
Canad. J. Math. 2023, pp. 1–30
http://dx.doi.org/10.4153/S0008414X23000718
© The Author(s), 2023. Published by Cambridge University Press on behalf of
The Canadian Mathematical Society

The Frobenius semiradical, generic
stabilizers, and Poisson center for
nilradicals
Dmitri I. Panyushev
Abstract. Let g be a complex simple Lie algebra and n the nilradical of a parabolic subalgebra of g.
We consider some properties of the coadjoint representation of n and related algebras of invariants.
This includes (i) the problem of existence of generic stabilizers, (ii) a description of the Frobenius
semiradical of n and the Poisson center Z(n) of the symmetric algebra S(n), (iii) the structure of
S(n) as Z(n)-module, and (iv) the description of square integrable (= quasi-reductive) nilradicals.
Our main technical tools are the Kostant cascade in the set of positive roots of g and the notion of
optimization of n.

1 Introduction

1.1

Let G be a simple algebraic group with g = Lie G, g = u⊕ t⊕ u− a fixed triangular
decomposition, and b = u⊕ t the fixed Borel subalgebra. Then Δ is the root system
of (g, t), Δ+ is the set of positive roots corresponding to u, and θ is the highest root in
Δ+. Write U , T , B for the connected subgroups of G corresponding to u, t, b.

Let P = L⋅N be a parabolic subgroup of G, with the unipotent radical N and a Levi
subgroup L. Then n = Lie N is the nilradical of p = Lie P. The unipotent radicals of the
parabolic subgroups provide an important class of non-reductive groups. For instance,
N is a Grosshans subgroup of G [11, Theorem 16.4]. Various results on the coadjoint
representation of n can be found in [9, 10, 19, 22]. Our main goal is to elaborate on
invariant-theoretic properties of the coadjoint representation (N ∶ n∗), but we also
consider actions of some larger unipotent groups on n∗.

Without loss of generality, we may assume that p is standard, i.e., p ⊃ b. Thenn ⊂ u is
a sum of root spaces and Δ(n) denotes the corresponding set of positive roots. Unless
otherwise stated, “a nilradical” (in g) means “the nilradical of a standard parabolic
subalgebra” of g. Let K = {β1 , . . . , βm} be the Kostant cascade in Δ+. It is a poset, and
β1 = θ is the unique maximal element of K (see Section 2.2 for details). To each n,
we attach the subposet K(n) =K ∩ Δ(n). Another ingredient is the optimization of
n. By definition, it is the maximal nilradical, ñ, such that K(n) =K(ñ). If n = ñ, then
n is said to be optimal. An explicit description of ñ via K(n) is given in Section 2.3.
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2 D. I. Panyushev

Properties of the optimal nilradicals are better, and in order to approach arbitrary
nilradicals, it is convenient to consider first the optimal ones. Roughly speaking, the
output of this article is that to a great extent invariant-theoretic properties of n are
determined by K(n) and ñ.

1.2

Let q = Lie Q be a Lie algebra. As usual, ξ ∈ q∗ is said to be regular, if the stabilizer
qξ has minimal dimension. Then q∗reg denotes the set of all regular points and
ind q ∶= dim qξ for any ξ ∈ q∗reg. If indq = 0, then q is called Frobenius. Set b(q) ∶=
(dim q + ind q)/2. By definition, the Frobenius semiradical of q is F(q) = ∑ξ∈q∗reg

qξ .
Hence, F(q) = 0 if and only if q is Frobenius. Clearly, F(q) is a characteristic ideal of
q. This notion and basic results on it are due to Ooms [18, 19].

The symmetric algebra of q, S(q), is a Poisson algebra equipped with the Lie–
Poisson bracket { , }. The algebra of symmetric invariants S(q)q is the center of
(S(q), { , }), i.e.,

S(q)q = Z(q) = {F ∈ S(q) ∣ {F , x}= 0 ∀x ∈ q}={F ∈ S(q) ∣ {F , P} = 0 ∀P ∈S(q)}.

If the group Q is connected, then S(q)q = C[q∗]Q , i.e., the Poisson center Z(q) is
also the algebra of Q-invariant polynomial functions on q∗. If P ⊂ S(q) is a Poisson-
commutative subalgebra, then trdegP ⩽ b(q) [28, 0.2] and this upper bound is always
attained [25]. Therefore, if r ⊂ q is a Lie subalgebra, then b(r) ⩽ b(q). The passage
n↝ ñ has the property that b(n) = b(ñ). This implies that Z(ñ) = S(ñ)ñ ⊂ S(n) (see
[22, Proposition 5.5]).

An abelian subalgebra a ⊂ q is called a commutative polarization (= CP), if
dima = b(q). Then b(a) = b(q). A complete classification of the nilradicals with CP is
obtained in [22]. In Section 3.4, we use Rosenlicht’s theorem to provide simple proofs
of some basic properties of CP’s.

1.3

For n = pnil, let n− ⊂ u− be the opposite nilradical, i.e., Δ(n−) = −Δ(n). Then g =
p⊕ n−. Let gγ denote the roots space of γ ∈ Δ and eγ ∈ gγ a nonzero vector. Consider
the space k = ⊕β∈K(n) g−β ⊂ n− and ζ = ∑β∈K(n) e−β ∈ k. Using the vector space iso-
morphism n∗ = g/p ≃ n−, one can regard k as a subspace of n∗ and ζ as an element
of n∗. We say that k ⊂ n∗ is a cascade subspace and ζ ∈ k is a cascade point. As usual,
ξ ∈ n∗ is called N-generic, if there is an open subset Ω ∈ n∗ such that ξ ∈ Ω and the
stabilizer nξ is N-conjugate to nξ′ for any ξ′ ∈ Ω. Any stabilizer nν with ν ∈ Ω is said
to be N-generic, too.

In Section 4, we prove that the action (N ∶ n∗) has N-generic stabilizers if and
only if the stabilizer nζ is generic (and the latter is not always the case!). Moreover,
N-generic stabilizers always exist if n is optimal. If n is not optimal, then one can
consider the linear action of the larger group Ñ = exp(ñ) ⊃ N on n∗. We prove that
the action (Ñ ∶ n∗) always has an Ñ-generic stabilizer, and ñζ is such a stabilizer.
Actually, the equality ñζ = nζ holds here. For any n, we give an explicit formula for nζ

via K(n) and ñ, which shows that nζ is T-stable. Using that formula and the criterion
for the coadjoint representations [27, Corollary 1.8(i)], one easily verifies whether
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Properties of nilradicals 3

the stabilizer nζ is generic in each concrete example. For An , the nilradicals having
a generic stabilizer for (N ∶ n∗) are explicitly described, while for Cn , all nilradicals
have a generic stabilizer (see Section 5). A general construction of nilradicals without
generic stabilizers is also provided.

We prove that F(n) is the b-stable ideal of n generated by nζ (regardless of the
presence of generic stabilizers). Then our formula for nζ allows us to explicitly describe
F(n) for An and Cn . For any g, we provide a criterion for the equality F(n) = n and
give the complete list of nilradicals with this property. Another observation is that if
n ⊂ n′ ⊂ ñ, then F(n′) ⊂ F(n).

1.4

Since n is B-stable, one can consider the algebra of Q-invariants S(n)Q = C[n∗]Q for
any subgroup Q ⊂ B, and we are primarily interested in the unipotent subgroups U
and Ñ = exp(ñ) ⊂ U . In Section 6, we prove that

S(n)U = S(n)Ñ = S(ñ)U = S(ñ)Ñ(1.1)

and this common algebra is polynomial, of Krull dimension #K(n). In particular,
for any optimal nilradical ñ, the Poisson center of S(ñ) is a polynomial algebra. If
n ≠ ñ, then S(n)N does not occur in (1.1). This algebra is not always polynomial,
and its Krull dimension equals #K(n) + dim(ñ/n). Nevertheless, S(n)N shares many
properties with algebras of invariants of reductive groups. For instance, S(n)N is
finitely generated [12, Lemma 4.6], and we prove that the affine variety n∗//N ∶=
SpecS(n)N has rational singularities.

Using results on K(n) and nζ , we describe the nilradicals having the property that
indn = dim z(n), where z(n) is the center of n. By [15], this property is equivalent to
that the Lie group N has a “square integrable representation.” Therefore, such nilpotent
Lie algebras are sometimes called “square integrable” (see [9, 10]). From a modern
point of view, the square integrable nilradicals are precisely the “quasi-reductive”
ones (see [1, 7, 16]). Our description shows that all square integrable nilradicals are
metabelian.

As S(n)U is a polynomial algebra, we are interested in question whether S(n)
is a free S(n)U -module. Equivalently, when is the quotient map π ∶ n∗ → n∗//U =
Spec S(n)U equidimensional? We prove several assertions for U or (what is the
same) Ñ .

• If n has a CP, then S(n) is a free module over S(n)U = S(n)Ñ . This includes all
nilradicals for g = sln+1 or sp2n .

• In particular, if n is the optimization of a nilradical with CP (any g) or any optimal
nilradical in sln+1 or sp2n , then S(n) is a free module over its Poisson centerZ(n). This
also implies that in these cases, the enveloping algebra U(n) is a free module over its
center.

1.5 Structure of the article

In Section 2, we recall basic facts on K and (optimal) nilradicals. In Section 3, the
necessary information is gathered on generic stabilizers, the Frobenius semiradical,
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4 D. I. Panyushev

and commutative polarizations. We also include invariant-theoretic proofs for some
properties of commutative polarizations. Our results on generic stabilizers and F(n)
for a nilradical n ⊂ g are gathered in Section 4, whereas Section 5 contains explicit
results for g = sln+1 or sp2n . In Section 6, we study various algebras of invariants
related to the coadjoint representation of n, and in Section 7, we classify the square
integrable nilradicals. Topics related to the equidimensionality of the quotient map
π ∶ n∗ → n∗//U are treated in Section 8. The lists of cascade roots for all g and the
Hasse diagrams of some posets K are presented in Appendix A.

Main notation. Throughout, g = Lie (G) is a simple Lie algebra. Then:
– b is a fixed Borel subalgebra of g with u = [b, b].
– t is a fixed Cartan subalgebra in b and Δ is the root system of g with respect to t.
– Δ+ is the set positive roots corresponding to u, and θ ∈ Δ+ is the highest root.
– Π = {α1 , . . . , αrkg} is the set of simple roots in Δ+.
– t∗Q is the Q-vector subspace of t∗ spanned by Δ, and ( , ) is the positive-definite

form on t∗Q induced by the Killing form on g.
– If γ ∈ Δ, then gγ is the root space in g and eγ ∈ gγ is a nonzero vector.
– If c ⊂ u± is a t-stable subspace, then Δ(c) ⊂ Δ± is the set of roots of c.
– b(q) = (dim q + ind q)/2 for a Lie algebra q.
– In the explicit examples, the Vinberg–Onishchik numbering of simple roots of g is

used (see [17, Table 1]).

2 Generalities on the cascade and nilradicals

2.1 The root order in Δ+ and the Heisenberg subset

We identify Π with the vertices of the Dynkin diagram of g. For any γ ∈ Δ+, let [γ ∶ α]
be the coefficient of α ∈ Π in the expression of γ via Π. The support of γ is supp(γ) =
{α ∈ Π ∣ [γ ∶ α] ≠ 0}. As is well known, supp(γ) is a connected subset of the Dynkin
diagram. For instance, supp(θ) = Π and supp(α) = {α}. Let “≼” denote the root order
in Δ+, i.e., we set γ ≼ γ′ if [γ ∶ α] ⩽ [γ′ ∶ α] for all α ∈ Π. Then (Δ+, ≼) is a graded poset,
and we write γ ≺ γ′ if γ ≼ γ′ and γ ≠ γ′.

An upper ideal of (Δ+, ≼) is a subset I such that if γ ∈ I and γ ≺ γ′, then γ′ ∈ I.
Therefore, I is an upper ideal of Δ+ if and only if r = ⊕γ∈I gγ is a b-stable ideal of u,
i.e., [b, r] ⊂ r.

For a dominant weight λ ∈ t∗Q, set Δλ = {γ ∈ Δ ∣ (λ, γ) = 0} and Δ±λ = Δλ ∩ Δ±.
Then Δλ is the root system of a semisimple subalgebra g⊥λ ⊂ g and Πλ = Π ∩ Δ+λ is
the set of simple roots in Δ+λ . Then:
• pλ = g⊥λ + b is a standard parabolic subalgebra of g.
• The set of roots of the nilradical nλ = pnil

λ is Δ+/Δ+λ . It is also denoted by Δ(nλ).
If λ = θ, then nθ is a Heisenberg Lie algebra (Heisenberg nilradical) and Hθ ∶= Δ(nθ)
is called the Heisenberg subset (of Δ+).

2.2 The cascade poset

The recursive construction of the Kostant cascade in Δ+ begins with β1 = θ. On the
next step, we take the highest roots in the irreducible subsystems of Δθ . These roots
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Properties of nilradicals 5

are called the descendants of β1. The same construction is then applied to every
descendant of β1, and so on. This procedure eventually terminates and yields a set
K = {β1 , β2 , . . . , βm} ⊂ Δ+, which is called the Kostant cascade. The roots in K are
strongly orthogonal, which means that β i ± β j /∈ Δ for all i , j. We make K a poset by
letting that β i covers β j if and only if β j is a descendant of β i . Then β1 is the unique
maximal element of K. We refer to [12, Section 2], [13], and [22, 2.2] for more details.
Let us summarize the main features of K.

• K is a maximal set of strongly orthogonal roots in Δ+.
• Each β i is the highest root of the irreducible root system Δ⟨i⟩ ⊂ Δ with simple roots

supp(β i).
• K is also a subposet of (Δ+, ≼), which provides the same poset structure as above.
• One has β j ≺ β i if and only if supp(β j) ⊊ supp(β i).
• β j and β i are incomparable in K if and only if supp(β j) ∩ supp(β i) = ∅.
• The numbering of K is not canonical. It is only required to be a linear extension of
(K, ≼), i.e., if β j ≺ β i , then j > i. In specific examples considered below, we use the
numbering of cascade roots given in Appendix A.

Using the decomposition Δ+ = Δ+θ ⊔Hθ and induction on rk g, one obtains the
disjoint union parametrized by K:

Δ+ =
m
⊔
i=1

Hβ i ,(2.1)

where Hβ i is the Heisenberg subset of Δ⟨i⟩+ and Hβ1 =Hθ . For 1 ⩽ i ⩽ m, let g⟨i⟩ ⊂ g

be the simple Lie algebra with root system Δ⟨i⟩. The geometric counterpart of (2.1) is
the vector space sum u = ⊕m

i=1 hi , where hi is the Heisenberg Lie algebra in g⟨i⟩ and
Δ(hi) =Hβ i . In particular, h1 = nθ . For each β i ∈K, we set Φ(β i) = Π ∩Hβ i . It then
follows from (2.1) that Π = ⊔

β i∈K

Φ(β i). Note that #Φ(β i) ⩽ 2 and #Φ(β i) = 2 if and

only if the algebra g⟨i⟩ is of type An with n ⩾ 2. Our definition of the subsets Φ(β i)
yields the well-defined map Φ−1 ∶ Π →K, where Φ−1(α) = β i if α ∈ Φ(β i). Note that
α ∈ supp(Φ−1(α)) and α ∈ Φ(Φ−1(α)). We think of the cascade poset as a triple (K,
≼, Φ). The corresponding Hasse diagrams, with subsets Φ(β i) attached to every node,
are depicted in [22, Section 6]. Some of them are included in Appendix A.

Obviously, #K ⩽ rk g, and #K = rk g if and only if each β i is a multiple of a
fundamental weight for g⟨i⟩. Recall that θ is a multiple of a fundamental weight of
g if and only if g is not of type An , n ⩾ 2. It is well known that #K = rk g if and only if
indb = 0. This happens exactly if g /∈ {An , D2n+1 , E6} and then Φ−1 yields a bijection
between K and Π.

2.3 Nilradicals and optimal nilradicals

Let p ⊃ b be a standard parabolic subalgebra of g, with nilradicaln = pnil. If Π ∩ Δ(n) =
T, then we write n = nT and p = pT . Here, T is the set of minimal elements of the poset
(Δ(n), ≼) and Π/T is the set of simple roots for the standard Levi subalgebra lT ⊂ pT .
Clearly, T ≠ ∅ if and only if nT ≠ {0}.
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6 D. I. Panyushev

The integer dT = ∑α∈T[θ ∶ α] is the depth of nT . Letting

ΔT(i) =
⎧⎪⎪⎨⎪⎪⎩

γ ∈ Δ+ ∣ ∑
α∈T

[γ ∶ α] = i
⎫⎪⎪⎬⎪⎪⎭

and nT(i) = ⊕
γ∈ΔT(i)

gγ ,

one obtains the partition Δ(nT) = ⊔dT

i=1 ΔT(i) and the canonical Z-grading

nT =
dT

⊕
i=1

nT(i).

The following is well known and easy.

Lemma 2.1 If {n(i)
T
}i⩾1 denotes the lower central series of nT , then n

(i)
T

= ⊕ j⩾i nT( j).
The center ofnT is z(n) = nT(dT). Hence,nT is abelian if and only if dT = 1, i.e.,T = {α}
and [θ ∶ α] = 1.

Set KT =K ∩ Δ(nT). Then θ = β1 ∈KT for any nonzero nilradical nT .

Lemma 2.2 [22, Section 2] For any T ⊂ Π, one has
(1) KT is an upper ideal of (K, ≼).
(2) T ⊂ ⋃β j∈KT

Φ(β j) and nT ⊂ ⊕β j∈KT
h j .

A standard parabolic subalgebra pT is said to be optimal if

T = ⋃
β j∈KT

Φ(β j).

This goes back to [12, 4.10], and we also apply this term to nT . Then nT is optimal if and
only if nT = ⊕β j∈KT

h j . For a nonempty T ⊂ Π, set T̃ = ⋃β j∈KT
Φ(β j) and consider

the nilradical nT̃ . Then KT =KT̃ and nT ⊂ nT̃ = ⊕β j∈KT
hi . Hence, nT̃ is optimal, it

is the minimal optimal nilradical containing nT , and it is the maximal element of the
set of nilradicals {n′ ∣ Δ(n′) ∩K =KT}.

Definition 1 The nilradical nT̃ is called the optimization of nT .

If T ⊂ Π is not specified for a given nilradical n, then K(n) ∶=K ∩ Δ(n) and we
write ñ for the optimization of n.

Proposition 2.3 (cf. [12, 2.4] and [22, 2.3]) Let ñ be the optimization of a nilradical n.
Then:
• indn = dim(ñ/n) + #K(n).
• ind ñ = #K(ñ) = #K(n) and b(n) = b(ñ).

Remark 2.4 The merit of optimization is that the passage from n to ñdoes not change
K(n) and b(n). More generally, if two nilradicals n′ and n have the same optimization,
then K(n′) =K(n) and b(n′) = b(n). For instance, this happens if n ⊂ n′ ⊂ ñ.

Example 2.5 (1) If g = sln+1, then u is the set of strictly upper-triangular matrices,
α i = ε i − ε i+1 (1 ⩽ i ⩽ n), and K = {β1 , . . . , βt}, where t = [(n + 1)/2] and β i = α i +
⋅ ⋅ ⋅ + αn+1−i = ε i − εn+2−i . Here, (K, ≼) is a chain and Φ(β i) = {α i , αn+1−i}.

(2) Take T = {α2 , α6} and the nilradical nT ⊂ sl7. Then KT = {β1 , β2} and there-
fore T̃ = {α1 , α2 , α5 , α6} (cf. the matrices below).
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The cells with ball represent the cascade, and the thick lines depict the Heisenberg
subset attached to an element of the cascade. By Proposition 2.3, we have ind ñ = 2,
indn = 6, and b(n) = b(ñ) = 10.

Example 2.6 For a square matrix A, let Â denote its transpose with respect to the
antidiagonal. Choose the skew-symmetric form defining g = sp2n ⊂ sl2n such that

sp2n = {(
A M

M′ −Â) ∣ M = M̂ & M′ = M̂′} ,

where A, M , M′ are n × n matrices. Then u (resp. t) is the set of
symplectic strictly upper triangular (resp. diagonal) matrices. Hence,
t = {diag(ε1 , . . . , εn ,−εn , . . . ,−ε1) ∣ ε i ∈ C}. Recall that α i = ε i − ε i+1 (i < n)
and αn = 2εn . Then K = {β1 , . . . , βn} is a chain, where β i = 2ε i and Φ(β i) = {α i}
for all i. Here, n{αn} = {(

0 M
0 0 ) ∣ M = M̂} is the nilradical of the maximal parabolic

subalgebra with T = {αn}. It is the only (standard) abelian nilradical in sp2n and
K ⊂ Δ(n{αn}) corresponds to the antidiagonal entries of M.

3 Generic stabilizers, the Frobenius semiradical, and commutative
polarizations

Let Q be a connected algebraic group with q = Lie Q. If ρ ∶ Q → GL(V) is a representa-
tion of Q, then the corresponding Q-action on V is denoted by (Q ∶ V). For q ∈ Q and
v ∈ V, we write q⋅v in place of ρ(q)v. Likewise, (q ∶ V) corresponds to dρ ∶ q→ gl(V).

3.1 Generic stabilizers

Let (Q ∶ V) be a linear action. We say that v ∈ V is Q-generic, if there is a dense open
subset Ω ⊂ V such that v ∈ Ω and the stabilizer qx is Q-conjugate to qv for any x ∈ Ω.
Then any qx (x ∈ Ω) is called a Q-generic stabilizer for the representation (q ∶ V), and
we say that (q ∶ V) has a Q-generic stabilizer. (One can consider similar notions for
non-connected groups, for arbitrary actions of Q, and for stationary subgroups Qx ⊂
Q, but we do need it now.) By semi-continuity of orbit dimensions, the set Q-generic
points is contained in the set of Q-regular points

Vreg = {v ∈ V ∣ dim Q⋅v is maximal},(3.1)
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but usually, this inclusion is proper. By a result of Richardson [24], if Q is reductive,
then Q-generic stabilizers exist for any action of Q on a smooth affine variety. But
this is no longer true for non-reductive groups, and one of our goals is to study (the
presence of) generic stabilizers for the coadjoint representation of a nilradical in g.

A practical method for proving the existence of Q-generic points and finding Q-
generic stabilizers is given by Elashvili [8, Lemma 1]. Let Tv(Q⋅v) = q⋅v be the tangent
space of the orbit Q⋅v at v and Vqv the fixed point subspace of qv in V. Then

v ∈ V is Q-generic if and only if V = q⋅v +Vqv .(3.2)

The main case of interest for us is the coadjoint representation of Q, when V = q∗. For
the coadjoint representation, we usually skip “Q” from notation and refer to “generic”
and “regular” points (in q∗) and “generic” stabilizers (in q). Translating Elashvili’s
criterion (3.2) into the setting of coadjoint representations and taking annihilators,
one obtains the following nice formula (see [27, Corollary 1.8(i)]). Given ξ ∈ q∗, the
stabilizer qξ is generic (i.e., ξ is a Q-generic point) if and only if

[q, qξ] ∩ q
ξ = {0}.(3.3)

The reason is that (q⋅ξ)⊥ = qξ and ((q∗)qξ)⊥ = [q, qξ], where (⋅)⊥ stands for the
annihilator in the dual space.

3.2 The Frobenius semiradical

For the Q-module V = q∗, the set of Q-regular (or just “regular”) points q∗reg consists
of all ξ ∈ q∗ such that the stabilizer qξ has the minimal possible dimension. If ξ ∈ q∗reg,
then ind q ∶= dim qξ is the index of (a Lie algebra) q. The Frobenius semiradical F(q)
of a Lie algebra q is introduced by Ooms (see [18, 19]). By definition,

F(q) = ∑
ξ∈q∗reg

q
ξ .

Obviously, F(q) is a characteristic ideal of q, and F(q) = 0 if and only ind q = 0 (i.e.,
q is a Frobenius Lie algebra). Note that if (q ∶ q∗) has a generic stabilizer, then any
Q-generic point in the sense of Section 3.1 is regular, but not vice versa.

Lemma 3.1 (cf. [19, Proposition 1.7]) If (q ∶ q∗) has a generic stabilizer and ξ ∈ q∗ is
any generic point, then F(q) is the q-ideal generated by the sole stabilizer qξ .

Proof By [19, Lemma 1.2], if Ψ is open and dense in q∗reg, then F(q) = ∑η∈Ψ qη .
Applying this to the set of generic points Ω ⊂ q∗reg, we obtain F(q) = ∑η∈Ω qη =
∑g∈Q qg⋅ξ . Clearly, the last sum yields the ideal of q generated by qξ . ∎

If q is quadratic, i.e., q ≃ q∗ as Q-module, then F(q) = ∑x∈qreg
qx . Since x ∈ qx for

any x ∈ q, we see that hereF(q) = q (cf. [10, Theorem 3.2]). In particular, this is the case
if q is reductive. Following Ooms, q is said to be quasi-quadratic if F(q) = q. Another
interesting property of the functor F(⋅) is that ind q ⩽ indF(q) and F(F(q)) = F(q)
[19].
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3.3 Commutative polarizations

If a is an abelian subalgebra of q, then dima ⩽ b(q) (see [28, 0.2] or [18, Theorem 14]).
If dima = b(q), then a is called a commutative polarization (=CP) of q, and we say that
q has a CP. If a is a CP and also an ideal of q, then it is called a CP-ideal. If q is solvable
and has a CP, then it also has a CP-ideal (see [10, Theorem 4.1]). More generally, a
similar argument shows that if q is an ideal of a solvable Lie algebra r and q has a CP,
then q has a CP-ideal that is r-stable. A standard nilradical n is an ideal of b. Therefore,
if n has a CP, then it also has a CP-ideal that is b-stable. Henceforth, “a CP-ideal of n”
means “a b-stable CP-ideal of n.”

Basic results on commutative polarizations are presented in [10]. It is also shown
therein that if g is of type An or Cn , then every nilradical in g has a CP. A complete
classification of the nilradicals having a CP is obtained in [22]. By Lemma 2.1, nT is
abelian if and only if T = {α} and [θ ∶ α] = 1. The abelian nilradical n{α} play a key
role in our theory. By Theorems 3.10 and 4.1 in [22], a nilradical n has a CP if and only
if at least one of the following two conditions is satisfied:
(1) n = nθ = h1 is the Heisenberg nilradical. In this case, if a is any maximal abelian

ideal of b, then a ∩ n is a CP-ideal of n, and vice versa.
(2) There is an abelian nilradical n{α} such that n is contained in ñ{α}, the optimiza-

tion of n{α}. (There can be several abelian nilradicals with this property, and, for
a “right” choice of such α̌ ∈ Π, n ∩ n{α̌} is a CP-ideal of n (cf. also Section 8)).

If g has no parabolic subalgebras with abelian nilradicals, then the Heisenberg
nilradical nθ = h1 is the only nilradical with CP. This happens precisely if g is of type
G2, F4, E8. Another result of [22] is that n has a CP if and only if ñ has.

3.4 The role of commutative polarizations

If a is a CP of a Lie algebra q, then:
(1) F(q) ⊂ a [18, Proposition 20] and thereby F(q) is an abelian ideal. (However, it

can happen that F(q) is abelian, whereas q has no CP (see Example 7.3).)
(2) Since a is abelian, b(a) = dima = b(q). Therefore, the Poisson center

Z(q) = S(q)q is contained in S(a) [22, Proposition 5.5]. Hence, if a is a
CP-ideal of q, then S(q)q = S(a)q.

(3) Thus, if a1 , . . . , as are different CP in q, then F(q) ⊂ ⋂s
i=1 ai and S(q)q ⊂

S(⋂s
i=1 ai).

In many cases, the presence of a CP in n allows us to quickly describe the Frobenius
semiradical for n (see Sections 5.1 and 5.2). For the reader’s convenience, we provide
an invariant-theoretic proof for two basic results on abelian subalgebras mentioned
above.

Proposition 3.2 Let a be an abelian subalgebra of q. Then:
(1) dima ⩽ b(q).
(2) If dima = b(q), then qξ ⊂ a for any ξ ∈ q∗reg, i.e., F(q) ⊂ a.

Proof We show that both assertions are immediate consequences of Rosenlicht’s the-
orem [4, Chapter 1.6]. Let A ⊂ Q be the connected (abelian) subgroup with Lie A = a.
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10 D. I. Panyushev

For the A-action on q∗, let C(q∗)A denote the field of A-invariant rational functions
on q∗.

(1) Since a is abelian, we have C[q∗]A = S(q)A ⊃ S(a); hence, trdegC(q∗)A ⩾
dima. By Rosenlicht’s theorem,

trdegC(q∗)A = dim q −max
ξ∈q∗

A⋅ξ = dim q − dima +min
ξ∈q∗

dima
ξ .

Therefore,

2 dima ⩽ dim q +min
ξ∈q∗

dima
ξ ⩽ dim q + ind q = 2b(q).

(2) If dima = b(q), then minξ∈q∗ dimaξ = ind q. For ξ ∈ q∗reg, one has dim qξ = ind q.
That is, aξ = qξ ⊂ a for any ξ ∈ q∗reg. ∎

The proof above also implies that if dima = b(q), then trdegC(q∗)A = dima.
Therefore, C[q∗]A = S(a) and C(q∗)A is the fraction field of S(a).

4 Generic stabilizers and the Frobenius semiradical for the
nilradicals

In this section, we study the Frobenius semiradical, F(n), of a nilradical n ⊂ g and
the existence of generic stabilizers for the coadjoint representation of N = exp(n). We
also say that “n has a generic stabilizer,” if the coadjoint representation (N ∶ n∗) has.

Let n = pnil be a standard nilradical and n− = (p−)nil the opposite nilradical, i.e.,
Δ(n−) = −Δ(n). Using the vector space sum g = p⊕ n− and the P-module isomor-
phism n∗ ≃ g/p, we identify n∗ with n− and thereby regard n− as P-module. In terms
of n−, the p-action on n∗ is given by the Lie bracket in g, with the subsequent
projection to n−. In particular, the coadjoint representation ad∗n of n has the following
interpretation. If x ∈ n and ξ ∈ n−, then (ad∗nx)⋅ξ = pr

n−
([x , ξ]), where pr

n−
∶ g→ n−

is the projection with kernel p.
Recall that K(n) =K ∩ Δ(n). Set k = ⊕β∈K(n) g−β ⊂ n− ≃ n∗ and ζ =

∑β∈K(n) e−β ∈ k. We say that k is a cascade subspace of n∗ and ζ is a cascade
point of n∗. Clearly, ζ depends on the choice of nonzero root vectors e−β ∈ g−β , but
all such points ζ form a sole dense T-orbit in k, which is denoted by k0. That is,
k0 = {∑β∈K(n) aβ e−β ∣ aβ ∈ C/{0}}. It was proved by Joseph [12, 2.4] that upon the
identification of n− and n∗ as P-modules and hence B-modules, B⋅ζ is dense in n∗

and B⋅ζ ⊂ n∗reg. In particular, k0 ⊂ n∗reg.

Proposition 4.1 Let n be an arbitrary nilradical and ζ ∈ n∗ a cascade point. Then:
(i) F(n) is the b-stable ideal of n generated by nζ .

(ii) (n ∶ n∗) has a generic stabilizer if and only if the stabilizer nζ is generic.

Proof (i) Since B⋅ζ is dense in n∗reg, a result of Ooms [19, Lemma 1.2] implies that
F(n) = ∑b∈B n

b⋅ζ . Clearly, the last sum is the smallest b-stable ideal containing nζ .
(ii) If ζ is not generic, then [n, nζ] ∩ nζ ≠ {0} and hence [n, nb⋅ζ] ∩ nb⋅ζ ≠ {0} for

any b ∈ B. Therefore, neither of the points b⋅ζ (b ∈ B) can be generic. Since B⋅ζ is dense
in n∗, this means that generic points cannot exist in such a case. ∎
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The point of Proposition 4.1(i) is that the existence of a generic stabilizer for n is not
required (cf. Lemma 3.1). We use instead the action of B on n∗.

Proposition 4.2 If n is an optimal nilradical, then:
(i) nζ is a generic stabilizer for (n ∶ n∗).

(ii) The N-saturation of k is dense in n∗, i.e., N ⋅k = n∗.

Proof (i) For an optimal nilradical n, one has nζ = ⊕β∈K(n) gβ [12, 2.4]. Since the
roots in K(n) are strongly orthogonal, condition (3.3) is satisfied for ξ = ζ.

(ii) Recall that indn = #K(n) = dim k and codim n∗(n⋅ξ) = indn for any ξ ∈ k0.
Furthermore, n⋅ξ ∩ k = {0} for any ξ ∈ k. (Use again the strong orthogonality.) Hence,
n⋅ξ ⊕ k = n∗ for any ξ ∈ k0, which implies that N ⋅k0 is open and dense in n∗ (cf. [8,
Lemma 1.1]). ∎

Recall that ñ denotes the optimization of n. Then K(n) =K(ñ), ind ñ = #K(n),
and

indn = dim(ñ/n) + ind ñ = dim(ñ/n) + #K(n).(4.1)

The cascade subspaces and cascade points associated with n or ñ are the same, if
regarded as objects in u−. But one has to distinguish them as objects in n∗ or ñ∗. For
this reason, working simultaneously with n and ñ, we write ζ̃ for a cascade point in
the cascade subspace k̃ ⊂ ñ∗. Note that, for the natural projection τ ∶ ñ∗ → n∗, one has
τ(k̃) = k and τ(ζ̃) = ζ. Since τ is B-equivariant, this allows us to transfer some good
properties from the coadjoint action (Ñ ∶ ñ∗) to the coadjoint action (N ∶ n∗).

If n is not optimal, then it may or may not have a generic stabilizer. To see this, we
provide an explicit description of nζ for an arbitrary nilradical n, which generalizes
Joseph’s description for the optimal nilradicals.

Because ζ ∈ n∗reg and ζ̃ ∈ ñ∗reg, it follows from (4.1) that dimnζ = dim(ñ/n) + dim ñζ̃ .
Since τ is B-equivariant, we have nζ ⊃ ñζ̃ = ⊕β∈K(n) gβ . If K(n) = {β1 , . . . , βk}, then
n ⊂ ñ = ⊕k

j=1 h j and n = ⊕k
j=1(h j ∩ n) (see Section 2.3). For any γ ∈ Δ(h j)/{β j} =∶

Δ(h j), we have β j − γ ∈ Δ+.

Lemma 4.3 Under the previous notation, if n ≠ ñ and γ ∈ Δ(h j)/Δ(n) =∶ Cn( j) ⊂
Δ(h j), then the root space gβ j−γ belongs to nζ .

Proof Assume that β j − γ /∈ Δ(n). Then [γ ∶ α] = [β j − γ ∶ α] = 0 for all α ∈ T =
Δ(n) ∩ Π. Hence, [β j ∶ α] = 0. However, since β j ∈ Δ(n), there is an α′ ∈ T(n) such
that β j ≻ α′, i.e., [β j ∶ α′] > 0. This contradiction shows that γ′ ∶= β j − γ ∈ Δ(n).

Let us prove that gγ′ ⊂ nζ . Since γ′ ∈ Δ(h j) and hence supp(γ′) ⊂ supp(β j),
properties of K imply that β j is the only element β i of K such that β i − γ′ is a root.
Indeed,
• if β i and β j are incomparable, then supp(β i) ∩ supp(β j) = ∅;
• if β i ≺ β j , then supp(β i) ⊂ supp(β j)/Φ(β j), while supp(γ′) ∩Φ(β j) ≠ ∅;
• if β i ≻ β j , then (β i , γ′) = 0 and γ′ does not belong to the Heisenberg subset of Δ⟨i⟩.
Therefore, γ′ − β j = −γ is the only root that might occur in [eγ′ , ζ]. But γ /∈ Δ(n), i.e.,
−γ /∈ Δ(n∗) and therefore ad∗n(eγ′)(ζ) = 0. ∎
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Theorem 4.4 Let n be an arbitrary nilradical and ζ ∈ k0 ⊂ n∗ a cascade point. Then:
(i) nζ is T-stable and

n
ζ =

⎛
⎝

k
⊕
j=1

⊕
γ∈Cn( j)

gβ j−γ
⎞
⎠
⊕ ñ

ζ̃ =
⎛
⎝

k
⊕
j=1

⊕
γ∈Cn( j)

gβ j−γ
⎞
⎠
⊕
⎛
⎝ ⊕

β∈K(n)
gβ
⎞
⎠

.

(ii) Δ(nζ) = {β j − γ ∣ 1 ⩽ j ⩽ k & γ ∈ Cn( j)}⊔K(n).
(iii) For any ξ ∈ k0, we have nξ = nζ .

Proof The number of roots in ⊔k
j=1 Cn( j) equals dim(ñ/n) = dimnζ − dim ñζ̃ , and

each such root yields a root subspace in nζ (Lemma 4.3), hence (i). Clearly, (ii) is just
a reformulation of (i). The last assertion follows from the fact that nζ is T-stable and
T ⋅ζ = k0. ∎

The advantage of ζ ∈ k0 is that nζ is a sum of root spaces. Therefore, Eq. (3.3) is
easily verified in practice. It is convenient to restate it as follows.

Condition 4.5 The stabilizer nζ of ζ ∈ k0 ⊂ n∗ is generic (equivalently, (n ∶ n∗) has a
generic stabilizer) if and only if the difference of any two roots in Δ(nζ) does not belong
to Δ(n).

Example 4.6 (1) If g = sl7 and T1 = {α2 , α6}, then n = nT1 is not optimal and ñ =
nT̃ , where T̃ = {α1 , α2 , α5 , α6} (see Example 2.5). Here, K(n) = {β1 , β2} = {α1 + ⋅ ⋅ ⋅ +
α6 , α2 + ⋅ ⋅ ⋅ + α5} and the matrices therein show that dim(ñ/n) = 4. More precisely,

Cn(1) = Δ(h1)/Δ(n ∩ h1) = {α1},
Cn(2) = Δ(h2)/Δ(n ∩ h2) = {α5 , α4 + α5 , α3 + α4 + α5 = ∶[3, 5]}.

Therefore, Δ(nζ) = {α2 , α2 + α3 , [2, 4], [2, 5], [2, 6], [1, 6]}. Since [2, 6] − α2 =
[3, 6] ∈ Δ(n), Condition 4.5 is not satisfied for ζ, and (n ∶ n∗) does not have a generic
stabilizer.

(2) If g = sl7 and T2 = {α1 , α2 , α6}, then nT2 has the same optimization ñ as
nT1 , but now dim(ñ/nT2) = 3 and Δ(nζ

T2
) = {α2 , α2 + α3 , [2, 4], [2, 5], [1, 6]}. Here,

Condition 4.5 is satisfied and n
ζ
T2

is a generic stabilizer.

Thus, the action (N ∶ n∗) does not always have N-generic stabilizers. A remedy is
to consider the action of the larger group Ñ on n∗.

Theorem 4.7 For any nilradical n and the cascade subspace k ⊂ n∗, we have:
(i) dim N ⋅k = 2 dimn − dim ñ, i.e., codim n∗N ⋅k = dim(ñ/n);
(ii) the Ñ-saturation of k is dense in n∗, i.e., Ñ ⋅k = n∗;

(iii) ñζ = nζ is a generic stabilizer for the linear action (Ñ ∶ n∗).

Proof Recall that dim k = ind ñ and maxξ∈n∗ dim N ⋅ξ = dim N ⋅ζ = dimn − indn.
(i) Since Tζ(N ⋅ζ) = n⋅ζ = (nζ)⊥, it follows from Theorem 4.4(iii) that all tangent

spaces n⋅ξ, ξ ∈ k0, are the same. Therefore, using the differential of the map

κ ∶ N × k→ N ⋅k ⊂ n
∗
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at (1, ζ), we obtain dim N ⋅k = dim(Im dκ(1,ζ)) = dim(n⋅ζ + k). Because the roots in K

are strongly orthogonal, we have n⋅ζ ∩ k = {0} and hence

dim(n⋅ζ + k) = dimn − indn + ind ñ = 2 dimn − dim ñ.

(ii) Since Ñ ⋅k̃ is dense in ñ∗ (Proposition 4.2) and τ is B-equivariant, we conclude
that τ(Ñ ⋅k̃) = Ñ ⋅k is dense in τ(ñ∗) = n∗.

(iii) Let us first prove that

max
ξ∈n∗

dim Ñ ⋅ξ = max
ξ∈n∗

dim N ⋅ξ + dim(ñ/n).(4.2)

Clearly, inequality “⩽” holds. By Eq. (4.1), the RHS equals dim ñ − indn = dimn −
dim k. On the other hand, part (ii) implies that dimn = dim Ñ ⋅k ⩽ maxξ∈k dim Ñ ⋅ξ +
dim k. This proves Eq. (4.2) and also shows that almost all ξ ∈ k satisfy this relation.
Moreover, since k is T-stable and k0 = T ⋅ζ is dense in k, we obtain that

dim Ñ ⋅ξ = dim N ⋅ξ + dim(ñ/n)

for every ξ ∈ k0. Hence, ñξ = nξ for every ξ ∈ k0. Combining this with Theorem 4.4(iii)
and part (ii), we conclude that ñζ = nζ is a generic stabilizer for the action (Ñ ∶ n∗). ∎

Using Theorem 4.4, we describe certain nilradicals that do not have a generic
stabilizer.

Proposition 4.8 Let β j be a descendant of β i ∈K and α ∈ Φ(β i). Suppose that α /∈ T
and [β i ∶ ν] > [β j ∶ ν] > 0 for some ν ∈ T. Then n = nT does not have a generic stabilizer.

Proof Recall that β i is the highest root in Δ⟨i⟩+ and β j is a maximal root in
Δ⟨i⟩+/Δ(hi). If Φ(β i) = {α}, then α + β j ∈ Δ(hi) ⊂ Δ⟨i⟩+, because β j is not the
highest root of Δ⟨i⟩+. If Φ(β i) = {α, α′}, then Δ⟨i⟩ is of type Ap and hence both β j + α
and β j + α′ belong to Δ(hi). In any case, if α ∈ Φ(β i), then β i − α − β j ∈ Δ+.

Since ν ∈ T and [β j ∶ ν] > 0, we have β j ∈ Δ(n) and also β i ∈ Δ(n). That is,
β i , β j ∈K(n). Because α ∈ Δ(hi)/Δ(n), we have β i − α ∈ Δ(nζ) (see Theorem 4.4(ii)).
The assumption on ν implies that [β i − α − β j ∶ ν] > 0. Thus, we have β i − α, β j ∈
Δ(nζ) and β i − α − β j ∈ Δ(n). By Condition 4.5, this means that n has no generic
stabilizers. ∎

Example 4.9 For applications, it suffices to consider the case in which β i = θ, i.e.,
i = 1.

(1) If g is exceptional, then #Φ(β1) = 1 and β1 has the unique descendant β2.
Although β1 − β2 is not a root, its support is defined as in Section 2.1. Then Proposition
4.8 applies to any ν ∈ supp(β1 − β2)/Φ(β1) and T = {ν}.

For instance, let g be of type E6. Then Φ(β1) = {α6}, supp(β1 − β2) =
{α2 , α3 , α4 , α6}, and supp(β2) ⊃ {α2 , α3 , α4} (see formulae for K in Appendix A).
Hence, one can take ν = α i with i ∈ {2, 3, 4}. More generally, if α6 /∈ T and T ∩
{α2 , α3 , α4} ≠ ∅, then nT has no generic stabilizers.

(2) This method also works for g = son with n ⩾ 7, where Φ(β1) = {α2}.
– If n ≠ 8, then β1 = ε1 + ε2 has two descendants, β2 = ε1 − ε2, and β3 = ε3 + ε4

(ε4 = 0, if n = 7) (see Appendix A). For (β1 , β3), Proposition 4.8 applies, if one takes
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T = {α3}. While for (β1 , β2), we can take T such that α2 /∈ T and T ⊃ {α1 , α j} with
j ⩾ 3.

– If n = 8, then β1 has three descendants, and we can take T = {α i , α j}with i , j ≠ 2.

Proposition 4.10 If n ⊂ n′ and ñ = ñ′, then F(n′) ⊂ F(n) ⊂ n.

Proof Let k (resp. k′) be the cascade subspace of n∗ (resp. (n′)∗). Take ζ ∈ k0 and ζ′ ∈
k′0. Since Δ(n) ⊂ Δ(n′) and K(n) =K(n′), we have Cn( j) ⊃ Cn′( j) for all β j ∈K(n).
Then Theorem 4.4 shows that nζ ⊃ (n′)ζ′ . By Proposition 4.1, this yields the required
embedding. ∎

Our description of Δ(nζ) yields a criterion for n to be quasi-quadratic.

Theorem 4.11 For a nilradical n = nT , the following assertions are equivalent:
• F(n) = n, i.e., n is quasi-quadratic.
• For each α ∈ T, one of the two conditions is satisfied:

– either α ∈K;
– or Φ(Φ−1(α)) = {α, α′}, and if C is the chain in the Dynkin diagram that connects

α and α′, then C ∩ T = {α} (in particular, α′ /∈ T).

Proof Since F(n) is the b-ideal generated by nζ (Proposition 4.1), it is clear that
F(n) = n if and only if α ∈ Δ(nζ) for each α ∈ T.

(1) If α ∈ T ∩K, then Φ(α) = α and α ∈ Δ(ñζ) ⊂ Δ(nζ).
(2) If α ∈ T/K and Φ−1(α) = β j ∈KT , then α ≠ β j and there are two possibilities.
– Φ(β j) = α. Then the whole Heisenberg algebra h j belongs to n and henceCn( j) =

∅. Then it follows from Theorem 4.4(ii) that Δ(h j ∩ nζ) = {β j}, i.e., α /∈ Δ(nζ).
– Φ(β j) = {α, α′}. Here, β j is the highest root in a root system of type Ap (p ⩾ 2).

Therefore, if C = {α = α1 , α2 , . . . , αp = α′} is the chain connecting α and α′, then β j =
α1 + α2 + ⋅ ⋅ ⋅ + αp . Then α ∈ Δ(nζ) if and only if β j − α = α2 + ⋅ ⋅ ⋅ + αp /∈ Δ(n), and this
is only possible if supp(β j) ∩ T = C ∩ T = {α}. ∎

Using Theorem 4.11, one readily obtains the list of all quasi-quadratic nilradicals.

Proposition 4.12 The quasi-quadratic nilradicals are as follows.
(1) If g is not of type An , D2n+1 , and E6, then F(nT) = nT if and only if T ⊂K.
(2) If g is of type An , then F(nT) = nT if and only if T = {α i}, i = 1, 2, . . . , n.
(3) If g is of type D2n+1, then F(nT) = nT if and only if T ∩ {α2 , α4 , . . . , α2n−2} = ∅

and #(T ∩ {α2n−1 , α2n , α2n+1}) ⩽ 1.
(4) If g is of type E6, then F(nT) = nT if and only if T = {α i}, i ≠ 6.

Proof (1) In this case, Φ−1 is a bijection; hence, Φ(Φ−1(α)) = {α} for any α ∈ Π.
(2) Here, each n has a CP [10]; hence, F(n) is abelian. That is, F(n) = n must be an

abelian nilradical.
(3) In this case, Π ∩K = {α1 , α3 , . . . , α2n−1} and there is a unique β ∈K such that

#Φ(β) = 2. Namely, Φ(β2n−1) = {α2n , α2n+1} (see Appendix A). The chain connecting
α2n and α2n+1 in the Dynkin diagram is C = {α2n , α2n−1 , α2n+1}. Hence the answer.

(4) Here, Π ∩K = {α3} = {β4}, Φ(β3) = {α2 , α4}, Φ(β2) = {α1 , α5} (see
Appendix A). Since α1 , α2 , α3 , α4 , α5 form a chain in the Dynkin diagram, the result
follows. ∎
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5 Generic stabilizers and the Frobenius semiradical in case of
sln+1 or sp2n

First, we explicitly describe the nilradicals in sln+1 or sp2n having a generic stabilizer.
To state the result for sln+1, we need some notation. Recall that, for sln+1, the
poset K is a chain β1 ≻ β2 ≻ ⋅ ⋅ ⋅ ≻ βt , where t = [(n + 1)/2] and Φ(β i) = {α i , αn+1−i}.
Let n = nT ⊂ sln+1 be a nilradical. Then K(n) = {β1 , . . . , βk} for some k ⩽ t (cf.
Lemma 2.2). Therefore, T ⊂ {α1 , . . . , αk , αn+1−k , . . . , αn} and T ∩ {αk , αn+1−k} ≠ ∅.
Set T′ = T ∩ {α1 , . . . , αk−1} and T′′ = T ∩ {αn+2−k , . . . , αn}.

Theorem 5.1 Suppose that g = sln+1 and K(n) = {β1 , . . . , βk}. Then

n
ζ is a generic stabilizer ⇔ σ(T′) = T′′ , where σ is the symmetry of Dynkin diagram An .

(That is, σ(α j) = αn+1− j .) In particular, if σ(T) = T, then nT has a generic stabilizer.

Proof 1o . For k = 1, we have T′ = T′′ = ∅ and n ⊂ h1. If T = {α1 , αn}, then n = h1 is
optimal. If T = {α1}, then n is abelian. In both cases, there is a generic stabilizer for
(n ∶ n∗), as required.

2o . Suppose that k ⩾ 2 and the symmetry of T′ and T′′ fails for some j ⩽ k − 1.
W.l.o.g, we may assume that α j ∈ T′, whereas αn+1− j /∈ T′′. Then β j − αn+1− j = β j+1 +
α j ∈ Δ(nζ). Since β j+1 ∈K(n) ⊂ Δ(nζ) and α j ∈ Δ(n), Condition 4.5 is not satisfied.

3o . If σ(T′) = T′′, then one can directly describe nζ and see that Condition 4.5
is satisfied. It is necessary to distinguish two cases: (a) αk , αn+1−k ∈ T and (b) only
αk ∈ T.

(a) Here, σ(T) = T and Φ(βk) ⊂ Δ(n). Hence, hk ⊂ n and Cn(k) = ∅. Theorem
4.4(ii) shows that nζ ⊂ n{αk} ∩ n{αn+1−k}, the last intersection being the north-east
k × k square of (n + 1) × (n + 1) matrices in sln+1. More precisely, if T′ ∪ {αk} =
{α i1 , α i2 , . . . , α i j = αk}, then Δ(nζ) = Γ1 ∪ ⋅ ⋅ ⋅ ∪ Γj , where

Γ1 = {ε i − ε j ∣ 1 ⩽ i ⩽ i1 , n + 2 − i1 ⩽ j ⩽ n + 1},
Γ2 = {ε i − ε j ∣ i1 + 1 ⩽ i ⩽ i2 , n + 2 − i2 ⩽ j ⩽ n + 1 − i1}, etc.

Here, {Γs} j
s=1 is a string of square blocks located along the antidiagonal in the k × k

square (see Figure 1a). The size of the sth square is is − is−1, where i0 = 0. It is readily
seen that if γ and γ′ belong to different blocks, then γ − γ′ is not a root, while if γ
and γ′ belong to the same block, then γ − γ′ is either not a root or a root of the
standard Levi subalgebra corresponding to n. Thus, γ − γ′ /∈ Δ(n) and Condition 4.5 is
satisfied.

(b) Here, n is smaller than in part (a), but K(n) remains the same. Now only
“half ” of hk belongs to n. Therefore,Cn(k) ≠ ∅, and the subsetsCn(s)with i j−1 < s < k
become larger than in (a). Hence, Δ(nζ) becomes larger and, along with Γ1 ∪ ⋅ ⋅ ⋅ ∪ Γj ,
it also contains the strip of roots

Γ̃ = {ε i − ε j ∣ i j−1 + 1 ⩽ i ⩽ i j = k, k + 1 ⩽ j ⩽ n + 1 − k}
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16 D. I. Panyushev

Figure 1: The generic stabilizer nζ : cases (a) and (b).

attached to Γj (see Figure 1b). The new feature is that the difference of roots from Γj
and Γ̃ can be a root in ⋃k

s=i j−1
Δ(hs). But such a difference belongs to the parts of sets

Δ(hs) that are missing in Δ(n). Thus, Condition 4.5 is still satisfied here. ∎

The symmetry condition of Theorem 5.1 means that the matrix shape of n ⊂ sln+1
must be “almost” symmetric w.r.t. the antidiagonal. That is, the symmetry may only
fail in case (b) for roots in Δ(hs) with i j−1 < s ⩽ i j = k (if αk ∈ T, but αn+1−k /∈ T).

Remark 5.2 Using Theorem 5.1, one easily computes the number of nontrivial
(standard) nilradicals with generic stabilizers. For A2n−1, it is 2n+1 − 3; for A2n , it
is 3(2n − 1). Hence, the ratio #{nilradicals with generic stabilizer}/#{all nilradicals}
exponentially decreases.

Theorem 5.3 If g = sp2n , then a generic stabilizer exists for every nilradical n.

Proof For an appropriate choice of a skew-symmetric bilinear form defining sp2n ⊂
sl2n , a Borel subalgebra of sp2n , b(sp2n), is the set of symplectic upper-triangular
matrices (see Example 2.6). Then the matrix shape of any (standard) nilradical in
sp2n is symmetric w.r.t. the antidiagonal, and the approach in the proof of 3o(a) in
Theorem 5.1 applies to any nilradical in sp2n . If n = nT and T = {α i1 , . . . , α i j}, where
i1 < i2 < ⋅ ⋅ ⋅ < i j = k, then nζ belongs to the north-east k × k square in the abelian
nilradical n{αn}. Here, the blocks Γj inside this square represent matrices that are
symmetric w.r.t. the antidiagonal (cf. Figure 1a). ∎

For these two series, we explicitly describe F(n) for any n. This also demonstrates
the role of commutative polarizations.
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Properties of nilradicals 17

Figure 2: F(n) = n{αk} ∩ n{αn+1−k}, n ⊃ n{αk} ∪ n{αn+1−k}.

5.1 The Frobenius semiradical F(n) for g = sln+1

Let n = nT be a nilradical such that minK(n) = {βk}. Then K(n) = {β1 , . . . , βk},
T ⊂ {α1 , . . . , αk , αn+1−k , . . . , αn}, and Φ(βk) ∩ T ≠ ∅. We may assume that αk ∈ T
and then, as in the proof of Theorem 5.1, there are two possibilities.

(a) αn+1−k ∈ T. Then n{αk} and n{αn+1−k} are CP-ideals of n [22, Example 3.8], and
hence F(n) ⊂ n{αk} ∩ n{αn+1−k} (cf. Section 3.4(3)). Here, s ∶= n{αk} ∩ n{αn+1−k} is the
north-east square of size k in sln+1. On the other hand, nζ ⊂ s (see Theorem 5.1) and
b⋅nζ = s. Hence, F(n) = s and dimF(n) = k2 (see Figure 2). For the special case of
n = u, the description of F(u) is obtained in [19, Theorem 4.1].

Actually, here, a j ∶= n{α j} ∩ n is a CP-ideal of n for any j such that k ⩽ j ⩽ n + 1 − k
(see Example 4.8 in [22]).

(b) αn+1−k /∈ T. Then only n{αk} is a CP-ideal and F(n) ⊂ n{αk}. On the other
hand, supp(βk − αk) = {αk+1 , . . . , αn+1−k}. Hence, βk − αk /∈ Δ(n) and αk ∈ Δ(nζ)
(see Theorem 4.4(ii)). By Proposition 4.1(i), this implies that n{αk} ⊂ F(n). Thus,
here, F(n) = n{αk} and dimF(n) = k(n + 1 − k). Since F(n) appears to be a CP, we
conclude that n{αk} is the only CP for n.

It follows from the descriptions above that for g = sln+1, F(n) is always equal to the
intersection of all CP-ideals of n. But this is not true for other simple Lie algebras.

5.2 The Frobenius semiradical F(n) for g = sp2n

Let n = nT be a nilradical such that minK(n) = {βk}. Then K(n) = {β1 , . . . , βk},
T ⊂ {α1 , . . . , αk} and αk ∈ T. The abelian nilradical n{αn} is identified with the space
of n × n matrices that are symmetric w.r.t. the antidiagonal (see Example 2.6). Then
nζ belongs to the north-east k × k square in n{αn}, and the south-west corner of this
square, gβk , lies in nζ . Hence, F(n) = b⋅nζ is equal to this k-square and dimF(n) =
k(k + 1)/2. In this case, a ∶= n{αn} ∩ n is the only CP-ideal of n and the inclusion
F(n) ⊂ a is proper unless k = n (see the following picture).
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18 D. I. Panyushev

Remark 5.4 The series An and Cn are easily handled, because K is a chain for them
and any nilradical has a CP. Therefore, F(n) is an abelian ideal of n, and there is a
natural upper bound on F(n). However, it can happen that n does not have a CP, but
F(n) is abelian (see Example 7.3).

6 The Poisson center and U-invariants

Recall that P = L⋅N is a standard parabolic subgroup of G and p = l⊕ n. Since N is
connected, one hasS(n)N = S(n)n, and this algebra is the center of the Poisson algebra
(S(n), { , }). Because n is a P-module, one can consider algebras of invariants in
S(n) for any subgroup Q ⊂ P. Specifically, we are interested in the groups U and Ñ ,
where Lie Ñ = ñ is the optimization of n. We also wish to compare the algebras of
Q-invariants in S(n) and S(ñ). The algebras of interest for us are organized in the
following diagram:

S(ñ)U ⊂ S(ñ)Ñ

∪ ∪
S(n)U ⊂ S(n)Ñ ⊂ S(n)N .

(6.1)

If an algebra S(n)Q = C[n∗]Q is finitely generated, then we also consider the associ-
ated quotient morphism πQ ∶ n∗ → n∗//Q ∶= Spec (C[n∗]Q).

For any nilradical n, one can form the solvable Lie algebra

fn = fñ = tn ⊕ ñ ⊂ b,

where tn = ⊕β∈K(n)[gβ , g−β] ⊂ t. By [22, Proposition 5.1], the corresponding con-
nected group Fn ⊂ B has an open orbit in f∗n, i.e., fn is a Frobenius Lie algebra. For
this reason, fn is called the Frobenius envelope of n. Note that the unipotent radical of
Fn is Ñ .

Lemma 6.1 The four algebras of invariants forming the square in (6.1) are polynomial.
In particular, for any optimal nilradical ñ, the Poisson center S(ñ)Ñ is polynomial.

Proof 1o . For any nilradical n, the action (B ∶ n∗) is locally transitive and B⋅ζ is the
dense orbit in n∗ [12, 2.4]. Therefore, S(n)U is a polynomial algebra and trdegS(n)U

equals the number of prime divisors in n∗/B⋅ζ (see [21, Theorem 4.4]). Hence, the
algebras in the first column of (6.1) are polynomial.

2o . More generally, the Fn-equivariant embeddings n↪ ñ↪ fn yield the Fn-
equivariant projections f∗n → ñ∗ → n∗, which implies that Fn has a dense orbit in n∗,
too. Therefore, arguing as in [21, Section 4], one proves that S(n)Ñ is also a polynomial
algebra. Thus, the algebras in the second column of (6.1) are polynomial, too. ∎
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If n ≠ ñ, then the Poisson center S(n)N is not always polynomial (see examples
below).

Lemma 6.2 For any nilradical n, we have S(n)Ñ = S(ñ)Ñ .

Proof It is clear that S(n)Ñ ⊂ S(ñ)Ñ . On the other hand, by [22, Proposition 5.5],
the equality b(n) = b(ñ) (see Proposition 2.3) implies that S(ñ)Ñ ⊂ S(n). Hence,
S(ñ)Ñ ⊂ S(n)Ñ . ∎

Lemma 6.3 For any nilradical n, we have S(n)Ñ = S(n)U .

Proof 1o . Let us first prove that trdegS(n)Ñ = trdegS(n)U . Since Ñ is unipotent, the
field of invariants C(n∗)Ñ is the quotient field of the algebra of invariants C[n∗]Ñ =
S(n)Ñ [4, Chapter 1.4]. Furthermore, by Rosenlicht’s theorem [4, Chapter 1.6], one
has

trdegC(n∗)Ñ +max
ξ∈n∗

dim Ñ ⋅ξ = dimn,

and the same holds for U in place of Ñ . Therefore, since

max
ξ∈n∗

dim U ⋅ξ ⩾ max
ξ∈n∗

dim Ñ ⋅ξ,

it suffices to prove that one has equality here. By Theorem 4.7, Ñ ⋅k is dense in n∗.
Hence, U ⋅k is dense in n∗, too.

Now, u = (u ∩ l̃) ⊕ ñ, where l̃ is the standard Levi subalgebra of p̃ ∶= normg(ñ).
Since ñ is optimal, u ∩ l̃ stabilizes any ξ ∈ k0 ⊂ k. Hence, uξ = (u ∩ l̃) ⊕ ñξ and
dim U ⋅ξ = dim Ñ ⋅ξ. Therefore, maxξ∈n∗ dim U ⋅ξ = maxξ∈n∗ dim Ñ ⋅ξ, and we are done.

2o . By the first part, the extension C[n∗]Ñ = S(n)Ñ ⊂ S(n)U is algebraic. But the
algebra of invariants of a connected algebraic group Q acting on an affine variety X is
algebraically closed in C[X] (see [14, p. 100]). ∎

Combining previous lemmas yields our main result on diagram (6.1).

Theorem 6.4 The four algebras of invariants that form the square in (6.1) are equal,
i.e.,

S(n)U = S(ñ)U = S(n)Ñ = S(ñ)Ñ .

These algebras are polynomial, and their common transcendence degree is #K(n) =
ind ñ. If n ≠ ñ, then trdegS(n)N = trdegS(n)Ñ + dim(ñ/n) > trdegS(n)Ñ . Thus, there
are at most two different algebras of invariants in (6.1).

Proof (1) By Lemma 6.1, these four algebras are polynomial.
(2) By Lemmas 6.2 and 6.3, these four algebras are equal. (Note that Lemma 6.3

applies also to ñ in place of n.)
(3) Since both Ñ and N are unipotent, it follows from the Rosenlicht theorem

that trdegS(ñ)Ñ = ind ñ and trdegS(n)N = indn. Hence, the last relation is just
Eq. (4.1). ∎
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20 D. I. Panyushev

Remark 6.5 The algebra of U-invariants in S(r) is polynomial for an arbitrary b-
stable ideal r of u. That is, if r ⊂ u and [b, r] ⊂ r, then S(r)U is a polynomial algebra.
The reason is that B has an open orbit in r∗ (see [21, Section 4] for details).

Corollary 6.6 For any nilradical n and a cascade point ζ ∈ k0 ⊂ n∗, we have:
(1) #K(n) = #{the divisors in n∗/B⋅ζ} = #{the divisors in n∗/Fn⋅ζ};
(2) B⋅ζ = Fn⋅ζ.

Proof (1) It is known that:
• #K(n) = ind ñ = trdegS(ñ)Ñ ;
• #{the divisors in n∗/B⋅ζ} = trdegS(n)U [21, Theorem 4.4];
• #{the divisors in n∗/Fn⋅ζ} = trdegS(n)Ñ .
The last equality relies on the facts that the orbit Fn⋅ζ is open in n∗ and Ñ is the
unipotent radical of Fn. Hence, [21, Theorem 4.4] applies also in this case.

(2) Since B and Fn are solvable, the orbits B⋅ζ and Fn⋅ζ are affine. Therefore, both
n∗/B⋅ζ and n∗/Fn⋅ζ are the union of divisors and the assertion follows from (1). ∎

If n is not optimal, then S(n)N is not always polynomial (see Example 6.10). Actu-
ally, there are Lie algebras q such that S(q)Q is not finitely generated! A construction
of such q utilizing the Nagata counterexample to Hilbert’s 14th problem is given by
Dixmier in [5, 4.9.20(c)]. Nevertheless, we demonstrate below that, for the nilradicals
in g, the algebra S(n)N is as good as the algebras of invariants of linear actions of
reductive groups. Recall that a commutative associative C-algebra A equipped with
action of an algebraic group Q is called a rational Q-algebra if, for any a ∈ A, the linear
span in A of the orbit Q⋅a is finite-dimensional and the representation of Q on ⟨Q⋅a⟩
is rational (see, e.g., [11, p.1]).

Theorem 6.7 Let n be an arbitrary nilradical in g. Then:
(i) the algebra S(n)N = C[n∗]N is finitely generated;

(ii) the quotient variety n∗//N has rational singularities.

Proof (i) Let p be the parabolic subalgebra with n = pnil. Let l be the standard Levi
subalgebra of p and L the corresponding Levi subgroup of P = NormG(n) ⊂ G. Since
[l, n] ⊂ n, the algebra S(n)N is a rational L-algebra. Set U(L) = U ∩ L. It is a maximal
unipotent subgroup of L, and U is a semi-direct product of U(L) and N. By Theorem
6.4, S(n)U = (S(n)N)U(L) is a polynomial algebra. Now, we can apply Corollary 4
from [23, Section 3], which asserts that if A is a rational L-algebra, then A is finitely
generated if and only if AU(L) is. In our case, A = S(n)N and AU(L) is a polynomial
algebra, with #K(n) generators. Hence, S(n)N is finitely generated.

(ii) Let (P) be a so-called “stable property” of local rings of algebraic varieties (see
[23, Section 6] for the details). By [23, Theorem 6], A has property (P) if and only if
AU(L) has. Since rationality of singularities is such a property, we obtain the second
assertion. ∎
Remark 6.8 (1) Part (i) of Theorem 6.7 appears in [12, Lemma 4.6(ii)], with another
proof. Namely, in place of reference to [23], one can provide the following simple
argument for the implication:

AU(L) is finitely generated A⇒ A is finitely generated.
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Let f1 , . . . , f l be a set of generators for AU(L). We may also assume that each f i is
a T-eigenvector. Then the C-linear span of L⋅ f i ⊂ A is a simple finite-dimensional L-
module, say Vi . It is easily seen that the C-algebra generated by∑l

i=1 Vi is L-stable and
contains all simple L-modules from A. Hence, the finite-dimensional space ∑l

i=1 Vi
generates A.

(2) There is also an alternate approach to part (ii). By a result of Kostant, the algebra
C[n∗]N is a multiplicity free L-module (see [12, 4.5]). Being the algebra of invariants
of a linear action, C[n∗]N is also integrally closed. Therefore, n∗//N is a spherical L-
variety. By [23, Theorem 10], this implies that n∗//N has rational singularities.

Remark 6.9 (1) The general treatment of “stable properties” is due to Popov [23],
but the assertion that relates rationality of singularities for A and AU(L) goes back to
Kraft and Luna (see exposition in Brion’s thesis [2, Chapter I(c)]). It is worth noting
that, for a rational L-algebra A, the equivalence

A is finitely generated ⇐⇒ AU(L) is finitely generated

holds over an algebraically closed field of an arbitrary characteristic (see [11, Theorem
16.2]).

(2) A list of “stable properties” is found in [23, Section 6].

Example 6.10 (1) Take g = sl5 and n = nT with T = {α3 , α4}. Then dimn = 7,
K(n) =K = {β1 , β2}, and ñ = u. Hence, indn = 5. Let {e i j ∣ 1 ⩽ i < j ⩽ 5, j = 4, 5} be
the matrix units corresponding to n (i.e., a basis for n). We regard them as (lin-
ear) functions on n− ≃ n∗. Here, e15 ∈ gβ1 and e24 ∈ gβ2 . Obviously, e15 and f12 =

∣e14 e15
e24 e25

∣belong to S(n)U . For the standard Levi subalgebra l of p = normg(n), one

has [l, l] = sl3; hence, S(n)N is an sl3-module. Taking the sl3-modules generated by
e15 and f12, one obtains six functions that generate S(n)N :

e15 , e25 , e35 , f12 = ∣
e14 e15
e24 e25

∣ , f13 = ∣
e14 e15
e34 e35

∣ , f23 = ∣
e24 e25
e34 e35

∣ .

Since f12 /∈ C[e15 , e25 , e35] and a minimal generating system can be chosen to be SL3-
invariant, the set of generators above is minimal. These generators satisfy the relation
e15 f23 − e25 f13 + e35 f12 = 0; hence, n∗//N is a hypersurface. Under passage to Ñ or U,
the situation improves, because S(n)Ñ = S(n)U = C[e15 , f12].

(2) More generally, for g = slN and T = {αN−k , . . . , αN−1} with k ⩽ N/2, one has

dimnT =
k
2
(2N − 1 − k), KT = {β1 , . . . , βk}, and indnT =

k
2
(2N + 1 − 3k).

Here, [l, l] = slN−k and S(nT)U = C[F1 , . . . , Fk], where Fi is the “anti-principal”
minor of degree i, i.e.,

F1 = e1,N , F2 = ∣
e1,N−1 e1,N
e2,N−1 e2,N

∣ , . . . , Fk =
EEEEEEEEEEEEE

e1,N−k+1 ⋅ ⋅ ⋅ e1,N
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

ek ,N−k+1 ⋅ ⋅ ⋅ ek ,N

EEEEEEEEEEEEE
.
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The SLN−k-module generated by Fi , ⟨SLN−k ⋅Fi⟩, is isomorphic to ∧iV, where V is
the standard SLN−k-module. It is also easily seen that F j does not belong to the C-
algebra generated by ∑ j−1

i=1⟨SLN−k ⋅Fi⟩. Therefore, the minimal number of generators
of Z(nT) is

MT =
k
∑
j=1

dim∧iV =
k
∑
j=1
(N − k

j
).

If k = 1, then nT is abelian and MT = indnT = N − 1. If k ⩾ 2, then MT ⩾ indnT and
the equality holds only for k = 2, N = 4.

(3) For E6 and T = {α2}, one has dimnT = 25, KT = {β1 , β2 , β3}, and indnT = 13.
Here, [l, l] = sl2 ⊕ sl5 and S(nT)U = C[F1 , F2 , F3], where deg Fi = 1, 2, 4 for i = 1, 2, 3,
respectively. Using the l-modules generated by F1 and F2, one can prove that MT ⩾ 15.

7 On the square integrable nilradicals

Recall that any nilradical n = nT is equipped with the canonical Z-grading
n = ⊕dT

i=1 n(i), where dT = ∑α∈T[θ ∶ α] and n(dT) = z(n) is the center of n. Accord-
ingly, one obtains the partition Δ(nT) = ⊔dT

i=1 ΔT(i) (see Section 2.3).
Clearly, indn ⩾ dim z(n) and S(z(n)) ⊂ S(n)N . Following [9, 10], we say that n

is square integrable, if indn = dim z(n). Then nξ = z(n) for any ξ ∈ n∗reg and hence
F(n) = z(n) is abelian. Since trdegS(n)N = dim z(n), the extension S(z(n)) ⊂ S(n)N

is algebraic. This implies that S(n)N = S(z(n)) and hence S(n) is a free S(n)N -
module. It is easily seen that a Heisenberg algebra h is square integrable, with indh = 1.
Using K(n) and our description of nζ , we classify all square integrable nilradicals.
Recall that KT =K(nT) is a poset.

Lemma 7.1 For any n = nT , we have minKT ⊂ (ΔT(1) ∪ ΔT(2)).

Proof Take β ∈ minKT and α ∈ Φ(β) ∩ T. Then there are the following possibili-
ties:

• β = α. Then β ∈ ΔT(1).
• β ≠ α and Φ(β) = {α}. Recall that β is the highest root in the root system with basis

supp(β). Since β is a minimal element of KT , we have supp(β) ∩ T = {α}. Then
[β ∶ α] = 2 and β ∈ ΔT(2).

• Φ(β) = {α, α′}. Here, supp(β) is a basis for the root system Ap (p ⩾ 2)
and supp(β) ∩ T = {α, α′}. Then either α′ ∈ T and β ∈ ΔT(2), or α′ /∈ T and
β ∈ ΔT(1). ∎

Theorem 7.2 Let n = nT be an arbitrary nilradical. Then

n is square integrable ⇐⇒ dT ⩽ 2 and KT ⊂ ΔT(dT) = Δ(z(n)).

Proof (1) Let ζ ∈ k0 be a cascade point. Then nζ ⊃ ⊕β∈KT
gβ . If n is square integrable,

then nζ ⊂ n(dT). Hence, KT ⊂ ΔT(dT). By Lemma 7.1, this is only possible, if dT ⩽ 2.
Thus, the implication “⇒” is proved.
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(2) If dT = 1, then the assumption on KT is vacuous and n is abelian, hence square
integrable. Therefore, to prove the implication “⇐,” we may assume that dT = 2. Then
z(n) = n(2) = [n, n] and KT ⊂ ΔT(2). Now, there are two possibilities for T.

• Suppose that T = {α} and [θ ∶ α] = 2.
Set β i = Φ−1(α). Since β i ∈KT ⊂ ΔT(2), we have [β i ∶ α] = 2. Let us prove that

β i is the unique minimal element of KT . Assume that β i /∈ minKT , i.e., there
is β′ ∈KT such that β′ ≺ β. Then supp(β′) ⊂ supp(β i)/{α} and supp(β′) ∩ T ≠
∅. A contradiction! Hence, β i is minimal in KT . Assume that there is another
minimal element of KT , say β̃. Then supp(β i) and supp(β̃) are disjoint, and we
must have supp(β̃) ∩ T ≠ ∅, which is impossible. This contradiction shows that
minKT = {β i}.

Since B⋅ζ is dense in n∗, B⋅ζ ⊂ n∗reg, and n(2) is B-stable, it suffices to prove that nζ ⊂
n(2) (and then, actually, nζ = n(2)). Recall that n = ⊕β j∈KT

(h j ∩ n). For the unique
minimal element β i ∈KT , we have hi ⊂ n and hence hi ∩ nζ = gβ i . If β i ≺ β j , then
[β j ∶ α] = 2 and the contribution from h j ∩ n to nζ is

h j ∩ n
ζ = gβ j ⊕ ( ⊕

γ∈Cn( j)
gβ j−γ)

(see Theorem 4.4). Since KT ⊂ ΔT(2), we have gβ j ⊂ n(2). The very definition of
Cn( j) says that γ /∈ ΔT . Hence, [γ ∶ α] = 0 and [β j − γ ∶ α] = 2. Thus, β j − γ ∈ ΔT(2)
and h j ∩ nζ ⊂ n(2).

• Suppose that T = {α, α′} and [θ ∶ α] = [θ ∶ α′] = 1.
The argument here is similar to that in the previous part. Set β = Φ−1(α) and

β′ = Φ−1(α′). Using the hypothesis that KT ⊂ ΔT(2), one first proves that β = β′
(hence Φ(β) = {α, α′}) and that β is the unique minimal element of KT . Then the
use of Theorem 4.4 allows us to check that nζ ⊂ n(2). ∎

Using Theorem 7.2, it is not hard to get the list of square integrable nilradicals in
all simple Lie algebras. For dT = 1, nT is abelian and these cases are well known. If
dT = 2, then [nT , [nT , nT]] = 0. The condition that KT belongs to the highest graded
component of nT is quite strong. Therefore, not all nilradicals with dT = 2 are square
integrable.

Example 7.3 (1) The list of square integrable nilradicals with dT = 2 is given below.

• An , T = {αk , αn+1−k} with
2k < n+1;

• Cn , T = {αk} with k < n;

• Bn , T = {α2k} with 2k ⩽ n; • Dn , T = {α2k} with k ⩽ [n/2]−1;

• D2n+1, T = {α2n , α2n+1}; • E6, T = {α6} or T = {α1 , α5};

• E7, T = {α6} or T = {α2}; • E8, T = {α1} or T = {α7};

• F4, T = {α4} or T = {α1}; • G2, T = {α2}.
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(2) The list contains all the cases in which n = h1 is the Heisenberg nilradicals. For
the exceptional algebras, this corresponds to T indicated first, whereas for the classical
series, this corresponds to the cases with k = 1.

(3) Using [22], one verifies that nT has no CP for Bn with k ⩾ 2, (E8 , α7), and
(F4 , α1).

(4) For D2n and T = {α2n−1 , α2n}, nT is not square integrable. Indeed, here, dT = 2,
KT = {β1 , β3 , . . . , β2n−3 , β2n−1 , β2n}, and minKT contains two elements, α2n = β2n−1
and α2n−1 = β2n . (We use the notation of Appendix A.) Hence, β2n−1 , β2n ∈ ΔT(1),
while the other elements of KT belong to ΔT(2). Here, indnT = 2n2−3n+3 and
dim z(nT) = 2n2−3n+1. (Of course, there are other nilradicals with dT = 2 that are
not square integrable.)

Remark 7.4 A real nilpotent Lie group Q has a unitary square integrable repre-
sentation if and only if indq = dim z(q) [15, Theorem 1]. For this reason, Elashvili
applied the term “square integrable” to the nilpotent Lie algebras q satisfying that
equality, over an algebraically closed field of characteristic zero [9] (cf. also [10]).
Afterward, the theory of square integrable representations was extended to the setting
of arbitrary Lie groups [6]. The relevant notions are those of a quasi-reductive Lie group
and a coadjoint orbit of reductive type (see [7]). Therefore, Theorem 7.2 provides a
classification of the quasi-reductive nilradicals in g. Various results on quasi-reductive
seaweed (= biparabolic) subalgebras of g are obtained in [1, 16].

8 When is the quotient morphism equidimensional?

It is well known that if a graded polynomial algebra A is a free module over a graded
subalgebra B, then B is necessarily polynomial. Furthermore, if B is a graded polyno-
mial subalgebra of A, then A is a free B-module if and only if the induced morphism
π ∶ Spec (A) → Spec (B) is equidimensional, i.e., dim π−1(π(x)) = dimA − dimB

for any x ∈ Spec (A) [26, Proposition 17.29]. By a theorem of Chevalley, dominant
equidimensional morphisms are open. Therefore, in the graded situation, π is also
onto (see [29, 2.4]).

In this section, we point out certain nilradicals n in g such that A = S(n) = C[n∗]
is a free module over B = S(n)U = C[n∗]U . The last algebra is always polynomial
(Lemma 6.1); hence, our task is to guarantee that the quotient morphism

π ∶ Spec (A) = n
∗ → n

∗//U = Spec (B)

is equidimensional. Since S(n)U = S(n)Ñ (Lemma 6.3), the optimal nilradicals of
such type provide examples, where S(n) is a free module over its Poisson center
Z(n) = S(n)N . We begin with a simple observation.

Lemma 8.1 If #K(n) ⩽ 3, then S(n) is a free S(n)U -module.

Proof By Theorem 6.4, we have n∗//U ≃ A#K(n). Since eθ ∈ S(n)U is an element of
degree 1, the hyperplane n∗0 = {ξ ∈ n∗ ∣ ξ(eθ) = 0} is U-stable and n∗0//U ≃ As , where
s = #K(n) − 1 ⩽ 2. By a result of Brion [3] on invariants of unipotent groups, π0 ∶ n∗0 →
n∗0//U is equidimensional, and this implies that π is equidimensional, too. ∎
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Theorem 8.2 Let n{α} be an abelian nilradical, i.e., [θ ∶ α] = 1. Suppose that a nilrad-
ical n is contained between n{α} and its optimization ñ{α}. Then:

(1) n{α} is a CP-ideal of n;
(2) S(n) is a free module over S(n)U = S(n)Ñ .

Proof (1) By Remark 2.4, we have dimn{α} = b(n{α}) = b(n).

(2) Consider the commutative diagram

n∗
φK→ n∗{α}LLLM

π
LLLM

π{α}

n∗//U φ//UK→ n∗{α}//U

corresponding

to the U-equivariant inclusion n{α} ↪ n. Since n and n{α} have the same optimization,
Theorem 6.4 implies that S(n)U = S(n{α})U , i.e., φ//U is an isomorphism. By a
general result on U-invariants for the abelian nilradicals [20, Theorem 4.6], S(n{α})
is a free module over S(n{α})U . Hence, the morphism π{α} is equidimensional
and onto. Because the projection φ is also onto and equidimensional, π must be
equidimensional, too. Since n∗//U is an affine space, the morphism π is flat and C[n∗]
is a free C[n∗]U -module. ∎

Corollary 8.3 For the optimal nilradical ñ = ñ{α}, the algebra S(ñ) is a free module
over Z(ñ).

Theorem 8.2 implies interesting consequences for some types of simple Lie alge-
bras.

Proposition 8.4 For every nilradical n in sln+1, there is an α ∈ Π such that n{α} ⊂ n ⊂
ñ{α}. Therefore, S(n) is a free module over S(n)U for any n.

Proof We use the notation of Example 2.5(1). Recall that [θ ∶ α] = 1 for each α ∈ Π. If
n = nT and minK(n) = {βk} (k ⩽ [(n + 1)]/2), then T ∩ {αk , αn+1−k} ≠ ∅. Then any
α in this intersection will do. (The construction of such a simple root α is essentially
contained in the proof of Theorem 6.2 in [10]. For, then n{α} is a CP-ideal of n. But
our approach that refers to K(n) is shorter.) ∎

Of course, the first assertion of Proposition 8.4 appears to be true because all simple
roots of sln+1 provide abelian nilradicals. Nevertheless, the second assertion can be
proved for the nilradicals in sp2n , although the proof becomes more involved.

Proposition 8.5 For any nilradical n in sp2n , S(n) is a free module over S(n)U .

Proof Here,n{αn} is the only abelian nilradical andK(n{αn}) =K. Hence, ñ{αn} = u.
(1) If n = nT and αn ∈ T, then n{αn} ⊂ n and Theorem 8.2 applies. In particular, this

shows that here S(u) is a free module over S(u)U = Z(u).
(2) Suppose that αn /∈ T. Then K(n) = {β1 , . . . , βk} for some k < n, αk ∈ T, and

a ∶= n ∩ n{αn} is a CP-ideal of n. If n{αn} is identified with the space Ŝymn of n × n
matrices that are symmetric w.r.t. the antidiagonal (see Example 2.6), then
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Since a is a b-stable ideal of u, S(a)U is a polynomial algebra (see Remark 6.5). Let us
prove that S(a) is a free S(a)U -module, i.e., that π̄ ∶ a∗ → a∗//U is equidimensional.
Consider the commutative diagram

n∗{αn}

ψK→ a∗

LLLM
παn

LLLMπ̄

n∗{αn}
//U ψ//UK→ a∗//U

corresponding to the U-equivariant inclusion a↪ n{αn}. Here, S(n)U = S(a)U (cf.
Section 3.4(2)), i.e., dima∗//U = dimn∗//U = #K(n) = k. Upon the identification

of n∗{αn}
with n−{αn}

= {(0 0
C 0) ∣ C = Ĉ}and thereby with the dual space Ŝym

∗

n ,

the algebra C[n∗{αn}
]U is freely generated by the principal minors of C. Let f i

be the principal minor of degree i; see the figure . Then

S(n{αn})U = C[n∗{αn}
]U = C[ f1 , . . . , fn] and παn(M) = ( f1(M), . . . , fn(M)). On the

other hand, f i ⊂ S(a) for i ⩽ k and hence S(a)U = C[ f1 , . . . , fk]. Furthermore, if
M̄ = ψ(M) ∈ a∗, then f i(M̄) = f i(M) for i ⩽ k. Then ψ//U takes ( f1(M), . . . , fn(M))
to ( f1(M), . . . , fk(M)) and thereby ψ//U is surjective and equidimensional. Since
we have already proved that παn is onto and equidimensional, this yields the same
conclusion for π̄.

Once it is proved that π̄ is onto and equidimensional, an argument similar to that
in Theorem 8.2 can be applied to the embedding a↪ n. Consider the diagram

n∗
ϕK→ a∗

LLLM
π

LLLMπ̄

n∗//U ϕ//UK→ a∗//U

.(8.1)

Since a is a CP-ideal of n, we have S(n)N ⊂ S(a) [22, Proposition 5.5]. Hence, S(n)N =
S(a)N and thereby S(n)U = S(a)U , i.e., ϕ//U is an isomorphism. This implies that π
is equidimensional, and we are done. ∎
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The proofs of Propositions 8.4 and 8.5 exploit the fact that every nilradical in sln+1
or sp2n has a CP (and hence a CP-ideal). Using Theorem 6.4, we get a joint corollary
to these propositions:

if n = ñ is an optimal nilradical in sln+1 or sp2n , then S(ñ) is a free Z(ñ)-module.
(8.2)

For n ≠ ñ, one cannot even guarantee that Z(n) is a polynomial algebra (see Example
6.10). It might be interesting to characterize non-optimal nilradicals having a polyno-
mial algebra Z(n).

By [22], if n ⊂ ñ{α} with [θ ∶ α] = 1, then n has a CP. However, to point out a CP-
ideal of n, one needs some precautions:

(1) If Φ(Φ−1(α)) = {α}, then n ∩ n{α} is a CP-ideal of n.
(2) If Φ(Φ−1(α)) = {α, α′} and g ≠ sln+1, then at least one of n ∩ n{α} and n ∩ nα′

is a CP-ideal of n.
(3) If g = sln+1, then one should choose the minimal ñ{α} containing n. More

precisely, since n ⊂ ñ{α}, we have K(n) ⊂K(n{α}). Here, one has to take α such that
K(n) =K(n{α}). Then item (2) applies.

In any case, n ∩ n{α} is a CP-ideal of n for a “right” choice of α ∈ Π, and the
hypothesis that n{α} ⊂ n is not required for the presence of CP. That is, Theorem 8.2
does not apply to all nilradicals with CP. Nevertheless, using a case-by-case argument,
we can prove the following.

Theorem 8.6 If n = nT has a CP, then S(n) is a free S(n)U -module.

Proof By the preceding discussion, we may assume that n ⊂ ñ{α} and a ∶= n ∩ n{α}
is a CP-ideal of n. As in the proof of Proposition 8.5, one has the commutative diagram
(8.1), where ϕ//U is an isomorphism. Therefore, it suffices to prove that π̄ ∶ a∗ → a∗//U
is equidimensional. Consider all simple Lie algebras having abelian nilradicals.

(1) The algebras sln+1 and sp2n have been considered above.
(2) For so2n+1, the only abelian nilradical corresponds to α1 = ε1 − ε2 and K(nα1) =

{β1 , β2}. Therefore, #K(n) ⩽ 2 and Lemma 8.1 applies.
(3) For so2n , the abelian nilradicals correspond to α1 , αn−1, and αn = εn−1 + εn .
• For α1 = ε1 − ε2, the situation is the same as for g = so2n+1.
• Since n{αn−1} ≃ n{αn}, we consider only the last possibility. The case of

(so2n , αn) is similar to (sp2n , αn), which is considered in Proposition 8.5. The
distinction is that now n{αn} consists of n × n matrices that are skew-symmetric w.r.t.
the antidiagonal, and the basic U-invariants are pfaffians of the principal minors of
even order. The embedding a ⊂ n{αn} can be described by the figure in the proof of
Proposition 8.5, only now k must be even and the matrices should be skew-symmetric
w.r.t. the antidiagonal.

More precisely, if n = 2p + 1, then αn /∈K and Φ−1(αn) = β2p−1. If n = 2p, then αn =
β2p−1. In both cases, K(n{αn}) = {β1 , β3 , . . . , β2p−1}. If n ⊂ ñ{αn} and n{α} /⊂ n, then
K(n) = {β1 , β3 , . . . , β2s−1}, where s < p = [n/2]. Then trdegS(a)U = s and S(a)U is
generated by the pfaffians of order 2, 4, . . . , 2s. The fact that these pfaffians form a
regular sequence in S(a) = C[a∗] can be proved as in Proposition 8.5 for sp2n .

(4) For E6, the abelian nilradicals correspond to α1 and α5. In both cases, we have
#K(n{α i}) = 2 and hence Lemma 8.1 applies to any n ⊂ ñ{α i}, i = 1, 5.

https://doi.org/10.4153/S0008414X23000718 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000718


28 D. I. Panyushev

(5) For E7, the only abelian nilradical corresponds to α1. Here, K(n{α1}) =
{β1 , β2 , β3} (see Appendix A). Therefore, Lemma 8.1 applies here. ∎

Our computations suggest that Theorem 8.6 holds in the general case.

Conjecture 8.7 For any nilradical n in a simple Lie algebra g, S(n) is a free S(n)U -
module. In particular, for any optimal nilradical ñ, S(ñ) is a free Z(ñ)-module.

So far, this conjecture is proved for (i) the square integrable nilradicals (Section 7),
(ii) the nilradicals with CP, (iii) the series An and Cn , and (iv) if rk g ⩽ 3. It is not hard to
check it for D4. Perhaps, the first step toward a general proof is to verify the conjecture
for n = u. Since u has a CP only for An and Cn , some fresh ideas are necessary here.

A The elements of K

We list below the cascade roots (elements of K) for all simple Lie algebras. The
numbering of Π = {α1 , . . . , αrkg} follows [17, Table 1] and, for roots of the classical
Lie algebras, we use the standard ε-notation. The numbering of cascade roots yields
a linear extension of the poset (K, ≼), i.e., it is not unique unless K is a chain. In all
cases, β1 = θ and

Φ(β i) = {α ∈ Π ∣ β i − α ∈ Δ+ ∪ {0}}.

In particular, if β ∈K ∩ Π, then Φ(β) = {β} and β is a minimal element of K.
Conversely, if β is a minimal element of K and Φ(β) = {α}, a sole simple root, then
α = β.
The cascade elements for the classical Lie algebras:

An , n ⩾ 2 β i = ε i − εn+2−i = α i + ⋅ ⋅ ⋅ + αn+1−i (i = 1, 2, . . . , [ n+1
2 ] );

Cn , n ⩾ 1 β i = 2ε i = 2(α i + ⋅ ⋅ ⋅ + αn−1) + αn (i = 1, 2, . . . , n − 1) and βn = 2εn = αn ;
B2n , D2n , D2n+1 (n ⩾ 2) β2i−1 = ε2i−1 + ε2i , β2i = ε2i−1−ε2i = α2i−1 (i = 1, 2, . . . , n);
B2n+1 , n ⩾ 1 here β1 , . . . , β2n are as above and β2n+1 = ε2n+1 = α2n+1.

For all orthogonal series, we have β2i = α2i−1, i = 1, . . . , n, while formulae for β2i−1
via Π slightly differ for different series. For example, for D2n one has β2i−1 = α2i−1 +
2(α2i + ⋅ ⋅ ⋅ + α2n−2) + α2n−1 + α2n (i = 1, 2, . . . , n − 1) and β2n−1 = α2n .
The cascade elements for the exceptional Lie algebras:

G2 β1 = (32) = 3α1 + 2α2 , β2 = (10) = α1;
F4 β1 = (2432) = 2α1+4α2+3α3+2α4 , β2 = (2210), β3 = (0210), β4 = (0010) = α3;
E6 β1 = 1 232 1

2
, β2 = 1 1 1 1 1

0
, β3 = 0 1 1 1 0

0
, β4 = 00 1 00

0
= α3;

E7 β1 = 1 23432
2

, β2 = 1 222 1 0
1

, β3 = 1 00000
0

= α1, β4 = 00 1 2 1 0
1

, β5 = 00 1 000
0

=

α3, β6 = 0000 1 0
0

= α5, β7 = 000000
1

= α7;

E8 β1 = 2345642
3

, β2 = 0 1 23432
2

, β3 = 0 1 222 1 0
1

, β4 = 0 1 00000
0

= α2, β5 =

000 1 2 1 0
1

, β6 = 000 1 000
0

= α4, β7 = 00000 1 0
0

= α6, β8 = 0000000
1

= α8.
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For the reader’s convenience, we provide the Hasse diagram of the cascade posets
for Dn and En . The node “i” in the diagram represents β i ∈K, and we attach the set
Φ(β i) ⊂ Π to it.
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