This is based on the cohomology of Shimura varieties of abelian type, of type DH,
arising from forms of GSO2n. As an application, under similar hypotheses, we compute automorphic
multiplicities, prove meromorphic continuation of (half) spin L-functions and improve on the construction
of SO2n-valued Galois representations by removing the outer automorphism ambiguity.
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Introduction

Inspired by conjectures of Langlands and Clozel’s work [18] for the group G = GLn,

Buzzard–Gee [12, Conj. 5.16] formulate the following version of the Langlands correspon-

dence (in one direction) for an arbitrary connected reductive group G over a number field
F. Let AF denote the ring of adèles over F. Write Ĝ (resp. LG) for the Langlands dual

group (resp. L-group) of G over Q�. When g ∈ LG(Q�), let gss denote its semisimple part.

Conjecture 1. Let � be a prime number and fix an isomorphism ι : C
∼→ Q�. Let π be

a cuspidal L-algebraic automorphic representation of G(AF ). Then there exists a Galois
representation

ρπ = ρπ,ι : Gal(F/F )→ LG(Q�),

such that for all but finitely many primes q of F (excluding q|� and those such that πq

are ramified), the Ĝ-conjugacy class of ρπ(Frobq)ss ∈ LG(Q�) is the Satake parameter of

πq via ι.
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The conjecture of Buzzard-Gee is more precise (and does not assume cuspidality).

They describe the image of each complex conjugation element and �-adic Hodge-theoretic

properties of ρπ. Moreover, they predict [12, Conj. 5.17] that the compatibility holds
at every q coprime to � such that πq is unramified. In fact, ρπ(Frobq), instead of its

semisimple part, appears in their conjecture. While ρπ(Frobq) is expected to be always

semisimple, this seems to be a problem of different nature and out of reach. Thus, we
state the conjecture with ρπ(Frobq)ss.

For most recent results on Conjecture 1 for GLn (in the regular case), we refer to

[71, 35] and the references therein. Arthur’s endoscopic classification [1] (see [62, 40] for
unitary groups)1 provides a crucial input for constructing Galois representations as in the

conjecture for symplectic, special orthogonal and unitary groups by reducing the question

to the case of general linear groups. When the group is SO2n, however, such an approach

proves only a weaker local-global compatibility up to outer automorphisms (see (SO-i) in
Theorem 6.5 below), falling short of proving Conjecture 1 (even under local hypotheses);

we will return to this point as an application of our main theorem.

Our goal is to prove Conjecture 1 for a quasi-split form G∗ of GSO2n over a totally real
field under certain local hypotheses, as a sequel to our work [50] where we proved the

conjecture for GSp2n under similar local hypotheses. The group GSO2n is closely related

to the classical group SO2n, just like GSp2n is to Sp2n, but the similitude groups may
well be regarded as non-classical groups. An important reason is that the Langlands dual

groups of GSO2n and GSp2n, namely, the general spin groups GSpin2n and GSpin2n+1,

do not admit standard embeddings (into general linear groups of proportional rank). This

makes the problem both nontrivial and interesting. Furthermore, since the groups GSp2n

and GSO2n appear as endoscopic groups of each other for varying n [81, Sect. 2.1], results

for the one group likely have applications for the other, especially if one tries to prove

cases of Conjecture 1 without local hypotheses.
To be more precise, we set up some notation. Let F be a totally real number field,

and n ∈ Z≥3. Let GSO2n denote the connected split reductive group over F which is

the identity component of the orthogonal similitude group GO2n. (See §2 below for an
explicit definition.)

Our setup depends on the parity of n:

(n even) E = F , and G∗ =GSO2n (the split form over F ),

(n odd) E is a totally imaginary quadratic extension of F, and G∗ is a non-split quasi-

split form of GSO2n relative to E/F (explicitly given as (8.4)).

We write GSO
E/F
2n for the F -group G∗ in either case. The setup is naturally designed so

that there are Shimura varieties for (an inner twist of) ResF/QG
∗. In particular, G∗(Fy)

has discrete series at every infinite place y of F. (Indeed, G∗(Fy) has no discrete series if

we swap the parity of n above.) There is a short exact sequence of F -groups

1→ SO
E/F
2n −→GSO

E/F
2n

sim−→Gm → 1,

1The endoscopic classification is conditional in the following sense. At this time, the postponed
articles [A25], [A26] and [A27] in the bibliography of [1] have not appeared. The proof of the
weighted fundamental lemma for non-split groups has not become available yet either.
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where SO
E/F
2n is a quasi-split form of SO2n, defined similarly as GSO

E/F
2n , and sim denotes

the similitude character. It is convenient to use the version of L-group relative to E/F ,
with coefficients in either C or Q�:

LG∗ = Ĝ∗�Gal(E/F ) = GSpin2n�Gal(E/F ),

where the nontrivial element of Gal(E/F ) acts nontrivially on GSpin2n. (This identifies
LG∗ with GPin2n if [E : F ] = 2.) An important feature of the (general) spin groups
GSpinm (m ∈ Z≥2) is their spin representation spinm : GSpinm →GL2�m/2� . In case m is

even, this representation is reducible and splits up into a direct sum spinm =spin+m⊕spin−m
of two irreducible representations of dimension 2�m/2�−1. These representations spin±m are
called the half-spin representations. Two other important representations are the standard

representation and the spinor norm (see Lemma 3.1 for pr◦)

std: GSpinm
pr◦→ SOm →GLm, and N : GSpinm →GL1.

If m is odd, spin is faithful. In the even case m = 2n, none of the representations
spin+,spin−,std or N is faithful, but spin is faithful.

Let π be a cuspidal automorphic representation of GSO
E/F
2n (AF ). Consider the following

hypotheses on π, where |sim| denotes the composite GSO
E/F
2n (F ⊗Q R)

sim→ (F ⊗R)×
|·|→

R×
>0:

(St) There is a finite F -place qSt such that πqSt
is the Steinberg representation

of G∗(FqSt
) twisted by a character.

(L-coh) π∞|sim|−n(n−1)/4 is ξ-cohomological for an irreducible algebraic representa-

tion ξ =⊗y:F↪→Cξy of the group (ResF/QG
∗)⊗QC�

∏
y:F↪→C(G

∗⊗F,y C).

(std-reg) The infinitesimal character of ξy for every y :F ↪→C, which is a regular Weyl

group orbit in the Lie algebra of Ĝ∗ = GSpin2n(C), remains regular under

the standard representation GSpin2n →GL2n.

In (L-coh), “ξ-cohomological” means that the tensor product with ξ has nonvanishing

relative Lie algebra cohomology in some degree (§1 below). Condition (L-coh) implies
that π is L-algebraic. The other two conditions should be superfluous as they do not

appear in Conjecture 1. Condition (St) plays an essential role in our argument and would

take significant new ideas and effort to get rid of. We assume (std-reg) for the reason

that certain results for regular-algebraic self-dual cuspidal automorphic representations
of GLN , N > 2, are missing in the non-regular case. However, we need less than (std-reg)

for our argument to work. The necessary input for us to proceed without (std-reg) is

formulated as Hypothesis 6.11, which we expect to be quite nontrivial but within reach
nonetheless. Thus, we assume either (std-reg) or Hypothesis 6.11 in the main theorem,

hoping that (std-reg) will be removed as soon as the hypothesis is verified.

Let Sbad = Sbad(π) denote the finite set of rational primes p such that either p = 2, p
ramifies in F, or πq ramifies at a place q of F above p. The following theorem assigns

an �-adic Galois representation to π for each prime number � and each isomorphism

ι : C
∼→Q�.
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Theorem A. Assume that π satisfies conditions (St) and (L-coh). If (std-reg) does

not hold for π, further assume Hypothesis 6.11 (for an SO2n(AF )-subrepresentation

of π). Then there exists, up to Ĝ-conjugation, a unique semisimple Galois representation
attached to π and ι

ρπ = ρπ,ι : Gal(F/F )→ LG∗,

such that the following hold.

(A1) For every prime q of F not above Sbad ∪ {�}, ρπ(Frobq)ss is Ĝ∗-conjugate to

ιφπq
(Frobq), where φπq

is the unramified Langlands parameter of πq.

(A2) The composition

Gal(F/F )
ρπ→ LG∗ pr◦→ SO2n(Q�)�Gal(E/F )

corresponds to a cuspidal automorphic SO
E/F
2n (AF )-subrepresentation π� con-

tained in π in that pr◦(ρπ(Frobq)ss) is SO2n(Q�)-conjugate to the Satake param-

eter of π�
q via ι at every q not above Sbad∪{�}. Further, the composition

Gal(F/F )
ρπ→ LG∗ N→GL1(Q�)

corresponds to the central character of π via class field theory and ι.

(A3) For every q|�, the representation ρπ,q is de Rham (in the sense that r ◦ρπ,q is de

Rham for all representations r of Ĝ∗). Moreover,
(a) The Hodge–Tate cocharacter of ρπ,q is explicitly determined by ξ. More

precisely, for all y : F → C such that ιy induces q, we have

μHT(ρπ,q,ιy) = ιμHodge(ξy)−
n(n−1)

4
sim.

(We still write sim to mean the cocharacter of GSpin2n dual to sim :G∗ →Gm.
See §1 below for the Hodge–Tate and Hodge cocharacters μHT and μHodge.

2)

(b) If πq has nonzero invariants under a hyperspecial (resp. Iwahori) subgroup of

G∗(Fq), then either ρπ,q or a quadratic character twist is crystalline (resp.

semistable).

(c) If � /∈ Sbad, then ρπ,q is crystalline.

(A4) For every v|∞, ρπ,v is odd (see §1 and Remark 12.6 below).

(A5) The Zariski closure of the image of ρπ(Gal(F/E)) in PSO2n maps onto one of

the following four subgroups of PSO2n:
(a) PSO2n,

(b) PSO2n−1 (as a reducible subgroup),

(c) the image of a principal SL2 in PSO2n or

2More precisely, the Hodge cocharacter is a half-integral cocharacter, but subtracting n(n−1)/4
times sim makes it integral. The two cocharacters in (A3)(a) are well-defined up to conjugacy
(i.e., they are conjugacy classes of cocharacters), but the formula makes sense because sim is
a central cocharacter.
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(d) (only when n = 4) G2 (embedded in SO7 ⊂ PSO8) or SO7 (as an irreducible

subgroup via the projective spin representation).

(A6) If ρ′ : Gal(F/F )→ LG∗ is another semisimple Galois representation such that, for
almost all finite F-places q where ρ′ and ρπ are unramified, the semisimple parts

ρ′(Frobq)ss and ρπ(Frobq)ss are conjugate, then ρ and ρ′ are conjugate.

Remark 0.1. The proof of the above theorem relies crucially on the main results of

Arthur’s book [1], which are currently conditional as explained in footnote 2. In particular,
Theorem A, and in turn Theorems B, C and D, are conditional on the same results

mentioned in this footnote.

As explained below Conjecture 1, the existence of Galois representations

ρπ� : Gal(F/F )→ SO2n(Q�)�Gal(E/F ) (0.1)

in a weaker form is known for cuspidal automorphic representations π� of SO
E/F
2n (AF )

satisfying (coh◦), (St◦) and (std-reg◦) (see Section 6 for these conditions), and possibly a
larger class of representations though we have not worked it out. The main ingredients are

Arthur’s transfer [1, Thm. 1.5.2] from SO
E/F
2n (AF ) to GL2n(AF ), and collective results

on the Langlands correspondence for GL2n(AF ) in the self-dual case. Statements (SO-i)

–(SO-v) of Theorem 6.5 below summarize what we know about ρπ� . A main drawback
of Theorem 6.5 is that the conjugacy class of each ρπ�(Frobq)ss is determined only up to

O2n-conjugacy, rather than SO2n-conjugacy.

Using Theorem A, we can upgrade Theorem 6.5 and remove this “outer” ambiguity
(coming from the outer automorphism) as long as π� can be extended to a cohomological

representation π of GSO
E/F
2n . If π is ξ-cohomological, then ξ must satisfy condition (cent)

of §9, so a necessary condition for such a cohomological extension to exist is the following
condition (which is void for F =Q):

(cent◦) the central character {±1}= μ2(Fy)→ C× of πy at each infinite place y of F
is independent of y.

Theorem B. Let π� be a cuspidal automorphic representation of SO
E/F
2n (AF ) satisfying

(cent◦), (coh◦), (St◦) and (std-reg◦). Then Conjecture 1 holds (for every � and ι).

The associated Galois representation ρπ� is characterized uniquely up to SO2n(Q�)-
conjugation.

See Theorem 13.1 below for a precise and stronger statement. The crux of the argument

lies in showing that π� extends to an automorphic representation π of GSO
E/F
2n (AF ),

satisfying conditions of Theorem A. As Theorem A has no outer ambiguity, this yields
Theorem B.

Theorem B offers a new perspective on the local Langlands correspondence for quasi-

split forms of SO2n over p-adic fields. By localizing the theorem at finite places, we get a
candidate for the correspondence, not just up to O2n-conjugacy as in [1]. More precisely,

let H denote a quasi-split form of SO2n over a p-adic field k, assumed to be split if n is

even. Then we can find E/F as above (depending on the parity of n) and a prime q of F
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such that Fq � k and SO
E/F
2n,q �H. If σ is an irreducible discrete series representation of

H(k), then a candidate for the L-parameter for σ is described by the following procedures.

(1) Find π� satisfying (cent◦), (coh◦), (St◦) and (std-reg◦) such that π�
q � σ.

(2) Obtain ρπ� from Theorem B (which relies on Theorem A).

(3) Take WD(ρπ� |ΓFq
), which can be viewed as an L-parameter for H(k).

The globalization in (1) is possible by a standard trace formula argument proving the limit
multiplicity formula. See §1 below for the definition of WD. The L-parameter resulting

from the above is in the O2n-orbit of the L-parameter in [1] by Theorem 6.5 (SO-i),

but could a priori depend on various choices. It is an interesting problem to relate the

global construction here to the purely local constructions by Kaletha [39, 37] and Fargues–
Scholze [24]. In fact, all this can be mimicked for GSO2n in place of SO2n, using Theorem A

rather than Theorem B, so a similar question may be asked in the GSO2n-case.

As another application of Theorem A, we compute the automorphic multiplicities m(π)

for certain automorphic representations π of GSO
E/F
2n (AF ).

Theorem C. Let π be a cuspidal automorphic representation of GSO
E/F
2n (AF ) satisfying

(L-coh), (St) and (std-reg). Then we have m(π) = 1.

To compute m(π) for GSO
E/F
2n , we rely on Theorem A, Arthur’s multiplicity formula

[1] and a result of Bin Xu [81] to show that m(π) = m(π�) for π� ⊂ π a well-chosen

SO
E/F
2n (AF )-subrepresentation. We remark that Arthur’s multiplicity formula computes

multiplicities up to an outer automorphism orbit, but m(π) in the theorem is the honest

multiplicity.

Our final application is meromorphic continuation of the (half) spin-L functions. Let π

be a cuspidal automorphic representation of GSO
E/F
2n (AF ) unramified away from a finite

set of places S. To make uniform statements, define a set

e :=

{
{+,−}, if n is even (thus E = F ),

{∅}, if n is odd (thus [E : F ] = 2),
(0.2)

with the understanding that spin∅ = spin. The partial (half-)spin L-function for π away

from S is by definition

LS(s,π,spinε) :=
∏
p/∈S

1

det(1− q−s
p spinε(φπp

(Frobp)))
, ε ∈ e, (0.3)

where qp :=#(OF /p) and φπp
is the unramified L-parameter of πp. Consider the following

hypothesis for L-parameters φπy
at infinite places y.

(spin-reg) spinε(φπy
) is regular for every infinite place y of F and every ε ∈ e.

When n ≥ 3, (spin-reg) implies (std-reg). This hypothesis ensures that spinε(ρπ) has
distinct Hodge–Tate weights. Our construction and Theorem A allow us to apply the

potential automorphy theorem of Barnet-Lamb–Gee–Geraghty–Taylor [3] to the weakly

compatible system of spinε(ρπ) (as � and ι vary). Thereby, we obtain the following.
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Theorem D. Assume n ≥ 3. Let π be a cuspidal automorphic representation of
GSO

E/F
2n (AF ) satisfying (L-coh), (St) and (spin-reg). Then there exists a finite totally real

extension F ′/F (which can be chosen to be disjoint from any prescribed finite extension

of F in F ) such that spinε ◦ ρπ|Gal(F/F ′) is automorphic for each ε ∈ e. More precisely,
there exists a cuspidal automorphic representation Πε of GL2n/|e|(AF ′) such that

• for each finite place q′ of F ′ not above Sbad ∪{�}, the representation ι−1spinε ◦
ρπ|WF ′

q′
is unramified and its Frobenius semisimplification is the Langlands

parameter for Πε
w,

• at each infinite place y′ of F ′ above a place y of F, we have φΠε
y′ |WC

� spinε ◦
φπy

|WC
.

In particular, the partial spin L-function LS(s,π,spinε) admits a meromorphic continu-

ation and is holomorphic and nonzero in an explicit right half plane (e.g., in the region

(s)≥ 1 if π has unitary central character).

We now give a sketch of the argument for Theorem A. For simplicity, we put ourselves

in the split case (when n is even) and assume F =Q to simplify notation. We also ignore

all character twists and duals in the following sketch and keep the isomorphism ι :C�Q�

implicit. (See the main text for correct twists and duals.)

The basic idea is to construct ρπ and prove its expected properties by understanding

what should be spin+ ◦ ρπ, spin− ◦ ρπ, std ◦ ρπ and N ◦ ρπ. One already has access to
std◦ρπ via Arthur’s endoscopic classification and known instances of the global Langlands

correspondence. The seemingly innocuous N ◦ ρπ is not so trivial to combine with the

other representations, but refer to the proof of Proposition 10.5. Most importantly, we

realize spin+ ◦ρπ and spin− ◦ρπ in the cohomology of suitable Shimura varieties; this is
the port of embarkation.

In fact, ρπ would not be recovered from spin+ ◦ρπ, spin− ◦ρπ, std ◦ρπ and N ◦ρπ in

general due to essential group-theoretic difficulties (e.g., GSpin2n is not acceptable in the
sense of [56, 55]), but condition (St) mitigates the matter. Another important role of (St)

is to remove complexity associated with endoscopy.

Our Shimura varieties are associated with an inner twist G/Q of the split group
GSO2n (unique up to isomorphism) which splits at all primes p �= pSt and whose derived

subgroup is isomorphic to the quaternionic orthogonal group SO∗(2n) over R (which is

not isomorphic to SO(a,b) for any signature a+ b= 2n). Concretely, G(R) is isomorphic

to the group GSOJ
2n(R) in §8 below.

The group G admits two abelian-type Shimura data (G,Xε) with ε ∈ {+,−}, cor-

responding to the two edges of the “fork” in the Dynkin diagram of type Dn (see

Section 9). These two Shimura data are not isomorphic. (The analogous Shimura data are
isomorphic via an outer automorphism when n is odd; see Lemma (ii) below. Even then,

we distinguish the two data as the outer automorphism changes isomorphism classes of

representations.)
Let π be as in Theorem A. Using a trace formula argument, we transfer π to

a ξ-cohomological cuspidal automorphic representation π	 of G(A) with isomorphic

unramified local components as π such that π	 is Steinberg at a finite prime. Let ρSh,επ be
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the Gal(Q/Q)-representation on the π	,∞-isotypical part of the (semisimplified) compact

support cohomology of the �-adic local system Lξ/Sh(G,X
ε) attached to ξ. Conjecturally,

the two representations ρSh,επ should realize spinε ◦ρπ up to semi-simplification (and up

to a twist and a multiplicity that we ignore in this introduction) in the non-endoscopic

case. In particular, if φπp
: WQp

→ GSpin2n(C) is the unramified L-parameter of πp at
a prime p �= � where πp is unramified, then ρSh,επ |Gal(Qp/Qp)

ought to be unramified and

satisfy

TrρSh,επ (Frobjp) = Trspinε(φπp
(Frobp)

j) ∈Q�, j � 1. (0.4)

Employing Kisin’s results on the Langlands–Rapoport conjecture [42] and the Langlands–
Kottwitz method for Shimura varieties of abelian type in the forthcoming work of Kisin–

Shin–Zhu [43], we prove (0.4) for almost all p.

Let π� ⊂ π be an irreducible cuspidal automorphic SO2n(A)-subrepresentation. From
the aforementioned weaker version of Conjecture 1 for SO2n, we construct (see Theorem

6.5 below)

ρπ� : Gal(Q/Q)→ SO2n(Q�).

such that

ρπ�(Frobp)ss
◦∼ pr◦(φπp

(Frobp)) ∈ SO2n(Q�), (0.5)

for all primes p �= � where π� is unramified. Here,
◦∼ indicates O2n(Q�)-conjugacy, and

pr◦ : GSpin2n � SO2n is the natural surjection.

We expect ρπ to lift ρπ� (up to outer automorphism) and to sit inside ρSh := ρSh,+π ⊕
ρSh,−π as illustrated below. By spin we mean the unique projective representation of SO2n

that the projectivization of spin factors through.

Gal(Q/Q)

ρSh
π

��

ρ
π� ��

ρπ

�������� GSpin2n(Q�)

pr◦

��

� �

spin
�� GL2n(Q�)

��
SO2n(Q�)

� � ��� �

spin

�� PGL2n(Q�)

(0.6)

We deduce from (0.4) and (0.5) that the outer diagram commutes, after a conjugation

if necessary. In fact, this is not straightforward because two PGL2n -valued Galois
representations need not be conjugate even if they map each Frobp into the same

conjugacy class for almost all p. We get around the difficulty by using a classification of

reductive subgroups of SO2n containing a regular unipotent element by Saxl–Seitz [70].
This is applicable since (St) tells us that the image of ρπ� contains a regular unipotent

element. As a consequence, the Zariski closure of the image of ρπ� is connected mod

center. If it is connected, we have the commutativity of (0.6) after a conjugation, and it
follows that there exists ρπ completing the diagram. If the Zariski closure is connected

only mod center, then we need a variant of (0.6) as explained in §10. A similar group-

theoretic consideration shows that ρπ is characterized up to isomorphism by the images

of Frobenius elements at almost all primes, cf. (A6) of Theorem A.
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Having constructed ρπ, we verify that ρπ enjoys the expected properties. Let us focus
here on (A1). By construction,

spin(ρπ(Frobp)ss)∼ spin(φπp
(Frobp)), for almost all p.

The key point is to refine this, or break the symmetry, by showing the same relation with

spin+ and spin− in place of spin (cf. proof of Proposition 10.5 below) with the help of

(0.4). Roughly speaking, we are in a situation

ρSh,+⊕ρSh,− � spin+ρπ⊕ spin−ρπ

and want to match the + and − parts. The problem is easy enough if spin+ρπ � spin−ρπ,
as there is little to distinguish. If spin+ρπ �� spin−ρπ, then the idea is that the + and

− parts do not overlap at sufficiently many places (by a Chebotarev type argument) to
match the + and − parts unambiguously. If spin+ρπ or spin−ρπ is irreducible, it is quite

doable to promote this idea to a robust argument. In general, the smaller image of ρπ, the

harder this problem becomes. However, in certain cases where the image is really small,
such as contained in a principal PGL2, the conjugacy classes ρπ(Frobp)ss are stable under

outer conjugation, and there is no distinction between inner and outer conjugacy. As we

also have a classification of the Zariski closure of the possible images of ρπ, we can deal

with each case via explicit group-theoretic computation. This finishes the sketch of proof
for Theorem A.

Structure of the paper

The paper splits roughly into four parts consisting of Sections 1–8 (preparation), Sections

9–12 (the core argument), Sections 13–15 (applications) and the appendices. Let us go

over these parts in more detail. In Sections 1–5, we define (variants of) orthogonal groups
and spin groups along with subgroups containing regular unipotent elements and the

outer automorphism. We define the spin groups and their spin representations through

root data as well as Clifford algebras by fixing the underlying quadratic spaces, and
we clarify the relationship between them. The root-theoretic approach is natural in

the context of Langlands correspondence, whereas Clifford algebras have the advantage

that various maps are determined and diagrams commute on the nose and not just up
to conjugation. In Section 6, we construct Galois representations for certain cuspidal

automorphic representations of quasi-split even orthogonal groups. This relies on Arthur’s

book [1] and the known construction of automorphic Galois representations, but a few

extra steps are taken to get the information that we need later on. In particular, we
study what happens to the Steinberg representation under Arthur’s transfer from SO

E/F
2n

to GL2n (this relies on Appendix B). In Section 7, we list a number of basic results

on comparing representations of SO
E/F
2n with those of GSO

E/F
2n . Section 8 discusses

properties of the real points of GSO
E/F
2n and introduces certain global inner forms G of

GSO
E/F
2n . The core argument starts in Section 9, where we take the cohomology of Shimura

varieties associated with two Shimura data (G,X±) to find two Galois representations

ρSh,±π attached to π as in the main theorem. In Section 10 we construct a GSpin2n-

valued Galois representation ρπ of Gal(F/E) from ρSh,±π and ρπ� . This representation is
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not quite the one of Theorem A: The image of Frobenius under ρπ is controlled only
outside an unspecified finite set of primes, and moreover, ρπ should be extended to

a representation of Gal(F/F ). The two problems are resolved in Sections 11 and 12,

respectively. We emphasize that neither of these arguments is formal: the first one relies
on Bin Xu’s work [81] and the second on a subtle global argument. The proof of Theorem

A is also completed in Section 12. Sections 13–15 present applications of our main theorem

to the construction of Galois representations for SO
E/F
2n , automorphic multiplicity and

meromorphic continuation of (half)-spin L-functions.

1. Notation and preliminaries

We fix the following notation.

• n≥ 3 is an integer.3

• If k is a field, k denotes an algebraic closure of k.
• When X is a square matrix, E V (X) denotes the multi-set of eigenvalues of X.
• When A is a multi-set with elements in a ring R with r ∈ R, write r ·A for the

multi-set formed by the elements ra ∈ A as a ranges over A. For n ∈ Z>0, write
A⊕n for the multi-set consisting of a ∈A whose multiplicity in An is n times that
in A.

• F is a number field. (In the main text, F is a totally real field with a distinguished
embedding into C.)

• OF is the ring of integers of F.
• AF is the ring of adèles of F, AF := (F ⊗R)× (F ⊗ Ẑ).
• If S is a finite set of F -places, then AS

F ⊂ AF is the ring of adèles with trivial
components at the places in S, and FS :=

∏
v∈S Fv; F∞ := F ⊗QR.

• If q is a finite F -place, we write qq for the cardinality of the residue field of q.
• | · | : A×

F → R×
>0 is the norm character on A×

F that is trivial on F×. Denote by
| · |v : F×

v → R×
>0 the restriction of | · | to the v -component. Our normalization is

that | · |q sends a uniformizer of Fq to q−1
q , whereas | · |v is the usual absolute value

(resp. squared absolute value) when v is real (resp. complex).
• If S is a set of prime numbers, we write SF for the set of F -places above S.
• If p is a prime number, then Fp := F ⊗QQp.
• � is a primenumber (typically different from p).
• Q� is a fixed algebraic closure of Q�, and ι : C

∼→Q� is an isomorphism.
• For each prime number p, we fix the positive root p1/2 ∈R>0 ⊂C. From ι, we then

obtain a choice for p1/2 ∈Q�. If q is a power of p, we obtain similarly a preferred
choice q1/2 in Q� and in C.

• Γ = ΓF := Gal(F/F ) is the absolute Galois group of F.
• For a finite extension E of F in F , write ΓE := Gal(F/E) and ΓE/F := Gal(E/F ).

• Γv = ΓFv
:= Gal(F v/Fv) is (one of) the local Galois group(s) of F at the place v ;

WFv
⊂ Γv is the corresponding Weil group.

3We should mention that if n≤ 3, there are exceptional isomorphisms of GSO2n (and its outer
forms) to other simpler groups; for instance, for n = 3, the Shimura varieties that we obtain
are (closely related to) Shimura varieties for unitary similitude groups. In particular, more
general results are already known.
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• For each F -place v, choose an embedding ιv : F ↪→ F v, which induces Γv ↪→ Γ that
is canonical up to conjugation.

• V∞ := HomQ(F,R) is the set of infinite places of F.
• cy ∈ Γ is the complex conjugation (well-defined as a conjugacy class) induced by

any embedding F ↪→ C extending y ∈ V∞.
• If S is a finite set of F -places, write ΓF,S for the Galois group Gal(F (S)/F ) where

F (S)⊂ F is the maximal extension of F that is unramified away from S. If S is a
set of rational places, we write ΓF,S := ΓF,SF .

• Frobq at a finite prime q of F means the geometric Frobenius element in the
quotient of Γq by the inertia subgroup, or the image thereof in ΓF,S . (The image
in ΓF,S depends on the choice of ιq, but its conjugacy class is independent of the
choice.)

• When G is a connected reductive group over F, write Ĝ and LG = Ĝ�ΓF for
the Langlands dual group and the L-group, respectively (with coefficients in C or
Q�, depending on the context). If G splits over a finite extension E/F in F , then

Ĝ�ΓE/F denotes the L-group with respect to E/F . (Namely, such a semi-direct

product is always understood with the L-action of ΓE/F on Ĝ.) Often we use LG

to mean Ĝ�ΓE/F .
4

• When H is a reductive group over Q�, we also use H to mean the topological
group H(Q�) by abuse of notation. This should be clear from the context and not
leading to confusion.

• When F is a p-adic field and G is the set of F -points of a reductive group over
F, we write StG for the Steinberg representation of G (defined in [8, X.4.6], for
instance). Moreover, we write 1G for the trivial representation of G. In certain
cases, when G is clear, we write St = StG or 1= 1G. We also sometimes write Stn
for StGLn(F ) (in case F is clear from the context).

• If G is an algebraic group, we write Z(G) for its center.
• An inner twist of a reductive group G over a perfect field k means a reductive group

G′ over k together with an isomorphism i :Gk →G′
k
such that the automorphism

i−1σ(i) of Gk is inner for every σ ∈ Gal(k/k). There is an obvious notion of
isomorphism for inner twists (G′,i), cf. [38, 2.2]. We often say G′ is an inner
twist of G, keeping i implicit. If we forget i and only remember the k -group G′

and the existence of i, we refer to it as an inner form of G.

Fix G and E/F as above. We introduce some notions on the Galois side. By an (�-adic)

Galois representation of ΓF (with values in Ĝ�ΓE/F ), we mean a continuous morphism

ρ : ΓF → Ĝ(Q�)�ΓE/F

which factors through ΓF,S for some finite set S and commutes with the

obvious projections onto ΓE/F . Similarly, we define a Galois representation with the

source Γq or with values in LG(Q�). Two Galois representations are considered isomorphic

if they are conjugate by an element of Ĝ(Q�). We say that ρ as above is (totally) odd if

4This is harmless for us as the inflation map induces a bijection of isomorphism classes of
LG-valued Galois representations when ΓE/F is replaced with ΓF in the semi-direct product.
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for every real place y of F, the following holds: writing Ad for the adjoint action of LG

on LieG(Q�), which preserves the Lie algebra of the derived subgroup Gder, the image of

cy under the composite

Γy ↪→ Γ
ρ→ LG(Q�)

Ad→ GL(LieGder(Q�))

has trace equal to the rank of Ĝder. (Compare with [27].)

An LG-valued Weil–Deligne representation of WFq
is a pair (r,N) consisting of a

morphism

r : WFq
→ Ĝ(Q�)�ΓEp/Fq

,

which has open kernel on the inertia subgroup and commutes with the canonical

projections onto ΓEp/Fq
, and a nilpotent operator N ∈ LieĜ(Q�) such that Ad(r(w))N =

|w|N for w ∈ WFq
, where | · | : WFq

→ ‖q‖Z is the homomorphism sending a geometric
Frobenius element to ‖q‖−1; here, ‖q‖ ∈ Z>0 denotes the norm of q. The Frobenius-

semisimplification (rss,N) is obtained by replacing r with its semisimplification. We say

(r,N) is Frobenius-semisimple if r = rss.
Let ρ : ΓF → Ĝ(Q�)�ΓE/F be a Galois representation. Write p for the prime of E

induced by ιq : F ↪→ F q. Then the restriction (via ιq)

ρ|Γq
: ΓFq

→ Ĝ(Q�)�ΓEp/Fq

gives rise to an LG-valued Weil–Deligne representation, to be denoted by WD(ρ|ΓFq
).

The construction follows from the case of G = GLn by the Tannakian formalism via

algebraic representations of Ĝ(Q�)�ΓEp/Fq
. (The case q|� is more subtle than q � �. In

the former case, a detailed explanation is given in the proof of [50, Lem. 3.2], where Ĝ is
denoted by H. In loc. cit. ΓEp/Fq

is trivial but the same argument extends.) When q � �,
one can alternatively appeal to Grothendieck’s �-adic monodromy theorem to construct

WD(ρ|ΓFq
) directly (without going through general linear groups).

A local L-parameter φ :WFq
×SL(2)→ Ĝ(Q�)�ΓEp/Fq

is associated with a Frobenius-

semisimple LG-valued Weil–Deligne representation (r,N) given by the following recipe:

r(w) = φ

(
w,

(
|w|1/2 0

0 |w|−1/2

))
, and N = φ

(
1,

(
0 1

0 0

))
.

This induces a bijection on the sets of equivalence classes of such objects [28, Prop. 2.2].

In practice (where only equivalence classes matter), we will use them interchangeably.
We introduce some further notation and conventions in representation theory. If π is a

representation on a complex vector space, then we set ιπ := π⊗C,ιQ�. Similarly, if φ is a

local L-parameter of a connected reductive group G over a nonarchimedean local field so
that φ maps into LG(C), then ιφ is the parameter with values in LG(Q�) obtained from φ

via ι. If G is a locally profinite group equipped with a Haar measure, then we write H(G)

for the Hecke algebra of locally constant, complex valued functions with compact support.
We write HQ�

(G) for the same algebra but now consisting of Q�-valued functions. We

normalize every parabolic induction by the half power of the modulus character as in [7,

1.8], so that it preserves unitarity.
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Let G be a real reductive group, K a maximal compact subgroup of G(R), and K̃ :=

K ·Z(G)(R). Let ξ be an irreducible algebraic representation of G over C. An irreducible
admissible representation π of G(R) is said to be ξ-cohomological if Hi(LieG(C),K̃,π⊗C

ξ) �=0 for some i≥ 0. If this is the case, we assign a Hodge cocharacter over C (well-defined

up to Ĝ-conjugacy) as in [50, Def 1.14]:

μHodge(ξ) : Gm → Ĝ.

Let L be a finite extension of Q�. Let H be a possibly disconnected reductive group over

Q� (e.g., an L-group relative to a finite Galois extension), and ρ : Gal(L/L)→H(Q�) a
continuous morphism. If ρ is Hodge–Tate with respect to each Q�-embedding i : L ↪→Q�,

we define a Hodge–Tate cocharacter over Q� (well-defined up to H -conjugacy) as in [12,

§2.4] (cf. [50, Def 1.10]):

μHT(ρ,i) :Gm →H.

We recall the following lemma that can be easily deduced from the Chebotarev density

theorem, as it will be needed in §10. Let F be a number field. The density of a set S
consisting of primes of F is defined to be the limit d(S) = limn→∞ an(S)/an(F ), where

an(F ) is the number of primes q with bounded norm ‖q‖ < n and an(S) is the number

of q ∈ S with ‖q‖ < n [72, Sect. I.2.2]. Depending on S, the limit d(S) may or may not
exist — in the former case, we say S has density d(S), and otherwise we leave the density

undefined.

Lemma 1.1. Let S be a finite set of places of a number field F. Let G/Q� be a linear
algebraic group and let r : ΓF,S → G(Q�) be a Galois representation with Zariski dense

image. Let X ⊂G be a closed subvariety that is invariant by G-conjugation and such that

dim(X)< dim(G). Then the set of F-places q /∈ S with r(Frobq) ∈X(Q�) has density 0.

Proof. Let μ be the Haar measure on ΓS = ΓF,S with total volume 1. We write X to

also mean X(Q�) to simplify notation. Then Y = r−1(X) is a closed subset of ΓS (hence

measurable) and stable under ΓS-conjugation. If we further have that μ(Y ) = 0, then the
Chebotarev density theorem [72, I-8 Cor. 2b] implies that the set of places q /∈ S such

that Frobq ∈ Y has measure 0, so we will be done.

So it suffices to prove that μ(Y ) = 0. We induct on dim(X) ∈ {0,1, . . . , dim(G)−1}. We
may assume that X is irreducible by induction. When dimX = 0, then X is a point and

the preimage Y of X is a torsor under ker(r). We then have vol(Y ) = vol(ker(r)) = 0,

since ker(r) ⊂ ΓS is a closed subgroup of infinite index by hypothesis. Now assume that
the assertion is known whenever dim(X)<d and consider the case dim(X) = d< dim(G).

There exists an infinite sequence γ1,γ2, . . . ∈ ΓS such that the subset r(γi)X are mutually

distinct. (If the choice were impossible after i= r, then multiplication by r(g) preserves⋃
i<=r r(γi)X for every g ∈ ΓS . This cannot happen because r has Zariski dense image,

and the union has dimension d < dim(G).) Consider

ΓS ⊃
∞⋃
i=1

γir
−1(X).
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The volume of ΓS is finite. Each term on the right-hand side is closed (so measurable),

and the volumes of γir
−1(X) are all equal. We claim that their pairwise intersections

have volume 0. If this is true, then we deduce that vol(γir
−1(X)) = vol(r−1(X)) = 0,

completing the proof.

It remains to verify the claim. Observe that the intersection

(∗) γir
−1(X)∩γjr

−1(X), i �= j

maps into the intersection r(γi)X ∩ r(γj)X in G, which has dimension less than d, so

indeed (*) has measure 0 by induction hypothesis. This completes the proof.

We also record a lemma on projective algebraic representations, which will be useful

later on.

Lemma 1.2. Let G be a connected simply-connected semi-simple group over C. Let T ⊂
G be a maximal torus. Let r1,r2 : G → PGLN be two projective representations whose

restrictions to T are conjugate. Then r1,r2 are conjugate.

Proof. We claim that any r : G→ PGLN can be lifted to a representation r̃ : G→ SLN .

Let H := (G×PGLN
SLN )0. Then f : H → G is a central isogeny and hence is an

isomorphism as G is simply connected [61, Prop. 18.8]. The composition G→H → SLN

is the desired lift.

After conjugating, we may assume that r1|T = r2|T . By the preceding paragraph, we

can choose lifts r̃i of ri for i = 1,2. Define a morphism of varieties χ : G → SLN by
χ(g) := r̃1(g)r̃2(g)

−1. The image of χ|T lies in μN since r1|T = r2|T . Hence, the image is

trivial as T is connected, that is, r̃1|T = r̃2|T . Hence, r̃1, r̃2 are GLN -conjugate because

the trace functions coincide on semisimple elements. It follows that r1, r2 are PGLN -
conjugate.

2. Root data of GSO2n and GSpin2n

Let GO2n/Q be the algebraic group such that for all Q-algebras R, we have

GO2n(R) =

{
g ∈GL2n(R)

∣∣∣∣ ∃sim(g) ∈R× : gt ·
(

1n
1n

)
·g = sim(g) ·

(
1n

1n

) }
.

(2.1)

(In the above formula, 1n is the n×n identity matrix.) The group GO2n is disconnected;

its neutral component GSO2n ⊂GO2n is defined by the condition det(g) = sim(g)n. The

groups GO2n, GSO2n are split and defined by a quadratic form of signature (n,n). An
element t of the diagonal torus TGSO ⊂GSO2n is of the form

t= diag(ti)
2n
i=1 = diag(t1,t2, . . . ,tn,t0t

−1
1 ,t0t

−1
2 , . . . ,t0t

−1
n ), t0 := sim(t). (2.2)

Hence, TGSO �Gn+1
m by sending t to (t0,t1, . . . ,tn). We identify X∗(TGSO) =

⊕n
i=0Z · ei

and X∗(TGSO) =
⊕n

i=0Z · e∗i accordingly. We let BGSO be the Borel subgroup of GSO2n

of matrices of the form
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g =

(
A AB
0 cAt,−1

)
, A ∈BGLn

, B ∈Mn, B
t =−B and c= sim(g), (2.3)

where BGLn
⊂GLn is the upper triangular Borel subgroup. (To see that BGSO is indeed

a Borel subgroup, notice that any block matrix g = (A B
C D )with C = 0 is of the above form

if and only if g ∈ GSO2n, and moreover, the displayed group is solvable of dimension

n2+1).
We realize the split forms of even (special) orthogonal groups in GO2n/Q. Namely, we

write O2n (resp. SO2n) for the subgroup of GO2n (resp. GSO2n) where sim is trivial.

Lemma 2.1. The root datum of GSO2n with respect to BGSO is described as follows.

(i) The set of roots (resp. coroots) consists of ±(ei − ej) and ±(ei + ej − e0) (resp.

±(e∗i − e∗j ) and ±(e∗i + e∗j )) with 1≤ i < j ≤ n.

(ii) The positive roots are {ei + ej − e0}1≤i<j≤n ∪ {ei − ej}1≤i<j≤n, and the positive
coroots are {e∗i ± e∗j}1≤i<j≤n.

(iii) The simple roots are α1 = e1−e2, . . ., αn−1 = en−1−en, and αn = en−1+en−e0.

(iv) The simple coroots Δ∨ are α∨
1 = e∗1− e∗2, α

∨
2 = e∗2− e∗3, . . ., α

∨
n−1 = e∗n−1− e∗n and

α∨
n = e∗n−1+ e∗n.

Remark 2.2. The root datum of SO2n is described similarly. Putting TSO := TGSO ∩
SO2n and BSO := BGSO∩SO2n, we have TSO = {t ∈TGSO : t0 = 1} as well as X∗(TSO) =

⊕n
i=1ei ·Z and X∗(TSO) =⊕n

i=1e
∗
i ·Z. To describe (positive or simple) roots and coroots,

we only need to formally set e0 = 0 in the lemma above.

Proof. The standard computation for SO2n as in [25, 18.1] can be easily adapted to
GSO2n.

We define the following element (over any Q-algebra point of O2n)
5

ϑ◦ :=−

⎛⎜⎜⎝
1n−1

0 1

1n−1

1 0

⎞⎟⎟⎠ ∈O2n. (2.4)

Since det(ϑ◦) =−1, we have ϑ◦ /∈ SO2n. We write θ◦ ∈Aut(GSO2n) for the automorphism
given by ϑ◦-conjugation.

Lemma 2.3. The automorphism θ◦ stabilizes BGSO and TGSO and acts on TGSO by

(t0,t1, . . . ,tn) �→ (t0,t1, . . . ,tn−1,t0t
−1
n ).

Furthermore, θ◦(αi) = αi for i < n−2, θ◦(αn−1) = αn, and θ◦(αn) = αn−1.

Proof. By a direct computation, θ◦(TGSO) = TGSO and θ◦(BGSO) = BGSO. Since θ
◦ only

switches tn and t2n = t0t
−1
n , its action on TGSO is explicitly described as in the lemma.

5The minus sign for ϑ◦ makes it compatible with ϑ ∈ GSpin2n to be introduced above
Lemma 3.6.
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Thus, θ◦(ei) = ei for 1 ≤ i ≤ n− 1 and θ◦(en) = e0− en, from which the last assertion

follows.

We define GSpin2n to be the Langlands dual group ĜSO2n over C (or later over Q� via

ι : C � Q�). That is, GSpin2n is the connected reductive group over C, equipped with a

Borel subgroup BGSpin and a maximal torus TGSpin, whose based root datum is dual to

the one of GSO2n that we described above. In particular,

X∗(TGSpin) =X∗(TGSO) and X∗(TGSpin) =X∗(TGSO).

Via the identification X∗(TGSO) = Zn+1, we represent elements s ∈ TGSpin as

(s0,s1, . . . ,sn). In Section 3, we will also define an explicit model of GSpin2n over Q
using Clifford algebras.

Lemma 2.4. There is a unique θ ∈Aut(GSpin2n) that fixes TGSpin and BGSpin, switches
α∨
n−1 and α∨

n , leaves the other α∨
i invariant, and induces the trivial automorphism of the

cocenter of GSpin2n. We have θ2 =1, and on the torus TGSpin, the involution θ is given by

(s0,s1, . . . ,sn) �→ (s0sn,s1, . . . ,sn−1,s
−1
n ). (2.5)

Proof. We have θ(e∗i −e∗i+1) = e∗i −e∗i+1 (1≤ i < n) and θ(e∗n−1−e∗n) = e∗n−1+e∗n. Thus,

θ(e∗i ) = e∗i (1≤ i < n) and θ(e∗n) =−e∗n. (2.6)

The center of GSO2n is the image of Gm � z �→ (z2,z, . . . ,z) ∈ TGSO. The dual map is

TGSpin →Gm, (s0,s1, . . . ,sn) �→ s20s1 · · ·sn. (2.7)

Thus, θ(2e∗0 + e∗1 + · · ·+ e∗n) = 2e∗0 + e∗1 + · · ·+ e∗n, so θ(2e∗0)− e∗n = 2e∗0 + e∗n and θ(e∗0) =
e∗0+ e∗n.

Lemma 2.5. We have Z(GSpin2n) = {(s0, . . . ,sn) : s1 = s2 = · · · = sn ∈ {±1}}, which is

isomorphic to Gm×{±1} via (s0, . . . ,sn) �→ (s0,s1). In the latter coordinate, θ(s0,s1) =

(s0s1,s1).

Proof. Let s∈TGSpin. Then s∈Z(GSpin2n) if and only if α∨(t) = 1 for all α∨ ∈Δ∨. From
Lemma 2.1(iii), we obtain si/si+1 =1 (i≤ n−1), and sn−1sn =1. Hence, s∈Z(GSpin2n)

if and only if s1 = · · ·= sn ∈ {±1}. By (2.5), we get θ(s0,s1) = (s0s1,s1).

The Weyl group of GSO2n (and GSpin2n) is equal to {±1}n,′�Sn, where {±1}n,′ is the
group of a∈ {±1}n such that

∏n
1 a(i) = 1. The action of WGSO on TGSO is determined by{

σ · (t0,t1, . . . ,tn) = (t0,tσ(1), . . . tσ(n)) σ ∈Sn

a · (t0,t1, . . . ,tn) = (t0,t0t
−1
1 ,t0t

−1
2 ,t3, . . . ,tn) a= (−1,−1,1. . . ,1) ∈ {±1}n,′.

(2.8)

We define, for ε ∈ {±1}, the following cocharacter:

με :=

{
(1,1, . . . ,1,1) ifε= (−1)n

(1,1, . . . ,1,0) ifε= (−1)n+1
∈ Zn+1 =X∗(TGSO) =X∗(TGSpin). (2.9)

Then με is a minuscule cocharacter of GSO2n with 〈αi,με〉 = 1 if and only if i = n (for

ε= (−1)n) and i= n−1 (for ε= (−1)n+1).
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Definition 2.6. For ε ∈ {+,−}, define the half-spin representation spinε = spinε2n to

be the irreducible representation of GSpin2n whose highest weight is equal to με in

X∗(TGSpin). By the spin representation of GSpin2n, we mean spin := spin+⊕ spin−.

These representations will be realized explicitly via Clifford algebras. Our sign
convention is natural in that spin+ (resp. spin−) accounts for even (resp. odd) degree

elements. See (4.2) and Lemma 4.1 below.

The minuscule με has 2
n−1 translates under the Weyl group action. Thus, each half-spin

representation has dimension 2n−1. More precisely, the weights of spin
(−1)n

2n are

TGSpin � (s0,s1, . . . ,sn) �→
(
s0

∏
i∈U

si

)
U⊂{1,2,...,n},

2|#U

∈ Zn+1 =X∗(TGSO) =X∗(TGSpin),

(2.10)

and spin
(−1)n+1

2n has similar weights, except that the cardinality of U is now required to

be odd. By computing the θ-action on weights, we verify that (see Lemma 4.4 for an

explicit intertwiner)

spin+ ◦θ � spin− and spin− ◦θ � spin+.

Lemma 2.7. The kernel Zε of spinε is central in GSpin2n and finite of order 2. The

nontrivial element zε of Zε equals (ε, − 1) ∈ Gm × {±1}. The spin representation of

GSpin2n is faithful.

Proof. Since GSpin2n is simple modulo the center, the kernel Zε ⊂ GSpin2n must

be central. The central character is the restriction of με : TGSpin → Gm to the center

Z(GSpin2n) ⊂ TGSpin. Let s = (s0,s1, . . . ,sn) = (a,b) ∈ Z(GSpin2n) ⊂ TGSpin. Then (see

proof of Lemma 2.5)

με(s) =

{
s0s1 · · ·sn = abn ifε= (−1)n

s0s1 · · ·sn−1 = abn−1 ifε= (−1)n+1.
(2.11)

The first assertion follows by considering the 4 different cases where n even or odd and

ε=±1. For the second point, it suffices to observe that Z+∩Z− = {1}.

Later on, the following fact on SO2n−1 will be needed, so we record it here.

Lemma 2.8. Let n ≥ 3. Up to isomorphism the group SO2n−1 has exactly one faithful

representation of dimension 2n, namely, std2n−1⊕1.

Proof. We use the root system notation and conventions from [10, Ch. 4, p. 253]. Assume
Vλ is a nontrivial irreducible representation of SO2n−1 with highest weight λ �= ω1. We

show that dim(Vλ) > 2n. Write λ =
∑n−1

i=1 xiωi with xi ≥ 0. If xi �= 0 for some i with

n−1> i> 1, then dim(Vλ)≥ dim(Vωi
), and dim(Vωi

) = dim(∧istd)> 2n. We thus assume
λ = x1ω1 + xn−1ωn−1. If xn−1 = 0, then, as λ �= ω1, we have dim(Vλ) ≥ dim(V2ω1

) =

(n−1)(2n+1)> 2n by the Weyl dimension formula. Assume xn−1 �= 0. We cannot have

xn−1 = 1 because then, Vλ does not descend to SO2n−1. Thus, dim(Vλ) ≥ dim(V2ωn−1
),
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which equals 10 if n = 3, 35 if n = 4, and if n > 4, then dim(V2ωn−1
) ≥ dim(Vωn−1

) =

2n−1 > 2n.

3. Clifford algebras and Clifford groups

We recall how GSpin2n is realized using the Clifford algebra, and we define a number of
fundamental maps such as istd : GSpin2n−1 ↪→GSpin2n and the projections from GSpin2n
to GSO2n and SO2n. We also give a concrete definition of outer automorphisms θ of

GSpin2n and θ◦ of GSO2n. Our main reference is [4], which introduces Clifford algebras
over arbitrary commutative rings (with unity). Other useful references are [9, §9] and [25,

§20].
Let V be a quadratic space over Q with quadratic form Q, giving rise to the groups

O(V ), GO(V ), SO(V ) and GSO(V ). The Clifford algebra C(V ) is a universal map V →
C(V ) which is initial in the category of Q-linear maps f : V → A into associative Q-

algebras A with unity 1A such that f(v)2 = Q(v) · 1A for all v ∈ V . (See [4, (2.3)] or [9,

§9.1].)
We define 〈x,y〉 :=Q(x+y)−Q(x)−Q(y) for x,y ∈ V , and similarly, 〈x,y〉= (x+y)2−

x2−y2 for x,y ∈ C(V ). In particular, 〈x,y〉 measures if x and y anti-commute in C(V ):

〈x,y〉= (x+y)2−x2−y2 = xy+yx ∈ C(V ). (3.1)

The map V → C(V ) induces a map V → C(V )opp (sending each v ∈ V to the same

element), where C(V )opp is the opposite algebra. The latter factors through a unique Q-
algebra map β : C(V )→ C(V )opp. It is readily checked that β2 is the identity on C(V ).

By the universal property, β is the unique involution of C(V ) that is the identity on V.

The universal property also yields a surjection from the tensor algebra⊕
d∈Z≥0

V ⊗d � C(V ).

Define C+ = C(V )+ (resp. C− = C(V )−) to be the image of ⊕d∈Z≥0
V ⊗2d (resp.

⊕d∈Z≥0
V ⊗2d+1) so that C(V ) = C(V )+ ⊕C(V )−. In fact, the discussion of Clifford

algebras so far works when V is replaced with a quadratic space on a module over an

arbitrary commutative ring, in a way compatible with base change: in particular, if R is

a (commutative) Q-algebra, then C(V ⊗QR) = C(V )⊗QR [9, §9.1, Prop 2]. By scalars

in C(V ⊗QR), we mean R times the multiplicative unity. We keep using β to denote the
main involution of C(V ⊗QR).

The Clifford group GPin(V ) is the Q-group such that for every Q-algebra R,

GPin(V )(R) = {x ∈ C(V ⊗QR)× : x(V ⊗QR)x−1 = V ⊗QR,x is homogeneous},

where homogeneity of x means that x ∈C(V ⊗QR)ε for some sign ε. The special Clifford

group GSpin(V ) is defined similarly with C+ in place of C. The embedding of invertible
scalars in C(V ⊗QR) induces a central embedding

Gm →GSpin(V ). (3.2)
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Since xβ(x) ∈ R for x ∈ C(V ⊗Q R) by [4, Prop 3.2.1 (a)], we have the spinor norm

morphism

N : GPin(V )→Gm, x �→ xβ(x)

over Q. (The involution in loc. cit. differs from our β by C(−1P ) in their notation, so
our N does not coincide with their N, but N and N have the same kernel.) Evidently,

composing N with (3.2) yields the squaring map.

Define Spin(V ) by the following exact sequence of algebraic groups:

1→ Spin(V )→GSpin(V )
N→Gm → 1.

Lemma 3.1. The following are true, where kernels and surjectivity are always meant in

the category of algebraic groups over Q.

(i) The map pr◦ = pr◦V : GPin(V )→ O(V ), x �→ (v �→ xvx−1) is surjective for dimV

even, and pr◦ : GPin(V )→ SO(V ) is surjective when dimV is odd.

(ii) We have ker(pr◦) =Gm via (3.2).

(iii) pr : GPin(V )→GO(V ), x �→ (v �→ xvβ(x)) is a surjection, and sim◦pr =N 2.

(iv) The map pr factors as GPin(V )
(pr◦,N )−→ O(V )×GL1

mult.−→ GO(V ), where the latter

is the multiplication map. The map (pr◦,N ) has kernel μ2 (scalars {±1} in C(V ))

and image O(V )×GL1 (resp. SO(V )×GL1) for n even (resp. odd).

(v) The multiplication map Spin(V )×Gm → GSpin(V ) is a surjection with kernel
{±(1,1)} (diagonally embedded μ2), where {±1} ↪→ Spin(V ) via (3.2).

Proof. (i) The surjectivity can be checked on field-valued points. This is proved in [9,

§9.5, Thm. 4].

(ii) As V ⊂ C(V ) generates the Clifford algebra, the identity xvx−1 = v implies
xyx−1 = y for all y ∈ C(V ), and the analogue holds for C(V ⊗Q R) for Q-algebras R.

Thus, ker(pr◦)(R) consists of invertible elements in the center of C(V ⊗QR). Let W ⊂ V

be an isotropic subspace. Then C(V ⊗QR) � End(
∧
(W ⊗QR)) as super R-algebras by

[4, (2.4) Thm.], so the center of C(V ⊗QR) is R, implying that ker(pr◦) =Gm.

(iii) We observe that pr(x) preserves V : as x(V ⊗QR)x−1 = V ⊗QR and xβ(x) ∈ R×

imply that x(V ⊗QR)β(x) = V ⊗QR. Moreover, pr(x) ∈GO(V ) as

Q(xvβ(x)) = xvβ(x)xvβ(x) =N (x)2Q(v). (3.3)

Moreover, pr and pr◦ coincide on Pin(V ), so (S)O(V ) is in the image of pr. However, N
is seen to be surjective by considering scalar elements, telling us that the image of pr also

contains Gm (scalar matrices in GO(V )). Since Gm and (S)O(V ) generate G(S)O(V ), the

surjectivity of pr follows. The equality sim◦pr =N 2 follows from (3.3).
(iv) The first part follows from pr(x)(v) = xvβ(x) = xvx−1xβ(x) = pr◦(x)(v)N (x) when

x ∈GPin(V ) and v ∈ V . The second part is easily seen from (i) and (ii).

(v) This readily follows from the preceding points.

If V is odd dimensional, then SO(V )× {±1} = O(V ), and the group GO(V ) is

connected. For convenience, we define GSO(V ) := GO(V ) in this case. If dim(V ) is even,
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then O(V ) (resp. GO(V )) has two connected components but does not admit a direct

product decomposition into O(V ) (resp. GSO(V )) and {±1}.
Assume that we have an orthogonal sum decomposition ϕ : W1⊕W2

∼→ V of nondegen-
erate quadratic spaces over Q. As super algebras, we have ([4, (2.3)] or [9, §9.3, Cor. 3,
Cor. 4])

Cϕ : C(W1)⊗̂C(W2)
∼→ C(V ), w1⊗̂w2 �→ w1w2.

By definition, the algebra given by ⊗̂ on the left side has underlying vector space C(W1)⊗
C(W2) and product

(a⊗̂b) · (c⊗̂d) := (−1)kb·kcac⊗̂bd,

if a,c ∈C(W1), b,d ∈C(W2) are homogeneous elements of degree ka,kb,kc,kd ∈ Z/2Z. The
sign is there to make Cϕ compatible with products since bc= (−1)kbkccb in C(V ).

In fact, Cϕ intertwines the involution β on C(V ) with the involution

β′ : C(W1)⊗̂C(W2)→ C(W1)⊗̂C(W2), β′(a⊗̂b) = (−1)kakbβ1(a)⊗̂β2(b),

for homogeneous elements a ∈C(W1), b∈C(W2) of degree ka,kb ∈ Z/2Z, where β1,β2 are

the involutions of C(W1) and C(W2) (see below (3.1)). To verify that β is compatible with

β′, observe that β on C(V ) restricts to β1,β2 via the obvious inclusions C(W1) ↪→ C(V )
and C(W2) ↪→C(V ) induced by W1 ⊂ V and W2 ⊂ V (since β acts as the identity on both

W1 and W2), and use the property that β1, β2, and β are preserving degrees. It follows

that

β(ab) = β(b)β(a) = (−1)kakbβ(a)β(b) = (−1)kakbβ1(a)β2(b).

Lemma 3.2. The mapping Cϕ induces a morphism GSpin(W1) × GSpin(W2) →
GSpin(V ).

Proof. We check that the image of Cϕ is in GSpin(V ). Let g ∈ GSpin(W1), h ∈
GSpin(W2). Note that Cϕ(g⊗̂h) = gh ∈ C+(V ). Let w1+w2 ∈ V with wi ∈Wi, i = 1,2.

To verify that gh ∈GSpin(V ), since homogeneous elements of even degree commute with
each other if they are perpendicular, we see that

gh(w1+w2)h
−1g−1 = gw1g

−1+hw2h
−1 ∈ V.

Lemma 3.3. The diagram

GSpin(W1)×GSpin(W2)

pr◦W1
×pr◦W2 ����

Cϕ �� GSpin(V )

pr◦V����
SO(W1)×SO(W2)

iW1,W2 �� SO(V )

commutes, where iW1,W2
is the block diagonal embedding.

Proof. Immediate from the computation in the proof of the preceding lemma.
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In later chapters, we will carry out explicit computations. It will then be convenient to
work with fixed bases and quadratic forms. For this reason, we now fix quadratic forms on

the vector spaces V2n =C2n and V2n−1 =C2n−1. We take the following quadratic forms:

Q2n : x1xn+1+x2xn+2+. . .+xnx2nonC
2n

Q2n−1 : y1yn+1+. . .+yn−2y2n−2+y22n−1onC
2n−1. (3.4)

Using them, we write SOm = SO(Vm), GSOm = GSO(Vm), and likewise for Om, GOm,

for m= 2n and m= 2n−1. This is identical to the convention of §2 for m even. Similarly,

we write pr◦2n−1 = pr◦V2n−1
and pr◦2n = pr◦V2n

.

Now we claim that GSpin(V2n) is isomorphic to GSpin2n of §8, that is, the Clifford
algebra definition is compatible with the root-theoretic definition as the Langlands dual

of GSO2n. (An analogous argument shows that GSpin2n−1 is dual to GSp2n−2.) As this is

a routine exercise, we only sketch the argument. First, pr◦ restricts to a connected double
covering Spin(Vm)→ SO(Vm) ([25, Prop. 20.38]), which must then be the unique (up to

isomorphism) simply connected covering. This determines the root datum of Spin(Vm).

From this, we compute the root datum of GSpin(Vm) via the central isogeny Spin(Vm)×
Gm → GSpin(Vm) of Lemma 3.1. Finally, when m = 2n, we deduce that the outcome is

dual to the root datum of GSO2n in Lemma 2.1. Therefore, GSpin(V2n) is isomorphic to

GSpin2n of §8. Henceforth, we identify

GSpin(V2n) = GSpin2n. (3.5)

In fact, we may and will choose BGSpin and TGSpin to be the preimages of BSO and TSO

via pr◦ : GSpin2n → SO2n. We fix pinnings of GSpin2n, GSO2n, and SO2n (which are

ΓF -equivariant if (V2n,Q2n) is defined over F ) compatibly via pr and pr◦.

Lemma 3.4. Via (3.5), the central embedding of scalar matrices cent◦ : Gm → GSO2n

and sim : GSO2n →Gm are dual to N : GSpin2n → Gm and the central embedding cent :

Gm →GSpin2n of (3.2), respectively.

Remark 3.5. The dual map of cent◦ was made explicit in (2.7). According to the present
lemma, (2.7) gives an explicit formula for N restricted to TGSpin.

Proof. Write Z0 for the identity component of the center of GSpin2n, consisting of

(s0,1, . . . ,1) with s0 ∈Gm in the notation of Lemma 2.5. The dual of sim : GSO2n →Gm is
calculated as the central cocharacter Gm → Z0 ⊂GSpin2n, z �→ (z,1, . . . ,1). The inclusion

cent :Gm →GSpin2n identifies Gm with Z0. Thus, cent is dual to sim.

Both N ◦ cent and sim ◦ cent◦ are the squaring map on Gm. Using the hat symbol to
denote a dual morphism, we see that

N ◦ cent = ĉent◦ ◦ ŝim = ĉent◦ ◦ cent

and that they are all equal to the squaring map. It follows that N is dual to cent◦.

We have the morphism of quadratic spaces

ϕ : (C2n−1,Q2n−1)→ (C2n,Q2n), y �→ (y1,y2, . . . ,yn−1,y2n−1,yn,yn+1, . . . ,y2n−1).
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Indeed, Q2nϕ=Q2n−1 as readily checked. We have the complementary embedding:

ϕ′ : C→ C2n, u �→ x, where

{
xk = 0 k �= n, 2n

xk = (−1)k/nu if k = n or k = 2n.

Write U := ϕ′(C) = (en − e2n) ·C for the image. The induced quadratic form on U is

then a · (en−e2n) �→ −a2. This gives us an orthogonal decomposition of quadratic spaces

C2n = C2n−1⊕̂U . Let POm denote the adjoint group of Om. The decomposition induces
morphisms (cf. Lemmas 3.2, 3.3)

istd := Cϕ,ϕ′ : GSpin2n−1×GSpin1 →GSpin2n,

i◦std := iC2n−1,C : O2n−1×O1 →O2n, and

istd := PO2n−1 → PO2n, (3.6)

where istd is induced from istd : GSpin2n−1×GSpin1 → GSpin2n � PSO2n ⊂ PO2n. By

Lemma 3.3, we have pr◦ ◦ istd = i◦std ◦ (pr◦2n−1×pr◦U ).
Let 12n−1,1U denote the identity map on C2n−1,U . Then (cf. (2.4))

i◦std(−12n−1,1U ) =−

⎛⎜⎜⎝
1n−1

0 1

1n−1

1 0

⎞⎟⎟⎠= ϑ◦ ∈O2n.

Fix
√
−1 ∈Gm = Z(GPin2n). Define

ϑ :=
√
−1 · istd(1C(C2n−1)⊗̂(en− e2n)) =

√
−1(en− e2n) ∈GPin2n\GSpin2n. (3.7)

Lemma 3.6. We have

(i) pr◦2n(ϑ) = ϑ◦ and ϑ2 = 1.

(ii) The conjugation action of ϑ (resp. ϑ◦) fixes the subgroup istd(GSpin2n−1 ×
GSpin1)⊂GSpin2n via istd (resp. SO2n−1×SO1 ⊂ SO2n via i◦std) and induces the

identity automorphism on that subgroup.

(iii) The conjugation action of ϑ (resp. ϑ◦) defines the outer automorphism θ of

GSpin2n (resp. θ◦ of GSO2n) in Lemmas 2.3 and 2.4.

Proof. (i) Let w1 ∈ C2n−1 and w2 := en − e2n ∈ U . All of w1,w2,ϑ have degree 1 in
C(C2n). In either C(C2n) or C(U), we have w2

2 =Q2n(w2) =−1 and ϑ2 =−w2
2 = 1. Thus,

ϑw1ϑ
−1 =−w1ϑϑ

−1 =−w1 and ϑw2ϑ
−1 = w2. Hence, pr

◦
2n(ϑ) = ϑ◦.

(ii) This is obvious for ϑ◦. The conjugation by ϑ is the identity on C+(C2n−1) and
C+(U), since ϑ ⊥ C2n−1 and C+(U) is commutative, respectively. The assertion for ϑ

follows.

(iii) This is true by definition for θ◦. Since θ and the conjugation by ϑ act trivially on
the center of GSpin2n, it suffices to check that their actions are identical on the adjoint

group. This reduces to the fact that θ◦ is given by the ϑ◦-conjugation, as θ and θ◦ (resp.

ϑ and ϑ◦) induce the same action on the adjoint group (thanks to part (i)).
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We have fixed pinnings of GSpin2n, GSO2n and SO2n compatibly via pr. They are
fixed by θ ∈ Aut(GSpin2n) and θ◦ ∈ Aut(GSO2n). It is easy to see that θ and θ◦ induce

automorphisms of based root data, which correspond to each other via duality of the two

based root data. Thus, letting E/F be a quadratic extension of fields of characteristic 0,

and GSO
E/F
2n an outer form of GSO2n over F with respect to the Galois action ΓE/F =

{1,c} ∼→{1,θ}, we can identify

L(GSO
E/F
2n ) = GSpin2n�{1,c}=GPin2n,

where the semi-direct product is given by cgc−1 = θ(g). (Of course, c= c−1.) The second

identification above is via c �→ ϑ. Similarly, for SO
E/F
2n an outer form of SO2n with respect

to ΓE/F = {1,c} ∼→{1,θ◦}, we have

L(SO
E/F
2n ) = SO2n�{1,c}=O2n via c �→ ϑ◦.

Let us describe the center Z(Spin2n) of Spin2n = Spin(V2n) explicitly as this is going

to be useful for classifying inner twists of (quasi-split forms of) SO2n and GSO2n in §8.
In what follows, we identify Z(GSpin2n) = {(s0,s1) : s0 ∈ Gm, s1 ∈ {±1}} as in Lemma

2.5 and write 1,−1 for (1,1),(1,−1) ∈ Z(GSpin2n).

Lemma 3.7. Let ζ4 be a primitive fourth root of unity. Recall the elements z± defined in

Lemma 2.7. Then we have Z(Spin2n)⊂ Z(GSpin2n) via TSpin ⊂ TGSpin explained above,

and the following are true.

(i) If n is even, Z(Spin2n) = {1,−1,z+,z−} and is isomorphic to (Z/2Z)2. If n is odd,

Z(Spin2n) = {1,−1,ζ,− ζ = ζ−1} and is isomorphic to Z/4Z, where ζ = (ζ4,−1).

(ii) The action of θ is trivial on {1,−1} and permuting {z+,z−} (resp. {ζ,− ζ}).

Proof. We have Z(Spin2n) =Z(GSpin2n)∩Spin2n = {z ∈Z(GSpin2n) :N (z) = 1}, where
N is described by (2.7) (Remark 3.5). It follows from Lemma 2.5 that

Z(Spin2n) = {(s0,s1) : s20 = sn1},

which is alternatively described as in (i). Assertion (ii) is also clear from that lemma.

4. The spin representations

We recollect how to construct the spin representations via Clifford algebras, and we show

that they coincide with the highest weight representations in Section 2. We also check

some compatibility of maps that will become handy.
Consider the quadratic space V2n := C2n from (3.4) with standard basis {e1,..,e2n}

and quadratic form Q2n. Define W2n :=⊕n
i=1Cei and W ′

2n :=⊕2n
i=n+1Cei. We often omit

the subscript 2n to lighten notation, when there is no danger of confusion. Since W is
isotropic, we obtain a morphism

∧
W

∼→C(W ) ↪→C(V ). Through this injection, we view∧
W as a subspace of C(V ). The space

∧
W carries an C(V )-module structure

spin: C(V )→ End(
∧

W )

that is uniquely characterized by the following:
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• w ∈W ⊂ V acts through left multiplication,
• and w′ ∈W ′ ⊂ V acts as

w′(w1∧w2∧·· ·∧wr) =

r∑
i=1

(−1)i+1〈w′,wi〉(w1∧w2∧·· ·∧ ŵi∧·· ·∧wr) (4.1)

on w1∧·· ·∧wr ∈
∧r

W ⊂
∧
W .

The subspaces
∧+

W :=
∧

i∈2Z≥0
W and

∧−
W :=

∧
i∈1+2Z≥0

W of
∧
W are stable under

C+(V ). By restriction, we obtain the spin representations

spin: GPin2n →GL
(∧

W
)

and spin± : GSpin2n →GL
(∧±

W
)
. (4.2)

We recall that the representations spin± are irreducible. In (4.5) and (4.6) below, we will
choose (ordered) bases for

∧
W and

∧±
W coming from {e1, . . . ,en} to view spin and spin±

as GL2n and GL2n−1 -valued representations, respectively. We had another definition of

spinε as the representation with highest weight με (Definition 2.6), ε ∈ {+,−}. Let us

check that the two definitions coincide via (3.5).

Lemma 4.1. The highest weight of the half-spin representation spinε of GSpin2n on∧ε
W is equal to με.

Proof. We may compare με and the highest weight of spinε after pulling back along
Spin2n ×Gm � GSpin2n. They coincide on Spin2n by [25, Prop. 20.15] and evidently

restrict to the weight 1 character on Gm. The lemma follows.

Let us introduce a bilinear pairing on
∧
W which is invariant under the spin

representation up to scalars. Let prn :
∧
W → C denote the projection onto

∧n
W ,

identified with C via e1 ∧ ·· · ∧ en �→ 1. Write τ :
∧
W

∼→
∧
W for the C-linear anti-

automorphism w1∧·· ·∧wr �→ wr ∧·· ·∧w1 for r ≥ 1 and w1, . . . ,wr ∈W . Define

((ẇ1,ẇ2)) := prn(τ(ẇ1)∧ ẇ2), ẇ1,ẇ2 ∈
∧

W.

We write spin∨ and spinε,∨ for the dual representations of spin and spinε. By the preceding
lemma, the highest weight of spinε,∨ is in the Weyl group orbit of (με)

−1.

Lemma 4.2. The pairing (( , )) is nondegenerate; it is alternating if n ≡ 2,3 (mod 4)

and symmetric if n≡ 0,1 (mod 4). The restriction of (( , )) to each of
∧+

W and
∧−

W

is nondegenerate if n is even, and identically zero if n is odd. We have

((spin(g)ẇ1,spin(g)ẇ2)) =N (g)((ẇ1,ẇ2)), g ∈GPin2n(C), ẇ1,ẇ2 ∈
∧

W. (4.3)

In particular, we have spinε � spin(−1)nε,∨⊗N .

Proof. The first two assertions are elementary and left to the reader. The last assertion

follows from the rest. For the equality (4.3), we claim that

((cẇ1,ẇ2)) = ((ẇ1,β(c)ẇ2)), c ∈ C(V ), ẇ1,ẇ2 ∈
∧

W. (4.4)
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Since GPin2n ⊂ C(V ), this implies (4.3) as

((spin(g)ẇ1,spin(g)ẇ2)) = ((ẇ1,spin(β(g)g)ẇ2)) = β(g)g((ẇ1,ẇ2)).

It remains to prove the claim. The proof of (4.4) reduces to the case c ∈ V , then to the
two cases c ∈W and c ∈W ′ by linearity. In both cases, (4.4) follows from the explicit

description of the C(V )-action as in (4.1). Indeed, (4.4) is obvious if c∈W . When c∈W ′,
it is enough to show that for 0≤ r,s≤ n, 1≤ i1 < · · ·< ir ≤ n, 1≤ j1 < · · ·< js ≤ n, and

1≤ k ≤ n,

τ(en+k(ei1 ∧·· ·∧ eir ))∧ (ej1 ∧·· ·∧ ejs) = τ(ei1 ∧·· ·∧ eir )∧ (en+k(ej1 ∧·· ·∧ ejs)) .

(This implies (4.4) by taking prn.) The equality is simply 0 = 0 unless k = r0 = s0 for

some 1≤ r0 ≤ r and 1≤ s0 ≤ s. In the latter case, the equality boils down to

(−1)r0+1eir ∧·· ·∧ êir0 ∧·· ·∧ ei1 ∧ ej1 ∧·· ·∧ ejs

= (−1)s0+1eir ∧·· ·∧ ei1 ∧ ej1 ∧·· ·∧ êjs0 ∧·· ·∧ ejs,

which is clear. The proof is complete.

We also discuss the odd case. Equip V2n−1 =C2n−1 with standard basis {f1, . . . ,f2n−1}
and quadratic form Q2n−1 of (3.4). As in [25, p.306], we decompose

V2n−1 := C2n−1 =W2n−1⊕W ′
2n−1⊕U2n−1,

where W2n−1 := ⊕n−1
i=1 Cfi, W

′
2n−1 := ⊕2n−2

i=n Cfi, and U2n−1 := Cf2n−1. Again, we omit

the subscript 2n− 1 when it is clear from the context. Then W and W ′ are (n− 1)-

dimensional isotropic subspaces, and U is a line perpendicular to them. As in the even
case, each of

∧
W and

∧±
W can be viewed as a subspace of C(V ) and has a unique

structure of left C(V )-module where

• w ∈W ⊂ V acts on
∧
W through left multiplication,

• w′ ∈W ′ ⊂ V acts as in (4.1) (cf. [25, 20.16]),
• f2n−1 acts trivially on

∧+
W and as −1 on

∧−
W .

Consider the bijection

ψ :
∧

W2n−1
∼→

∧+
W2n, w1∧·· ·∧wr �→

{
w1∧·· ·∧wr ∧ en, r odd

w1∧·· ·∧wr, r even.

Lemma 4.3. For all g ∈GSpin2n−1 and all w ∈
∧
W2n−1, we have istd(g)ψ(w) = ψ(gw),

where istd(g) and g act by spin+ of GSpin2n and spin of GSpin2n−1, respectively.

Proof. We keep writing W =W2n−1, W
′ =W ′

2n−1, U = U2n−1. We identify V2n = (W ⊕
U1⊕W ′⊕U2 via W2n = W ⊕U1 and W ′

2n = W ′⊕U2 with U1 = Cen and U2 = Ce2n,
mapping the basis of W (resp. W ′) onto the first n− 1 elements in the basis of W2n

(resp. W ′
2n). This also gives the embedding V2n−1 ⊂ V2n, with U diagonally embedded in

U1⊕U2 (so f2n−1 maps to en+ e2n), as in the formula below (3.4).

There is an obvious embedding ι+ :
∧
W ↪→

∧
(W ⊕U1). We also have ι− :

∧
W ↪→∧

(W ⊕U1) by (·)∧ en. Both ι+ and ι− are C(W ⊕W ′)-equivariant, by using that left
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and right multiplications commute and that en is orthogonal to W ⊕W ′. Furthermore,

ι− intertwines the f2n−1-action on
∧−

W , which is by multiplication by −1, and the

en+ e2n-action on
∧+

(W ⊕U1), since w∧ en =−en∧w if w ∈
∧−

W and since W ⊥ e2n
with respect to Q2n.

Now we claim that ψ is C+(W ⊕W ′ ⊕U)-equivariant, which implies the lemma by

restricting from C+(W ⊕W ′ ⊕U) to GSpin2n−1. It suffices to verify equivariance of

ψ under C+(W ⊕W ′) and C−(W ⊕W ′)⊗ f2n−1. But ψ is ι+ on
∧+

W and ι− on∧−
W . Thus, the claim is deduced by putting together the equivariance in the preceding

paragraph.

Lemma 4.4. Let ϑ∈GPin2n be the element from (3.7). We have
∧+

W2n
∼→

∧−
W2n, x �→

ϑx. We have spin+ ◦θ = spin− via this isomorphism (i.e., ϑ(spin+(g)x) = spin−(θ(g))ϑx
for each g ∈GSpin2n).

Proof. Henceforth, we omit the symbol ∧ for the wedge product in W2n. Consider v =

ek1
· · ·ekr

∈
∧+

W2n, with k1 < k2 < .. . < kr and r is even. Then

ϑv =
√
−1(enek1

· · ·ekr
− e2n ·ek1

· · ·ekr
) ∈

∧
W2n,

where e2n acts by (4.1). Thus, the isomorphism follows from the following computations.

enek1
· · ·ekr

=

{
0, kr = n,

ek1
· · ·ekr

en, kr �= n,

e2nek1
· · ·ekr

=
r∑

i=1

(−1)i+1〈e2n,eki
〉ek1

· · · êki
· · ·ekr

=

{
−ek1

· · ·ekr−1
, kr = n,

0, kr �= n.

The last assertion comes down to showing that ϑgx = θ(g)ϑx, where ϑg,θ(g)ϑ ∈ C(V )

act through the C(V )-module structure on x ∈
∧
W2n. But this is clear since θ(g) =

ϑgϑ−1.

Consider the basis {bU} of
∧
W2n, with

bU = (−1)#Uek1
·ek2

· · ·ekr
∈
∧

W2n, (4.5)

where U = {k1 < k2 < · · ·< kr} ranges over the subsets of {1,2, . . . ,n}. The U of even size

form a basis for
∧+

W2n, and the U with odd size form a basis for
∧−

W2n. Order the

bU for U odd, and the bU for U even, in such a way that the ordering of {bU}|U |:even
corresponds to that of {bU}|U |:odd via bU �→ ϑbU/

√
−1. Then these orderings of the bU

give us two identifications

GL
(∧+

W2n

)
∼→GL2n−1 and GL

(∧−
W2n

)
∼→GL2n−1, (4.6)

such that the following proposition holds.
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Proposition 4.5. The following diagram commutes

GSpin2n
spin+

����
���

���
��

θ

��

GSpin2n−1

spin ��

istd

�������������

istd ����
���

���
��

GL2n−1

GSpin2n

spin−

������������

Proof. This follows from Equation (4.5), Lemmas 4.3 and (proof of) Lemma 4.4.

5. Some special subgroups of GSpin2n

In this section, the base field of all algebraic groups is an algebraically closed field of
characteristic 0 such as C or Q�. We begin with principal morphisms for GSpin2n−1 and

GSpin2n. (See [64, Sect. 7] and [29, 73] for general discussions.) The following notation

will be convenient for us. Denote by

jreg : Gm×SL2 →GSpin2n−1

the product of the central embedding Gm ↪→ GSpin2n−1 and a fixed principal SL2-

mapping. Note that jreg has the following kernel:6{
〈(−1,

(−1 0
0 −1

)
)〉, if n(n−1)/2is odd,

〈(1,
(−1 0

0 −1

)
)〉, if n(n−1)/2The following are true : is even.

We write Gpri ⊂GSpin2n−1 for the image of jreg. The group Gpri is isomorphic to GL2 if

n(n+1)/2 is odd, and to Gm×PGL2 otherwise. Using istd from (3.6), we define

ireg = istd ◦ jreg : Gm×SL2 →GSpin2n.

The map pr◦ ◦ ireg :Gm×SL2 → SO2n factors through PGL2 → SO2n, to be denoted i◦reg,
via the natural projection from Gm×SL2 →PGL2 (trivial on the Gm-factor). We see that

the preimage of i◦reg(PGL2) in GSpin2n is istd(Gpri). Denote by jreg : PGL2 → PSO2n−1

the map induced by jreg on the adjoint groups.7 We also introduce the map

ireg = istd ◦ jreg : PGL2 → PSO2n.

Recall that we have fixed earlier the group SO8 in (2.1) (cf. below (2.3)). Let TGSpin7
⊂

GSpin7 be as in [50, §Notation] and put TSpin7
= TGSpin7

∩Spin7.

We will now fix a convenient basis for X∗(TSpin7
). We have X∗(TGSpin7

) =X∗(TGSp6
) =⊕3

i=0Zei, the center ZGSp6
⊂ TGSp6

equals {(t2,t,t,t)|t ∈Gm} (use the roots αi listed in

6To see this, one can use Proposition 6.1 of [30], where the SL2-representations appearing in

the composition SL2
pri→ GSpin2n−1

spin→ GL2n−1 are computed.
7When denoting the group standing alone, we prefer SO2n−1 to PSO2n−1. When thinking of a
projective representation or a subgroup of PSO2n via istd, we usually write PSO2n−1.
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[loc. cit., p.10]), and so X∗(TGSp6
)→X∗(ZGSp6

) identifies with Z4 →Z, (xi) �→ 2a0+a1+

a2 + a3. Thus, X∗(TSpin7
) = {(ai) ∈ Z4 |2a0 + a1 + a2+ a3 = 0}. By projecting (ai) ∈ Z4

onto (a1,a2,a3), we obtain

X∗(TSpin7
) = {(a1,a2,a3) ∈ Z3 : a1+a2+a3 ≡ 0 mod 2}. (5.1)

We write TSO8
⊂ SO8 for the maximal torus corresponding to (2.2) (so with t0 = 1).

The spin representation of Spin7 is orthogonal ([50, Lem. 0.1]), yielding an embedding
spin◦′ : Spin7 ↪→ SO(q), for some quadratic form q in 8 variables. We fix an isomorphism

u : SO(q)
∼→ SO8, in such a way that the composition

spin◦ := u◦ spin◦′ : Spin7 ↪→ SO8

maps TSpin7
into TSO8 and such that

spin◦(a) = ( 12 (τ
j
1a1+ τ j2a2+ τ j3a3)) ∈X∗(TSO8

)⊂ Z8, (5.2)

for some choice of numbering τ j = (τ j1 ,τ
j
2 ,τ

j
3 )∈ {±1}3 for j = 1,...,8, such that τ j =−τ j+4

for j = 1,2,3,4. In (5.2), the embedding X∗(TSO8)⊂ Z8 comes from (2.2).
We write spin◦ : Spin7 ↪→ PSO8 for the projectivization of spin◦. Fixing a non-isotropic

line in the underlying 8-dimensional space, the stabilizer of the line in Spin7 is isomorphic

to a group of type G2, cf. [31, p.169, Prop. 2.2(4)]. Thereby, we obtain an embedding
jspin : G2 ↪→ Spin7. Alternatively, an embedding G2 ↪→ Spin7 can be constructed using the

octonion algebra [16, Sect. 2.5]. The conjugacy class of jspin is unique (thus independent

of choices) by [loc. cit., Proposition 2.11]. Denote by

ispin : G2 ↪→ Spin8 (5.3)

the composite istd ◦ jspin. The restriction of spinε : Spin8 → GL8 via ispin is isomorphic

to 1⊕ std, where 1 and std are the trivial and the unique irreducible 7-dimensional

representation of G2, respectively. (This is easy to see by dimension counting, as the

other irreducible representations have dimension ≥ 14.)

Lemma 5.1. The representation spin◦ : Spin7 ↪→ SO8 is O8-conjugate to θ◦spin◦ but

not locally conjugate (thus not conjugate) as an SO8-valued representation. In fact, there

exists an open dense subset U ⊂ Spin7 such that spin◦t and θ◦spin◦t are not conjugate
for any t ∈ U . Moreover, spin◦(Spin7) and θ◦spin◦(Spin7) are not SO8-conjugate. The

analogous assertion holds for spin : SO7 ↪→ PSO8.

Proof. Evidently, spin◦ and θ◦spin◦ are O8-conjugate since θ◦ = Int(ϑ◦) with ϑ◦ ∈ O8.
Let TGL8

⊂ GL8 be the diagonal torus. Let ΩSpin7
,ΩSO8

,ΩGL8
denote the Weyl groups

corresponding to TSpin7
,TSO8

,TGL8
. In view of the weights of the spin representation [25,

Prop. 20.20], we know that

std(spin◦(a1,a2,a3)) ∈ ΩGL8
((ε1a1+ ε2a2+ ε3a3)/2 : εi ∈ {±1}).

(The ΩGL8
-orbit of 8-tuples is simply an unordered 8-tuple.) When ε1a1 + ε2a2 + ε3a3

are all distinct, the right-hand side breaks up into exactly two ΩSO8
-orbits, which are

permuted by θ◦. Similarly, if UT is the open dense subset of TSpin7
consisting of
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t = (t1,t2,t3) ∈ TSpin7
with tε11 ,tε22 ,tε33 all distinct, then spin◦(t) and θ◦(spin◦(t)) are not

SO8-conjugate. This implies the existence of U as in the lemma by taking U to be the

set of regular semisimple elements whose conjugacy classes meet UT .
Now assume that spin◦(Spin7) = gθ◦spin◦(Spin7)g

−1 for some g ∈ SO8. Then the

composition cg = spin◦,−1 ◦ Intg ◦ θ◦spin◦ is an automorphism of Spin7, which is hence

inner and of the form x �→ hxh−1 for some h ∈ Spin7. Thus, spin◦ and θ◦spin◦ are
conjugate by g−1spin◦(h), a contradiction. Thus, spin◦(Spin7) and θ◦spin◦(Spin7) are

not SO8-conjugate. The projective analogue for spin : SO7 ↪→ PSO8 also follows.

Lemma 5.2. Write H := pr−1(spin◦(Spin7)) ⊂ Spin8. The restriction of spinε to H is

irreducible if and only if ε=−. More precisely, we have spin+◦spin◦ � std⊕1 and spin−◦
spin◦ � spin◦.

Proof. We compute the composition spinε ◦ spin◦ : Spin7
spin◦

→ SO8 → PSO8
spinε

→ PGL8

on TSpin7
. For a ∈X∗(TSpin7

), spin◦(a) is given by (5.2), and for b ∈X∗(TSO8
) = Z4, we

have spinε(b) = ( 12 (τ1b1+τ2b2+τ3b3+τ4b4))τ∈{±1}4,
∏4

i=1 τi=ε (both up to the Weyl group

actions). From this, it follows that spinε ◦ spin◦|TSpin7
is conjugated to std⊕1|TSpin7

and

spin◦|TSpin7
for ε=+ and ε=−, respectively. The lemma now follows from Lemma 1.2.

Lemma 5.3. Let n ≥ 3 and H � SO2n be a proper connected reductive subgroup

containing a regular unipotent element. Then H is isomorphic to a quotient of Spin2n−1,

SL2 or G2 (the last can occur only if n= 4).

Proof. We begin with some preliminaries. When G is a reductive group, write Σ(G) for

the set of maximal proper connected reductive subgroups M of G that contain a regular
unipotent element of G. From [70, Thms. A,B], we have the following:8

(a) Case G � SO2n (n ≥ 3), then every M ∈ Σ(G) is isomorphic to a quotient of

Spin2n−1.

(b) Case G� SO2n−1 (n≥ 3, n �= 4), then every M ∈ Σ(G) is isomorphic to a quotient
of SL2.

(c) Case G� SO7, then every M ∈ Σ(G) is isomorphic to G2.

(d) Case G�G2, then every M ∈ Σ(G) is isomorphic to a quotient of SL2.

We prove the following claim: If H is a connected reductive subgroup of some connected
reductive group G (over C or Q�), such that H contains a regular unipotent element u of

G, then u is also regular unipotent in H. To see this, write Bu ⊂G for the unique Borel

subgroup that contains u. Now let B0 � u be a Borel subgroup of H that contains u. Then

B0 is a connected solvable subgroup of G and hence is contained in a Borel subgroup B1

of G. As u∈B1, we must have B1 =Bu. Hence, B0 ⊂Bu∩H. Since (Bu∩H)0 is connected

8The statements of [70, Thms. A,B] are not entirely clear on whether the list describes H0 or H.
We interpret it as the former since that is what their proof shows. For instance, regarding (i)(a)
of their theorem, a maximal reductive subgroup of type Bn−1 in SO2n is not i◦std(SO2n−1)
but Z(SO2n)× i◦std(SO2n−1), which is disconnected.
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solvable and contains B0, we must have (Bu∩H)0 =B0 by maximality of B0. This shows

that in H, the element u is contained in exactly one Borel subgroup. Therefore, u ∈H is
regular unipotent.

Now let H be as in the statement of the lemma. Let u∈H be regular unipotent in SO2n.

Let M ∈ Σ(SO2n) such that H ⊂M . If H = M , we are done by (a) above. So assume

H �=M . Again by (a), M is a quotient of Spin2n−1, and hence Mad � SO2n−1. Then Had

maps to SO2n−1 (since the center of H commutes with u, it is contained in ZSO2n
by

[75, Thm. 4.11] and thus also in ZM ), and by the claim, we can find an M ′ ∈Σ(SO2n−1)

that contains the image of Had in SO2n−1. If Had = M ′, we are done by (b) or (c) if
n = 4. If Had �=M ′, then again M ′ is either G2 or a quotient of SL2, and we can argue

similarly.

If H is an algebraic group, we write Υ(H) for the set of SO2n-conjugacy classes of

morphisms H → SO2n that have a regular unipotent element in their image. By abuse of

notation, we often identify Υ(H) with a set of representatives for the conjugacy classes.

Lemma 5.4. We have

Υ(Spin2n−1) =
{
i◦std : Spin2n−1 → SO2n

}
(n≥ 3,n �= 4)

Υ(Spin7) = {i◦std,spin◦,θ◦spin◦ : Spin7 → SO8} (n= 4)

Υ(SL2) = {ireg : SL2 → SO2n} (n≥ 3)

Υ(G2) = {ispin : G2 → SO8} (n= 4).

Proof. Let f : H → SO2n be a morphism with a regular unipotent element in its image,

where H is one of the 4 groups in the lemma.

Case H = Spin2n−1. We have ker(f) ⊂ {±1}. Assume first ker(f) = {±1}. Then r :=
std◦f , r′ := std◦ i◦std are two faithful representations of dimension 2n. By Lemma 2.8, r

and r′ are isomorphic. By acceptability of O2n, we find a g ∈ O2n that conjugates r to

r′ [50, Prop. B.1]. The element g might have negative determinant. In this case, we can
replace g by g ·ϑ◦, as ϑ◦ centralizes i◦std(SO2n−1) by Lemma 3.6(ii).

Now assume ker(f) = 1. Then r = std◦f is a faithful 2n-dimensional representation of

Spin2n−1. The smallest such representation by dimension is the spin representation, and
therefore, 2n−1 ≤ 2n, and n≤ 4. We distinguish in subcases n= 3 or n= 4:

(When n = 3.) We show that this subcase (H = Spin2n−1, ker(f) = 1,n = 3) does not

occur. Assume f : Spin5 → SO6 is injective with a regular unipotent element in its image.

Recall SO6� SL4/{±1}. Write H̃ ⊂ SL4 for the pre-image of f(Spin5) in SL4. LetM ⊂ SL4

be a proper maximal connected reductive subgroup of SL4 that contains H. Then M is

isomorphic to Sp4 by [70, Thm. B]. By dimension consideration, we must have H̃ =M . In

particular, the image of f in SL4/{±1}must be isomorphic to PSp4. Hence, Spin5
∼→PSp4,

a contradiction.

(When n = 4.) We want to classify all conjugacy classes of injections f : Spin7 → SO8

with a regular unipotent element in their image. In this case, they do exist, as spin◦ is
an example. The representations std◦f and std◦ spin◦ are both faithful representations

of Spin7 of dimension 8. Hence, they are isomorphic. By acceptability of O8, there exists

a g ∈O8 that conjugates f to spin◦. This implies that f is SO8-conjugate to either spin◦
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or θ◦spin◦. By Lemma 5.1, the representations spin◦ and θ◦spin◦ are not SO8-conjugate.

Observe finally that ker(i◦std) = {±1} while spin◦ and θ◦spin◦ are injective. Hence, i◦std is
not conjugate to either spin◦ or θ◦spin◦. This verifies the description of Υ(Spin7) in the

lemma.

Case H = SL2. We want to classify the morphisms f : SL2 → SO2n with a regular

unipotent element in the image. In fact, such a morphism is called the “principal
morphism” in the literature, and it is well-known that it is unique up to conjugacy.

However, we could not find a precise reference, so we give some detail for a general

connected reductive group G.
We first note that the natural map Hom(SL2,G) → Hom(Lie(SL2),Lie(G)), equiv-

ariant for the adjoint action of G, is a bijection. To construct the inverse, let

g ∈ Hom(Lie(SL2),Lie(G)). The composition Rep(G) → Rep(Lie(G)) → Rep(Lie(SL2))
∼←Rep(SL2) is a ⊗-functor preserving the underlying vector spaces, where the last arrow

is an equivalence (e.g., see [11, VIII.1.5]). Thus, the composition arises from a morphism

of groups f : SL2 →G by [21, Cor. 2.9], and one checks directly that g �→ f and f �→Lie(f)

are inverse to each other. By the Jacobson–Morozov lemma, Hom(Lie(SL2),Lie(G)) is in
bijection with the set of nilpotent elements in Lie(G) via g �→ g (0 1

0 0). Above, we consider

f such that f (1 1
0 1) is regular unipotent; thus, g (0 1

0 0) is regular nilpotent in Lie(G) and

hence unique up to conjugacy. The same statement follows for f then as well.
Case H = G2 and n = 4. Let f : G2 → SO8 be a morphism with a regular unipotent

element in its image. Recall ispin : G2 → Spin8 from (5.3); it induces a morphism

ispin : G2 → SO8. The representations std ◦ f and std ◦ ispin are both faithful and of
dimension 8 and hence isomorphic (they are both isomorphic to r7⊕1, where r7 is the

unique representation of G2 of dimension 7). By O8-acceptability, we can find a g ∈ O8

such that f = gisping
−1. If det(g) = 1, we are done. The element ϑ◦ ∈ O8 centralizes the

subgroup SO2n−1. The map ispin factors over the map jspin : G2 → Spin7 (see above (5.3)).
In particular, ϑ◦ispinϑ

◦,−1 = ispin, and we can replace g by gϑ◦.

Proposition 5.5. Let n ≥ 3. Let H ⊂ PSO2n be a (possibly disconnected) reductive
subgroup (over C or Q�) containing a regular unipotent element. Up to conjugation by an

element of PSO2n, the following holds (in particular, H is connected in all cases):

(i) if n �= 4, then H = PSO2n, H = istd(PSO2n−1) or H = ireg(PGL2);

(ii) if n = 4, then H is either as in (1), H = spin◦(SO7), H = θ◦spin◦(SO7) or H =

ispin(G2).

If H ⊂ SO2n is a (possibly disconnected) reductive subgroup containing a regular unipotent

element, then H0 ⊂ H ⊂ H0 ·Z(SO2n) and H0 surjects onto H ⊂ PSO2n as in the list
above. (See the proof for the list of possible H0.)

Proof. We first focus on the classification of reductive subgroups H ⊂ SO2n containing

a regular unipotent element. If H = SO2n, there is nothing to do, so we assume H is
proper. By Lemma 5.3, the group H0 is isomorphic to a quotient of Spin2n−1,G2 or SL2.

Using Lemma 5.4, we conjugate so that f : H0 ↪→ SO8 is one of the maps listed in that

lemma. So
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(a) When n �= 4, f equals i◦std or ireg.

(b) When n= 4, f equals i◦std, ireg, ispin, spin
◦ or θ◦spin◦.

From this list, we see that if std(H0) is reducible (so f �= spin◦,θ◦spin◦), then std(H)

is contained in a parabolic subgroup of GL2n with Levi component GL2n−1×GL1. By

reductivity, std(H) is contained in GL2n−1×GL1, and it is an irreducible subgroup. We
see that H0 ⊂H+ := i◦std(SO2n−1)×Z(SO2n), and by Schur’s lemma, the centralizer of

H0 in H+ is Z(SO2n). Since H0 has no nontrivial outer automorphism, the conjugation

by each h ∈ H on H0 is an inner automorphism. Thus, there exists h′ ∈ H0 such that
h′h−1 centralizes H0. It follows that H ⊂H0×Z(SO2n). If std(H

0)⊂GL2n is irreducible,

the centralizer of H0 in SO2n is Z(SO2n) again by Schur’s lemma, with no nontrivial outer

automorphism for H0. As in the reducible case, we deduce H0 ⊂H ⊂H0×Z(SO2n).

Finally, if a reductive subgroup H ⊂ PSO2n contains a regular unipotent element, then
so does its preimage H in SO2n. By the previous argument, we may conjugate so that

H0 is of type (a) or (b), and moreover, we find H0 ⊂H ⊂H0×Z(SO2n). In particular,

H is connected and of the type listed in (i) and (ii).

In the next lemma, and also in the later sections, the following group will play a role:

H2n−1 := GSpin2n−1Z(GSpin2n)⊂GSpin2n. (5.4)

Recall zε ∈ Z(GSpin2n) is such that 〈zε〉 = ker(spinε). We have H2n−1 = GSpin2n−1×
〈z+〉. By projecting, we obtain a quadratic character

κ : H2n−1 → 〈z+〉 ⊂ Z(GSpin2n−1) (5.5)

such that the composition spinε ◦ κ is trivial if ε = + and otherwise equal to the

composition

κ0 : H2n−1
κ→ 〈z+〉 � {±1}. (5.6)

In the definition of κ, we could have also used z−; in that case, the convention would be
slightly different. But notice that κ0 does not depend on this choice as this character is

simply the canonical map of H2n−1 onto its component group. Observe also that θ acts

trivially on GSpin2n−1 and on z+ via z+ �→ −z+. This gives the simple formula

θ(g) = κ0(g)g for all g ∈H2n−1. (5.7)

Lemma 5.6. Let r : Γ → GSpin2n(Q�) be a semisimple representation containing a

regular unipotent element in its image. Let χ : Γ→Q
×
� be a character and ε ∈ {+,−}.

(i) If χ⊗ spinε(r)� spinε(r), then χ= 1.

(ii) If χ⊗ spin+(r)� spin−(r), then r has image in the group H2n−1 ⊂GSpin2n up to

conjugation, and χ is equal to κ0 ◦ r.
(iii) If χ+spin+(r)⊕χ−spin−(r)� spin(r) for two characters χ± : Γ→Q

×
� , then χ± are

both trivial, or r has image in H2n−1 up to conjugation and χ+ = χ− = κ0 ◦ r.

Proof. (i) Write r : Γ→ PSO2n(Q�) for the projectivization of r. By Proposition 5.5, we

can distinguish between two cases for the Zariski closure of the image of r in PSO2n(Q�).
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If the Zariski closure of r is either PSO2n or istd(PSO2n−1), then spinεr is strongly

irreducible, and the statement follows from [50, Lem. 4.8(i)]. In the remaining cases,

the Zariski closure of Im(r) is spin◦(SO7), θ◦spin
◦(SO7), ireg(PGL2) or ispin(G2). In the

last two of these, Im(r)⊂ istd(SO2n−1(Q�)), so Im(r) is contained in Q�-points of H2n−1

(which is the preimage of istd(SO2n−1) in GSpin2n). Then we show χ=1 by the argument

exactly as in Cases (i), (ii), (iv) in the proof of [50, Lem. 5.1, Prop. 5.2], noting that spinε

restricts to spin on GSpin2n−1 by Proposition 4.5. Finally, if the Zariski closure of the

image is spin◦(SO7) (resp. θ◦spin◦(SO7)), then spinε ◦ r is irreducible if ε = − (resp.
ε=+) and isomorphic to std⊕1 if ε=+ (resp. ε=−) by Lemma 5.2. In particular, the

representation spinεr satisfies the conditions of [50, Prop. 4.9], and so χ= 1 in this case

as well.
(ii) If the Zariski closure of the image of r contains Spin2n, then (ii) cannot occur. Thus,

r has either image in H2n−1, or it has image in pr−1(spin◦(Spin7)). In the latter case,

spin−r is strongly irreducible while spin+r is not by Lemma 5.2, which is a contradiction.

Thus, Im(r)⊂H2n−1. For g ∈H2n−1, we have

spin+(g) = spin−(θg) = spin−(κ0(g) ·g) = κ0(g)spin
−(g).

Put t= κ0 ◦ r. Then t⊗ spin+r � spin−r and tχ−1⊗ spin+r � spin+r, and t= χ by (i).

(iii) Write H for the Zariski closure of the image of r. By the proof of (i), we see that
either Spin2n ⊂H, or H ⊂H2n−1 or H ⊂ pr−1(spin◦(Spin7)) up to conjugation. Assume

that H �⊂H2n−1 (even after conjugation), so that Spin2n ⊂H or H ⊂ pr−1(spin◦(Spin7)).
In this case, we need to show that χ+ = χ− = 1. Suppose χ− �= 1 to the contrary. Since
spin−(r) is strongly irreducible by assumption on H (cf. Lemma 5.2), we have

Hom(χ−⊗ spin−(r),spin−(r)) = 0 (5.8)

by [50, Lem. 4.8(i)]. In particular, χ+spin+(r) ⊕ χ−spin−(r)
∼→ spin(r) induces an

isomorphism χ−⊗ spin−(r)
∼→ ker(spin(r) � spin−(r)) = spin+(r). As H �⊂ H2n−1, this

contradicts (ii). Therefore, χ− = 1. From χ+spin+r⊕χ−spin−r∼= spin(r), we then obtain

χ+spin+r ∼= spin+r, which implies χ+ = 1 by item (i).
Now assume H ⊂ H2n−1 up to conjugation. We obtain a character t = κ0 ◦ r : Γ →

{±1}. Write Γ0 := ker(t). We have χ+spin+(r)⊕χ−spin−(r) � spin+(r)⊕ spin−(r). By
Proposition 4.5, we have spin+(r|Γ0

) � spin2n−1(r|Γ0
), where spin2n−1 denotes the spin

representation of GSpin2n−1. By the proof of [50, Prop. 5.1], spin2n−1(r|Γ0
) decomposes as

a direct sum re11 ⊕·· ·⊕rekk , such that k,ei ∈Z≥1, ri is irreducible, and dim(ri) �=dim(rj) for

i �= j. Moreover, the projective image of spin2n−1(r|Γ0
) in PGL2n−1 is Zariski connected.

This implies that the ri are strongly irreducible Γ0-representations [Proposition 4.8(ii),
loc. cit.].

Suppose χ−|Γ0
�= 1. We again claim that (5.8) holds. To see this, assume f : χ− ⊗

spin−(r) → spin−(r) is a nontrivial Γ0-morphism. Since the dim(ri) are distinct, the
morphism f induces an isomorphism from χ−⊗ r1 to one of the copies of r1 in spin−(r).
Since r1 is strongly irreducible by [Proposition 4.8(i), loc. cit.], this implies χ−|Γ0

= 1.

Thus, χ− ∈ {t,1}.
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Arguing with + instead of −, we find similarly χ+ ∈ {t,1}. If χ+ = 1, then we have

spin+(r)⊕χ−spin−(r)� spin+(r)⊕ spin−(r),

which implies χ−spin−(r)� spin−(r), and thus χ− = 1 by (i). By the same argument, if

χ− = 1, then χ+ = 1. Thus, χ+ = χ−. The statement follows.

Lemma 5.7. Let γ,γ′ ∈ GSpin2n be two semi-simple elements. Then γ,γ′ are GPin2n-
conjugate if and only if they are conjugate in the representations N ,std and spin.

Proof. This follows from [50, §1] and the fact that GPin2n has {std,N ,spin} as a

fundamental set in the sense thereof, which follows from the fact that {std,N ,spin+,spin−}
is a fundamental set for GSpin2n as checked therein.

Proposition 5.8. Let E/F be a quadratic extension of characteristic zero fields. Let H

be one of the following algebraic groups

SO2n,GSpin2n,SO2n�ΓE/F ,GSpin2n�ΓE/F ,

where ΓE/F acts through θ◦ or θ in the semi-direct products. We write H0 for the neutral

component of H. Let

r1,r2 : ΓF →H(Q�)

be semisimple Galois representations such that

• r1 and r2 are locally conjugate and
• the Zariski closure of r1(Γ) contains a regular unipotent element.

Then r1 and r2 are H0-conjugate.

Proof. For simplicity, we abbreviate H(Q�) as H if there is no danger of confusion.

The case H = SO2n. Write r1,r2 : Γ→ PSO2n for the projectivizations of r1,r2. Write
Ii for the Zariski closure of ri(Γ) in PSO2n, for i= 1,2. Since O2n is acceptable [50, Prop.

B.1], r1 and r2 are conjugate by an element of w ∈O2n (i.e., r2 =wr1w
−1). In particular,

the Zariski closure of r2(Γ) also contains a regular unipotent element. We are done if
w ∈ SO2n, so we may assume that w /∈ SO2n henceforth.

There are now three cases by Proposition 5.5: either (A) I1 =PSO2n, (B) I1 is SO2n−1,

PGL2, or G2 (the last case when n= 4) or (C) n= 4 and I1 is spin(SO7) or θ
◦spin(SO7).

Case (A). Since r1 has Zariski dense image in SO2n, there exists q such that r1(Frobq)
and wr1(Frobq)w

−1 are not outer conjugate by Lemma 1.1. This contradicts r2(Frobq) =

wr1(Frobq)w
−1 since w ∈O2n\SO2n.

Case (B). The image of r1 is contained in i◦std(SO2n−1)×ZSO2n , which is centralized by
ϑ◦ ∈O2n\SO2n. Since ϑ◦ and w belong to the same SO2n-coset, it follows that r1 and r2
are SO2n-conjugate.

Case (C). Without loss of generality, we may assume I1 = spin(SO7). Since r1 = Int(w)◦
r2 for w ∈O8\SO8, we see that I2 is PSO8-conjugate to θ◦spin(SO7).

We claim that this case does not arise. By assumption, r1 and r2 are locally conjugate

representations with values in SO8.

https://doi.org/10.1017/S1474748023000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000427


1994 A. Kret and S. W. Shin

We may assume, after replacing r2 with a suitable SO8-conjugate, that r1(γ) = θ◦r2(γ)
for all γ ∈ Γ. There exists a representation r̃ : Γ → Spin7 such that r1(γ) = spin(r̃(γ)),

r2(γ) = θ◦spin(r̃(γ)). However, by Lemma 1.1, there exists an F -place q where r̃ is
unramified and r̃(Frobq) ∈ U with U is as in Lemma 5.1. Then spin(r̃(Frobq)) and

θ◦spin(r̃(Frobq)) are not SO8-conjugate. This contradicts the assumption that r1 and

r2 are locally conjugate. The claim is proved.
The case H =SO2n�ΓE/F . By the preceding case, we may assume that r1|ΓE

= r2|ΓE
.

(Strictly speaking, we proved the SO2n-case for Γ = ΓF , but the proof goes through

without change for ΓE .) Since SO2n�ΓE/F � O2n via g� c �→ gϑ◦, we identify the two
groups. In particular, H is acceptable, so there exists w ∈ O2n such that r2 = wr1w

−1.

We are done if w ∈ SO2n, so assume that w /∈ SO2n. Depending on the projective image

of r1|ΓE
, we have Cases (A), (B), (C) as above. The arguments there tell us that Cases

(A) and (C) are impossible when w /∈ SO2n. In Case (B), we know r1(ΓE) is contained in
i◦std(SO2n−1)×ZSO2n

. The normalizer of the latter in O2n is O2n−1×O1 (embedded in

O2n via i◦std), which is centralized by ϑ◦. Hence, if we write w = w0ϑ
◦ with w0 ∈ SO2n,

then r2 = w0r1w
−1
0 . Namely, r1 and r2 are H0-conjugate.

The GSpin2n-case. Write r◦1,r
◦
2 for the composition of r1,r2 with pr◦ : GSpin2n →

SO2n. Then r◦1 and r◦2 are conjugate by the SO2n-case treated above. Hence, we may

assume that r2 =χr1 with a continuous character χ : Γ→Q
×
� , where Q

×
� =ker(GSpin2n →

SO2n) via Lemma 3.1 (ii). Since r1 and χ⊗ r1 are locally conjugate by the initial

assumption, we have

spinε(r1)� spinε(χ⊗ r1)� χ⊗ spinε(r1), ε ∈ {±1}.

It follows from Lemma 5.6 that χ= 1.

The GSpin2n � ΓE/F -case. By the GSpin2n-case above, we may assume that r1|ΓE
=

r2|ΓE
. Writing r◦i := pr◦◦ri for i=1,2, we have r◦1 |ΓE

= r◦2 |ΓE
. By the preceding argument,

we deduce that r◦1 = r◦2 . However, r1|ΓE
= r2|ΓE

implies that r1 = r2 or r1 = r2⊗χ by

Example A.6, with χ as in that example. If r1 = r2, then we are done so suppose r1 = r2⊗χ.
Then r◦1 = r◦2⊗χE/F for χE/F : ΓF � ΓE/F = {±1}. Set Ri := std◦r◦i for i= 1,2, so that

R1 = R2⊗χE/F . Since r1 and r2 are locally conjugate, the GL2n-valued representations

R1 and R2 are locally conjugate and thus conjugate. So R1 � R1⊗χE/F . By [50, Lem.

4.8], R1 is not strongly irreducible. Considering the projective image of r1|ΓE
as in the

SO2n-case above, we see that Case (A) is excluded and only Case (B) or (C) occurs. In

either case, again because R1 is not strongly irreducible, the only possibility is that R1|ΓE

decomposes into two strongly irreducible representations of dimensions (2n− 1) and 1.
Then it is easy to see that R1 =R′

1⊕R′′
1 already on ΓF , with strongly irreducible R′

1 and

R′′
1 of dimensions (2n− 1) and 1. It follows from R1 � R1⊗χE/F that R′

1 � R′
1⊗χE/F

(and similarly for R′′
1 ), but this contradicts strong irreducibility of R′

1 [50, Lem. 4.8].

6. On SO2n-valued Galois representations

In this section, we construct Galois representations associated with automorphic repre-

sentations of even orthogonal groups over a totally real field F. More precisely, we will

derive a weaker version of Conjecture 1 for such groups from the literature. Let either
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• E = F or
• E be a CM quadratic extension of F.

In the latter case, write c for the nontrivial element of ΓE/F := Gal(E/F ). Write SO
E/F
2n

for the split group SO2n if E = F , and the quasi-split outer form of SO2n over F relative
to E/F otherwise. To be precise, in the latter case,

O
E/F
2n (R) := {g ∈GL2n(E⊗F R) | c(g) = ϑ◦gϑ◦,gt

(
0 1n
1n 0

)
g =

(
0 1n
1n 0

)
} (6.1)

for F -algebras R, and SO
E/F
2n is the connected component where det(g) = 1. We can

extend the standard embedding std : SO2n(C) ↪→GL2n(C) to a map (still denoted std)

std : L(SO
E/F
2n ) = SO2n(C)�ΓE/F ↪→GL2n(C), (6.2)

whose image is SO2n(C) if E = F and O2n(C) if E �= F . More precisely, when E �= F ,
we fix the extended map std by requiring c �→ ϑ◦. (We defined O2n explicitly in the last

section, and ϑ◦ was given in (2.4).)

Let π� be a cuspidal automorphic representation of SO
E/F
2n (AF ). The following

will be key assumptions on π�. (Recall from §1 that StSO,qSt
denotes the Steinberg

representation.)

(coh◦) π�
∞ is cohomological for an irreducible algebraic representation ξ� = ⊗y∈V∞ξ�y

of SO
E/F
2n,F⊗C.

(St◦) There exists a prime qSt of F such that π�
qSt

� StSO,qSt
up to a character twist.

Condition (coh◦) implies that the infinitesimal character of ξ�y is given by ρSO+λ(ξ�y) at

each y ∈ V∞; see [8, Thm. I.5.3]. In particular, π� is C-algebraic in the sense of Buzzard–
Gee [12, Lem. 7.2.2], and thus also L-algebraic as the half sum of positive (co)roots

is integral for SO
E/F
2n . In (St◦), characters of SO

E/F
2n (FqSt

) are exactly the characters

factoring through the cokernel of Spin
E/F
2n (FqSt

)→ SO
E/F
2n (FqSt

). (This is a special case of

the general fact [49, Cor. 2.3.3].) Such characters are in a natural bijection with characters

of F×
qSt

/(F×
qSt

)2 �H1(FqSt
,{±1}).

Write TSO := TGSO ∩SO2n over C and choose the Borel subgroup containing TSO in
SO

E/F
2n as in the preceding section. For each y ∈V∞, the highest weight of ξ�y gives rise to a

dominant cocharacter λ(ξ�y)∈X∗(TSO). Let φπ�
y
:WFy

→ LSO
E/F
2n denote the L-parameter

of π�
y assigned by [53]. Recall std : SO2n ↪→ GL2n denotes the standard embedding. We

also consider the following conditions:

(std-reg◦) std◦φπ�
y
|WFy

is regular (i.e., the centralizer group in GL2n(C) is a torus)

for every y ∈ V∞.

(disc-∞) If n is odd, then [E : F ] = 2. If n is even, then E = F .

Since E is either F or a CM quadratic extension of F, condition (disc-∞) is equivalent to

requiring SO
E/F
2n (Fy) to admit discrete series at all infinite places y of F (or equivalently,

to admit compact maximal tori). Condition (std-reg◦), when (coh◦) is imposed, amounts

to requiring that std ◦ (ρSO +λ(ξ�y)) should be a regular cocharacter of GL2n for every
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y ∈ V∞, since φπ�
y
|WFy

encodes the infinitesimal character of πy according to [78, Prop.

7.4].

When v is a prime of F, write φπ�
v
: WFq

→ LSO
E/F
2n for the L-parameter of π�

v as

given by [1, Thm 1.5.1]. (By the Langlands quotient theorem, π�
v is the unique quotient

of an induced representation from a character twist of a tempered representation on a
Levi subgroup. Apply Arthur’s theorem to this tempered representation.) Note that φπ�

v

is well-defined only up to O2n(C)-conjugacy in loc. cit. (This does not matter for the

statement of (SO-i) in Theorem 6.5 below.)
Let Unr(π�) denote the set of finite primes q of F such that q is unramified in E

and π�
q is unramified. In this case, the unramified L-parameter φπ�

q
is determined (up to

SO2n(C)-conjugacy, not just up to outer automorphism) by the Satake isomorphism.

Thanks to Arthur, we can lift π� to an automorphic representation of GL2n as follows.
The Hecke character F×\A×

F →{±1} corresponding to the Galois character χE/F : ΓF �
ΓE/F = {±1} is still denoted χE/F . Let χE/F,q denote its local component at q.

Proposition 6.1 (Arthur). Assume that π� satisfies (St◦). Then there exists a self-dual

automorphic representation π� of GL2n(AF ), which is either cuspidal or the isobaric sum

of two cuspidal self-dual representations of GL2n−1(AF ) and GL1(AF ), such that

(Ar1) π�
q is unramified at every q ∈Unr(π�).

(Ar2) π�
qSt � St2n−1�χE/F,qSt

up to a quadratic character of GL2n(AF ).

(Ar3) φπ�
v
� std◦φπ�

v
at every F-place v.

If π� satisfies both (St◦) and (coh◦), then we furthermore have

(Ar4) π�
y and π�

y are tempered for all infinite F-places y.

If π� has properties (coh◦), (St◦), and (std-reg◦), then the following strengthening holds:

(Ar4)+ π�
v and π�

v are tempered for all F-places v.

Remark 6.2. In fact, (Ar1) is implied by (Ar3) since φπ�
q
is an unramified parameter at

every q ∈Unr(π�), but we state (Ar1) to make (SO-ii) below more transparent.

Proof. Consider π� satisfying (St◦). For notational convenience, we assume π�
qSt

�
StSO,qSt

(not just up to a quadratic character twist) as the general case works in the
same way. By [1, Thm. 1.5.2] (using the notation there),9 we have a formal global

parameter ψ (as in [1, 1.4]) such that π�
v appears as a subquotient of a member of the

packet Π̃(ψv) at every place v of F, where ψv denotes the localization of ψ at v as in

loc. cit. (A priori, members of Π̃(ψv) may be reducible due to possible failure of the

9e.g., Φ̃(SO
E/F
2n,Fq

) means the set of isomorphism classes of L-parameters for G=SO
E/F
2n,Fq

modulo

the action of the outer automorphism group Õut2n(G) as defined in [1, 1.2]. Similarly, the

packet Π̃(ψq) of [1, 1.5] consists of finitely many Õut2n(G)-orbits of isomorphism classes of
representations of G(Fq). By abuse of terminology, a representation will often mean the outer
automorphism orbit of representations in this proof.
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generalized Ramanujan conjecture. Only from the argument below it follows that ψ is
a generic parameter (i.e., its SU(2)-part is trivial). Then Π̃(ψv) consists of irreducible

representations by [81, Appendix A].)

Since StSO,qSt
appears as a subquotient of a member of Π̃(ψqSt

), Proposition B.1 implies
that ψqSt

� ψSt,qSt
, where ψSt is defined above that proposition. Thus,

ψSt,qSt
� ψSt2n−1,qSt

⊕χE/F,qSt
, (6.3)

where ψSt2n−1,qSt
(resp. ψ1,qSt

) denotes the A-parameter for the Steinberg (resp. trivial)

representation St2n−1 of GL2n−1(FqSt
) (resp. GL1(FqSt

)). It follows that either ψ= π# or

ψ= π#
1 �π#

2 , where π#, π#
1 , and π#

2 are cuspidal self-dual automorphic representations of
GL2n(AF ), GL2n−1(AF ) and GL1(AF ), respectively. In the second case, we take π# to be

the isobaric sum of π#
1 and π#

2 . Now (Ar2) follows from (6.3). We define φq ∈ Φ̃(SO
E/F
2n,Fq

)

as the restriction of ψq ∈ Ψ̃(SO
E/F
2n,Fq

) from LFq
×SU(2) to LFq

. Then Properties (Ar1)

and (Ar3) with φq in place of φπ�
q
are part of Arthur’s result already cited.

To complete the proof of (Ar1) and (Ar3), it suffices to verify that φv = φπ�
v
in Φ̃(GFv

).

In the notation of [1] (between Theorems 1.5.1 and 1.5.2), φv gives rise to

• a Fv-rational parabolic subgroup Pv ⊂GFv
with a Levi factor Mv,

• a bounded parameter φMv
∈ Φ̃(Mv),

• a point λ in the open chamber for Pv in X∗(Mv)Fv
⊗ZR,

such that φv comes from the λ-twist φMv,λ of φMv
. (This is the counterpart of the

Langlands quotient construction for L-parameters.) The statement of [1, Thm. 1.5.2]

tells us that π�
v is a subrepresentation of the normalized induction Ind

G(Fv)
Pv(Fv)

(σv,λ) for

some σv ∈ Π̃(Mv), where σv,λ denotes the λ-twist of σv, since π�
v appears in the packet

of ψv in loc. cit. According to the same theorem, Ind
G(Fv)
Pv(Fv)

(σv,λ) must be completely

reducible since it appears in the L2-discrete spectrum. This means that π�
v is irreducible

and the Langlands quotient of Ind
G(Fv)
Pv(Fv)

(σv,λ) (thus, π
�
v is isomorphic to the latter). Since

the formation of Langlands parametrization is compatible with the Langlands quotient,
it follows that φv is the L-parameter of π�

v, namely, that φv = φπ�
v
.

It remains to check (Ar4) and (Ar4)+. Assume (coh◦) in addition to (St◦). Thanks
to (Ar3), π# is L-algebraic since L-algebraicity is preserved by std. Applying [18, Lem.
4.9] to π#⊗|det |1/2 if π# is cuspidal, and π#

1 and π#
2 otherwise, to deduce that π#

v is

essentially tempered at all y|∞. Since π# is self-dual, π#
y are a fortiori tempered. Now

suppose furthermore that π�
y has property (std-reg◦). Then π# is regular L-algebraic.

Arguing as above but applying [13, Thm. 1.2] to π# at finite places, in place of [18, Lem.
4.9] at infinite places, we deduce (Ar4)+. Finally, whenever π#

v is tempered (for finite or

infinite v), this implies that ψv is bounded and hence that π�
v is tempered by [1, Thm.

1.5.1].

Corollary 6.3. Assume (disc-∞). If π� satisfies (St◦) and (coh◦), then π�
y is a discrete

series representation for every infinite place y.

Proof. The condition (disc-∞) guarantees that SO
E/F
2n (Fy) contains an elliptic maximal

torus at infinite places y so that it admits discrete series. In this case, a tempered
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ξ-cohomological representation is a discrete series representation by [8, Thm. III.5.1].

Thus, the corollary follows from (Ar4) of the preceding proposition.

Under the assumptions of the corollary, let us describe φπ�
y
|WFy

explicitly. Fix an R-

isomorphism F y �C once and for all, so that we can identifyWFy
=C×. We noted that the

infinitesimal character of ξ�y is ρSO+λ(ξ�y). The half sum of positive coroots ρSO ∈X∗(TSO)

is equal to (n− 1)e1+(n− 2)e2+ · · ·+ en−1. It follows from the construction of discrete

series L-packets in [53, p.134] that possibly after SO
E/F
2n (C)-conjugation, we have

φπ�
y
(z) = (z/z)ρSO+λ(ξ�y), z ∈WFy

. (6.4)

Continue to assume (St◦) and (coh◦) for π� as well as (disc-∞). We noted that π� is

L-algebraic thanks to (coh◦). Then Conjecture 1 predicts the existence of an LSO
E/F
2n -

valued Galois representation attached to π�. When (std-reg◦) is also assumed, Theorem
6.5 below proves the conjecture modulo outer automorphisms in that (SO-i) is weaker

than what is predicted. (This is to be upgraded by (SO-i+) in §13; also see Remark 13.2.)

The proof is carried out by reducing to the known results for π# on GL2n. We will get to

the theorem after observing that (disc-∞) is automatically satisfied under the additional
hypothesis (std-reg◦); this observation is related to (SO-v) of the theorem.

Lemma 6.4. Suppose there exists a cuspidal automorphic representation π� of
SO

E/F
2n (AF ) such that (St◦),(coh◦) and (std-reg◦) hold. Then (disc-∞) is satisfied.10

Proof. For each y ∈ V∞, Proposition 6.1 tells us that φπ�
y
is tempered. From this and

(coh◦), we obtain a decomposition of the form

std◦φπ�
y
=

⊕
i∈I

Ind
WFy

WFy
χai

⊕
⊕
i′∈I′

ωi′, ai ∈ Z>0,

where χai
:C×→C× is given by z �→ (z/z)ai using the identificationWFy

=C× above, and

ωi′ is a quadratic character of WFy
. (In fact, ai are mutually distinct.) By the dimension

reason, |I ′| is even. However, (std-reg◦) implies that |I ′| ≤ 1. Hence, I ′ is empty and

|I| = n. Now the image of j ∈WFy
in GL2n(C) under std ◦φπ�

y
has determinant (−1)n

since the determinant of j is −1 in each induced representation. In view of (6.2), we

deduce that E = F if n is even and E �= F otherwise. That is, (disc-∞) holds true.

Theorem 6.5. Let π� be a cuspidal automorphic representation of SO
E/F
2n (AF ) satisfying

(coh◦), (St◦) and (std-reg◦). Then there exists a semisimple Galois representation

(depending on ι)

ρπ� = ρπ�,ι : ΓF → SO2n(Q�)�ΓE/F ,

whose restriction to ΓFq
at every F-place q|� is potentially semistable, such that the

following hold. Here,
◦∼ means O2n(Q�)-conjugacy.

10We heartily thank the referee for pointing out this lemma and explaining its proof.
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(SO-i) For every finite F-place q (including q|�), in the convention of §1, we have

ιφπ�
q

◦∼WD(ρπ� |ΓFq
)F−ss.

(SO-ii) Let q ∈ Unr(π�). If q � �, then ρπ�,q is unramified at q, and for all eigenvalues

α of std(ρπ�(Frobq))ss and all embeddings Q� ↪→ C we have |α|= 1.

(SO-iii) For each q|�, and for each y : F ↪→ C such that ιy induces q, we have

μHT(ρπ�,q,ιy)
◦∼ ιμHodge(ξ

�,y).

(SO-iv) If π�
q is unramified at q|�, then ρπ�,q is crystalline. If π�

q has a nonzero Iwahori
fixed vector at q|�, then ρπ�,q is semistable.

(SO-v) ρπ� is totally odd. More explicitly, for each real place y of F and the

corresponding complex conjugation cy ∈ ΓF (well-defined up to conjugacy),

ρπ�(cy)∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
diag(1, . . . ,1︸ ︷︷ ︸

n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

, 1, . . . ,1︸ ︷︷ ︸
n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

), n : even,

diag(1, . . . ,1︸ ︷︷ ︸
(n−1)/2

,−1, . . . ,−1︸ ︷︷ ︸
(n−1)/2

,1, 1, . . . ,1︸ ︷︷ ︸
(n−1)/2

,−1, . . . ,−1︸ ︷︷ ︸
(n−1)/2

,1)� c, n : odd.
.

Condition (SO-i) characterizes ρπ� uniquely up to O2n(Q�)-conjugation.

Remark 6.6. Since π�
∞ is a discrete series representation, the conjugation by φπ�

y
(j) on

TSO is the inverse map, where j denotes the usual element of the real Weil group. Thus,

(SO-v) and (6.4) imply Buzzard–Gee’s prediction on the image of complex conjugation
in [12, Conj. 3.2.1, 3.2.2]. When n is odd, we also observe that (SO-v) is equivalent to

ρπ�(cy)∼ diag(1, . . . ,1︸ ︷︷ ︸
(n−1)/2

,−1, . . . ,−1︸ ︷︷ ︸
(n−1)/2

,a, 1, . . . ,1︸ ︷︷ ︸
(n−1)/2

,−1, . . . ,−1︸ ︷︷ ︸
(n−1)/2

,a−1)� c, ∀a ∈Q
×
� .

Remark 6.7. Without (St◦), an analogous theorem can be proved only under (coh◦)
and (std-reg), but in a weaker and less precise form. The strategy is similar: transfer

π� to a regular algebraic automorphic representation of GL2n(AF ), which is an isobaric

sum of cuspidal self-dual automorphic representations, and apply the known results on

associating Galois representations.

Proof of Theorem 6.5. Let π# be as in Proposition 6.1 so that

Case 1: π# is cuspidal or

Case 2: π# = π#
1 �π#

2 , with π#
1 (resp. π#

2 ) a cuspidal automorphic representation of

GL2n−1(AF ) (resp. GL1(AF )).

As in the proof there, we know that π# is L-algebraic.

In Case 1, consider the C-algebraic twist Π := π�⊗ |det |(1−2n)/2, which is regular by
(std-reg), and essentially self-dual (“essentially” means up to a character twist). Applying

the well-known construction of Galois representations (see [3, Thm. 2.1.1] for a summary

and further references) to Π, we obtain a semisimple Galois representation (recall Γ = ΓF
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by convention)

ρΠ : Γ→GL2n(Q�),

satisfying the obvious analogues of properties (SO-i) through (SO-iv) for GL2n, with ρΠ
and GL2n in place of ρπ� and O2n; call these analogues (GL-i), . . ., (GL-iv). By “obvious”,

we mean, for instance, that (GL-ii) is about the eigenvalues of ρΠ(Frobq) having absolute
value 1. We also spell out (GL-i), which states that

ιφ
Πq⊗|det |(1−2n)/2

q

∼WD(ρΠ|ΓFq
)F−ss, q � �. (6.5)

In particular, for all q ∈ Unr(π�), since Πq is unramified by (Ar1), we see that ρΠ is

unramified at q as well and that

ρΠ(Frobq)ss ∼ ιφ
Πq⊗|det |(1−2n)/2

q

(Frobq)∼ ιφπ#
q
(Frobq)∼ ιstd(φπ�

q
(Frobq)). (6.6)

Since each π#
q is self-dual, we see that ρΠ is self-dual. By (Ar2) and (6.5) at q = qSt as

well as semisimplicity of ρΠ, we see that either

• ρΠ is irreducible, or
• ρΠ = ρ1⊕ρ2 for self-dual irreducible subrepresentations ρ1 and ρ2 with dimρ1 =

n−1 and dimρ2 = 1.

Either way, it follows from [6, Cor. 1.3] that every irreducible constituent of ρΠ is
orthogonal in the sense of loc. cit. (As we are in Case 1, apply their corollary with

η = | · |2n−1, in which case ηλ(c) =−1 in their notation.)

Now we turn to Case 2. Take Π1 := π#
1 |det |1−n and Π2 := π#

2 . Each of Π1 and Π2 is

cuspidal, regular C -algebraic and essentially self-dual, so the same construction yields
ρΠ1

and ρΠ2
, which are 2n−1 and 1-dimensional, respectively. Then put ρΠ := ρΠ1

⊕ρΠ2
.

As before, (GL-i), . . ., (GL-iv) hold true for ρΠ. Moreover, an argument as in Case 1

shows that ρΠ1
and ρΠ2

are self-dual and orthogonal. It follows from (Ar2) and (6.5) at
v = qSt that ρΠ1

and ρΠ2
are irreducible.

From here on, we treat the two cases together. Since ρΠ is self-dual and orthogonal,

after conjugating ρΠ by an element of GL2n(Q�), we can ensure that ρΠ(Γ) ⊂ O2n(Q�).
Write

ρπ� : Γ→O2n(Q�)

for the O2n(Q�)-valued representation that ρΠ factors through. (In case ρΠ is reducible,
we even have ρΠ(Γ) ⊂ (O2n−1×O1)(Q�).) Let us check that this is the desired Galois

representation and deduce properties (SO-i) through (SO-v) from (GL-i) through (GL-

iv).

We start with the case E = F . Then φπ�
v
(Frobq) ∈ SO2n(C) in (6.6), so we deduce via

the Chebotarev density theorem that ρπ� has image in SO2n(Q�). Note that (GL-ii) is the
same statement as (SO-ii). The Hodge-theoretic properties at � in (SO-iii) and (SO-iv)

may be checked after composing with a faithful representation, so these properties hold.

One sees from [50, Appendix B] (for O2n) that (GL-i) implies (SO-i). (Alternatively, one
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can appeal to [26, Thm. 8.1].) The assertion on the cocharacters in (SO-iii) also follows

(GL-iii) that the two cocharacters become conjugate in GL2n.

We now prove (SO-v), namely, that ρπ� is totally odd. The following claim

(E) The element std(ρπ�(cy)) ∈GL2n(Q�) has eigenvalues 1 and −1 with multiplicity n

each, for every y ∈ V∞

follows from [14] (in fact, it can also be deduced from Täıbi’s theorem [76, Thm. 6.3.4]

when π� is cuspidal, and from Taylor [77, Prop. A] when π� is not cuspidal).

As ρπ�(cy) ∈ SO2n(Q�) has order 2, we have

ρπ�(cy)∼ diag(1, . . . ,1︸ ︷︷ ︸
ay

,−1, . . . ,−1︸ ︷︷ ︸
by

, 1, . . . ,1︸ ︷︷ ︸
ay

,−1, . . . ,−1︸ ︷︷ ︸
by

), ay + by = n, ay,by ∈ Z≥0.

So (E) implies that ay = by; this is possible as n is even, which follows from Lemma 6.4

and the running assumption that E = F . Now one computes the adjoint action of ρπ�(cy)
on LieSO2n(Q�) to be −n. (A similar computation is done in the proof of [50, Lem. 1.9]

for GSp2n.) Thus, ρπ� is totally odd.

It remains to treat the case E �= F . In this case, the standard embedding SO2n(Q�)�
ΓE/F ↪→GL2n identifies SO2n(Q�)�ΓE/F

∼→O2n(Q�). The composition of ρπ� with this

isomorphism is still to be denoted by ρπ� . Since φπ�
q
(Frobq) ∈ O2n(C)\SO2n(C) (resp.

φπ�
y
(Frobq) ∈ SO2n(C)) in (6.6) when q is inert (resp. split) in E by the unramified

Langlands correspondence, we see that

ρπ� : Γ→ SO2n(Q�)�ΓE/F

commutes with the natural projections onto ΓE/F . (By continuity, it suffices to check
the commutativity on Frobenius conjugacy classes.) Thus, ρπ� is a Galois representation

valued in L(SO
E/F
2n ). Properties (SO-i) through (SO-iv) follow from (GL-i) through (GL-

iv) in the same way as for the E = F case.
We now prove (SO-v). The argument for claim (E) still applies, and since n is odd by

Lemma 6.4, we have

stdρπ�(cy)∼ diag(1, . . . ,1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
n

) (6.7)

∼ diag(1, . . . ,1︸ ︷︷ ︸
n−1
2

,−1, . . . ,−1︸ ︷︷ ︸
n+1
2

, 1, . . . ,1︸ ︷︷ ︸
n−1
2

,−1, . . . ,−1︸ ︷︷ ︸
n+1
2

) · std(c) in GL2n(Q�). (6.8)

(Recall that std(c) =ϑ◦ is the 2n×2n permutation matrix switching n and 2n.) Therefore,

ρπ�(cy) ∼ diag(1, . . . ,1︸ ︷︷ ︸
n−1
2

,−1, . . . ,−1︸ ︷︷ ︸
n+1
2

, 1, . . . ,1︸ ︷︷ ︸
n−1
2

,−1, . . . ,−1︸ ︷︷ ︸
n+1
2

)� c in LSO2n(Q�).

From this, it follows that the adjoint action of ρπ�(cy) on LieSO2n(Q�) has trace equal

to −n. Hence, ρπ� is totally odd.

The following corollary allows us to apply Proposition 5.5 to identify the Zariski closure

of the image of ρπ� .
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Corollary 6.8. In the setup of Theorem 6.5, the image of ρπ� (thus also ρπ�(ΓE) contains

a regular unipotent element of SO2n(Q�).

Proof. Suppose that qSt � �. Then ιφπ�
qSt

◦∼WD(ρπ� |ΓFq
)F−ss by (SO-i), where the two

sides are compared through [28, Prop. 2.2] by the convention of §1. Since φπ�
qSt

contains

a regular unipotent element in the image, so does WD(ρπ� |ΓFq
). Therefore, ρπ� |ΓFq

has a

regular unipotent in the image. If qSt|�, then the same is shown following the argument
of [50, Lem. 3.2].

The next corollary is solely about automorphic representations but proved by means of

Galois representations. Interestingly, we do not know how to derive it within the theory of
automorphic forms. The corollary is not needed in this paper, as (disc-∞) will be imposed

in the main case of interest.

Corollary 6.9. Let π� be a cuspidal automorphic representation of SO
E/F
2n (AF ) satisfying

(coh◦), (St◦), and (std-reg◦). If (disc-∞) is false (i.e., n is odd and E=F , or n is even and
[E : F ] = 2), then π# in Proposition 6.1 (the functorial lift of π� to GL2n) is the isobaric

sum of cuspidal self-dual automorphic representations of GL2n−1(AF ) and GL1(AF ).

Proof. Fix a real place y of F. Up to conjugation, we may assume that

ρπ�(cy) = diag(t1, . . . ,tn,t
−1
1 , . . . ,t−1

n )� cy,

where the latter cy means its image in ΓE/F ; so std(cy) = 1 if E = F and std(cy) = ϑ◦ if
[E :F ] = 2. The proof of Theorem 6.5 shows that std(ρπ�(cy))∈GL2n(Q�) is odd for every

real place y. That is, std(ρπ�(cy)) has each of the eigenvalues 1 and −1 with multiplicity

n. It is elementary to see that this is impossible when (disc-∞) is false. Indeed, if n is
odd and E = F , then the number of 1’s on the diagonal of ρπ�(cy) is obviously even (so

cannot equal n). If n is even and [E : F ] = 2, this is elementary linear algebra.

Remark 6.10. The corollary suggests that in that setup, π� should come from an
automorphic representation on Sp2n−2(AF ), where Sp2n−2 is viewed as a twisted

endoscopic group for SO
E/F
2n (see the paragraph containing (1.2.5) in [1]).

If we assume (coh◦) and (St◦) but not (std-reg◦), then some expected properties to be

needed in our arguments are not known. We formulate them as a hypothesis so that our
results become unconditional once the hypothesis is verified. (In the preceding arguments

in this section, (std-reg◦) allowed us to apply the results on the Ramanujan conjecture

and construction of automorphic Galois representations for regular algebraic cuspidal
automorphic representations of GLn which are self-dual.)

Hypothesis 6.11. Assume (disc-∞). When π� satisfies (coh◦) and (St◦) but not (std-

reg◦), the following hold true.

(1) π�
q is tempered at every finite prime q where π�

q is unramified.

(2) There exists a semisimple Galois representation ρπ� : ΓF → SO2n(Q�) � ΓE/F

satisfying (SO-i) at every q where π�
q is unramified as well as (SO-iii), (SO-iv)

and (SO-v). Moreover, ρπ�(ΓF ) contains a regular unipotent element.
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The hypothesis readily implies (SO-ii) for ρπ� . We expect that this hypothesis

is accessible via suitable orthogonal Shimura varieties. If one is only interested in

constructing the GSpin2n-valued representation ρπ without proving its �-adic Hodge-
theoretic properties, then (SO-iii) and (SO-iv) may be dropped from the hypothesis.

Remark 6.12. Corollary 6.8 (or the above hypothesis, if (std-reg◦) fails) tells us that

the Zariski closure of ρπ�(ΓF ) belongs to the list of subgroups of SO2n in Proposition
5.5. In the list, the PGL2, G2 and PSO2n−1 cases can only occur when (std-reg◦) is not
satisfied. Since PGL2 and G2 are contained in PSO2n−1 (up to conjugation), we only

need to observe this for PSO2n−1. In this case, μHT(ρπ�,q,ιy) of Theorem 6.5 must factor

through i◦std : SO2n−1 ↪→ SO2n and thus cannot be regular as a cocharacter of GL2n. By
(SO-iii) of the theorem, std(μHodge(ξ

�,y)) is not regular either, contradicting (std-reg◦).

7. Extension and restriction

In this section, we study how the local conditions (St), (coh) on a cuspidal automorphic

representation of GSO
E/F
2n (AF ) (introduced in the introduction and §10 respectively)

compare to conditions (St◦), (Coh◦) on an irreducible SO
E/F
2n (AF )-subrepresentation

(given in §6).

Lemma 7.1. Let q be a finite place of F. Let π be an irreducible admissible representation

of GSO
E/F
2n (Fq), and let π� ⊂ π be an irreducible SO

E/F
2n (Fq)-subrepresentation. Then π

is a character twist of the Steinberg representation of GSO
E/F
2n (Fq) if and only if π� is a

character twist of the Steinberg representation of SO
E/F
2n (Fq).

Proof. Write G=GSO
E/F
2n (Fq) and G0 = SO

E/F
2n (Fq). To lighten notation, when H is an

algebraic group over Fq, we still write H for H(Fq) in this proof when there is no danger

of confusion.

(⇒) Let P ⊂G be a parabolic subgroup, and write CP for the space of smooth functions
on P\G. Fixing a Borel subgroup B and taking P ⊃ B, we may view CP ⊂ CB as those

functions on G/B that are P -invariant. These spaces CP define a (non-linear) filtration

on CB , and the Steinberg representation StG is the quotient of CB generated by all

subrepresentations CP with P ⊂G proper [8, X.4.6]. There is a natural bijection between
the parabolic subgroups of G with those of G0 by P �→P0 :=P ∩G0. Applying loc. cit. now

to G0, we take B0 :=G0∩B and consider the spaces CB0
⊃CP0

for B0 ⊂P0 �G0 and StG0

as before. The inclusionG0 ↪→G induces an isomorphism P0\G0
∼→P\G for each parabolic

P (injectivity is clear; surjectivity can be seen by using the Bruhat decomposition, for

instance). Thereby, we have aG0-equivariant filtration-preserving isomorphism CB
∼→CB0

restricting to CP
∼→ CP0

for each P. Therefore, StG|G0
� StG0

.

(⇐) Write G′ = GSpin
E/F
2n (Fq) and G′

0 = Spin
E/F
2n (Fq). By abuse of notation, write

G0/G
′
0 := coker(pr :G′

0 →G0) and likewise for G/G′. These are finite abelian groups. We

claim that every smooth character G0 → C× extends to a smooth character G → C×.
Since such characters factor through G0/G

′
0 and G/G′, respectively (see e.g., [49, Cor.

2.6]) the claim would follow once we verify that G0/G
′
0 →G/G′ is injective. So let g0 ∈G0

and suppose that g0 =pr(g) for g ∈G′. Then 1= sim(g0) = sim(pr(g)) =N (g)2 by Lemma
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3.1 (iii). If N (g) =−1, then we replace g with zg using z ∈ ZGSpin such that N (z) =−1

and pr(z) = 1 (in the coordinates of Lemma 2.5, choose z = (1, − 1) if n is odd, and

z = (ζ4,− 1) if n is even); so we may assume that N (g) = 1. But this means that g0 is
trivial in G0/G

′
0. The claim has been proved.

Thanks to the claim, we may assume π� =StG0
after twisting by a character. Since π|G0

contains StG0
, we can twist π such that the central character of π is trivial. (The central

character is a character χ of F×/{±1}, so there exists a smooth character χ1/2 :F× →C×

whose square is χ. Then we twist by sim◦χ−1/2.) By assumption,

0 �=HomG0
(StG0

,π) = HomG0
(StG,π) = HomZ(G)G0

(StG,π),

where the first equality is from the implication (⇒) and the second from the triviality

of central characters. By Frobenius reciprocity, this realizes π as a constituent of
IndGZ(G)G0

StG, which is the direct sum of twists of StG by characters of the finite abelian

group G/Z(G)G0.

Let y be a real place of F so that Ey/Fy = C/R if n is odd and Ey = Fy = R if n is

even.

Lemma 7.2. Let π be an irreducible admissible representation of GSO
Ey/Fy

2n (Fy) with

central character ωπ. Let π
� be an irreducible SO

Ey/Fy

2n (Fy)-subrepresentation. Let ξ be an

irreducible algebraic representation of GSO
Ey/Fy

2n , and ξ� its pullback to SO
Ey/Fy

2n . Then,

(1) The representation π is essentially unitary if and only if π� is unitary.

(2) The representation π is a discrete series representation if and only if π� is a discrete

series representation.

(3) Assume π is essentially unitary. Then π is ξ-cohomological if and only if π�

is ξ�-cohomological and ωπ = ω−1
ξ , where ωξ is the central character of ξ on

Z(GSO
Ey/Fy

2n )(Fy)

Proof. Write G = GSO
Ey/Fy

2n (Fy), G0 = SO
Ey/Fy

2n (Fy) and F×
y ⊂ G for the image of

Gm(Fy).

(1) The “only if” direction is obvious. For the “if” direction, assume π� is unitary. We
may assume ωπ = 1. Choose a Hermitian form h(·,·) on π, extending the G0-equivariant

one on π�. Choose representatives {g1, . . . ,gr} for the quotientG/F×
y G0 and define h′(·,·)=∑r

i=1h(gi · ,gi·). Then h′(·,·) is a G-equivariant Hermitian form on π.

(2) This follows directly from the characterization of discrete series representations
through square-integrability (modulo center) of their matrix coefficients.

(3) This is implied by the fact that a unitary representation is cohomological if and

only if its central character and infinitesimal character coincide with those of an algebraic
representation. The “only if” direction is true without the unitarity condition by [8,

Thm. I.5.3.(ii)]. We explain the “if” direction in the case of interest. (This argument

adapts to the general case.) For G0, this follows from [69, Thm. 1.8], which applies to
connected semisimple real Lie groups. The case of G follows from that of G0, by applying

[8, Cor. I.6.6] to π⊗ ξ by taking H there to be Z(G), and similarly to (π|G0
)⊗ ξ� with

H = Z(G0).
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8. Certain forms of GSO2n and outer automorphisms

In this section, we introduce a certain form of the split group GSO2n over a totally real
field F, to be used to construct Shimura varieties. We start by considering real groups.

Let GOcpt
2n ,Ocpt

2n ,SOcpt
2n ,PSOcpt

2n and GSOcpt
2n be the various versions of the orthogonal

group defined by the quadratic form x2
1 + x2

2 + · · ·+ x2
2n on R2n. Consider the matrix

J =
(

0 −1n
1n 0

)
∈ SOcpt

2n (R). We define the group GSOJ
2n over R to be the inner form of

GSOcpt
2n,R obtained by conjugating the Gal(C/R)-action by J (using that J2 is central).

Namely, for all R-algebras R, we have

GSOJ
2n(R) = {g ∈GSOcpt

2n (C⊗RR) | JgJ−1 = g}. (8.1)

For g ∈ GSOcpt
2n (C⊗R R), we have gtJg = sim(g)J if and only if JgJ−1 = g, and thus

GSOJ
2n(R) is the group of matrices g ∈GL2n(C) preserving the forms{

x2
1+x2

2+ · · ·+x2
2n

−x1xn+1+xn+1x1−x2xn+2+xn+2x2−·· ·−xnx2n+x2nxn

(8.2)

up to the scalar sim(g) ∈ R× (the scalar is required to be the same for both forms), and

such that g satisfies the condition det(g) = sim(g)n.
Similarly, we define the inner forms GOJ

2n,SO
J
2n,O

J
2n,PSO

J
2n of GOcpt

2n ,SOcpt
2n ,Ocpt

2n ,PSOcpt
2n .

Then SOJ
2n(R) is the real Lie group which is often denoted SO∗(2n) in the literature (e.g.,

[36, Sect. X.2, p.445]). Note that SOJ
2n(R) is not isomorphic to any of the classical groups

SO(p,q), where 2n= p+ q (see [44, thm 6.105(c)]). The group SO(p,q) with 2n= p+ q is
quasi-split if and only if |n−p| ≤ 1, giving rise to two classes of inner twists (recall that

SO(p,q) and SO(p′,q′) lie in the same class if and only if p≡ p′mod 2). The group SOJ
2n,

and hence the group GSOJ
2n, is not quasi-split since SO

J
2n is not isomorphic to any group

of the form SO(p,q).
We pin down the isomorphisms

CX : GSOcpt
2n (C)

∼→GSO2n(C), g �→X−1gX, X =
(
1 1
i −i

)
,

GSOcpt
2n (C)

∼→GSOJ
2n(C), g �→ (g,J−1gJ) ∈GSOcmpt

2n (C)2 =GSOcmpt
2n (C⊗RC). (8.3)

Lemma 8.1.

(i) The group GSOJ
2n is an inner form of the split group GSO(n,n) over R if n is even,

and an outer form otherwise.

(ii) Explicitly,

GOJ
2n(R) =

⎧⎪⎨⎪⎩
(

A B
−B A

)
∈GL2n(C)

∣∣∣∣∣∣∣
A,B ∈Mn(C) such that

AtA+B
t
B = λ ·1n(where λ= sim(g) ∈ R×)

AtB =B
t
A

⎫⎪⎬⎪⎭ .

(iii) The following are true:
(a) The groups SOJ

2n(R) and OJ
2n(R) are connected and equal to each other.

(b) The map sim: GOJ
2n(R)→R× is surjective; sim: GSOJ

2n(R)→R× is surjective

if and only if n is even.
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(c) We have GSOJ
2n(R) = GOJ

2n(R) if and only if n is even.

(d) If n is even (resp. odd), then |π0(GSOJ
2n(R))| equals 2 (resp. 1).

(iv) The mapping

θJ : GSOJ
2n(R)→GSOJ

2n(R), g =
(

A B
−B A

)
�→ TgT−1 =

(
A −B

B A

)
for T = i · (0 1

1 0) ∈ GOJ
2n(R) is an automorphism of GSOJ

2n over R. It is outer if

and only if n is odd.

(v) The group SOJ
2n (resp. GSOJ

2n) has a nontrivial outer automorphism defined over

R that acts trivially on the center if and only if n is odd.

(vi) The groups SOcpt
2n (R) and GSOcpt

2n (R) are connected.

Proof. (i). The group SOJ
2n is an inner form of SOcpt

2n,R, and the compact form lies in the
split inner class if and only if n is even.

(ii). Let g = (A B
C D ) ∈GL2n(C). Write λ= sim(g). We compute

Jg = gJ ⇔
(
0 −1
1 0

)(
A B
C D

)
= (A B

C D )
(
0 −1
1 0

)
⇔

(
−C −D

A B

)
=

(
B −A
D −C

)
⇔ g =

(
A B
−B A

)
(

A B
−B A

)t(
A B
−B A

)
= λ(1 0

0 1)⇔ λ(1 0
0 1) =

(
At −B

t

Bt A
t

)(
A B
−B A

)
=

(
AtA+B

t
B AtB−B

t
A

BtA−A
t
B BtB+A

t
A

)
.

These identities are equivalent to the stated conditions on g.

(iii.a) By [83, Cor. 6.3], det
(

A B
−B A

)
≥ 0 for all A,B ∈Mn(C). By Lemma 8.1(ii), any

g ∈ OJ
2n(R) has det(g) ≥ 0 and thus det(g) = 1. Thus, OJ

2n(R) = SOJ
2n(R). By [44, prop

I.1.145], the group SOJ
2n(R) (and hence OJ

2n(R)) is connected.
(iii.b) By restricting to the center, we see that the image of the similitudes factor

contains R×
>0 in all stated cases. The element g =

(
A 0
0 A

)
with A = i1n lies in GOJ

2n(R)

and has sim(g) =−1, proving the first part. Since det(g) = 1, we have g ∈GSOJ
2n(R) if n is

even, proving the second part in that case. Assume for a contradiction that GSOJ
2n(R)→

R× is surjective when n is odd. Take some g′ ∈ GSOJ
2n(R) with sim(g′) = −1. Then

sim(gg′) = 1, thus gg′ ∈OJ
2n(R) = SOJ

2n(R) and hence g ∈GSOJ
2n(R): Contradiction.

(iii.c) For n odd, the element g =
(
A 0
0 A

)
from (iii.b) shows GSOJ

2n(R) �= GOJ
2n(R).

Assume n even. If h ∈ GOJ
2n(R), choose g ∈ GSOJ

2n(R) with sim(g) = sim(h)−1 using
(iii.b). Then hg ∈ OJ

2n(R) = SOJ
2n(R) and hence also h ∈ GSOJ

2n(R). Thus, GOJ
2n(R) =

GSOJ
2n(R).

(iii.d) Write c := #π0(GSOJ
2n(R)). As H1(R,μ2) has 2 elements, we have c ≤ 2. If n

is even, then sim is surjective and hence c ≥ 2 and c = 2. If n is odd, we have R×
>0×

SOJ
2n(R)

∼→GSOJ
2n(R); hence c= 1.

(iv) We have T tT =−1 and JTJ−1 = J , so indeed, T ∈GOJ
2n(R). As sim(T ) =−1 and

det(T ) = i2n(−1)n = 1, we have sim(T )n �= det(T ) if and only if n is odd.

(v) By the example in (iv), we may assume n even. Any R-automorphism θ ∈
Aut(GSOJ

2n) acting trivially on the center is given by θ : g �→ Y gY −1 for some Y ∈
GOJ

2n(C). Replacing Y with tY for some t ∈ C×, we may assume that sim(Y ) = 1 (as

θ does not change, it is still defined over R). Write σ : GOcpt
2n (C) → GOcpt

2n (C) for the
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automorphism g �→ JgJ−1, so that GOJ
2n(R) = GOcpt

2n (C)σ=id. As θ is defined over R,

θ(σg) = σθ(g) ∀g ∈GOJ
2n(C),

and therefore, Y J ·g ·J−1Y −1 = JY ·g ·Y −1
J−1, so Y

−1
J−1Y J ·g= g ·Y −1

J−1Y J . Thus,

λ ·Y J = JY for some λ ∈ Z(GSOJ
2n(C)) = C×.

We have Y tY = 1, so we compute as follows using J tJ = 1:

1 = Y
t
Y = (λJ−1Y J)t(λJ−1Y J) = λ2(J tY tY J) = λ2.

Therefore, λ ∈ {±1}. If λ = 1, then Y ∈ OJ
2n(R) = SOJ

2n(R), and θ is inner. If λ = −1,
then σ(Y ) =−Y so iY ∈GOJ

2n(R) = GSOJ
2n(R) (n is even). Thus, θ = (g �→ (iy)g(iY )−1)

is inner.

(vi) It is standard that SOcpt
2n (R) is connected. Let us show that GSOcpt

2n (R) is connected
from this. The multiplication map SOcpt

2n (R)×R×→GSOcpt
2n (R) has connected image since

SOcpt
2n (R) meets both connected components of R×. So we will be done if we check the

surjectivity. This is equivalent to the injectivity of H1(R,{±1})→ H1(R,SOcpt
2n ×GL1),

which follows from the fact that there is no g ∈ SOcpt
2n (C) with g−1g=−1. (Via h=

√
−1g,

the latter is equivalent to non-existence of h∈GL2n(R) with hth=−1, which is clear.)

Now we turn to the global setup. Let n and E/F be as in §6 and impose condition
(disc-∞) from now on. In analogy with the SO2n-case, we introduce a quasi-split form
G∗ of GSO2n over F. If n is even, we have E = F and take the split form G∗ := GSO2n,F

(or simply written as GSO2n). If n is odd, then E/F is a totally imaginary quadratic

extension. In this case, let G∗ be the quasi-split form GSO
E/F
2n,F of GSO2n,F (up to

F -automorphism) given by the 1-cocycle Gal(E/F ) → Aut(GSO2n,E) sending the
nontrivial element to θ◦ = Int(ϑ◦). Since ϑ◦ ∈ O2n(E), this cocycle comes from the

Aut(SO2n,E)-valued cocycle determining SO
E/F
2n as an outer form of SO2n; thus, we have

SO
E/F
2n ↪→GSO

E/F
2n . Concretely, in analogy with (6.1),

GSO
E/F
2n (R) =

{
g ∈GL2n(E⊗F R)

∣∣∣∣ there exists λ ∈R× such that
c(g) = ϑ◦gϑ◦, gt

(
0 1n
1n 0

)
g = λ

(
0 1n
1n 0

)
, det(g) = λn

}
,

(8.4)

and GO
E/F
2n (R) is defined by removing the condition det(g) = λn.

We write G∗ =GSO
E/F
2n for both parities of n, understanding that E = F if n is even,

for a streamlined exposition. In both cases, we have an exact sequence

1→ SO
E/F
2n →GSO

E/F
2n →Gm → 1, (8.5)

where the similitude map GSO
E/F
2n → Gm is the usual one if E = F , and g �→ λ in (8.4)

if E �= F . Note that Ĝ∗
ad is isomorphic to Spin2n(C), on which Γ acts trivially (resp.

nontrivially via Gal(E/F ) as {1,θ}) if n is even (resp. odd).
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Write (·)D for the Pontryagin dual of a locally compact abelian group. Let v be a place

of F. By [46, Thm 1.2], we have a map11

αv : H
1(Fv,G

∗
ad)→ π0(Z(Ĝ∗

ad)
Γv )D,

which is an isomorphism if v is a finite place (but not if v is infinite).

Lemma 8.2. We have

Z(Ĝ∗
ad)

Γv �

⎧⎪⎨⎪⎩
(μ2)

2, n is even,

μ2, n is odd,v is non− split in E/F,

μ4, n is odd,v is split in E/F.

Proof. This follows from Lemma 3.7.

By [46, Prop. 2.6] and the Hasse principle from [68, Thm. 6.22], we have an exact

sequence of pointed sets

1→H1(F,G∗
ad)→

⊕
v

H1(Fv,G
∗
ad)

Σvαv−→ π0(Z(Ĝ∗
ad)

Γ)D → 1. (8.6)

Since Z(Ĝ∗
ad) is finite, we may forget π0(·) in (8.6) and the proof of the lemma below.

From now until the end of §9, we fix a finite place qSt and an infinite place y∞ of F.

Lemma 8.3. Let qSt (resp. y∞) be a fixed finite (resp. infinite) place of F. There exists

an inner twist G of G∗ such that for all F-places v �= qSt, we have

Gv �

⎧⎪⎨⎪⎩
GSOJ

2n,Fv
v = y∞

GSOcpt
2n,Fv

v ∈ V∞\{y∞}
G∗

Fv
v /∈ V∞∪{qSt}.

(8.7)

This inner twist G is unique up to isomorphism if either n is even or qSt is non-split in

E/F ; otherwise, there are two choices for G. (Recall the notion of inner twist from §1.)

Proof. Put

aqSt
:=−αy∞(GSOJ

2n,Fy∞
)−

∑
v �=y∞

αv(GSOcpt
2n,Fv

) ∈ (Z(Ĝ∗
ad)

Γ)D. (8.8)

By duality, the inclusion Z(Ĝ∗
ad)

Γ ⊂ Z(Ĝ∗
ad)

Γv induces a surjection (Z(Ĝ∗
ad)

Γv )D �
(Z(Ĝ∗

ad)
Γ)D. Hence, we can choose some invariant ãqSt

∈ (Z(Ĝ∗
ad)

Γv )D mapping to the

expression on the right-hand side of (8.8). Let GqSt
be the inner twist of G∗ over FqSt

corresponding to ãqSt
. Then, by (8.6), the collection of local inner twists {Gv}placesv comes

from a global inner twist G/F , unique up to isomorphism. Conversely, any G as in the

lemma satisfies αqSt
(G) = aqSt

by (8.6). Therefore, the number of choices for G equals

the number of choices for ãqSt
, which can be computed using Lemma 8.2.

11This map has been computed explicitly by Arthur [1, Section 9.1] for all inner forms of
classical groups of type B, C and D.
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Remark 8.4. The group GqSt
in the lemma is never quasi-split, regardless of the parity

of [F : Q]. It is always a unitary group for a Hermitian form over a quaternion algebra.

This corresponds to the “d= 2 case” in [1, §9.1]. In this case, the rank of GqSt
is roughly

n/2 (see [1] for precise information).

9. Shimura varieties of type D corresponding to spin±

We continue in the same global setup, with an inner form G of a quasi-split form G∗ of
GSO2n over a totally real field F, depending on the fixed places qSt and y∞ of F. We are

going to construct Shimura data associated with ResF/QG by giving an R-morphism S :=

ResC/RGm → (ResF/QG)⊗QR. Our running assumption (disc-∞) is clearly a necessary
condition for the existence of such Shimura data. We define

h(−1)n : S→GSOJ
2n, x+yi �→

(
x1n y1n
−y1n x1n

)
h(−1)n+1 : S→GSOJ

2n, x+yi �→
(

x1n diag(y1n−1,−y)

diag(−y1n−1,y) x1n

)
.

We will often omit 1n in the cases similar to the above if a matrix is clearly 2n× 2n in

the context.

By slight abuse of notation, we write Ad for either the natural map from GSOJ
2n →

GSOJ
2n,ad or the adjoint representation of GSOJ

2n on LieGSOJ
2n.

Lemma 9.1. Let ε ∈ {+,−} and put Kε := CentGSOJ
2n(R)

(hε). The following hold.

(i) In the representation of C× on LieGSOJ
2n(C) via Ad◦hε, only the characters z �→

z−1z, z �→ 1 and z �→ zz−1 appear.

(ii) The involution on GSOJ
2n,ad given by Ad hε(i) is a Cartan involution.

(iii) K+ and K− are GSOJ
2n(R)-conjugate.

Proof. For (i) and (ii), we only treat the case of ε = (−1)n as the argument for −ε is
the same. Let z = x+ yi ∈ C× and consider the left-multiplication action of the matrix

hε(x+iy) =
( x y
−y x

)
on M2n(C). The matrix

( x y
−y x

)
is conjugate to

(
x+yi

x−yi

)
via

(
1 1
i −i

)
.

Hence, only the characters zz−1, zz−1 and 1 appear in the representation of S on M2n(C)
via conjugation by hε(x+iy). Since LieGSOJ

2n(R) is contained in M2n(C) via the standard
representation, (i) is true for hε(z). Since J−1 = hε(i), the inner form of GSOJ

2n defined
by hε(i) is the compact-modulo-center form GSOcpt

2n,R, so part (ii) follows.

Let us prove (iii). Write hε := Ad ◦ hε. Clearly, Ad(Kε) ⊂ CentGSOJ
2n,ad(R)

(hε). The

Lie algebra Lie(Kε) (resp. the Lie algebra of CentGSOJ
2n,ad(R)

(hε)) is the (0,0) part of

Lie(GSOJ
2n) (resp. Lie(GSOJ

2n,ad)) via hε, in the sense of [20]. In particular,

ad: Lie(Kε)→ Lie(CentGSOJ
2n,ad(R)

(hε))

is surjective. Therefore, Ad(Kε) ⊃ CentGSOJ
2n,ad(R)

(hε)
0. Since CentGSOJ

2n,ad(R)
(hε) is

connected by [20, proof of Prop. 1.2.7], we have Ad(Kε) =CentGSOJ
2n,ad(R)

(hε). The latter
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is the identity component of a maximal compact subgroup of GSOJ
2n,ad(R) by loc. cit. so

Ad(K−) and Ad(K+) are conjugate in GSOJ
2n,ad(R). Since Kε =Ad−1(Ad(Kε)) and since

Ad: GSOJ
2n →GSOJ

2n,ad is surjective on real points by Hilbert 90, we lift a conjugating

element to see that K+ and K− are conjugate in GSOJ
2n(R).

Recall the cocharacters μ+,μ− from (2.9), which are outer conjugate as μ+ =

ϑ◦μ−(ϑ
◦)−1 (but not inner, cf. (2.8)).

Lemma 9.2. Let ε ∈ {+,−}.
(i) Consider the inclusion of C× in (C⊗RC)× = (C×)Gal(C/R) indexed by the identity

idC/R ∈Gal(C/R). Then CXhε,C|C× = με.

(ii) The complex conjugate morphism z �→ hε(z) is GSOJ
2n(R)-conjugate to h(−1)nε.

Proof. In the proof, put ε= (−1)n. (i). Recall CX from (8.3), which induces GSOJ
2n(R) ↪→

GSOcpt
2n (C)

CX� GSO2n(C). The morphism CXhε equals x + yi �→
(

x+yi 0
0 x−yi

)
. The

holomorphic part of this morphism is z �→ (z 0
0 1), which is με. Then hε = ϑ◦h−εϑ

◦, where ϑ◦

is as in (2.4). Write ϑc =
(−12n−1 0

0 1

)
. Note that CX(ϑc) = ϑ◦, so ϑc-conjugation becomes

ϑ◦-conjugation under CX . As ϑ◦ swaps με and μ−ε, we obtain CXh−ε|C× = μ−ε.

(ii). Write z = x+yi ∈ C. We compute

hε(z) =

(
x −y

y x

)
= Thε(z)T

−1,

where T = i(0 1
1 0)∈GOJ

2n(R). By Lemma 8.1(iv), T ∈GSOJ
2n(R) if n is even, which proves

(ii) in that case. For n odd, the above identity shows z �→ hε(z) and hε are conjugate under
an outer automorphism. Thus, by (i), the cocharacter attached to hε(z) is conjugate to

μ−ε.

By Lemma 9.1, the conditions of [20, Prop. 1.2.2] on (PSOJ
2n,h±(z)) and (PSOJ

2n,h±(z))
are satisfied. By this proposition, there exists a g ∈ PSOJ

2n(C) that conjugates
(PSOJ

2n,R,hε(z)) to (PSOJ
2n,R,h−ε(z)). This implies that for all x ∈ PSOJ

2n(C), we have

gxg−1 = gxg−1. Thus, also g−1gx=xg−1g and g−1g ∈Z(PSOJ
2n(C))= {1}, and thus g= g,

which means g ∈ PSOJ
2n(R). By Hilbert 90, we may lift g to an element g̃ ∈ GSOJ

2n(R).
Then the map C× � z �→ χ(z) := h−1

ε (z)g̃h−ε(z)g̃
−1 is a continuous homomorphism to

Z(GSOJ
2n(R)) = R×. It suffices to show that χ is trivial. The subgroup χ(U(1)) ⊂ R×

is connected and compact and hence trivial. Since hε and h−ε agree and are central on
R× ⊂ C×, we have χ(R×) = {1} as well. So χ is trivial as desired. The proof for h−ε is

similar.

Let G be as in Lemma 8.3. Let Xε be the (ResF/QG)(R)-conjugacy class of the

morphism

hε : S→ (ResF/QG)R, z �→ (hε(z),1, . . . ,1) ∈
∏

y∈V∞

GFy
, (9.1)

where the nontrivial component corresponds to the place y∞. Then με = (με,1, . . . ,1) ∈
X∗((ResF/QG)C) =X∗(GSO2n,C)

V∞ is the cocharacter attached to hε, in the same way
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as in Lemma 9.2 (i). The reflex field of (ResF/QG,X
ε) means the field of definition for

the conjugacy class of με, as a subfield of C.

Lemma 9.3. Let ε ∈ {±1}. Then

(i) The pair (ResF/QG,X
ε) is a Shimura datum of abelian type.

(ii) The Shimura data (ResF/QG,X
+) and (ResF/QG,X

−) are isomorphic only if n is

odd.

(iii) If F �=Q, the Shimura varieties attached to (ResF/QG,X
ε) are projective.

(iv) The reflex field of the datum (ResF/QG,X
ε) is equal to E, equipped with an

embedding x∞ : E ↪→ C extending y∞ : F ↪→ C.

Remark 9.4. About (i): When F =Q, the Shimura datum (G,Xε) can be shown to be
of Hodge type, but we do not need this fact. About (ii): If n is odd and qSt is inert in

E/F , then one can show that (ResF/QG,X
+)� (ResF/QG,X

−).

Proof. (i) Clearly, (ResF/QG)ad has no compact factor defined over Q, which is one of

Deligne’s axioms of Shimura datum [20, 2.1]. The remaining two axioms follow from

Lemma 9.1, and hence, (ResF/QG,X
ε) is a Shimura datum. In the terminology of loc.

cit., (ResF/QG,X
ε) is of type DH. By [20, Prop. 2.3.10], a datum (G′,X ′) of type DH is of

abelian type if the derived group of G′
C is (a product of) SO2n,C. (Not all Shimura data

of type DH are of abelian type.)

(ii) If n is even, then every automorphism of (GFy∞ )ad (isomorphic to GSOJ
2n,ad) is inner

by Lemma 8.1 (v). However, it follows from Lemma 9.2 (i) that no inner automorphism

of GSOJ
2n,ad takes Ad ◦h+ to Ad ◦h−, since Ad ◦μ+ to Ad ◦μ− are not conjugate by

GSO2n,ad(C). Hence, no automorphism of (ResF/QG)R (thus also of ResF/QG) carries
X+ onto X−.
(iii) If F �= Q, there exists some real place y′∞ ∈ V∞ of F different from y∞. Since

Gy′
∞ is compact modulo center, ResF/QG is anisotropic modulo center over Q. Hence, the

associated Shimura varieties are projective by Bailey-Borel [2, Thm. 1].
(iv) Assume that n is odd (thus, [E : F ] = 2). Suppose that σ ∈ Aut(C/Q) stabilizes

the conjugacy class of με. Since σ(με)∼ με, we have σ(y∞) = y∞, so σ ∈Aut(C/F ) with

respect to y∞ :F ↪→C. If σ has nontrivial image in Gal(E/F ), then Lemma 9.2 (ii) tells us
that σ(με)∼ (μ−ε,1, . . . ,1), which is not GSO2n(C)-conjugate to με. Thus, σ is trivial on

E (embedded in C extending y∞). Conversely, if σ ∈Aut(C/E), then σ(με) = με. Hence,

the reflex field is E. When n is even (thus E = F ), the preceding argument shows that
the reflex field is F.

We introduce the following notation. Let ε ∈ {+,−}.

• Taking an algebraic closure of E in C via x∞ : E ↪→ C, we fix F = E ↪→ C.
• We fix an isomorphism G⊗F A∞,qSt

F �G∗⊗F A∞,qSt

F .
• Z is the center of G.
• ξ = ⊗y|∞ξy is an irreducible algebraic representation of (ResF/QG) ×Q C =∏

y|∞G×F,y C.
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• Π
G(F∞)
ξ is the set of isomorphism classes of (irreducible) discrete series represen-

tations of G(F∞) which have the same infinitesimal and central characters as ξ∨.
• Kε

∞ is the centralizer of hε in (ResF/QG)(R) =G(F∞).
• For irreducible admissible representations τ∞ of G(F∞), put

epε(τ∞⊗ ξ) :=

n(n−1)∑
i=1

(−1)idimHi(LieG(F∞),Kε
∞;τ∞⊗ ξ). (9.2)

Let π	 be a cuspidal automorphic representation of G(AF ) such that

• π	
qSt is a Steinberg representation up to a character twist,

• π	 is ξ-cohomological.

The latter condition implies via (the proof of) [50, Lem. 7.1] the following condition:

(cent) There exists an integer w ∈ Z, called the central weight of ξ, such that for every

infinite F -place y|∞, the central character of ξy is of the form x �→ xw.

We also make the following assumption:

(temp) π	
q is essentially tempered at every finite F -place q where πq is unramified.

This may seem strong, but (temp) will be satisfied in practice; see the paragraph

above (10.4). Let A(π	) be the set of (isomorphism classes of) cuspidal automorphic

representations τ of G(AF ) such that

(i) τqSt
� π	

qSt ⊗ δ for an unramified character δ of the group G(FqSt
),

(ii) τ∞,qSt � π	,∞,qSt and

(iii) τ∞ is ξ-cohomological.

By (temp), τq is essentially tempered at every q where πq is unramified. Define

aε(π	) := (−1)n(n−1)/2N−1
∞

∑
τ∈A(π�)

m(τ) · epε(τ∞⊗ ξ) ∈Q, (9.3)

where m(τ) is the multiplicity of τ in the discrete automorphic spectrum of G, and

N∞ := |ΠG(F∞)
ξ | · |π0(G(F∞)/Z(F∞))|=

{
2n−1 ·2, if n is even,

2n−1, if n is odd.
(9.4)

Here, |π0(G(F∞)/Z(F∞))| ∈ {1,2} depending on the parity of n from Lemma 8.1 (iii),

(vi).

Lemma 9.5. The groups K+
∞ and K−

∞ are G(F∞)-conjugate. In particular, a−(π	) =

a+(π	).

Henceforth, we will write a(π	) ∈Q for the common value of aε(π	).

Proof. The y∞-components of Kε
∞ is Kε, which are conjugate to each other by Lemma

9.1. The components of Kε
∞ at the other real places y equal G(Fy)�GSOcpt

2n (R), which is

connected. Therefore, K+
∞ and K−

∞ are connected and G(F∞)-conjugate. It then follows

that ep+(τ∞⊗ ξ) = ep−(τ∞⊗ ξ) for all τ∞. Thus, a+(π	) = a−(π	).
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Since condition (cent) holds, we can attach to ξ a lisse Q�-sheaf Lιξ on ShεK as in [50,

below Lem. 7.1] and [15, Sect. 2.1, 2.1.4]. We have a canonical model ShεK over E for
each neat open compact subgroup K ⊂ G(A∞

F ) (see [66, §0] for the definition of neat

subgroups) and a distinguished embedding E ⊂ F (compatible with E ⊂C and the fixed

embedding F ↪→ C). We take the limit over K of the étale cohomology of with compact
support

Hi
c(Sh

ε,Lιξ) := lim−→
K

Hi
c(Sh

ε
K ×E F,Lιξ),

equipped with commuting linear actions of ΓE = Gal(F/E) and G(A∞
F ). The two

groups act continuously and admissibly, respectively. Write Hi
c(Sh

ε
K,Lιξ)

ss for the
semisimplification as a ΓE ×G(A∞

F )-module. (No semisimplification is necessary for

the G(A∞
F )-action if F �= Q, in which case ShεK is projective. This can be seen from

the semisimplicity of the discrete L2-automorphic spectrum via Matsushima’s formula.)

We construct Galois representations of ΓE by taking the ιτ∞-isotypic part in the
cohomology as follows. We consider τ1,τ2 ∈ A(π	) are equivalent and write τ1 ∼ τ2 if

τ∞1 � τ∞2 . Let A(π	)/∼ denote the set of (representatives for) equivalence classes. Let

τ ∈A(π	). Define

Hi
c(Sh

ε,Lξ)[ιτ
∞] := HomG(A∞

F )

(
ιτ∞,Hi

c(Sh
ε,Lιξ)

ss
)
, (9.5)

ρSh,ε
π� := (−1)n(n−1)/2

∑
τ∈A(π�)/∼

n(n−1)∑
i=0

(−1)iHi
c(Sh

ε,Lξ)[ιτ
∞]. (9.6)

A priori ρSh,ε
π� is an alternating sum of semisimple representations of ΓE and thus a virtual

representation (but see Theorem 9.6 below). Fix a neat open compact subgroup

K =
∏
q�∞

Kq ⊂G(A∞
F ) such that (π	,∞)K �= 0,

and also such that Kq is hyperspecial whenever π	
q (or equivalently πq) is unramified. Let

Sbad be the set of rational primes p for which either

• p= 2,
• ResF/QG is ramified over Qp or
• Kp =

∏
q|pKq is not hyperspecial.

We write SF
bad (resp. SE

bad) for the F -places (resp. E-places) above Sbad. We apply the
Langlands–Kottwitz method at level K to compute the image of Frobenius elements under

ρSh,ε
π� at almost all primes.

Theorem 9.6. Consider π	 satisfying condition (temp); see below (9.2). There exists a

finite set of rational primes S containing Sbad, such that for all p not above S and all
sufficiently large integers j (with the lower bound for j depending on p), writing q := p∩F ,

we have

TrρSh,ε
π� (Frobjp) = ιa(π	)q

jn(n−1)/4
p ·Tr(spinε,∨(φπ�

q
))(Frobjp), ε ∈ {+,−}. (9.7)
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Moreover, the summand of (9.6) is nonzero only if i = n(n− 1)/2. In particular, the

virtual representation ρSh,ε
π� is a true semisimple representation.

Proof. We mimic the proof of [50, Prop. 8.2] closely. Note that our ρSh,ε
π� corresponds to

ρshim2 there. Another difference is that we use S to denote a set of primes of Q (not F

or E ). It is enough to find S as in the theorem for each ε separately, as we can take the

union of the set for each of + and − (and take the maximum of lower bounds for j ). We
suppose that F �= Q so that our Shimura varieties are proper. The case F = Q will be

addressed at the end of proof.

Let f∞ = N−1
∞ fξ, where fξ is the Euler-Poincaré (a.k.a. Lefschetz) function for ξ on

G(F∞) as recalled in [50, Appendix A]. Then

Trτ∞(f∞) =N−1
∞ epε(τ∞⊗ ξ) =N−1

∞

∞∑
i=0

(−1)idimHi(g,Kε
∞;τ∞⊗ ξ).

Choose a decomposable Hecke operator f∞,qSt =
∏

q �=qSt
fq ∈ H(G(A∞,qSt

F )�KqSt) such

that for all automorphic representations τ of G(AF ) with τ∞,K �= 0 and Trτ∞(f∞) �= 0,

we have

Trτ∞,qSt(f∞,qSt) =

{
1 if τ∞,qSt � π	,∞,qSt

0 otherwise.

This is possible since there are only finitely many such τ (one of which is π	). Let fqSt
be

a Lefschetz function from [50, Eq. (A.4)]. There exists a finite set of primes Σ⊃ Sbad∪{�}
such that fp′ is the characteristic function of Kp′ (which is hyperspecial) for every p′ not
above Σ. We fix Σ and f∞ =

∏
v�∞ fv as above.

In the rest of the proof, we fix an E -prime p not above Σ∪{�}. Write q := p∩F , and
p for the rational prime below p. To apply the Langlands–Kottwitz method, we need

an integral model for ShεK over OEp
. Thus, we choose an isomorphism ιp : C

∼→ Qp such

that the valuation on Qp restricts to the p-adic valuation via ιpx∞ :E ↪→Qp. (Recall x∞
from Lemma 9.3 (iv).) The (ResF/QG)(Qp)-conjugacy class of ιpμ : Gm → (ResF/QG)Qp

is defined over Ep.

For j ∈ Z≥1, let f
(j)
p , denote the function in the unramified Hecke algebra of G(Fp)

constructed in [47, §7] for the endoscopic group H =G∗, which is isomorphic to G over

Fp = F ⊗QQp. (This is the function hp in loc. cit. We take s and ti’s on p.179 there to
be trivial, so that hp is the image of φj under the standard base change map on p.180.)

The L-group for (ResF/QG)Ep
(with coefficients in C) can be identified as

L(ResF/QG)Ep
=

( ∏
σ∈Hom(F,Qp)

Ĝ
)
�ΓEp

,

where ΓEp
acts trivially on the factor for σ = ιpy∞. (The Galois action may permute the

other factors via its natural action on Hom(F,Qp), but this does not matter to us.) The

representation of L(ResF/QG)Ep
of highest weight ιpμ is the representation (spinε,1, . . . ,1).
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Here, spinε is on the factor for σ = ιpy∞, where we identify

G×F,σ Qp =GSO
E/F
2n ×F,σ Qp

via ιpx∞
=== GSO2n,Qp

(in the ambient group GL2n(E ⊗F Qp) � GL2n(Qp) × GL2n(Qp) of the left-hand

side, we project onto the ιpx∞-component) and thus identify Ĝ = GSpin2n on

the ιpy∞-component. Now let τp =
∏

q′|p τq′ be an unramified representation of

G(Fp) = (ResF/QG)(Qp) =
∏

q′|pG(Fq′), and denote by φτp : WQp
→ L(ResF/QG)Qp

its
L-parameter. Then the ιpy∞-component of φτp |WEp

is given by φτq |WEp
. All in all, we

can explicate [45, (2.2.1)] in our setup as12

Trτp(f
(j)
p ) = q

jn(n−1)/4
p Tr(spinε,∨(φτq)(Frob

j
p)). (9.8)

As in the proof of [50, Prop. 8.2] (where our f
(j)
p is denoted by hG∗

p ), the Lefschetz

functions f∞ and fqSt
allow us to simplify the stabilized Langlands-Kottwitz formula [43,

Thm. 8.3.11] (recalled in [50, Thm. 7.3]) and obtain a simple stabilization of the trace
formula for G ; the outcomes are formulas (8.8) and (8.9) of [50]. Combining them, we

obtain

ι−1Tr(ιf∞,pfp×Frobjp,Hc(Sh
ε,Lιξ)) = TG

cusp,χ(f
∞,pf (j)

p f∞), j � 1. (9.9)

Note that fp is the characteristic function of the hyperspecial subgroup Kp =
∏

p|pKp.
Following the argument from Equation (8.10) to (8.13) in [50], we compute

ι−1TrρSh,ε
π� (Frobjp) = a(π	)Trπ	

p(f
(j)
p )

(9.8)
== a(π	)q

jn(n−1)/4
p ·Tr(spinε,∨(φπ�

q
))(Frobjp).

(9.10)

Let us show that ρSh,ε
π� is a true representation by showing that only the middle degree

cohomology contributes to ρSh,ε
π� . Since the canonical smooth integral model of ShεK

constructed by Kisin is proper as shown in [82, Thm. 2.1.29] (extending the analogous

result for Hodge-type Shimura varieties by Madapusi Pera [58, Cor. 4.1.7]), the action
of Frobp on Hi

c(ShK,Lξ) is pure of weight −w+ i by [22, Cor. 3.3.6] since Lξ is pure of

weight −w [67, §5.4, Prop. 5.6.2]. (To obtain purity from Pink’s result, we enlarge the

set S if necessary; cf. [63, 1.3], especially the proof of (7) in Proposition 1.3.4 there.)

The argument for Part (2) of [50, Lem. 8.1] (replacing Lemma 2.7 in the proof therein
with our condition (temp)) implies that τq|sim|w/2 = π	

q|sim|w/2 is tempered and unitary.

Combining with (9.10), we conclude that Hi
c(Sh

ε,Lξ)[ιτ
∞] = 0 unless i= n(n−1)/2.

12A word on the sign convention is appropriate here. The sign of [45, (2.2.1)] was flipped on
[47, p.193], meaning that the highest weight −ιpμε (up to the Weyl group action) should be
used in (9.8). This was caused by the arithmetic vs geometric convention for Frobenius and
explains why spinε is dualized, cf. the paragraph above Lemma 4.2. (It may appear that the
sign has to be changed once again when going from [47] to [48], since the latter paper asserts
that (G,h−1) in its notation, not (G,h), corresponds to the canonical model of [20]. However,
we think the sign change is unnecessary; it should be (G,h) as long as we fix the sign errors
in [20] as pointed out at the end of §12 in [60].)
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Finally, the case F = Q is handled via intersection cohomology as in the proof of [50,

Prop. 8.2]. Thus, we content ourselves with giving a sketch. For each τ ∈ A(π	), one

observes as in [50, Lem. 8.1] that Hi
c(Sh

ε,Lξ)[ιτ
∞] is isomorphic to the ιτ∞-isotypic part of

the intersection cohomology as ΓE-representations. The point is that τ
∞ does not appear

in any parabolic induction of an automorphic representation on a proper Levi subgroup of

G(A). (If it does appear, then restricting τ from G(A) to its derived subgroup Gder(A) and

transferring to the quasi-split inner form SO
E/F
2n (A) via [50, Prop. 6.3], we would have a

cohomological automorphic representation τ � of SO
E/F
2n (A) with a Steinberg component

up to a twist that appears as a constituent in a parabolically induced representation.

Then the Arthur parameter for τ � cannot have the shape described in Proposition 6.1,
leading to a contradiction.) The rest of the proof of [50, Prop. 8.2] carries over, via the

analogue of part 2 of [50, Lem. 8.1] (the latter is justified using condition (temp) in our

case), bearing in mind that the middle degree is n(n−1)/2 for us (which was n(n+1)/2
for the group GSp2n).

Corollary 9.7. Let π	 be as above. If τ ∈A(π	), then

(1) τ∞ belongs to the discrete series L-packet Π
G(F∞)
ξ ,

(2) τ∞τ ′∞ ∈A(π	) and m(τ) =m(τ∞τ ′∞) for all τ ′∞ ∈Π
G(F∞)
ξ .

Moreover, a(π	) =
∑

τ∈A(π�)/∼m(τ) ∈ Z>0.

Proof. This is the exact analogue of [50, Cor. 8.4, Cor. 8.5] and the same proof applies.

(Since a(π	) = a+(π	) = a−(π	), we adapt the argument there to either ε ∈ {+,−} to

compute.)

Proposition 9.8. Assume that F �=Q. Let x∞ :E ↪→C and y∞ : F ↪→C be as in Lemma

9.3. Then

μHT(ρ
Sh,ε
π� ,ιx∞)∼ ia(π�) ◦ spinε,∨ ◦

(
μHodge(ξy∞)− n(n−1)

4 sim
)
, ε ∈ {±1}.

Proof. We start by setting up some notation. Let p be a prime of E above �, and σ :
E ↪→ Q� an embedding inducing the p-adic valuation on E. Let r be a de Rham Galois

representation of ΓE on a Q�-vector space. Write DdR,σ(r) for the filtered Q�-vector space

associated with r|ΓEp
with respect to σ (as on p.99 of [33]). Define HTσ(r) to be the

multi-set containing each j ∈ Z with multiplicity dimgrj(DdR,σ(r)). (So the cardinality

of HTσ(r) equals dimr.) When a ∈ Z>0 and A is a multi-set, we write A⊕a to denote the
multi-set such that the multiplicity of each element in A⊕a is a times that in A.

Write λ(ξ) = {λ(ξy)}y|∞ for the highest weight of ξ = ⊗y|∞ξy. In the basis of §2 for

X∗(TGSO) =X∗(TGSpin) = Zn+1, we write ξy∞ and the half sum of positive roots ρ for

GSO2n as

λ(ξy∞) = (a0,a1, . . . ,an), a1 ≥ a2 ≥ ·· · ≥ |an| ≥ 0,

ρ= (−n(n−1)/4,n−1,n−2, . . . ,1,0).
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Let Pε(n) denote the collection of subsets of {1,2, . . . ,n} whose cardinality has the same

parity as n if ε= (−1)n and different parity if ε= (−1)n+1. Put

(b0,b1, . . . ,bn) := (a0− n(n−1)
2 ,a1+n−1,a2+n−2, . . . ,an−1+1,an)

= λ(ξy∞)+ρ− (n(n−1)/4,0,0, . . . ,0),

which equals μHodge(ξx∞)− n(n−1)
4 sim. Via the description of weights in the representation

spinε in (2.10) (which gives the weights in spinε,∨), the proposition amounts to the
assertion that

HTιx∞(ρSh,ε
π� ) =

{
− b0−

∑
i∈I

bi

∣∣∣I ∈ Pε(n)
}⊕a(π�)

=
{
−a0−

∑
i∈I

ai+
∑
i/∈I

(n− i)
∣∣∣I ∈ Pε(n)

}⊕a(π�)
.

(9.11)

We prove this assertion using a result from [52]. Let us introduce some more notation.
Write ShεK(C) for the complex manifold obtained from ShεK by base change along x∞ :

E ↪→ C, and Ltop
ξ for the topological local system on ShεK(C) coming from ξ. Writing

Kε (Lemma 9.1) as Kε =
∏

yK
ε
y , we have Kε

y∞ =Kε and Kε
y =G(Fy)�GSOcpt

2n (Fy) for

y �= y∞. Restricting hε
C to the first factor of SC = Gm,C×Gm,C (labeled by the identity

C → C, not the complex conjugation), we obtain a cocharacter Gm,C → Kε
C, which we

denote by με; this is consistent with the definition of με below (9.1). We also have a

parabolic subgroup Q ⊂ (ResF/QG)C with Levi component Kε
C as [23, p.57] (such that

the Borel embedding goes into (ResF/QG)(C)/Q). Fix an elliptic maximal torus T∞ ⊂Kε

and a Borel subgroup B ⊂ (ResF/QG)C contained in Q such that B contains T∞. Let R+

denote the set of positive roots of T∞ in B. By R− we denote the set of roots of T∞ in

the opposite Borel subgroup. Write Ω for the Weyl group of T∞,C in (ResF/QG)C, and
Ωnc for the subset of ω ∈ Ω such that ωλ is B ∩Kε

C-dominant whenever λ ∈X∗(T∞) is

B -dominant. Let Ωc denote the Weyl group of T∞,C in Kε
C. The inclusion Ωnc ⊂Ω induces

a canonical bijection Ωnc �Ω/Ωc. We parametrize members of the discrete series L-packet

Π
G(F∞)
ξ as {π(ω)|ω ∈Ωnc} following [34, 3.3]. (Our π(ω) is π(ωλ,ωR+) in their notation.)

Even though Q,T∞,B,Ωc depend on ε (since they do on Kε), we suppress it from the

notation for simplicity.
Write ρG ∈ X∗(T ) for the half sum of all roots in R+, and define ω � λ0 := ω(λ0 +

ρG)−ρG for λ0 ∈X∗(T∞). Every irreducible representation Vλ0
of Kε

C of highest weight

λ0 ∈ X∗(T∞) gives rise to an automorphic vector bundle, to be denoted by Eλ0
. Write

λ= λ(ξ) ∈X∗(T∞) for the B -dominant highest weight of ξ.

For a finite multi-set A, write mult(a|A) ∈ Z≥0 for the multiplicity of a in A. For each

j ∈Z, define Ωnc(j) to be the set of ω ∈Ωnc such that the composition Gm
(με)−1

→ T∞,C
ω�λ→

Gm equals z �→ zj . Then,

mult
(
j |HTιx∞(ρSh,ε

π� )
)

=
∑

τ∈A(π�)/∼
mult

(
j |HTιx∞(Hn(n−1)/2(Shε,Lξ)[ιτ

∞]
)

by Theorem 9.6 and (9.6),

=
∑

τ∈A(π�)/∼

∑
ω∈Ωnc(j)

dimH
n(n−1)

2 −l(ω)(Shε(C),Eω�λ)[τ
∞], by [52, Theorem 6.2.9].
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From [34, §3], we have an isomorphism of G(A∞
F )-modules:

Hk(Sh(C),Eω�λ)�
⊕
τ

m(τ)τ∞⊗Hk(LieQ,Kε,τ∞⊗Vω�λ).

For each τ ∈A(π	), we pass to the τ∞-isotypic parts (with notation as in (9.5)) to obtain

Hk(Sh(C),Eω�λ)[τ
∞]�

⊕
τ ′
∞

m(τ∞⊗ τ ′∞)Hk(LieQ,Kε,τ ′∞⊗Vω�λ),

where the sum runs over irreducible unitary representations of G(F∞). By [34, Prop.
4.4.12], if the cohomology on the right-hand side is nonzero, then τ ′∞ is ξ-cohomological, so

τ∞⊗τ ′∞ ∈A(π∞). It follows from Corollary 9.7 that τ ′∞ ∈Π
G(F∞)
∞ and thatm(τ∞⊗τ ′∞) =

m(τ). Moreover, [34, Thm. 3.4] implies that Hk(LieQ,Kε,τ ′∞⊗Vω�λ) is nonzero for a
unique τ ′∞, in which case the cohomology is one-dimensional. We use this to resume the

computation of mult(j |HTιx∞(ρSh,ε
π� )) and obtain

mult
(
j |HTιx∞(ρSh,ε

π� )
)
=

∑
τ∈A(π�)/∼

∑
ω∈Ωnc(j)

m(τ) = a(π	) · |Ωnc(j)|.

To conclude (9.11), it remains to prove the following claim: that |Ωnc(j)| is precisely

the number of ways j can be written as −a0−
∑

i∈I ai+
∑

i/∈I(n− i) with I ∈ Pε(n).

As a preparation, we fix an isomorphism between the pairs (T∞,C,B) and (TGSO,BGSO)

induced by an inner twist (ResF/QG)C � (ResF/QG
∗)C. So the Weyl action of Ω is

identified with the WGSO-action in (2.8), while Ωc is identified with Sn therein if

ε= (−1)n. (If ε= (−1)n+1, then Ωc is the θ
◦-conjugate of Sn.) For a subset I ⊂ {1,...,n},

let ω′
I denote the action on (t0,t1, . . . ,tn) ∈ X∗(TGSO) by ti �→ ti for i ∈ I, ti �→ −ti for

i /∈ I, and t0 �→ t0+
∑

i∈I ti. Then ω′
I ∈ Ω if and only if n−|I| is even.

Let us prove the claim, starting with the case ε= (−1)n. Then n−|I| is even for each

I ∈Pε(n). Write ωI ∈Ωnc for the unique intersection of the Ωc-orbit of ωI with Ωnc. We
have bijections

Pε(n)
∼→ Ω/Ωc

∼← Ωnc, I �→ ω′
I �→ ωI .

Since ε= (−1)n, we have from (2.9)

με = (z �→ (z,z,, . . . ,z,z)) ∈X∗(TGSO)�X∗(T∞),

a priori up to the Ωc-action, but με is Ωc-invariant. From this, we compute for λ =
(a0,a1, . . . ,an) ∈X∗(T∞)�X∗(TGSO):

(ωI �λ)◦ (με)−1 = (ω′
I �λ)◦ (με)−1 =−a0−

∑
i∈I

(ai+n− i)+
∑
all i

(n− i) =−a0−
∑
i∈I

ai+
∑
i/∈I

(n− i).

Thus, the claim for ε= (−1)n follows.

Keep ε = (−1)n and let us prove the claim for P−ε(n). Since n− |I| is odd, we no
longer have ω′

I ∈Ω but instead have ω′′
I := θ◦ω′

I = ω′
Iθ

◦ ∈Ω. Replacing ω′
I with ω′′

I in the

previous paragraph, we obtain ωI and analogous bijections

P−ε(n)
∼→ Ω/Ωc

∼← Ωnc, I �→ ω′′
I �→ ωI .
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It follows from μ−ε = θ◦με and Ωc-invariance of με that

(ωI �λ)◦ (μ−ε) = (θ◦(ωI �λ))◦ (με) = (ω′
I �λ)◦ (με).

The proof is now done since the computation of (ω′
I �λ) ◦ (με)−1 in the preceding case

goes through verbatim.

10. Construction of GSpin2n-valued Galois representations

We continue in the setting of §8 and §9. The goal of this section is to attach
GSpin2n-valued Galois representations of ΓE to the automorphic representations of G∗ =

GSO
E/F
2n under consideration. The main input comes from the cohomology of Shimura

varieties studied in the last section. Write std: GSpin2n ↪→ GL2n for the composite of

pr : GSpin2n →GSO2n and the inclusion GSO2n ⊂GL2n.

Let π be a cuspidal automorphic representation of G∗(AF ). Let φπy
denote the L-

parameter of πy for y ∈ V∞. Throughout this section, we assume that

(St) for some finite F -place qSt, the local representation πqSt
is isomorphic to the

Steinberg representation up to a character twist,

(coh) the representation π∞ is cohomological for some representation ξ of

(ResF/QG
∗)⊗QC (then ξ satisfies condition (cent) by [50, Lem. 7.1] as before).

Choose π� a cuspidal automorphic representation of SO
E/F
2n (AF ) contained in

π|
SO

E/F
2n (AF )

(see [51]). We observe that π� satisfies conditions (St◦) and (coh◦) of §6
thanks to Lemma 7.1 and 7.2. Consider the following analogue of (std-reg◦) for π:

(std-reg) std◦φπy
|WFy

is regular at every y ∈ V∞.

In addition to (St) and (coh), the following is also assumed throughout:

• Either (std-reg) holds for π, or Hypothesis 6.11 is true for π�.

So Hypothesis 6.11 comes into play only when (std-reg) does not hold.

Condition (std-reg) is equivalent to the one given in the introduction via local Langlands

for real groups (e.g., see [12, §2.3]). If (std-reg) is imposed on π, then (std-reg◦) follows
from (coh◦). By [53, §3, (iv)], we have that φπ�,y = pr◦ ◦φπ,y at each y ∈ V∞. We can also

see (std-reg◦) from this and (std-reg).

Lemma 10.1. In addition to (St) and (coh) for π, assume either (std-reg) for π or
Hypothesis 6.11 for π�. Then π� is tempered at all places, and π is essentially tempered

at all places.

Proof. This follows from Proposition 6.1 if (std-reg) holds. Otherwise, the same

proposition implies π� is tempered at infinite places, and Hypothesis 6.11 asserts that
π� is tempered at finite places. The last assertion easily follows from the temperedness of

π�. (See the proof of [50, Lem. 2.7].)

The right-hand side of (8.4) is easily extended to a model of GSO
E/F
2n over OF (by

replacing E,F with OE,OF ). Similarly, we have a model of SO
E/F
2n closed in the model of
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GSO
E/F
2n , defined by the condition λ= 1. At each F -prime q not above 2 and unramified

in E, we have the hyperspecial group Hq := GSO
E/F
2n (OFq

), whose intersection with

SO
E/F
2n (Fq) is the hyperspecial subgroup H0,q := SO

E/F
2n (OFq

) in the latter. We will fix

these choices of hyperspecial subgroups for GSO
E/F
2n and SO

E/F
2n . At each q ∈Unr(π) (so

that π
Hq

v is nontrivial), we can thus find an irreducible SO
E/F
2n (Fq)-subrepresentation in

πv with nonzero H0,q-fixed vectors. Consequently, after translating π� inside of π by a

suitable g ∈ GSO
E/F
2n (AF ), we may assume that π�

q is unramified at every q not above

Sbad (with respect to the hyperspecial subgroups above).
Thanks to Theorem 6.5 if (std-reg) is assumed, or instead by Hypothesis 6.11, we have

a Galois representation

ρπ� : ΓF,Sbad
→ SO2n(Q�)�Gal(E/F ),

whose restriction to ΓE,Sbad
satisfies, writing q := p∩F for each p,

ρπ�(Frobp)ss
◦∼ ιφπ�

q
(Frobp) ∈ SO2n(Q�), (10.1)

for all E-places p /∈ SE
bad. Here,

◦∼ indicates O2n-conjugacy (instead of SO2n-conjugacy).

Let H ⊂ SO2n denote the Zariski closure of the image of ρπ� : ΓE,Sbad
→ SO2n(Q�).

By Proposition 5.5, either H is connected or H =H0×Z(SO2n). Therefore, via {±1}=
Z(SO2n), we can find a Galois character

η : ΓE,Sbad
→{±1} (10.2)

such that the product morphism ηρπ� has Zariski dense image in H0. In particular, if
H0 =H, we take η = 1. We define the character

η̃ : ΓE,Sbad
→ 〈z+〉 ⊂GSpin2n (10.3)

to be the character so that the composition η̃ : ΓE,Sbad
→ 〈z+〉 ∼→pr◦ {±1} is equal to η.

Recall that G is an inner form of G∗ = GSO
E/F
2n giving rise to the Shimura data

(ResF/QG,X
±) studied earlier. By [50, Prop. 6.3], there exists a cuspidal automorphic

representation π	 of G(AF ) such that

• π	
q′ � πq′ at every finite prime q′ where πq′ is unramified (we have Gq′ � G∗

q′ at
such q′),

• π	
qSt is a character twist of the Steinberg representation,

• π	
∞ is ξ-cohomological.

The first condition and Lemma 10.1 imply that π	 satisfies condition (temp) of §9.
Theorem 9.6 yields semisimple representations ρSh,ε

π� of ΓE,S for ε ∈ {±1} such that its

dual ρSh,ε,∨
π� has the following property:

ρSh,ε,∨
π� (Frobp)ss ∼ ιq

−n(n−1)/4
p

(
iaπ

◦ spinε(φπq
(Frobp))

)
∈GLaπ2n−1(Q�), p /∈ SE,

(10.4)

where S is a finite set of rational primes containing Sbad, large enough, so that Theorem

9.6 holds for both ε=+ and ε=−. We define ρSh,επ := ρSh,ε
π� for ε ∈ {±} (which depends

https://doi.org/10.1017/S1474748023000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000427


Galois representations for even general special orthogonal groups 2021

not on the choice of π	 but only on π by (10.4)), and

ρ̃Sh,∨π := ρSh,+,∨
π ⊕

(
η⊗ρSh,−,∨

π

)
.

Then ρ̃Sh,∨π is a ΓE,S-representation of dimension aπ2
n, where aπ := a(π	). We set

s̃pin(·) := spin+(·)⊕ (η⊗ spin−(·))

when the input is a GSpin2n-valued Galois representation or a local L-parameter, and

write s̃pin
a
(·) for the a-fold self-direct sum of s̃pin(·). (So s̃pin = spin if η = 1.) We have

ρ̃Sh,∨π (Frobp)ss ∼ ιq
−n(n−1)/4
p s̃pin

aπ

(φπq
(Frobp)) ∈GLaπ2n(Q�), p /∈ SE . (10.5)

Then ρSh,∨π , ρ̃Sh,∨π are a ΓE,S-representation of dimension aπ2
n, where aπ := a(π	).

When ∗ is a map (resp. an element), we use ∗ to denote the composition with the

adjoint map (resp. the image under the adjoint map) that is clear from the context.

Proposition 10.2. There exists a continuous semisimple representation

ρCπ : ΓE,S →GSpin2n(Q�)

(with C standing for a cohomological normalization) such that we have

∀p /∈ SE : s̃pin
(
ρCπ (Frobp)ss

)
∼ ιq

−n(n−1)/4
p s̃pin(φπq

(Frobp)) ∈GL2n(Q�), (10.6)

∀p /∈ SE
bad : pr◦ρCπ (Frobp)ss

◦∼ ιpr◦φπq
(Frobp) ∈ SO2n(Q�). (10.7)

Proof. Consider the diagram

ΓE,S

ρ̃Sh,∨
π

��

ηρ
π� ��

GSpin2n(Q�)

pr◦

��

� �

spinaπ
�� GLaπ2n(Q�)

��
SO2n(Q�)

� � ��� �

spinaπ

�� PGLaπ2n(Q�).

(10.8)

At each prime p of E not above S, we obtain from (10.1) that

spinaπ ((ηρπ�)(Frobp)ss)∼ ιspinaπ ((ηφπ�
q
)(Frobp))

= ιspinaπ ((η̃φπ�
q
)(Frobp))∼ ρ̃Sh,∨π (Frobp)ss ∈ PGLaπ2n(Q�). (10.9)

Recall that ηρπ� has connected image. So (10.9) implies, via [50, Prop. 4.6, Ex. 4.7], the

existence of g ∈GLaπ2n(Q�) such that

ρ̃Sh,∨π = g
(
spinaπ (ηρπ�)

)
g−1 : ΓE,S → PGLaπ2n(Q�).
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Replace ρ̃Sh,∨π by g−1ρ̃Sh,∨π g so that ρ̃Sh,∨π = spinaπ (ηρπ�). From Diagram (10.8), we deduce

that

ρ̃Sh,∨π (ΓE,S)⊂ pr◦,−1
(
(ηρπ�)(ΓE,S)

)
⊂GSpin2n(Q�),

where GSpin2n is viewed as a subgroup of GLaπ2n via spinaπ . That is, there exists a

representation ρ̃Cπ : ΓE,S →GSpin2n(Q�) such that

spinaπ (ρ̃Cπ ) = ρ̃Sh,∨π and pr◦ρ̃Cπ = η⊗ρπ� .

Define ρCπ := η̃ρ̃Cπ . Then it follows that

s̃pin
aπ

(ρCπ ) = ρ̃Sh,∨π and pr◦ρCπ = ρπ� .

Thanks to (10.1) and (10.5), ρCπ satisfies (10.7) and (10.6). The proof is complete.

Remark 10.3. The bottom row in (10.8) cannot be replaced with PSO2n. (If it did, since

ρπ� has connected image in PSO2n by Proposition 5.5, the argument above would work

without introducing the η-twist.) For instance, observe that GSpin2n
spin−→GL2n →PGL2n

does not factor through PSO2n since spin+ and spin− have different central characters.

We can refine (10.6) by separating spin+ and spin−, which is a key intermediate step

towards the main theorem. Our argument is quite delicate and sensitive to the underlying
group-theoretic structures.

Proposition 10.4. Up to replacing ρCπ by ηθ(ρCπ ) if necessary, we have the following.
For every p /∈ SE and ε ∈ {+,−},

∀p /∈ SE : spinερCπ (Frobp)ss ∼ ιq
−n(n−1)/4
p spinεφπq

(Frobp) ∈GL2n−1(Q�), (10.10)

∀p /∈ SE
bad : pr◦ρCπ (Frobp)ss

◦∼ ιpr◦φπq
(Frobp) ∈ SO2n(Q�), (10.11)

where we write q for the prime of F below p.

Proof. Recall from §1 that we often write G0 to mean G0(Q�) when G0 is a reductive

group over Q�. Moreover, we assume p /∈SE throughout, without repeating this condition.
The assertion (10.11) follows from (10.7) (and it is invariant under conjugation by an

element of GPin2n). The main thing to prove is (10.10). For simplicity, write ρ := ρCπ ,

ρ̌Sh,ε := ρSh,ε,∨π , ρ◦ := pr◦ρCπ , and a := aπ. From (10.5) and (10.6), we have

ρ̌Sh,+⊕ (η⊗ ρ̌Sh,−)�
(
spin+ρ⊕ (η⊗ spin−ρ)

)⊕a
. (10.12)

Write Z := Z(GSpin2n) and H for the Zariski closure of im(ρ◦) in SO2n. Then H
contains a regular unipotent element by Corollary 6.8. We divide into two cases based on

Proposition 5.5.

Case 1. Assume spinερCπ is irreducible for ε = −. This happens when H0 is SO2n,
i◦std(SO2n−1), or n= 4 and H0 = spin◦(Spin7) (possibly after conjugation in GSpin2n). In

the first two subcases, spin+ρ is also irreducible; for irreducibility in the third case, see

Lemma 5.2.
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If spin+ρ � η ⊗ spin−ρ, then it is clear from (10.12) that ρ̌Sh,+ � η ⊗ ρ̌Sh,− �
(spin+ρ)⊕a � (η⊗ spin−ρ)⊕a. So the proposition follows from Theorem 9.6.

Henceforth, assume that spin+ρ �� η⊗ spin−ρ.
We claim that spin−ρ(γ)ss is regular in GL2n−1 on a density 1 set of γ ∈ Γ. Define

X− to be the subset of h ∈ H(Q�) such that the semisimple part of spin
−
(h) is non-

regular in PGL2n−1 . Then X− is Zariski-closed and conjugation-invariant in H. To

show H �= X−, let H̃ ⊂ GSpin2n be the preimage of H, so that H̃0 equals Spin2n,

istd(Spin2n−1), or spin(Spin7) in the three cases, respectively. Then the restriction of
spin− via H̃0 ↪→ GSpin2n is an irreducible representation with distinct weight vectors.

(When H̃0 = istd(Spin2n−1), the restriction is the spin representation of Spin2n−1 by

Proposition 4.5.) So some element h0 of H̃0 maps to a regular element of GL2n−1 under
spin−. It follows that some element ofH0 maps to a regular element of PGL2n−1 . We know

that H̃ is a subgroup of Z(GSpin2n)H̃ ⊂GSpin2n, thus by multiplying h0 by elements in

the center, we obtain in each connected component of H an element with regular image
in GL2n−1 . In particular, for each connected component C of H, we have X− ∩C �= C,

and thus dimX− < dimH. Therefore, the set of γ such that ρ◦(γ) /∈ X− has density 1

according to Lemma 1.1, and in this case, spin−ρ(γ)ss = spin−(ρ◦(γ)ss) is regular. The

claim is verified.

Given a square matrix g, let E V (g) for the multi-set of its eigenvalues. Since spin+ρ ��
η⊗ spin−ρ, there exists γ ∈ Γ such that

• spin−ρ(γ) has distinct eigenvalues,
• E V (η(γ)spin−ρ(γ)) �= E V (spin+ρ(γ)).

In particular, there exists an eigenvalue α of η(γ)spin−ρ(γ) which is not an eigenvalue

of spin+ρ(γ). Then α appears as an eigenvalue with multiplicity a on the right-hand

side of (10.12). We know from Theorem 9.6 that each eigenvalue of ρ̌Sh,+(γ) and
η(γ)ρ̌Sh,−(γ) appears with multiplicity divisible by a. Thus, α is an eigenvalue of either

ρ̌Sh,+(γ) or η(γ)ρ̌Sh,−(γ), but not both. This implies, together with Theorem 9.6 and

the irreducibility of spin−ρ, that (i) (η⊗ spin−ρ)⊕a � η⊗ ρ̌Sh,− and (spin+ρ)⊕a � ρ̌Sh,+,

or (ii) (η⊗ spin−ρ)⊕a � ρ̌Sh,+ and (spin+ρ)⊕a � η⊗ ρ̌Sh,−. In case (i), Equation (10.10)
follows from Theorem 9.6. If (ii) occurs, replace ρ with η⊗ (ϑρϑ−1), where ϑ ∈ GPin2n
is as in (3.7). (Here, im(η) = {±1} is viewed as the subgroup of ker(pr◦) = Gm.) Then

equations (10.6) and (10.7) are still true (as pr◦(η) = 1). Hence, if we run the current
proof again, we will be in Case 1(i). We are done in Case 1.

Case 2. We now assume H0 ⊂ i◦std(SO2n−1), which covers the cases H0 = i◦reg(PGL2),

H0 = i◦std(G2) and n= 4. By Proposition 5.5, we have H ⊂H0Z(SO2n), and ρ has image
in the group H2n−1 from (5.4). By (10.2), ηρ◦ has dense image in H0, and by (10.3), ρ̃

has image in GSpin2n−1 ⊂H2n−1. In particular, η is equal to κ0 ◦ρ, with κ0 from (5.6).

From (5.7), we obtain

θρp ∼ ηpρp ∈GSpin2n, (10.13)

where we write ρp := ρ(Frobp)ss and ηp := η(Frobp). Similarly, we write η̃p := η̃(Frobp)

and φp := ιq
−n(n−1)/4
p φπq

(Frobp). We claim

θφp ∼ ηpφp ∈GSpin2n. (10.14)
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By Equation (10.1), we have pr◦ρp
◦∼ pr◦φp ∈ SO2n. Multiplying η, we obtain pr◦(η̃pφp)

◦∼
pr◦(η̃pρp). By assumption, pr◦(η̃pρp) ∈ i◦std(SO2n−1). Hence, η̃pφp = gxg−1 for some g ∈
GPin2n and x ∈ istd(GSpin2n−1). We have θ(x) = x, and thus,

θ(η̃pφp) = θ(g)xθ(g)−1 = (θ(g)g−1)η̃pφp(gθ(g)
−1).

As θ(g)g−1 ∈ GSpin2n, this implies that θ(η̃pφp) ∼ η̃pφp. Since θ(η̃p) = ηpη̃p, (10.14)

follows.
In (10.6), we established

spin+(ρp)⊕ηpspin
−(ρp)∼ spin+(φp)⊕ηpspin

−(φp),

which implies by (10.13) and (10.14) spin+,⊕2(ρp) ∼ spin+,⊕2(φp). It follows that

spin+(ρp)∼ spin+(φp), Similarly, we deduce spin−(ρp)∼ spin−(φp).

From now on, we replace, if necessary, ρCπ by ηθ(ρCπ ) so that the conclusion of

Proposition 10.4 holds for ρCπ .

Proposition 10.5. We have that (writing q := p∩F )

∀p /∈ SE : ρCπ (Frobp)ss ∼ ιq
−n(n−1)/4
p φπq

(Frobp) ∈GSpin2n(Q�). (10.15)

Proof. We first establish the claim that χ
n(n−1)/2
� ιωπ =NρCπ , where χ� is the cyclotomic

character and we view ωπ as a Galois character via class field theory. In view of Lemma

5.6(i), it suffices to check that

χ
n(n−1)/2
� ιωπ · spinε(ρCπ )�NρCπ · spinε(ρCπ ), ε ∈ {±1}. (10.16)

By Lemma 4.2, we have

spinε(ρCπ )� (spin(−1)nε)∨(ρCπ )⊗NρCπ . (10.17)

Let p /∈ SE , and write shorthand ρp := ρCπ (Frobp)ss and φp := ιq
−n(n−1)/4
p φπq

(Frobp). We
apply (10.10) and compute using Lemma 4.2 again (but now locally)

spinε(ρp)� spinε(φp)� (spin(−1)nε)∨(φp)⊗N (φp)� (spin(−1)nε)∨(ρp)⊗N (φp).

(10.18)

We now appeal to functoriality of the Satake isomorphism (unramified local Langlands

correspondence) with respect to Gm ↪→ GSO2n (dual to N : GSpin2n → Gm), to get

N (φp) = χ
n(n−1)/2
� (Frobp)ιωπ(Frobp). Therefore,

spinε(ρCπ )� (spin(−1)nε)∨(ρCπ )⊗χ
n(n−1)/2
� ιωπ.

Comparing with (10.17), we obtain (10.16). At this point, we have established that

spinερp ∼ spinεφp ∈GL2n−1(Q�) (Proposition 10.4),

pr◦ρp
◦∼ pr◦φp ∈ SO2n(Q�) (Proposition 10.4),

Nρp =Nφp ∈Gm(Q�) (claim above). (10.19)
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By [50, Lem. 1.1, table], a semi-simple element γ of GSpin2n(Q�) is determined up to

conjugacy by the conjugacy classes of spin+γ,spin−γ ∈ GL2n−1 , stdγ ∈ GL2n and Nγ ∈
Gm. We complete the proof by noting that the two sides of (10.15) become conjugate

under spin+, spin−, std and N by (10.19).

11. Compatibility at unramified places

We continue in the setup of §10 with the same running assumptions. We determined

the image of Frobenius under ρCπ at each prime away from some finite set S. Now we
compute the image at the finite places p � � above S\Sbad. The argument follows that of

[50, §10], but there are new technical difficulties due to half-spin representations and the

automorphism θ.

Proposition 11.1. Let p be a prime of E not lying above Sbad ∪ {�}. Then ρCπ is
unramified at p. Moreover, writing q := p∩F ,

ρCπ (Frobp)ss ∼ ιq
−n(n−1)/4
p φπq

(Frobp) ∈GSpin2n(Q�).

Proof. Fix p as in the statement. Let p denote the prime of Q below p. Let π	 be a

transfer of π from G∗(AF ) to G(AF ) as in the paragraph above (10.4). Let B(π	) be the

set of cuspidal automorphic representations τ of G(AF ) such that

• τqSt
and π	

qSt are isomorphic up to a twist by an unramified character,
• τ∞,qSt,p and π	,∞,qSt,p are isomorphic,
• τp is unramified,
• τ∞ is ξ-cohomological.

We define an equivalence relation ≈ on the set B(π	) by declaring that τ1 ≈ τ2 if and

only if τ2 ∈ A(τ1). (Recall the definition of A(τ1) from above (9.3); notice that τ1 ≈ τ2 if

and only if τ1,q � τ2,q.) To simplify notation, we will write B for a set of representatives
for B(π	)/≈.

For ε∈ {+,−}, define (true) representations of ΓE by ρSh,εB :=
∑

τ∈B ρSh,ετ (see Theorem

9.6). Put b(π	) :=
∑

τ∈B a(τ)∈Z>0. Since ρ
Sh,ε,∨
τ satisfies (10.4) for each τ ∈B, we deduce

the following on the dual of ρSh,εB by comparing the images of Frobenius conjugacy classes

at all but finitely many places via (10.4) and (10.10):

ρSh,ε,∨B � ib(π�) ◦ spinε ◦ρCπ . (11.1)

We adapt the argument of Theorem 9.6. Consider the function f on G(AF ) of the form
f = f∞fqSt

1Kp
f∞,qSt,p, where f∞ and fqSt

are as in that argument, and f∞,qSt,p is such

that, for all automorphic representations τ of G(AF ) with (τ∞)K �= 0 and Trτ∞(f∞) �= 0,

we have

Trτ∞,qSt,p(f∞,qSt,p) =

{
1 if τ∞,qSt,p � π	,∞,qSt,p,

0 otherwise.
(11.2)
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Arguing as in Theorem 9.6, we obtain

ι−1Tr(Frobjp,ρ
Sh,ε
B ) =

∑
τ∈B

a(τ)Trτp(f
(j)
p ) =

∑
τ∈B

a(τ)q
jn(n−1)/4
p Tr(spinε,∨(φτq))(Frob

j
p).

(11.3)

Define ρShB := ρSh,+B ⊕ρSh,−B . Applying (11.3) for both ε=± and taking the sum, we obtain

ι−1Tr(Frobjp,ρ
Sh
B ) =

∑
τ∈B

a(τ)q
jn(n−1)/4
p Tr(spin∨(φτq))(Frob

j
p). (11.4)

Since Xu [81, Thm. 1.8] describes global L-packets for (not only GSp2n but) quasi-

split forms of GSO2n, the argument for [50, Lem. 10.2] goes through unchanged,
except Corollary 9.7 replaces [50, Cor. 8.4]. This argument shows that π	 and τ ⊗ ω

belong to the same global packet in Xu’s paper for an automorphic quadratic character

ω : GSO
E/F
2n (AF ) → C×. Since each member of the packet in [81] is a θ-orbit of

representations, this tells us that either π	
x � τx⊗ωx or θ(π	

x) � τx⊗ωx at almost all
places x (where both π	

x, τx, and ωx are unramified). Since π	
x � τx at almost all x,

π	
x � π	

x⊗ωxorθ(π
	
x)� π	

x⊗ωx. (11.5)

Let us define characters χε : ΓE →{±1} from ω via spinε as follows. Via class field theory

and Galois cohomology (applying [54, Lem. A.1] to GSO
E/F
2n ; see also [79]), we assign to

ω the continuous character

WF → Z(GSpin2n)�ΓE/F ,

whose restriction to WE factors through a character c : ΓE →Z(GSpin2n). We then define

χε := spinε(c). We deduce

χ+spin+(ρCπ )⊕χ−spin−(ρCπ )� spin(ρCπ ), (11.6)

by using (11.5) to verify that the semisimplfication of the image of Frobenius matches at

almost all places.

By Lemma 5.6(iii), we have χ+ = χ−. Set χ := χ+. The same lemma tells us that χ= 1
or that ρCπ has image in the group H2n−1 from (5.4) and χ= κ0 ◦ρCπ .
First case. Suppose that χ = 1 for every τ ∈ B. Then, for each τ ∈ B, there is some

l ∈ Z/2Z, and we have

spinε,∨(φτq)� spinε,∨(θl(ωqφπq
))� χε(−1)lspinε(−1)l,∨(φπq

) = spinε(−1)l,∨(φπq
).

As l does not depend on ε, we obtain from (11.4) that

ι−1TrρShB (Frobjp) = b(π	)q
jn(n−1)/4
p Tr(spin∨(φπq

))(Frobjp), j � 1.

Thus, ρShB (Frobp)ss∼ ιq
n(n−1)/4
p ib(π�)◦spin∨(φπq

)(Frobp). Comparing the dual of this with

(11.1), we deduce that

spinρCπ (Frobp)ss ∼ ιq
−n(n−1)/4
p spin(φπq

)(Frobp).
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Since we also know the conjugacy relation with std and N in place of spin from (10.11)

and Proposition 10.5 (and the argument at (10.16) in its proof), we use Lemma 5.7 to

conclude that

ρCπ (Frobp)ss ∼ ιq
−n(n−1)/4
p θkφπq

(Frobp) ∈GSpin2n(Q�), for some k ∈ Z/2Z. (11.7)

If k= 0, then (11.7) implies the theorem. So we assume k= 1 in the rest of the argument.

We now distinguish between those τ ∈ B according to whether or not their Satake

parameter at q becomes conjugate to that of π under spin+ and spin−: Write

Bgood := {τ ∈B |spinε(φτq)� spinε(φπq
), ε ∈ {+,−}} (11.8)

and Bbad :=B−Bgood. Thus, (11.3) implies

q
−jn(n−1)/4
p ι−1b(π	)Trspinε(ρCπ )(Frob

j
p) =

∑
τ∈Bgood

a(τ)Tr(spinε(φπq
))(Frobjp)

+
∑

τ∈Bbad

a(τ)Tr(spin−ε(φπq
))(Frobjp). (11.9)

Equation (11.7) and (11.9) imply that spin−ε(φπq
)b(π

�) � spinε(φπq
)b0 ⊕spin−ε(φπq

)b1 , as

WEp
-representations, where b0 =

∑
τ∈Bgood

a(τ), b1 =
∑

τ∈Bbad
a(τ) and b(π	) = b0+ b1.

Thus,

spin−ε(φπq
)b(π

�)−b1 � spinε(φπq
)b0 . (11.10)

As π	 contributes to Bgood, we have b0 = b(π	)− b1 > 0. Thus, spin−ε(φπq
)� spinε(φπq

),

and φπq
∼ θφπq

, in which case the proposition follows from (11.7). Here, we applied

Lemma 1.1 of [50] and the fact that spin±, std, N are fundamental representations (see
table above Lemma 1.1 in [loc. cit ]).

Second case. Suppose that χ �= 1 for some τ ∈B. As explained, then ρCπ has image in

the group H2n−1 from (5.4). We obtain from (11.4) and (11.1) that

ι−1b(π	)Tr
(
spin(ρCπ )⊕χspin(ρCπ )

)
(Frobjp) =

=
∑
τ∈B

a(τ)(1+χ(Frobp)
j)q

jn(n−1)/4
p Tr(spin(φτq(Frobp)

j)). (11.11)

For each τ ∈B, there exist a,b ∈ Z/2Z such that for both ε ∈ {±1}, we have spinε(φτp)�
χbspin(−1)aε(φπp

). Thus, we have

(1⊕χ)⊗ spin(φτp
)� (χb⊕χb+1)⊗

[
spin(−1)a(φπp

)⊕ spin−(−1)a(φπp
)
]
� (1⊕χ)⊗ spin(φπp

)

as WEp
-representations. In particular, on the right-hand side of (11.11), we may replace

φτp by φπp
. We have χspin+(ρCπ ) � spin−(ρCπ ) by Lemma 5.6(ii) and so χspin(ρCπ ) �

spin(ρCπ ). By removing the multiplicity b(π	) on both sides of (11.11), we thus find that

spin(ρCπ )
⊕2|WEp

� [1⊕χ]⊗ spin(φπq
)⊗| · |−jn(n−1)/4

q . (11.12)

We claim that, in fact, also χspin+(φπq
)� spin−(φπq

). If true, (11.12) would imply that

spin(ρCπ )|WEp
� spin(φπq

)⊗| · |−jn(n−1)/4
q . (11.13)
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We check the claim. As pr◦ surjects Z(GSpin2n) onto Z(SO2n), we see that pr◦ induces

an isomorphism from the component group of H2n−1 to the component group of H◦
2n−1 =

SO2n−1Z(SO2n). Consequently, χ (which equals κ0 ◦ ρCπ by Lemma 5.6(iii)) is equal to
the composition

ΓE

ρC

π�→ H◦
2n−1 � {±1}.

We know that pr◦(φπq
(Frobp))

◦∼ pr◦(ρCπ (Frobp)ss) ∈ SO2n since they become conjugate

after applying std. Therefore, χ|WEp
equals

WEp

φ
π�
q→ H◦

2n−1 � {±1}

and hence equals WEp

φπq→ H2n−1 � {±1} (the argument is similar to the one below
(10.14)), which, in turn, implies that χspin+(φπq

) � spin−(φπq
). Hence, the claim is

proved, and (11.13) holds true as observed above.

We thus find (11.7) again. If k = 0 in that equation, we are done. Now assume k = 1.
Define Bgood,Bbad as in (11.8). As χspin+(φπq

)� spin−(φπq
), it follows from (11.6) that

for each τ ∈ Bbad, we have spinε(φτq) � spin−ε(φπq
) for both signs ε ∈ {±1}. Thus, we

obtain (11.9) with #Bgood > 0 again. By the same argument as in (11.10), we deduce

that φπq
∼ θφπq

, in which case the proposition follows from (11.7).

12. The main theorem

In this section, we prove Theorem A (Theorem 12.5), the main result of this paper. Before
doing this, we switch the normalization for π from (coh) to (L-coh), and extend the Galois

action from ΓE to ΓF .

As in Theorem A, let π be a cuspidal automorphic representation of G∗(AF ) satisfying

(St) and (L-coh). Fix a cuspidal automorphic representation π� of SO
E/F
2n (AF ) which

embeds in π|
SO

E/F
2n (AF )

as it is possible by [51]. Assume either (std-reg) for π or Hypothesis

6.11 for an SO2n(AF )-subrepresentation π� of π. Define π̃ := π|sim|−n(n−1)/4. Then π̃ is

ξ-cohomological and will play the role of π in Sections 10 and 11. Naturally, π� is a
subrepresentation of π̃|SO2n(AF ) since |sim| is trivial when restricted to SO2n(AF ).

Let SF (resp. SE) be the finite set of places of F (resp. E ) above S := Sbad∪{�}. Fix
an infinite place y∞ ∈ V∞ and also fix a finite place q as in (St). (Recall that the group

G, Shimura varieties, and the resulting GSpin2n-valued Galois representations in earlier
sections depend on the choice of y∞ and q.) From Propositions 10.2 and 11.1, we obtain

ρCπ̃ : ΓE,S →GSpin2n(Q�)

such that for every p /∈ SE , writing q := p|F , we have

ρCπ̃ (Frobp)ss ∼ ιq
−n(n−1)/4
p φπ̃q

(Frobp) = ιφπq
(Frobp). (12.1)

Let us explain the definition of ρπ on ΓF,S . If n is even (thus E = F ), then we simply

take ρπ := ρCπ̃ . In case n is odd (so [E : F ] = 2), write cy∞ ∈ Γ for the complex conjugation

corresponding to y∞ (canonical up to conjugacy). In order to apply Lemma A.1, we check
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Lemma 12.1. When n is odd, we have cy∞ρCπ̃ � θ ◦ρCπ̃ .

Proof. In light of Proposition 5.8, it is enough to check this locally, namely, that

ρCπ̃ (cy∞Frobpc
−1
y∞)ss ∼ θ ◦ρCπ̃ (Frobp)ss in GSpin2n(Q�)

for almost all primes p of E. For each p, write q := p∩F . Firstly, if q splits in E as pc(p),
then we use (12.1) to deduce that

ρCπ̃ (cy∞Frobpc
−1
y∞)ss ∼ ρCπ̃ (Frobc(p))ss ∼ ιφπq

(Frobc(p))∼ ιθ(φπq
(Frobp))∼ θ(ρCπ̃ (Frobp)).

(To see the third conjugacy relation, we argue as follows. From (8.4), we see that an

element of GSO
E/F
2n,Fq

has the form (g,θ(g)) with g ∈ GSO2n,Ep
and that GSO

E/F
2n,Fq

is

isomorphic to GSO2n,Ep
and GSO2n,Ec(p)

by the projection map onto the first and second

components, respectively. Likewise, the dual group of GSO
E/F
2n,Fq

is naturally the subgroup

of GSpin2n×GSpin2n consisting of elements of the form (g,θ(g)), the two components
corresponding to p and c(p). It follows that φπq

(Frobc(p))∼ θ(φπq
(Frobp)).)

Secondly, if q is inert in E, then cy∞Frobpc
−1
y∞ ∼ Frobp. Thus, we need to check

that the conjugacy class of ρCπ̃ (Frobp)ss is θ-invariant. Writing θ(φπq
(Frobq)) = s� c ∈

GSpin2n(Q�)�ΓE/F ,

θ(φπq
(Frobp))∼ θ(φπq

(Frob2q)) = sθ(s)∼ θ(s)s in GSpin2n(Q�).

This implies the desired θ-invariance via (12.1). The proof is complete.

We are assuming that n is odd. By Lemmas 12.1 and A.1, we extend ρCπ̃ to a Galois

representation to be denoted ρπ:

ρπ : ΓF,S →GSpin2n(Q�)�ΓE/F . (12.2)

There are two choices up to conjugacy (Example A.6). We choose one arbitrarily and

possibly modify the choice below.

We return to treating both parities of n. We fixed π� above. Theorem 6.5, or Hypothesis
6.11 if (std-reg) is not assumed, supplies us with

ρπ� : ΓF,S → SO2n(Q�)�ΓE/F ,

such that ρπ�(Frobq)ss
◦∼ ιφπ�

q
(Frobq) for q,p as above. Thanks to (12.1) and the unramified

Langlands functoriality with respect to SO2n →GSO
E/F
2n (whose dual morphism is pr◦),

ρπ�(Frobp)ss
◦∼ ιφπ�

q
(Frobp)∼ ιpr◦(φπq

(Frobp))∼ pr◦(ρπ(Frobp)ss).

Thus, the conjugacy classes at the left and right ends are O2n(Q�)-conjugate, under

the identification SO2n(Q�)� ΓE/F = O2n(Q�). Since O2n is acceptable, ρπ� |ΓE,S
and

pr◦ ◦ ρπ|ΓE,S
are O2n(Q�)-conjugate. Replacing ρπ� by an O2n(Q�)-conjugate, we may

and will assume that

ρπ� |ΓE,S
= pr◦ ◦ρπ|ΓE,S
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without disturbing the validity of (SO-i) through (SO-v) in Theorem 6.5. When n is odd,

we take an extra step as follows. Observe that ρπ� and pr◦ ◦ρπ are two SO2n(Q�)�ΓE/F -

valued representations of ΓF,S extending (12.3). If they are not equal, then pr◦ ◦ ρπ =
ρπ� ⊗χE/F by Example A.5 with χE/F : ΓF � ΓE/F

∼→{±1}. Then we go back to (12.2)

and replace ρπ with ρπ ⊗ χ, where χ is as in Example A.6; this does not affect the

discussion between (12.2) and here. Since pr◦ ◦χ= χE/F , this ensures that

ρπ� = pr◦ ◦ρπ. (12.3)

As in §2, let (s0,s1, . . . ,sn) ∈ (Q
×
� )

n+1 denote an element of TGSpin(Q�) ⊂ GSpin2n(Q�).

This element maps to diag(s1, . . . ,sn,s
−1
1 , . . . ,s−1

n ) ∈ SO2n(Q�) under pr◦, and maps to

s20s1s2 · · ·sn under the spinor norm N .

Lemma 12.2. At every infinite place y of F, the following are GSpin2n(Q�)-conjugate:

ρπ(cy)∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a, 1, . . . ,1︸ ︷︷ ︸

n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

), a ∈ {±1}, n : even,

(1, 1, . . . ,1︸ ︷︷ ︸
(n−1)/2

,−1, . . . ,−1︸ ︷︷ ︸
(n−1)/2

,1)� c, n : odd.
(12.4)

where the right-hand side lies in TGSpin(Q�)�Gal(E/F ).

Proof. In light of (12.3) (which is valid for both odd and even n as discussed above)

and Theorem 6.5 (SO-v) (or Hypothesis 6.11) which describes ρπ�(cy), the following are
GSpin2n(Q�)-conjugate:

pr◦(ρπ(cy))∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
diag(1, . . . ,1︸ ︷︷ ︸

n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

, 1, . . . ,1︸ ︷︷ ︸
n/2

,−1, . . . ,−1︸ ︷︷ ︸
n/2

), n : even,

diag(1, . . . ,1︸ ︷︷ ︸
(n−1)/2

,−1, . . . ,−1︸ ︷︷ ︸
(n−1)/2

,1, 1, . . . ,1︸ ︷︷ ︸
(n−1)/2

,−1, . . . ,−1︸ ︷︷ ︸
(n−1)/2

,1)�θ, n : odd.

Therefore, ρπ(cy) is a lift of the right-hand side (up to GSpin2n(Q�)-conjugacy) via pr◦.
Moreover, ρπ(cy)

2 = ρπ(c
2
y) = 1. We claim that these two conditions imply (12.4).

This is straightforward when n is even. Now suppose that n is odd. Evidently the

right-hand side of (12.4) satisfies the two conditions. Any other lift of order 2 can only

differ (possibly after conjugation) from the right-hand side of (12.4) by scalars {±1}.
(Use Lemma 3.1 (ii) and the order two condition.) This implies (12.4) since every g ∈
GSpin2n(Q�)�c is conjugate to −g; indeed, −g = ζgζ−1 if ζ ∈ ZSpin(Q�) is an element of

order 4, noting that θ(ζ) = ζ−1.

Let ωπ : F×\A×
F → C× denote the central character of π. By abuse of notation, we

still write ωπ (depending on the choice of ι) for the �-adic character of ΓF corresponding
to ωπ via class field theory (as in [33, pp.20–21]). To make ωπ explicit, recall that π̃ =

π|sim|−n(n−1)/4 is ξ-cohomological. By condition (cent), the central character of ξ is

z �→ zw on F×
y at every real place y of F, for an integer w independent of y. Therefore,
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(recalling sim is the squaring map on the center)

ωπ,y(z) = z−w|z|n(n−1)/2 = sgn(z)w|z|−w+n(n−1)/2, z ∈ F×
y .

Then ωπ| · |w−n(n−1)/4 is a finite-order Hecke character which is sgnw at every real place.

Hence, ωπ = χ
−w+n(n−1)/2
cyc χ0, where χcyc is the �-adic cyclotomic character, and χ0 a

finite-order character with χ0(cy) = (−1)w at each real place y. The upshot is that

ωπ(cy) = (−1)−w+n(n−1)/2(−1)w = (−1)n(n−1)/2, y : real place of F. (12.5)

We are ready to upgrade (12.1) to a compatibility at places of F for odd n (thus, [E :

F ] = 2).

Corollary 12.3. We have N ◦ρπ = ωπ. Moreover, at every finite place q of F not above
Sbad∪{�},

ρπ(Frobq)ss ∼ ιφπq
(Frobq).

Remark 12.4. The corollary is certainly not automatic from (12.1) since the unramified

base change from G∗(Fq) to G∗(Ep) is not injective when q does not split in E. Curiously,
our proof crucially relies on the image of complex conjugation. We have not found a local

or global proof only using properties at finite places.

Proof. Via the unramified Langlands functoriality with respect to the central embedding

Gm ↪→GSO
E/F
2n , (12.1) implies that N ◦ρπ|ΓE

= ωπ|ΓE
. If n is even, then E = F , so there

is no more to prove as the latter assertion is already true by (12.1).
Henceforth, assume that n is odd (so [E : F ] = 2). Then either N ◦ ρπ = ωπ or N ◦

ρπ = ωπ ⊗χE/F , where χE/F : ΓF � ΓE/F
∼→ {±1}. To exclude the latter case, let y be

a real place of F. We have N (ρπ(cy)) = (−1)(n−1)/2 from Lemma 12.2, and ωπ(cy) =
(−1)n(n−1)/2 from (12.5), but clearly, χE/F (cy) = −1. Then the only possibility is that

N ◦ρπ = ωπ.

We prove the second assertion. If q splits in E, this follows immediately from (12.1) for
ρπ|ΓE,S

. Henceforth, assume that q is inert in E. We have seen that pr◦◦ρπ|ΓE,S
= ρπ� |ΓE,S

.

Theorem 6.5 (SO-i) (or Hypothesis 6.11) tells us that

ρπ�
q
(Frobq)ss ∼ ιφπ�

q
(Frobq) = ιpr◦(φπq

(Frobq)).

(Note that the outer automorphism ambiguity disappears as it is absorbed by the SO2n-

conjugacy on the nontrivial coset of SO2n�ΓE/F ; since q is inert in E, the image of Frobq

in ΓE/F is nontrivial.) Therefore, ρπ(Frobq)ss ∼ zιφπq
(Frobq) for some z ∈ Q

×
� . Taking

the spinor norm,

N (z) = (N ◦ρπ(Frobq)ss)N (ιφπq
(Frobq))

−1 = ωπ(Frobq)ωπ(Frobq)
−1 = 1.

It follows that z ∈ {±1}. Since every g ∈ GSpin2n(Q�)� c is conjugate to −g (proof of

Lemma 12.2), we conclude that ρπ(Frobq)ss is conjugate to ιφπq
(Frobq).

Theorem 12.5. Theorem A is true.
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Proof. Let π be as in the theorem. We fix an automorphic representation π� of
SO

E/F
2n (AF ) in π|

SO
E/F
2n (AF )

, take ρπ� : ΓF → SO2n(Q�)�ΓE/F to be as in Theorem 6.5,

or Hypothesis 6.11 if (std-reg) is false, and define

ρπ : ΓF →GSpin2n(Q�)�ΓE/F , (12.6)

such that ρπ� = pr◦ ◦ρπ as explained at the start of this section. We can inflate ρπ to a

representation ΓF →GSpin2n(Q�)�ΓF of Theorem A, but we work with ρπ in the form

of (12.6) as this is harmless for verifying the theorem.
The equality ρπ� = pr◦ ◦ρπ and Corollary 12.3 imply (A2). Corollary 12.3 exactly gives

(A1). Item (A4) is straightforward from Lemma 12.2. To see (A5), note that the image of

ρπ in PSO2n(Q�) is the same as the image of ρπ� in the same group. The Zariski closure

of the image is (possibly disconnected and) reductive since ρπ� is semisimple and contains
a regular unipotent element by Corollary 6.8. Hence, (A5) is implied by Proposition 5.5.

Now ρπ also contains a regular unipotent in the image, so (A6) and the uniqueness of ρπ
up to conjugacy are consequences of Proposition 5.8.
It remains to verify (A3). We begin with part (b). If πq has nonzero invariants under

a hyperspecial (resp. Iwahori) subgroup, then π�
q and ωπ,q enjoy the same property.

Therefore, (b) follows from (A2) and Theorem 6.5 (SO-iv). To prove part (c), write p

for a place of E above q. Since p is unramified over E, it suffices to check that ρπ|ΓE
is

crystalline at p. Moreover, we may assume that F �=Q by the automorphic base change of

[50, Prop. 6.6] and (A6). (If F =Q, then replace F with a real quadratic field F ′ in which

� is split, and E with EF ′. By (A6), ρπ|ΓF ′ � ρπF ′ , where πF ′ is the base change of π to
F ′ constructed in loc. cit. Thus, the question is now about ρπF ′ .) Now that F �= Q, the

Shimura varieties in §9 are proper, and ρSh,ε
π� is crystalline at all places above � by [57].

Since spin ◦ρπ|ΓE
embeds in ρSh,+

π� ⊕ρSh,−
π� (which is isomorphic to the a(π	)-fold direct

sum of spin ◦ ρπ), and since spin is faithful, we deduce that ρπ|ΓE
is crystalline at p as

desired.

Finally, we prove (A3), part (a). We first claim that if two cocharacters μ1,μ2 ∈
X∗(TGSpin) become conjugate after composition with each of spin+,∨, spin−,∨, std◦ and
N , then μ1 and μ2 are GSpin2n-conjugate. To see this, note that a semi-simple conjugacy

class γ in GSpin2n(C) is determined by the conjugacy classes spin±(γ), N (γ) and std(γ)

by [50, Lem. 1.3] (thus also determined by spin±,∨(γ), N (γ) and std(γ)) and the table
above Lemma 1.1 therein. The same statement holds for the cocharacters via the Weyl

group-equivariant isomorphism X∗(TGSpin)⊗ZC× → TGSpin(C), proving the claim.

Our second claim is that for every y : F ↪→ C,

spinε(μHT(ρπ,q,ιy))∼ spinε(ιμHodge(ξy)− n(n−1)
4 sim), ε ∈ {±}. (12.7)

Accept this for now. The representations std◦ and N factor over the isogeny (N ,pr◦) :
GSpin2n →Gm×SO2n, so it follows easily from (A2) and Theorem 6.5 (SO-iii) that (12.7)

holds with std◦ and N in place of spinε. Thus, we can conclude by the first claim.
To complete the proof of (A3)(a), we check the second claim (12.7). A base-change

argument as in the preceding paragraph allows us to assume that F �= Q. Recall that

we chose an embedding y∞ : F ↪→ C in the definition of G and the Shimura data
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(ResF/QG,X
ε). It follows from Proposition 9.8 (applicable as F �=Q) that

μHT(spin
ε,∨ ◦ρπ,ιy∞) ∼ spinε,∨ ◦

(
ιμHodge(ξy∞)− n(n−1)

4 sim
)
. (12.8)

We can repeat the construction from the beginning of §12 up to now, with y : F ↪→
C in place of y∞. Write ρπ(y) : ΓF → GSpin2n(Q�)� ΓE/F for the resulting Galois

representation. From (A1) and (A6) of Theorem A (which have already been verified)

to ρπ and ρπ(y), we deduce that ρπ � ρπ(y). Applying Proposition 9.8 to ρπ(y), we see

that (12.8) holds with y in place of y∞.
Now the left-hand side of (12.8) equals spinε,∨ ◦μHT(ρπ,ιy) by construction of Hodge–

Tate cocharacters, so we are done with proving (12.7) as desired.

Remark 12.6. Lemma 12.2 tells us that ρπ is totally odd. Our result also shows
that ρπ(cy) is as predicted by [12, Conj. 3.2.1, 3.2.2] for every infinite place y of F.

Indeed, as explained in §6 of their paper, their conjectures are compatible with the

functoriality. Considering the L-morphism LGSO
E/F
2n → LSO

E/F
2n dual to the inclusion

SO
E/F
2n ↪→ GSO

E/F
2n , we reduce the question to the case of SO

E/F
2n in view of the

characterization of ρπ(cy) in terms of pr◦(ρππ
(cy)). The latter is conjugate to ρπ� , which

is as conjectured by loc. cit. by Remark 6.6.

Remark 12.7. It was easier to determine the Hodge–Tate cocharacter in the GSp-case

[50], thanks to the absence of nontrivial outer automorphisms. In particular, we did not
need to prove the analogue of Proposition 9.8. Compare with the proof of Theorem 9.1

(iii.a’) of loc. cit.

13. Refinement for SO2n-valued Galois representations

As an application of our results, we improve upon Theorem 6.5 in this section by removing

the outer ambiguity in the images of Frobenius conjugacy classes.
Let E/F be a quadratic CM extension of F in case n is odd, and E := F for n even. Let

SO
E/F
2n be the corresponding group defined above (6.2). If π� (resp. π) is an automorphic

representation of SO
E/F
2n (AF ) (resp. GSO

E/F
2n (AF )), we write Sbad(π

�) (resp Sbad(π)) for

the set of rational prime numbers p, such that p= 2, p ramifies in E, or π�
p (resp. πp) is

a ramified representation. For other notation, we refer to Section 1.

In order to extend a given cohomological representation π� of SO
E/F
2n (AF ) to a

cohomological representation π of GSO
E/F
2n (AF ), the following condition on the central

character ωπ� : μ2(F )\μ2(AF )→ C× is necessary in view of condition (cent) of §9. (If π
is ξ-cohomological with w ∈ Z as in (cent), then all ωπ�,y are trivial, resp. nontrivial,

according as w is even, resp. odd.)

(cent◦) The sign character ωπ�,y : μ2(Fy) = {±1}→ C× does not depend on y|∞.

Theorem 13.1. Let π� be a cuspidal automorphic representation of SO
E/F
2n (AF ) satis-

fying (cent◦), (coh◦), (St◦) and (std− reg◦) of §6. Then there exists a semisimple Galois

representation (depending on ι)

ρπ� = ρπ�,ι : ΓF → SO2n(Q�)�ΓE/F
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satisfying (SO-i)–(SO-v) as in Theorem 6.5 as well as the following.

(SO-i+) For every finite prime q of F not above Sbad(π
�)∪{�},

ιφπ�
q
∼WD(ρπ� |ΓFq

)F−ss,

as SO2n(Q�)-parameters.

(SO-iii+) For every q|�, the representation ρπ�,q is potentially semistable. For each

y : F ↪→ C such that ιy induces q, we have μHT(ρπ�,q,ιy)∼ ιμHodge(ξ
�,y).

Condition (SO-i+) characterizes ρπ� uniquely up to SO2n(Q�)-conjugation.

Remark 13.2. Statement (SO-i+) is stronger than (SO-i) in that the statement is up

to SO2n(Q�)-conjugacy, but also weaker as it excludes the places above Sbad(π
�)∪{�}.

Clearly, (SO-iii+) strengthens (SO-iii). If we drop (std-reg◦) from the assumption, then

the theorem can be proved by the same argument, but conditionally on Hypothesis 6.11.

Proof of Theorem 13.1. We have μ2 =Z(SO
E/F
2n ). We claim that the central character

ωπ� extends (via μ2(AF )⊂ A×
F ) to a Hecke character

χ : F×\A×
F → C×

such that χy(z) = zw at every infinite place y, where w = 0 (resp. w = 1) if ωπ�,y is trivial

(resp. nontrivial) at every y|∞.

To prove the claim, let E′ be a quadratic CM extension of F. We start by extending
ωπ� to a (unitary) Hecke character χ′ : F×\A×

F → C× whose infinite components are

trivial if w = 0 and the sign character if w = 1. If w = 0, then such a χ′ exists since

μ2(F )μ2(F∞)\μ2(AF ) is a closed subgroup of F×F×
∞\A×

F , where the bar means the closure
in A×

F . If w = 1, consider the quadratic Hecke character χE′/F associated with E′/F
via class field theory. Then ωπ�(χE′/F |μ2(AF )) extends to a Hecke character with trivial

components at ∞ by the w = 0 case. Multiplying χE′/F , we obtain a desired choice of
χ′. Whether w = 0 or w = 1, we now see that χ := χ′| · |w has desired components at ∞,

where | · | is the absolute value character on A×
F . The claim is proved.

Consider the multiplication map f : GL1×SO
E/F
2n →GSO

E/F
2n . Let ξ� be such that π� is

ξ�-cohomological. Write ς for the algebraic character z �→ zw of GL1 over F. Then (ς,ξ�)

descends to an algebraic representation ξ of GSO
E/F
2n via f.

Let us extend π� to an irreducible admissible GSO
E/F
2n (AF )-representation, by decom-

posing π� =⊗′
vπ

�
v and taking an irreducible subrepresentation πv of

Ind
GSO

E/F
2n (Fv)

GL1(Fv)SO
E/F
2n (Fv)

χvπ
�
v,

which is semisimple [80, pp.1832–1833]. Take πv to be unramified for almost all v, and

define π :=⊗′
vπv. Lemma 5.4 of [81] states that∑
ω∈X/YX(π)

m(π⊗ω) =
∑

g∈GSO
E/F
2n (AF )/G̃(π)GSO

E/F
2n (F )

m
(
(π�)g

)
,
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where X is the set of characters of GSO
E/F
2n (AF )/SO

E/F
2n (AF )Z(GSO

E/F
2n )(AF ), and ω

in the formula is represented by such characters. We refer to loc. cit. for some undefined
notation that is not important for us but content ourselves with pointing out that both

sides are finite sums. Since m(π�)> 0, the right-hand side is positive. Thus, the left-hand

side is positive, and thus we may (and do) twist π so that it is discrete automorphic.

We now check that π satisfies the conditions of Theorem A. Since π�
∞ is ξ�-

cohomological, by construction, π∞ is cohomological according to Lemma 7.2. By Lemma

7.1, π satisfies (St), thus also cuspidal. Condition (std-reg) is implied by (std-reg◦) on π�.

Hence, we have a Galois representation

ρπ : Γ→GSpin2n(Q�)�ΓE/F

such that for every finite F -place q not above Sbad(π)∪{�},

ρπ(Frobq)ss ∼ ιφπq
(Frobq) ∈GSpin2n(Q�)�ΓE/F . (13.1)

As in the preceding section, we can arrange that ρπ� = pr◦ ◦ ρπ (not just up to outer

automorphism). The Satake parameter of π�
q is equal to the composition of the Satake

parameter of πq with the natural surjection (cf. [81, Lem. 5.2])

(pr◦,id) : GSpin2n(C)�Γ→ SO2n(C)�Γ.

In particular, (SO-i+) follows from (13.1) for the places not above Sbad(π)∪{�}. Similarly,
(SO-iii+) follows from Theorem A (A3)(a).
At this point, we have not yet completely proved (SO-i+), as the inclusion Sbad(π

�)⊂
Sbad(π) is strict in general. Thus, it remains to treat q above a prime p∈Sbad(π)\Sbad(π

�).
Consider for n odd (resp. even) the obvious hyperspecial subgroup (recall q � 2)

Kq :=

⎧⎪⎪⎨
⎪⎪⎩
{(g,λ) ∈GL2n(OE ⊗OF OFq)×O×

Fq
| g = ϑ◦gϑ◦,gt

(
0 1n
1n 0

)
g = λ

(
0 1n
1n 0

)
, det(g) = λn}

resp.{
(g,λ) ∈GL2n(OFq)×O×

Fq

∣∣ gt · ( 1n
1n

)
·g = λ ·

(
1n

1n

)
, det(g) = λn

}
of GSO

E/F
2n (Fq). Define K0q to be the kernel of the similitudes mapping Kq → O×

Fq
,

(g,λ) �→ λ. Then πq is a ramified representation of GSO
E/F
2n (Fq) but has nonzeroK0q-fixed

vectors, on whichKq acts through nontrivial characters ofKq/K0q�O×
Fq
. We fix one such

character χ0
q of Kq and do this at every q above p. Now we globalize {χ0

q}q|p to a Hecke

character χ : F×\A×
F → C× whose restriction to each O×

Fq
is χ0

q and whose archimedean

components are trivial. (This is possible by [17, Lem. 4.1.1].) Define π′ := π⊗χ−1. Then
π′ also satisfies the conditions of Theorem A. Moreover, p /∈ Sbad(π

′) by construction.

Therefore, (13.1) is true at each q|p, with π′ in place of π. Then (SO-i+) for q follows as

before.

14. Automorphic multiplicity one

Let E/F be a quadratic CM extension of F in case n is odd, and E := F for n even.

Let SO
E/F
2n and GSO

E/F
2n be as before. If π (resp. π�) is an automorphic representation

of GSO
E/F
2n (AF ) (resp. SO

E/F
2n (AF )), we write m(π) (resp. m(π�)) for its automorphic
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multiplicity. In this section, we will show that m(π�) and m(π) are 1 for certain classes of

automorphic representations of SO
E/F
2n (AF ) and GSO

E/F
2n (AF ) (and some inner forms of

those groups). To do this, we combine our results with Arthur’s result on multiplicities

for SO
E/F
2n and with Xu’s result on multiplicities for GSO

E/F
2n .

Let π� be a discrete automorphic representation of SO
E/F
2n (AF ). Arthur gives in the

discussion below [1, Thm. 1.5.2] the following result towards the computation of m(π�).

Let ψ = ψ1 � · · ·�ψr be the global (formal) parameter of π� [1, §1.4] (cf. Section 6).

Technically, ψ is an automorphic representation π� of GL2n(AF ) given as an isobaric sum

of discrete automorphic representations π�
i of GLni

(AF ), with π�
i representing the formal

parameter ψi. In terms of these parameters, Arthur proves a decomposition of the form

L2
disc

(
SO

E/F
2n (F )\SOE/F

2n (AF )
) ∼→

⊕
ψ∈Ψ̃2(SO

E/F
2n )

⊕
τ∈Π̃ψ(εψ)

mψτ

as an H̃(SO
E/F
2n )-Hecke module. It takes us too far afield to recall all the notation here,

but we emphasize that H̃(SO
E/F
2n ) is the restricted tensor product of the local algebras

H̃(SO
E/F
2n (Fv)) consisting of θ◦-invariant functions [1, before (1.5.3)]. Similarly, the local

packet Π̃ψv
(εψ) consists of θ

◦-orbits of representations.
Assume π� �� π� ◦ θ◦ for the moment. Both π� and π� ◦ θ◦ map to the same global

parameter ψ and are isomorphic as H̃(SO
E/F
2n )-modules. Arthur proves mψ ≤ 2 for all ψ.

Thus,

m(π�)+m(π� ◦θ◦)≤mψ ≤ 2. (14.1)

However, θ◦ acts on L2
disc(SO

E/F
2n (F )\SOE/F

2n (AF )), so if π� appears, then π� ◦ θ◦ also
appears. Hence, m(π�),m(π� ◦θ◦)≥ 1, forcing m(π�) = 1 and m(π� ◦θ◦) = 1.

From now on, we impose the assumption (std-reg◦) on π�. At the infinite F -places v,

the infinitesimal character of π�
v is then not fixed by θ◦. In particular, π� �� π� ◦ θ◦. By

the preceding paragraph, we have m(π�) = 1, m(π� ◦θ◦) = 1 and mψ = 2.

Proposition 14.1. Let π be a cuspidal automorphic representation of GSO
E/F
2n (AF )

satisfying (L-coh), (St) and (std-reg). Then m(π) = 1.

(cf. [50, Thm. 12.1]). Let π� be a cuspidal automorphic representation of SO
E/F
2n (AF )

contained in π. Then π� satisfies (coh◦) and (St◦) as explained at the start of §10. Let
Y (π) be the set of continuous characters ω : GSO

E/F
2n (AF )→C× which are trivial on the

subgroup GSO
E/F
2n (F )A×

F SO
E/F
2n (AF ) of GSO

E/F
2n (AF ) and such that π � π⊗ω. Xu [81,

Prop. 1.7] proves that

m(π) =mψ̃ |Y (π)/α(Sφ)|, (14.2)

where ψ̃ is the global parameter of π as defined in [81, Sect. 3] (ψ̃ is denoted φ̃ there),

and α(Sφ) will not be important for us.

We claim that Y (π) = {1} in (14.2). Let ω ∈ Y (π) and let χ : Γ → Q
×
� be the

corresponding character via class field theory. As χρπ and ρπ have conjugate Frobenius

https://doi.org/10.1017/S1474748023000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000427


Galois representations for even general special orthogonal groups 2037

images at almost all places, we obtain χρπ � ρπ by Proposition 5.8, and thus χ = 1 by
Lemma 5.6. Hence, Y (π) = {1}.
Let ψ denote the Arthur parameter of π�. In [81, Cor. 5.10], Xu states that mψ̃ =

mψ/#ΣY (π), where ΣY (π) := Σ0/Σ0(π,Y ), where Σ0 is the 2-group {1,θ}, and Σ0(π,Y )
is the group of θ′ ∈ Σ0 such that π⊗ω � πθ′

for some ω ∈ Y (π). We saw below (14.1)

that mψ = 2. It is enough to check that #ΣY (π) = 2, which would imply mψ̃ = 1. As

Y (π) = {1}, this reduces to π �� πθ. Again by (std-reg), the infinitesimal character of πv

for v|∞ is not fixed by θ, so this is indeed true.

Let G be the inner form of GSO
E/F
2n which was constructed in (8.7) and used in our

Shimura data. We close this section with computing automorphic multiplicities for this

G. In particular, we prove that the multiplicities a(·) appearing in Section 9 are in fact
equal to 1.

Proposition 14.2. Let π be a cuspidal automorphic representation of G(AF ), satisfying
(coh), (St) and (str-reg). Then m(π) = 1.

Proof. The proof is the same as the argument for [50, Thm. 12.2]. The main point is that

automorphic representations τ∗ of G∗(AF ) = GSO
E/F
2n (AF ) contributing to the analogue

of [loc. cit., Equation (12.2)] have automorphic multiplicity 1. Notice that [81, Thm. 1.8]

may be used again, together with the existence of Galois representations (our Theorem

A), to prove that for all π∗ and τ∗ contributing to [50, Eq. (12.2)], we have τ∗qSt
� π∗

qSt
.

15. Meromorphic continuation of spin L-functions

Let n ∈ Z≥3, and e be as in (0.2). Let π be a cuspidal automorphic representation of

GSO
E/F
2n (AF ) unramified away from a finite set of places S satisfying (St), (L-coh) and

(spin-reg). This implies (std-reg) for π. Indeed, if the image of (s0,s1, . . . ,sn) ∈ TGSpin

under spinε is regular for some ε ∈ e, then s1, . . . ,sn must be mutually distinct, as the

weights in spinε are described as the Weyl orbit(s) of (2.9).

Proposition 15.1. Assume that π satisfies (St), (L-coh) and (spin-reg). Let n ∈ Z≥3.
There exist a number field Mπ and a semisimple representation

Rε
π,λ : Γ→GL2n/|e|(Mπ,λ)

for each finite place λ of Mπ such that the following hold for every ε ∈ e. (Write � for the

rational prime below λ.)

(1) At each place q of F not above Sbad∪{�}, we have

char(Rε
π,λ(Frobq)) = char(spinε(ιφπq

(Frobq))) ∈Mπ[X].

(2) Rε
π,λ|Γq

is de Rham for every q|�. Moreover, it is crystalline if πv is unramified and

q /∈ SF
bad.

(3) For each q|� and each y : F ↪→C such that ιy induces q, we have μHT(R
ε
π,λ|Γq

,ιy) =

ι(spinε ◦μHodge(φπy
)). In particular, μHT(R

ε
π,λ|Γq

,ιy) is a regular cocharacter for

each y.
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(4) Rε
π,λ is pure.

(5) Rε
π,λ maps into GSp2n/|e|(Mπ,λ) if n ≡ 2,3 (mod 4) (resp. GO2n/|e|(Mπ,λ) if

n ≡ 0,1 (mod 4)) for a nondegenerate alternating (resp. symmetric) pairing on
the underlying 2n/|e|-dimensional space over Mπ,λ. The multiplier character με

λ :

Γ→ GL1(Mπ,λ) (so that Rε
π,λ � (Rε

π,λ)
∨⊗με

λ) is totally of sign (−1)n(n−1)/2 and

associated with ωπ via class field theory and ιλ.

Proof. Let M be the field of definition of ξ, which is a finite extension of Q in C. We can
choose Mπ to be the field of definition for the π∞-isotypic part in the (compact support)

Betti cohomology of H•(Sh+(C),Lξ)⊕H•(Sh−(C),Lξ) with M -coefficient. Then Mπ is a

finite extension of M in C. For each prime � and a finite place λ of Mπ above �, extend

M ↪→C to an isomorphism Mπ,λ �C. Identifying Mπ,λ �Q�, we have ιλ :C
∼→Q�. Take

Rε
π,λ := spinε ◦ρπ,ιλ .

Then (1), (2) and (3) follow from (A2) and (A3) of Theorem A, respectively. Part (4)
follows from (SO-ii) of Theorem 6.5 via (A2). The first part of (5) holds true since

spinε : GSpin2n → GL2n−1 is an irreducible representation preserving a nondegenerate

symplectic (resp. symmetric) pairing up to scalar if n is 2 (resp. 0) mod 4, and since spin :

GPin2n→GL2n is irreducible and preserves a nondegenerate symplectic (resp. symmetric)
pairing up to scalar if n is 3 (resp. 1) mod 4. Indeed, the irreducibility is standard and

the rest follows from Lemma 4.2 (with the pairing given as in the lemma). Lemma 4.2

also tells us that με
λ =N ◦ρπ,ιλ . By (A2), ωπ =N ◦ρπ,ιλ so με

λ is associated with ωπ. As
in the proof of part 5 of [50, Prop. 13.1], ωπ⊗| · |n(n−1)/2 corresponds to an even Galois

character of Γ. (We change n(n+1)/2 in [50] to n(n−1)/2 here due to the difference in

the definition of (L-coh).) It follows that μλ,y(cy) = (−1)n(n−1)/2 for every y|∞.

Now we apply potential automorphy results to the weakly compatible system of Rε
π,λ.

Theorem 15.2. Theorem D is true.

Proof. This follows from [65, Thm. A], which can be applied to the weakly compatible

system {Rε
π,λ} thanks to the preceding proposition.

Remark 15.3. We cannot appeal to the potential automorphy as in [3, Thm. A], as

Rε
π,λ may be reducible. The point of [65] is to replace the irreducibility hypothesis with

a purity hypothesis (guaranteed by (iv) of Proposition 15.1). We take advantage of this.

Appendix A. Extending a Galois representation

Here we investigate the problem of extending a Ĝ-valued Galois representation to an
LG-valued representation over a quadratic extension.

We freely use the notation and terminology of §1. Let E be a CM quadratic extension

over a totally real field F in an algebraic closure F . Set Γ = ΓF := Gal(F/F ), ΓE :=
Gal(F/E), and ΓE/F := Gal(E/F ) = {1,c}. Let G be a quasi-split group over F which

splits over E. Let θ ∈Aut(Ĝ) denote the action of c on Ĝ (with respect to a pinning over

https://doi.org/10.1017/S1474748023000427 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000427


Galois representations for even general special orthogonal groups 2039

F ). By Ĝ(Q�)�ΓE/F , we mean the L-group relative to E/F , namely, the semi-direct

product such that cgc= θ(g) for g ∈ Ĝ(Q�).
Fix an infinite place y of F. Write cy ∈ ΓF for the corresponding complex conjugation

(well-defined up to conjugacy). Let ρ′ : ΓE → Ĝ(Q�) be a Galois representation. Define

cyρ′(γ) := ρ′(cyγc
−1
y ).

(Of course, c−1
y = cy.) We will sometimes impose the following hypotheses.

(H1) CentĜ(im(ρ′)) = Z(Ĝ).

(H2) The map Z(Ĝ)→ Z(Ĝ)θ given by z �→ zθ(z) is a surjection on Q�-points.

Lemma A.1. Consider the following statements.

(1) ρ′ extends to some ρ : ΓF → Ĝ(Q�)�ΓE/F .

(2) cyρ′ � θ ◦ρ′.
(3) there exists g ∈ Ĝ(Q�) such that gθ(g) = 1 and ρ′(cyγc

−1
y ) = gθ(ρ′(γ))g−1 for every

γ ∈ ΓE.

Then (3)⇔(1)⇒(2). In particular, if ρ is as in (1), then the element g such that ρ(cy) =

g�c enjoys the property of (3). If (H1) and (H2) are satisfied, then we also have (2)⇒(3),

so all three statements are equivalent.

Remark A.2. We recommend [5, Section A.11] as a useful guide to similar ideas.

Remark A.3. Often, (2) is the condition to verify to extend a Galois representation, as
we did in Lemma 12.1 of this paper.

Proof. (3)⇔(1): First we show (3)⇒(1). Define ρ by ρ|ΓE
:= ρ′ and ρ(γcy) := ρ′(γ)gc

(γ ∈ ΓE). Then

ρ(c2y) = gcgc= gθ(g) = 1,

ρ(cyγc
−1
y ) = cyρ′(γ) = gθ(ρ′(γ))g−1,

and using this, one checks that ρ is a homomorphism on the entire Γ. A similar

computation shows (1)⇒(3) for g such that ρ(cy) = g� c.

(1)⇒(2): Write ρ(cy) = gc with g ∈ Ĝ(Q�). For every γ ∈ ΓE ,

cyρ′(γ) = ρ(cyγc
−1
y ) = gcρ′(γ)c−1g−1 = gθ(ρ′(γ))g−1.

(2)⇒(3), assuming (H1) and (H2): There exists g ∈ Ĝ(Q�) such that

ρ′(cyγc
−1
y ) = gθ(ρ′(γ))g−1, γ ∈ ΓE . (A.1)

Putting cyγc
−1
y in place of γ, we obtain

ρ′(γ) = ρ′(c2yγc
−2
y ) = gθ(gθ(ρ′(γ))g−1)g−1 = gθ(g)ρ′(γ)(gθ(g))−1.
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Hence, gθ(g) ∈ Z(Ĝ) as CentĜ(ρ
′) = Z(Ĝ) by (H1). As a central element,

gθ(g) = g−1(gθ(g))g = θ(g)g = θ(gθ(g)),

namely, gθ(g)∈Z(Ĝ)θ. By (H2), gθ(g) = zθ(z) for some z ∈Z(Ĝ). Replacing g with gz−1,

we can arrange that

gθ(g) = 1.

This does not affect (A.1), so we are done.

Lemma A.4. Assume (H1). Then the set of Ĝ-conjugacy classes of extensions of ρ′ to
Γ is an H1(ΓE/F ,Z(Ĝ))-torsor if nonempty.

Proof. Fix an extension ρ0 of ρ′, which exists by Lemma A.1. If ρ is another extension

of ρ′, then set z := ρ0(cy)ρ(cy)
−1. Writing ρ0(cy) = g0 � c and ρ(cy) = g� c, we have

zg= g0, and both g0,g satisfy the condition of Lemma A.1 (3). It follows that z centralizes

θ(im(ρ′)), hence z ∈ Z(Ĝ), and also that zθ(z) = 1. Thus, z defines a Z(Ĝ)-valued 1-

cocycle on ΓE/F , and by reversing the process, such a cocycle determines an extension of
ρ′.
Let ρz be the extension given by z ∈ Z(Ĝ) such that zθ(z) = 1. It remains to show that

ρz ∼ ρ0 if and only if z= θ(x)/x for some x∈Z(Ĝ). If ρz ∼ ρ0, then ρz = Int(x)ρ0 for some

x∈ Ĝ. By (H1), x∈Z(Ĝ). Evaluating at cy, we obtain z−1ρ0(cy) = xρ0(cy)x
−1. Therefore,

z = θ(x)/x. The converse direction is shown similarly by arguing backward.

We illustrate assumptions (H1), (H2), and the lemmas in the following examples.

Example A.5. Consider Ĝ = SO2n (n ≥ 3) with θ being the conjugation by ϑ◦ ∈
O2n(Q�)− SO2n(Q�) as in (2.4). Assume that im(ρ′) contains a regular unipotent of

SO2n(Q�). In this case, Z(Ĝ) = Z(Ĝ)θ = {±1}. Then (H2) is trivially false but (H1) is

true. To see this, by assumption, std ◦ ρ′ is either irreducible or the direct sum of an
irreducible (2n−1)-dimensional representation and a character. In the former case, (H1)

is clear by Schur’s lemma. In the latter case, again by Schur’s lemma, a centralizer of

im(ρ′) in SO2n(Q�) is contained in (a·12n−1 0
0 b

) with a,b ∈ {±1} up to O2n(Q�)-conjugacy.

Since the determinant equals 1, we deduce that a = b (i.e., the centralizer belongs to
Z(Ĝ)).

We easily compute Z1(ΓE/F ,Z(Ĝ)) =H1(ΓE/F ,Z(Ĝ)) � Z/2Z, the nontrivial element

sending c to −1. In fact, if ρ extends ρ′ in the setup of the preceding lemmas, the other
extension is easily described as ρ⊗χE/F , where χE/F : Γ� ΓE/F

∼→{±1}.

Example A.6. The main case of interest for us is when

• Ĝ=GSpin2n (n≥ 3) ,
• θ is the conjugation by an element of GPin2n(Q�)−GSpin2n(Q�),
• im(ρ′) contains a regular unipotent.

Since Z(Ĝ)θ =Gm (identified with invertible scalars in the Clifford algebra underlying Ĝ

as a GSpin group; see §3), assumption (H2) is satisfied. (The squaring map Gm → Gm

is clearly surjective on Q�-points.) To check (H1), CentĜ(im(ρ′)) is contained in the
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preimage of CentSO2n
(im(ρ′,◦)) via pr◦ : GSpin2n → SO2n. Since the latter centralizer is

{±1} ⊂ SO2n(Q�), we see that CentĜ(im(ρ′))⊂ pr′,−1({±1}) = Z(Ĝ).

In the coordinates for Z(Ĝ) of Lemma 2.5, Z1(ΓE/F ,Z(Ĝ)) = {(s0,s1) : s1 ∈ {±1}, s1 =
s20} � μ4, of which coboundaries are {(±1,1)} � μ2. (The first identification is given by
taking the image of c.) Hence, H1(ΓE/F ,Z(Ĝ))� Z/2Z. Let ζ = (ζ4,−1) ∈ Z(Ĝ), where

ζ4 is a primitive fourth root of unity, cf. Lemma 3.7. If ρ is an extension of ρ′, then the

other extension (up to Ĝ-conjugacy) is described as ρ⊗χ, where χ : Γ→ Z(Ĝ)�{1,c} is

inflated from ΓE/F
∼→{1,ζ�c}. Notice that pr◦ ◦χ= χE/F , for χE/F as in the preceding

example.

Example A.7. When studying Galois representations arising from automorphic repre-

sentations on a unitary group Un in n variables, two target groups appear in the literature:
the group Gn in [17, §2.1] and the C-group of Un in [12]; the two are isogenous as explained

in [12, §8.3]. The latter is the L-group of a Gm-extension of Un; it does not satisfy (H2).

The former is not an L-group but still a semi-direct product (GLn×GL1)�ΓE/F , with

c(g,μ) = (μg−t,μ) for an anti-diagonal matrix Φn ∈GLn. As such, the discussion in this
appendix goes through for Gn. An easy computation shows that Gn satisfies (H2) and

that H1(ΓE/F ,Z(GLn×GL1)) = {1} for the given Galois action. Thus, provided that ρ′

satisfies (H1) (e.g., if ρ′ is irreducible), an extension of ρ′ exists if and only if cyρ′ � θ◦ρ′,
and the extension is unique up to conjugacy. Compare this with [17, Lem. 2.1.4] (which

allows a general coefficient field of characteristic 0).

Appendix B. On local A-packets of even special orthogonal groups

In this appendix, we study the A-packets of the trivial and Steinberg representations of

quasi-split forms of SO2n, with n≥ 3, often following the notation and formulation of [1].
Let F be a finite extension of Qp. Suppose that E =F or that E is a quadratic extension

of F. Let χE/F :F× →{±1} denote the quadratic character associated with E/F via class

field theory. Let G := SO
E/F
2n denote the quasi-split form of the split group SO2n over F

twisted by χE/F . Write Õut2n(G) :=O2n(C)/SO2n(C) for the outer automorphism group

of SO2n(C). Denote by 1 and St the trivial and Steinberg representations of G(F ). We

aim to identify local A-packets containing 1 or St.
Let LF :=WF ×SU(2) denote the local Langlands group. Let | · | :WF → R×

>0 denote

the absolute value character sending a geometric Frobenius element to the inverse of the

residue cardinality of F. By abuse, keep writing | · | for its pullback to LF via projection.

Denote by Ψ+(G) the set of isomorphism classes of extended A-parameters, that is,
continuous morphisms ψ : LF × SU(2) → LG such that ψ|LF

is an L-parameter. (Two

A-parameters are considered isomorphic if they are in the same Ĝ-orbit.) An extended

A-parameter ψ ∈Ψ+(G) gives rise to an L-parameter:

φψ : LF → LG, γ �→ ψ(γ,diag(|γ|1/2,|γ|−1/2)).

Write Ψ(G) for the subset of Ψ+(G) consisting of ψ ∈ Ψ+(G) such that the image
of ψ(LF ) in SO2n(C)�ΓE/F is bounded. (Such a property is Ĝ-invariant.) The set of

Õut2n(G)-orbits in Ψ+(G) (resp. Ψ(G)) is denoted by Ψ̃+(G) (resp. Ψ̃(G)). The group
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LF ×SU(2) admits the involution permuting the two SU(2)-components (acting as the

identity on WF ). This involution induces an involution

ψ �→ ψ̂ on each of Ψ̃+(G) and Ψ̃(G).

We say ψ ∈ Ψ̃+(G) is square-integrable if gψg−1 = ψ for at most finitely many elements

g ∈ Ĝ. Then ψ lies in Ψ̃(G). To see this, let w ∈WF be a lift of (geometric) Frobenius. Then
ψ(w)m centralizes the image of ψ for somem∈Z≥1 as in [19, proof of Lem. 8.4.3]. It follows

that, replacing m with a suitable multiple, ψ(w)m has trivial image in SO2n(C)�ΓE/F .

Write IF ⊂ WF for the inertia subgroup. Since IF × SU(2)× SU(2) ⊂ LF × SU(2) has
already bounded image in SO2n(C)�ΓE/F under ψ, we see that ψ ∈ Ψ(G). Denote by

Ψ2(G) the subset of Ψ(G) consisting of square-integrable members.

Define ψtriv : LF × SU(2) → LG as follows. On LF , it is the composite map LF �
WF � ΓE/F ⊂ LG through the natural projections. On SU(2) (outside LF ), ψtriv is a

principal embedding ipri : SU(2) → Ĝ that is θ◦-invariant (i.e., ipri commutes with the

L-action of ΓE/F on Ĝ). (Such an ipri into Ĝ can be realized as the SU(2)-representation
Sym2n−2 ⊕ 1 into GL2n−1 ×GL1, where the latter is identified with the centralizer of

the element ϑ◦ ∈ GL2n from §3. Write ψSt := ψ̂triv. Then ψtriv,ψSt ∈ Ψ(G) and they are

Õut2n(G)-stable.
To every ψ ∈ Ψ̃(G), Arthur [1, Thm. 1.5.1] assigned an A-packet Π̃(ψ), which is a certain

finite multi-set consisting of Õut2n(G)-orbits of irreducible unitary representations of

G(F ). Below loc. cit. he also defines Π̃(ψ) for ψ ∈ Ψ̃+(G), consisting of Õut2n(G)-orbits of

parabolically induced representations of G(F ) (which need not be irreducible or unitary).
By a globalization (Ė/Ḟ,q,Ġ) of (E/F,G) as above, we mean an extension of number

fields Ė/Ḟ , a finite place q, and a quasi-split form Ġ of the split SO2n over Ḟ such

that Ėq � E, Ḟq � F and Ġq � G. It is an elementary fact that such a globalization
always exists. Recall that a (formal) global parameter ψ̇ ∈ Ψ̃(Ġ) gives rise to a parameter

ψ̇v ∈ Ψ̃+(ĠḞv
) and a packet Π̃(ψ̇v) at each place v of Ḟ .

Proposition B.1. Let ψ ∈ Ψ̃+(G). The following are true.

(1) Π̃(ψtriv) = {1} and Π̃(ψSt) = {St}.
(2) Assume ψ ∈ Ψ̃(G). If 1 (resp. St) is a member of Π̃(ψ), then ψ = ψtriv (resp.

ψ = ψSt).

(3) Assume that ψ = ψ̇q ∈ Ψ̃+(G) for global data (Ė/Ḟ,q,Ġ) and ψ̇ as above. If 1 (resp.

St) is a subquotient of a member of Π̃(ψ), then ψ = ψtriv (resp. ψ = ψSt).

Remark B.2. We use (3) in the main text. Part (3) would be subsumed by (2) if the

generalized Ramanujan conjecture for general linear groups was known, cf. proof of (3)
below.

Proof. (1) According to [1, Lem. 7.1.1] (and the discussion following it), the involution

ψ �→ ψ̂ changes members of A-packets by the Aubert involution, which carries 1 to St
and vice versa. So it suffices to treat the case of ψ = ψtriv.

We know that Sψ = {1} and that the L-packet Π̃(φψ) embeds in Π̃(ψ). Hence, Π̃(ψ) =

Π̃(φψ) and it is a singleton. Clearly, φψ is a spherical parameter in the sense of [1, §6.1].
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Hence, Π(φψ) contains the irreducible spherical representation corresponding to φψ via

the spherical local Langlands correspondence recalled in loc. cit.13

Hence it boils down to observing that φψtriv
corresponds to 1. (This is easy to see from

the fact that 1 is a subquotient of IndGB(δ
−1/2
B ).)

(2)⇒(3). Before proving (2), let us assume (2) and verify (3) for each (E/F,G). We

fix a Borel subgroup B and a maximal torus T of G over F such that T ⊂ B. Since
ψ comes from a global parameter, ψ|LF

is constrained by what local components of

cuspidal automorphic representations of general linear groups can be. Following the same

observations as in [81, App. A], we can express ψ concretely as follows:

ψ = ψG− ⊕
r⊕

i=1

(| · |aiψi⊕| · |−aiψ∨
i ), 0< ar < · · ·< a1 < 1/2,

where ψG− ∈ Ψ̃(SO
E/F
2n−

) and ψi ∈Ψ(GLni
) such that n−+

∑r
i=1ni = n, and if we take

M = SO
E/F
2n−

×
r∏

i=1

GLni
(B.1)

to be a Levi subgroup of a standard parabolic subgroup P, we have

ψM := ψG− × (
∏r

i=1ψi) ∈ Ψ̃(M).

(Namely, ψM is not just an “extended” parameter of M.) Actually in loc. cit., a weaker

inequality ar ≤ ·· · ≤ a1 holds for the exponents, but this is because he wants ψi to

be simple parameters. We only require ψi to be bounded parameters, so the simple
parameters with the same exponent will go into a single ψi in our case.

Our goal is to show that M =G. Indeed, it would immediately imply that ψ belongs to

Ψ̃(G) (not just Ψ̃+(G)) so we can conclude by (2). If M �=G (i.e., if r ≥ 1), we will show
a contradiction.

By construction (see [1, §1.5]), the packet Π̃(ψ) consists of (Out2n(G)-orbits of) the

normalized induced representations

IndGP (σ⊗χ) (B.2)

for σ in the A-packet Π(ψM ) for M, where the character χ :M(F )→C× is defined to be

trivial on SO
E/F
2n−

(F ) and |det |ai on GLni
(F ).

13This assertion is stated on p.304 of [1] in the spherical case (not just the unramified case)
without proof. Although this may be obvious to the experts, let us verify the assertion for
the L-packet constructed in loc. cit. If φ is generic and spherical, then the L-packet Π(φ)
consists of all irreducible constituents of the principal series representation determined by
φ; see [1, Prop. 2.4.3]. The principal series representation contains exactly one-dimenisonal
space of spherical vectors (the dimension is at most one by the Iwasawa decomposition, and
a nonzero vector is easily exhibited, cf. [32, §3]). Now the assertion results from exactness of
the functor taking spherical subspaces. For spherical non-generic φ, the construction of Π(φ)
in loc. cit. is reduced to the generic case via Langlands quotients as usual. Therefore, the
assertion follows from [74, Lem. 7.10. (a)].
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Now suppose that 1 or St is a subquotient of a member of Π̃(ψ). Then for some σ ∈
Π(ψM ), the irreducible subquotients of (B.2) have the supercuspidal support (T,δ

−1/2
B ),

which is the supercuspidal support of both 1 and St (up to the Weyl group action).

Write σ = σ−⊗ (⊗r
i=1σi) according to (B.1). Then σ is a subquotient of a principal series

representation. The unitary representation σi of GLni
(F ) corresponds to an A-parameter

in Ψ(GLni
), so it has the form

σi =�ni
j=1χi,j | · |ei,j, ei,j ∈ 1

2Z, (B.3)

where χi,j is a unitary character, and � denotes the operation corresponding to the direct

sum under the local Langlands correspondence. If we write T = SO
E/F
2n0

×
∏n−n0

k=1 GL1 (if
E = F , then n0 = 0; otherwise n0 = 1), then accordingly (up to the Weyl action)

δ
−1/2
B = 1⊗ (⊗n−1

k=1 | · |(k−n)/2).

However, (B.3) tells us that the supercuspidal support of (B.2) is represented by a

character
ς0⊗ (⊗kςk)

of T (F ) such that each χi,j | · |ei,j+ai appears in the multi-set {ςk}. Comparing the two

supports, we must have that ei,j + ai ∈ 1
2Z since the half-integrality of exponents is

invariant under the Weyl action. However, this is impossible since ei,j ∈ 1
2Z and 0<ai <

1
2

(and the index set for i,j is nonempty). This proves that M =G as desired.

(2) As in the proof of (1), it is enough to consider the case 1 ∈ Π̃(ψ) by Aubert

involution. We deduce ψ = ψtriv by dividing into two cases.

Case 1: when G is unramified. Let sψ ∈ Ĝ denote the image of −1 ∈ SU(2) (outside

LF ) under ψ. Let us show that ψ|WF
is unramified, using the fact that Π̃(ψ) contains

an unramified representation, namely, 1. In fact, we induct on rank for unramified even

special orthogonal groups to prove the unique existence of an unramified representation

in Π̃(ψ), where we allow more general ψ ∈ Ψ̃(G), for the moment, which are unramified
on WF . The base case of induction is obvious. Next, we recall the character identities

from [1, Thm. 2.2.1], which have the form (cf. the second and last displayed formulas in

the proof of [59, Lem. 5.4] for the analogues for unitary groups)∑
σ∈Π̃(ψ)

1K(σ) = 1̃K2n(π̃ψ2n), if sψ ∈ Z(Ĝ), (B.4)

∑
σ∈Π̃(ψ)

1K(σ) = 1K′(ψ′), if sψ /∈ Z(Ĝ), (B.5)

where the setup and notation are as in [1]. We partly explain the notation.

• ψ2n is the A-parameter for GL2n obtained from ψ via the standard embedding.
• π̃ψ2n is the unique representation of GL2n(F ) in the A-packet of ψ2n.

• When sψ /∈Z(Ĝ), we can find an unramified endoscopic group G′ such that (G′,sψ)

is part of an elliptic endoscopic datum for G. (In particular, Ĝ′ is a connected

centralizer of sψ in Ĝ.) Then G′ is a product of two even special orthogonal groups
[1, p.14]; ψ′ is a parameter on G′ giving rise to ψ.
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• K2n, K, K ′ are hyperspecial subgroups of GL2n(F ), G(F ), G′(F ), respectively.
• 1̃K2n(π̃ψ2n) is a twisted trace.

The existence of an unramified member in Π̃(ψ) tells us that the left-hand side is nonzero.

The resulting nonvanishing of the right-hand side implies ψ|WF
is unramified: if sψ ∈Z(Ĝ),

then π̃ψ2n is unramified from (B.4) so this follows; if sψ /∈Z(Ĝ), we conclude by induction

via (B.5).

We have shown ψ|WF
to be unramified. Next, we observe that Π̃(ψ) contains a unique

unramified representation by a similar induction. If sψ ∈ Z(Ĝ), then this is true because

the right-hand side of (B.4) is 1 in the normalization of loc. cit. If sψ /∈ Z(Ĝ), this follows

since the right-hand side of (B.5) is equal to 1 by induction hypothesis.
As in the proof of (1), we have the embedding Π̃(φψ) ↪→ Π̃(ψ). Since φψ is unramified,

Π̃(φψ) contains an unramified representation. Now we appeal to the special property that

1 ∈ Π̃(ψ). By the uniqueness shown above, 1 ∈ Π̃(ψ) belongs to Π̃(φψ). Therefore, φψ is

the (unramified) L-parameter of 1. It follows that ψ = ψtriv.
Case 2: when G is ramified. Although it might be possible to give a local proof, our

strategy is to make use of Case 1 via globalization. Our first claim is that ψ ∈ Ψ̃2(G) if

1 ∈ Π̃(ψ). If the claim was false, then there exists a proper Levi subgroup M of G such
that ψ is the image of some ψM ∈ Ψ̃2(M). According to Arthur’s construction of Π̃(ψ)

(see [1, Prop. 2.4.3]), 1 (as well as the other members of Π̃(G)) appears as a subquotient

of a parabolic induction IndGP (σ), where P is a parabolic subgroup of G with Levi factor
M, and σ ∈ Π̃(ψM ). Since σ is unitary, IndGP (σ) is also unitary and thus semisimple. From

this and Frobenius reciprocity,

0 �=HomG(F )(1,Ind
G
P (σ)) = HomM(F )(Jac

G
P1,σ),

where JacGP denotes the normalized Jacquet module with respect to P. Since JacGP1 =

δ
−1/2
P is a non-unitary character, this is a contradiction. The claim is proved.

As ψ ∈ Ψ̃2(G), we may mimic [1, Prop. 7.2.1] to globalize (E/F,G,ψ) to (Ė/Ḟ,Ġ,ψ̇)

with ψ̇ ∈ Ψ̃2(Ġ) such that the latter triple specializes to (E/F,G,ψ) at q, and Sψ̇

∼→Sψ.
We may further arrange (possibly by choosing a new globalization) that there exists

another prime q′ �= q such that (Ė/Ḟ,Ġ,ψ̇) specializes to (E/F,G,ψ) at q′ as well. Since
1 ∈ Π̃(ψ) = Π̃(ψ̇q), we can find a discrete automorphic representation π̇ such that π̇q � 1
by Arthur’s multiplicity formula [1, Thm. 1.5.2]. (Let χ : Sψ → C× denote the character

corresponding to 1 in [1, Thm. 1.5.1]. We can find π̇ ∈ Π̃ψ̇ such that π̇q = 1, π̇v corresponds

to the trivial character of Sψ̇ at v �= q,q′, and π̇q′ corresponds to εψ̇χ
−1. Then π̇ ∈ Π̃ψ̇(εψ̇)

by the choices.) As π̇q = 1, it follows from [41, Lem 6.2] that π̇ is one-dimensional (up to
outer automorphism).

Then π̇v is trivial on the image of Spin
E/F
2n (Fv) by [49, §2.3] for each finite place v.

By bounding the Galois cohomology of μ2 = ker(Spin
E/F
2n → SO

E/F
2n ) uniformly across all

finite places, we see that π̇ is a finite order character. This implies that there exists a finite
prime p �= q,q′ such that Ġ is unramified at p and that π̇p = 1. Hence, ψ̇p is determined

by part (3); in particular, ψ̇p|SU(2) (outside LF ) is principal. (Part (3) is applicable to

ψ̇p thanks to Case 1 above combined with our proof of (2)⇒(3) for unramified groups.)
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Thus, the SU(2)-part of ψ̇ is Sym2n−2⊕1, and the same is true for ψ = ψ̇p. Therefore,

ψ = χ1⊗Sym2n−2⊕χ2⊗1

for quadratic characters χ1,χ2 : WF → {±1}. This tells us that Sψ = {1}. As the dual
parameter is tempered, we see, using compatibility with the Aubert involution, that

Π̃(ψ) is a singleton and coincides with Π̃(φψ). The latter is the Langlands quotient of the

principal series arising from φψ (which factors through the L-group of a minimal Levi).
However, 1 ∈ Π̃(ψ) by hypothesis. We conclude that ψ = ψtriv.
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Ann. Sci. École Norm. Sup. (4) 19(3) (1986) 409–468.

[16] G. Chenevier, Subgroups of Spin(7) or SO(7) with each element conjugate to some
element of G2 and applications to automorphic forms, Doc. Math. 24 (2019), 95–161.

[17] L. Clozel, M. Harris and R. Taylor, Automorphy for some l-adic lifts of automorphic
mod l Galois representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181.
With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by
Marie-France Vignéras.
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Études Sci. Publ. Math. 30 (1966), 115–141.
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