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Abstract
We consider uniformly random lozenge tilings of simply connected polygons subject to a technical assumption
on their limit shape. We show that the edge statistics around any point on the arctic boundary, that is not a cusp
or tangency location, converge to the Airy line ensemble. Our proof proceeds by locally comparing these edge
statistics with those for a random tiling of a hexagon, which are well understood. To realize this comparison, we
require a nearly optimal concentration estimate for the tiling height function, which we establish by exhibiting a
certain Markov chain on the set of all tilings that preserves such concentration estimates under its dynamics.
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1. Introduction

A central feature of random lozenge tilings is that they exhibit boundary-induced phase transitions.
Depending on the shape of the domain, they can admit frozen regions, where the associated height
function is flat almost deterministically, and liquid regions, where the height function appears more
rough and random; the curve separating these two phases is called an arctic boundary. We refer to the
papers [CLP98] and [CK01] for some of the earlier analyses of this phenomenon in lozenge tilings of
hexagonal domains and to the book [Gor21] for a comprehensive review. A thorough study of arctic
boundaries on arbitrary polygons was pursued in [KO07, ADPZ20], where it was shown that their
limiting trajectories are algebraic curves.
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Nontangency location on 𝔄 ∩ 𝜕𝔓, and nontangency discontinuity of ∇𝐻∗ on 𝔄

Figure 1. Depicted above are the four scenarios for arctic curve 𝔄 forbidden by Assumption 2.8.

After realizing that these phase boundaries exist and admit limits, the next question is to understand
their fluctuations, known as the edge statistics. On domains of diameter order n, the general prediction is
that their fluctuations are of order 𝑛1/3 and 𝑛2/3 in the directions transverse and parallel to their limiting
trajectories, respectively. Upon scaling by these exponents, it is further predicted that the boundary
converges to the Airy2 process, a universal scaling limit introduced in [PS02] that is believed to govern
various phenomena related to the Kardar–Parisi–Zhang universality class. See [Joh18] for a detailed
survey.

Following the initial works [Joh00, Joh02, Joh05] (where it was first proven in the related context of
domino tilings for the Aztec diamond), this prediction has been established for random lozenge tilings
of various families of domains. For example, we refer to [OR03, OR07, FS03] for certain q-weighted
random plane partitions, [BKMM07] for tilings of hexagons and [Pet14, DM18] for tilings of trapezoids
(hexagons with cuts along a single side). These results are all based on exact and analyzable formulas,
specific to the domain of study, for the correlation kernel for which the tiling forms a determinantal point
process. Although for lozenge tilings of arbitrary polygonals such explicit formulas are not known, it is
believed under such generality that convergence to the Airy2 process under the above scaling still holds;
see [Gor21, Conjecture 18.7] and [ADPZ20, Conjecture 9.1].

In this paper, we prove this statement for simply connected polygonal domains subject to a certain
technical assumption on their limit shape that we believe to hold generically (see Assumption 2.8 and
Remark 2.9 below). Under the interpretation of lozenge tilings as nonintersecting random Bernoulli
walks, we in fact more broadly consider the family of Bernoulli walks around the arctic boundary (not
only the extreme one); we prove under the above scaling that it converges to the Airy line ensemble, a
multilevel generalization of the Airy2 process, introduced in [PS02, CH14]. An informal formulation
of this result is provided as follows; see Theorem 2.10 below for a more precise statement.

Theorem (Theorem 2.10 below). Consider a uniformly random lozenge tiling of a simply connected
polygonal domain, whose arctic boundary does not exhibit any of the configurations depicted in Figure 1.
Under appropriate rescaling, the family of associated nonintersecting Bernoulli walks in a neighborhood
of any point (that is neither a cusp nor a tangency location) of the limiting arctic boundary converges
to the Airy line ensemble.

In the above theorem, we forbade specific (presumably nongeneric) behaviors for singular points of
the arctic boundary associated with the domain. These include the presence of tacnodes and cuspidal
turning points; see Assumption 2.8 for the exact condition. At some of these nongeneric singularities,
the edge scaling limit is more exotic; see [OR06, DJM16, AJvM18b, AJvM18a, AvM18] for more
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information. Still, it is believed that such behaviors should not disrupt the convergence to the Airy line
ensemble elsewhere along the arctic boundary; that our theorem does not apply for these nongeneric
polygons therefore seems to be an artifact of our proof method. Generic singularities along the arctic
boundary (which do appear in almost any polygonal domain) are ordinary cusps. The scaling limits at
such points are believed to be given by the Pearcey process [OR07]; we do not address this intriguing
question here.1

The above theorem can be viewed as a universality result for random lozenge tilings since it shows
that their statistics converge to the Airy line ensemble at any point (that is not a cusp or tangency
location) around the arctic boundary, regardless of the polygonal shape bounding the domain. Recently,
universality results for lozenge tilings at other points inside the domain (where different limiting statistics
appear) have been established. For example, it was shown that local statistics in the interior of the liquid
region converge to the unique translation-invariant, ergodic Gibbs measure of the appropriate slope for
hexagons [BKMM07, Gor08, ABR10], domains covered by finitely many trapezoids [Pet14, Gor17],
bounded perturbations of these [Las19] and finally for general domains [Agg23]. It was also recently
shown in [AG22] that, at tangency locations between the arctic boundary and sides of general domains,
the limiting statistics converge to the corners process of the Gaussian unitary ensemble. Both of these
phenomena were proven to be quite robust, and they in fact apply on domains beyond polygonal ones.

Although the Airy2 process also serves as the edge scaling limit in random lozenge tilings for certain
classes of domains beyond polygons, the precise conditions under which it appears seem subtle. They
are not determined by information about the macroscopic shape of the domain alone; microscopic
perturbations of it can affect the edge statistics. Indeed, placing a single microscopic defect on an edge
of a hexagonal domain corresponds to inserting a new walk in the associated nonintersecting Bernoulli
walk ensemble. At the point where this new walk meets the arctic boundary for the original hexagon, the
edge statistics should instead be given by the Airy2 process with a wanderer, introduced in [AFvM10].

We now outline our proof of the theorem. We will show a concentration estimate for the tiling height
function on a simply connected polygon P (satisfying Assumption 2.8 below) of diameter order n,
stating that with high probability it is within 𝑛𝛿 of its limit shape, for any 𝛿 > 0. Given such a bound,
we establish the theorem by locally comparing the random tiling of P with that of a hexagon, around
their arctic boundaries. More specifically, the concentration estimate implies that the extreme paths in
the nonintersecting Bernoulli walk ensemble X associated with a random tiling of P remains close to
its limiting trajectory. We then match the slope and curvature of this limiting curve with those of the
arctic boundary for a suitably chosen hexagon P′. Using this, we exhibit a coupling between X and the
nonintersecting Bernoulli walk ensemble associated with a random tiling of P′, in such a way that they
likely nearly coincide, up to error o(𝑛1/3), around their arctic boundaries. Known results for random
tilings on hexagonal domains [BKMM07, Pet14, DM18], coming from their exact solvability, show that
the edge statistics of the random tiling of P′ are given by the Airy line ensemble. It follows that the same
holds for the random tiling of P.

The remainder of this paper is devoted to proving the above-mentioned concentration estimate, given
by Theorem 3.10 below. Such a concentration phenomenon is ubiquitous in random matrix theory and
is known as eigenvalue rigidity. In the context of Wigner matrices, it was first proven in [EYY12],
and later for more general classes of random matrices [EKYY13, KY13, BEK+14, HKR18, BES17,
AEK19, BES20]. To show this in our tiling context, we begin with a ‘preliminary’ concentration bound,
Theorem 4.3 below, for a family of n nonintersecting random discrete bridges conditioned to start and
end at specified locations (equivalently, random lozenge tilings of a strip). Assuming the initial and
ending data for these Bernoulli walks are such that the limiting arctic boundary has at most one cusp (see
the left and middle of Figure 2 for examples), this bound states that with high probability the associated
height function is within 𝑛𝛿 of its limit shape. Its proof is presented in part I of this series [Hua24],
which proceeds by first using results of [Hua20] to approximate the random bridge model by a family of
nonintersecting Bernoulli random walks with space- and time-dependent drifts. The latter walk model

1However, we mention that it was answered (subsequently to the present manuscript) in [JHZ23].
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Figure 2. Shown to the left and middle are arctic boundaries exhibiting a single cusp. Shown to the
right is an arctic boundary exhibiting two cusps that point in opposite directions and a decomposition
of that strip into overlapping regions that each have (at most) one cusp.

can then be studied through a dynamical version of the loop equations and an analysis of the complex
Burgers equation through the characteristic method.

Imposing that the arctic boundary has at most one cusp is a substantial constraint; it does not hold
for lozenge tilings of most polygons. Its origin can be heuristically attributed to the fact that, while
disjoint families of nonintersecting Bernoulli walks often merge, merged ones do not separate unless
they are driven by a diverging drift (which much less amenable to analysis). As such, when comparing
the bridge model to a family of nonintersecting Bernoulli walks with drift, one must ensure that these
Bernoulli walks only merge and never separate. If the arctic boundary has only one cusp, then by suitably
orienting the Bernoulli walks, this cusp can be interpreted as a location where families of Bernoulli
walks merge; for example, this is the case if we orient the Bernoulli walks associated with the left and
middle diagrams in Figure 2 north and south, respectively. If the arctic boundary for the bridge model
exhibits two cusps ‘pointing in opposite directions’, as in the right side of Figure 2, then any choice of
orientation will lead to at least one cusp serving as a point where the Bernoulli walks separate. This
issue was circumvented in [Hua20] by restricting to a family of domains in which all cusps point in the
same direction. However, on generic polygons, cusps pointing in opposite directions do appear, so this
point must be addressed here.

To that end, we decompose our domain into a bounded number of (possibly overlapping) subregions
that each have at most one cusp; see the right side of Figure 2. We then introduce a Markov chain,
called the alternating dynamics (a form of the block dynamics), that uniformly resamples the tiling in
one subregion and leaves it fixed in the others. Known estimates [RT00] for mixing times of Glauber
dynamics, together with the censoring inequality of [PW13], imply that this Markov chain mixes to the
uniform measure in time that is polynomial in n (for example, O(𝑛22)).

Initiating the alternating dynamics from a profile approximating the limit shape, we show that the 𝑛𝛿

concentration bound is with high probability preserved at each step of the alternating dynamics (from
which the result follows by running these dynamics until they mix). The preliminary concentration
result alone is insufficient to prove this since the 𝑛𝛿 error it admits could in principle accumulate at each
step. To overcome this, we introduce deterministic barrier functions, which we refer to as tilted profiles,
and show (with the assistance of the preliminary concentration bound) that they likely bound the tiling
height function from above and below throughout the dynamics. To prove that such tilted profiles exist,
we exhibit them by perturbing solutions to the complex Burgers equation in a specific way.

The remainder of this paper is organized as follows. In Section 2, we define the model and state our
main results. In Section 3, we state the concentration result for the tiling height function on the polygon
P and establish the theorem assuming it. In Section 4, we state the preliminary concentration bound
for nonintersecting Bernoulli walks, introduce the alternating dynamics Markov chain and bound its
mixing time. In Section 5, we introduce and discuss properties of tilted height functions. In Section 6,
we establish the concentration result for the tiling height function on P. In Section 7, we give the proof
for the existence of tilted height functions.

Notation

Throughout, we let C = C ∪ {∞}, H+ =
{
𝑧 ∈ C : Im 𝑧 > 0

}
and H− = {𝑧 ∈ C : Im 𝑧 < 0} denote the

compactified complex plane, upper complex plane and lower complex plane, respectively. We further
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denote by |𝑢 − 𝑣 | the Euclidean distance between any elements 𝑢, 𝑣 ∈ R2. For any subset ℜ ⊆ R2, we
let 𝜕ℜ denote its boundary, ℜ denote its closure and diamℜ = sup𝑟 ,𝑟 ′ ∈ℜ |𝑟 − 𝑟 ′ | denote its diameter.
For any additional subset ℜ′ ⊆ R2, we let dist(ℜ,ℜ′) = sup𝑟 ∈ℜ inf𝑟 ′ ∈ℜ′ |𝑟 − 𝑟 ′| denote the distance
between ℜ and ℜ′. For any real number 𝑐 ∈ R, we also define the rescaled set 𝑐ℜ = {𝑐𝑟 : 𝑟 ∈ ℜ},
and for any 𝑢 ∈ R2, we define the shifted set ℜ + 𝑢 =

{
𝑟 + 𝑢 : 𝑟 ∈ ℜ

}
. For any 𝑢 ∈ R2 and 𝑟 ≥ 0, let

𝔅𝑟 (𝑢) = 𝔅(𝑢; 𝑟) =
{
𝑣 ∈ R2 : |𝑣 − 𝑢 | ≤ 𝑟

}
denote the disk centered at u of radius r.

2. Results

2.1. Tilings and height functions

We denote by T the triangular lattice, namely, the graph whose vertex set is Z2 and whose edge set
consists of edges connecting (𝑥, 𝑦), (𝑥 ′, 𝑦′) ∈ Z2 if (𝑥 ′ − 𝑥, 𝑦′ − 𝑦) ∈ {(1, 0), (0, 1), (1, 1)}. The axes of
T are the lines {𝑥 = 0}, {𝑦 = 0} and {𝑥 = 𝑦}, and the faces of T are triangles with vertices of the form{
(𝑥, 𝑦), (𝑥+1, 𝑦), (𝑥+1, 𝑦+1)

}
or

{
(𝑥, 𝑦), (𝑥, 𝑦+1), (𝑥+1, 𝑦+1)

}
. A domain R ⊆ T is a simply connected

induced subgraph of T. The boundary 𝜕R ⊆ R is the set of vertices v ∈ R adjacent to a vertex in T \ R.
A dimer covering of a domain R ⊆ T is defined to be a perfect matching on the dual graph of R. A

pair of adjacent triangular faces in any such matching forms a parallelogram, which we will also refer
to as a lozenge or tile. Lozenges can be oriented in one of three ways; see the right side of Figure 3
for all three orientations. We refer to the topmost lozenge there (that is, one with vertices of the form{
(𝑥, 𝑦), (𝑥, 𝑦+1), (𝑥+1, 𝑦+2), (𝑥+1, 𝑦+1)

}
) as a type 1 lozenge. Similarly, we refer to the middle (with

vertices of the form
{
(𝑥, 𝑦), (𝑥 + 1, 𝑦), (𝑥 + 2, 𝑦 + 1), (𝑥 + 1, 𝑦 + 1)

}
) and bottom (vertices of the form{

(𝑥, 𝑦), (𝑥, 𝑦+1), (𝑥+1, 𝑦+1), (𝑥+1, 𝑦)
}
) ones there as type 2 and type 3 lozenges, respectively. A dimer

covering of R can equivalently be interpreted as a tiling of R by lozenges of types 1, 2 and 3. Therefore,
we will also refer to a dimer covering of R as a (lozenge) tiling. We call R tileable if it admits a tiling.

Associated with any tiling of R is a height function H : R → Z, namely, a function on the vertices of
R that satisfies

H(v) − H(u) ∈ {0, 1}, whenever u = (𝑥, 𝑦) and v ∈
{
(𝑥 + 1, 𝑦), (𝑥, 𝑦 − 1), (𝑥 + 1, 𝑦 + 1)

}
,

H

H

H

H

H
H + 1

H + 1
H

H

H H + 1

H + 1

H H + 1

H + 1

H + 1H

H

0 1 2 3 4 5

0 1 2 3
3 4 5

0 1 2 2
3 4 4 5

0
1 1 2 2 3

4 5 5

0 0 1 2 2 3 4 4
5

0 1 1 2 3 4 4
5

0 1 2 3 3 4
5

0 1 2 3 4 5

Figure 3. Depicted to the right are the three types of lozenges. Depicted in the middle is a lozenge tiling
of a hexagon. One may view this tiling as a packing of boxes (of the type depicted on the left) into a
large corner, which gives rise to a height function (shown in the middle).
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for some (𝑥, 𝑦) ∈ Z2. We refer to the restriction h = H|𝜕R as a boundary height function. For any
boundary height function h : 𝜕R → Z, let 𝒢(h) denote the set of all height functions H : R → Z with
H|𝜕R = h.

For a fixed vertex v ∈ R and integer 𝑚 ∈ Z, one can associate with any tiling of R a height function
H : R → Z as follows. First, set H(v) = 𝑚, and then define H at the remaining vertices of R in such a
way that the height functions along the four vertices of any lozenge in the tiling are of the form depicted
on the right side of Figure 3. In particular, we require that H(𝑥 + 1, 𝑦) = H(𝑥, 𝑦) if and only if (𝑥, 𝑦) and
(𝑥 + 1, 𝑦) are vertices of the same type 1 lozenge and that H(𝑥, 𝑦) − H(𝑥, 𝑦 + 1) = 1 if and only if (𝑥, 𝑦)
and (𝑥, 𝑦 + 1) are vertices of the same type 2 lozenge. Since R is simply connected, a height function on
R is uniquely determined by these conditions (and the value of H(v) = 𝑚).

We refer to the right side of Figure 3 for an example; as depicted there, we can also view a lozenge
tiling of R as a packing of R by boxes of the type shown on the left side of Figure 3. In this case, the
value H(u) of the height function associated with this tiling at some vertex u ∈ R denotes the height of
the stack of boxes at u. Observe in particular that, if there exists a tiling ℳ of R associated with some
height function H, then the boundary height function h = H|𝜕R is independent of ℳ and is uniquely
determined by R (except for a global shift, which was above fixed by the value of H(v) = 𝑚).

2.2. Nonintersecting Bernoulli walk ensembles

In this section, we explain the correspondence between tilings and nonintersecting Bernoulli walk
ensembles, to which end we begin by defining the latter. A Bernoulli walk is a sequence q =

(
q(𝑠), q(𝑠+

1), . . . , q(𝑡)
)
∈ Z𝑡−𝑠+1

≥0 such that q(𝑟 + 1) − q(𝑟) ∈ {0, 1} for each 𝑟 ∈ [𝑠, 𝑡 − 1]; viewing r as a time
index,

(
q(𝑟)

)
denotes the space-time trajectory for a discrete walk, which may either not move or jump

to the right at each step. For this reason, the interval [𝑠, 𝑡] is called the time span of the Bernoulli walk
q, and a step (𝑟, 𝑟 + 1) of this Bernoulli walk may be interpreted as an ‘nonjump’ or a ‘right-jump’ if
q(𝑟 + 1) = q(𝑟) or q(𝑟 + 1) = q(𝑟) + 1, respectively. A family of Bernoulli walks Q =

(
q𝑙 , q𝑙+1, . . . , q𝑚

)
is called nonintersecting if q𝑖 (𝑟) < q 𝑗 (𝑟) whenever 𝑙 ≤ 𝑖 < 𝑗 ≤ 𝑚 and r is the in time span of q𝑖 and q 𝑗 .

Now, fix some tileable domain R ⊂ T, with a height function H : R → T corresponding to a tiling
ℳ of R. We may interpret ℳ as a family of nonintersecting Bernoulli walks by first omitting all type 1
lozenges from ℳ and then viewing any type 2 or type 3 tile as a right-jump or nonjump of a Bernoulli
walk, respectively; see Figure 4 for a depiction.

It will be useful to set more precise notation on this correspondence. Since 𝜕𝑥H(𝑥, 𝑡) ∈ {0, 1} for all
(𝑥, 𝑡), there exist integers x𝑎 (𝑡) (𝑡) < x𝑎 (𝑡)+1 (𝑡) < · · · < x𝑏 (𝑡) (𝑡) such that

𝜕𝑥H(𝑥, 𝑡) =
𝑏 (𝑡)∑
𝑖=𝑎 (𝑡)

1
(
𝑥 ∈

[
x𝑖 (𝑡), x𝑖 (𝑡) + 1

] )
,

q−2(1)

q−1(2) q0 (2)

q1 (0) q2 (0)

q3 (1)

q−2(5)

q−1(4) q0 (4)

q1 (5) q2 (5) q3 (5)

q−1 q0

q1 q2

q−2 q3

Figure 4. Depicted to the left is an ensemble Q =
(
q−2, q−1, q0, q1, q2, q3

)
consisting of six noninter-

secting Bernoulli walks. Depicted to the right is an associated lozenge tiling.
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which are those such that H
(
x𝑖 (𝑡) + 1, 𝑡

)
= H

(
x𝑖 (𝑡), 𝑡

)
+ 1. This fixes the locations of x𝑖 (𝑡), but in this

way the indices 𝑎(𝑡) and 𝑏(𝑡) are defined up to an overall shift. We will fix this shift by stipulating
that H

(
x𝑎 (𝑡) + 1, 𝑡

)
= 𝑎(𝑡); this defines a Bernoulli walk x𝑖 =

(
x𝑖 (𝑡)

)
.2 Ranging over i, we obtain a

nonintersecting ensemble of Bernoulli walks X =
(
x𝑙 , x𝑙+1, . . . , x𝑚

)
that are indexed through the height

function H.

2.3. Limit shapes and arctic boundaries

To analyze the limits of height functions of random tilings, it will be useful to introduce continuum
analogs of the notions considered in Section 2.1. So, set

T =
{
(𝑠, 𝑡) ∈ (0, 1) × R<0 : 𝑠 + 𝑡 > 0

}
⊂ R2, (2.1)

and its closure T =
{
(𝑠, 𝑡) ∈ [0, 1] × R≤0 : 𝑠 + 𝑡 ≥ 0

}
. We interpret T as the set of possible gradients,

also called slopes, for a continuum height function; T is then the set of ‘liquid’ slopes, whose associated
tilings contain tiles of all types. For any simply connected open subset ℜ ⊂ R2, we say that a function
𝐻 : ℜ → R is admissible if H is 1-Lipschitz and ∇𝐻 (𝑢) ∈ T for almost all 𝑢 ∈ ℜ. We further say a
function ℎ : 𝜕ℜ → R admits an admissible extension to ℜ if Adm(ℜ; ℎ), the set of admissible functions
𝐻 : ℜ → R with 𝐻 |𝜕ℜ = ℎ, is not empty.

We say that a sequence of domains R1, R2, . . . ⊂ T converges to a simply connected subset ℜ ⊂ R2

if 𝑛−1R𝑛 ⊆ ℜ for each 𝑛 ≥ 1 and lim𝑛→∞ dist(𝑛−1R𝑛,ℜ) = 0. We further say that a sequence h1, h2, . . .
of boundary height functions on R1, R2, . . ., respectively, converges to a boundary height function
ℎ : 𝜕ℜ → R if lim𝑛→∞ 𝑛−1h𝑛 (𝑛𝑣) = ℎ(𝑣) if v is any point in 𝑛−1R𝑛 for all sufficiently large n.

To state results on the limiting height function of random tilings, for any 𝑥 ∈ R≥0 and (𝑠, 𝑡) ∈ T we
denote the Lobachevsky function 𝐿 : R≥0 → R and the surface tension 𝜎 : T → R2 by

𝐿(𝑥) = −

∫ 𝑥

0
log |2 sin 𝑧 |d𝑧; 𝜎(𝑠, 𝑡) =

1
𝜋

(
𝐿
(
𝜋(1 − 𝑠)

)
+ 𝐿(−𝜋𝑡) + 𝐿

(
𝜋(𝑠 + 𝑡)

) )
. (2.2)

For any 𝐻 ∈ Adm(ℜ), we further denote the entropy functional

E (𝐻) =
∫
ℜ
𝜎

(
∇𝐻 (𝑧)

)
d𝑧. (2.3)

The following variational principle of [CKP01] states that the height function associated with a
uniformly random tiling of a sequence of domains converging to ℜ converges to the maximizer of E
with high probability.

Lemma 2.1 [CKP01, Theorem 1.1]. Let R1, R2, . . . ⊂ T2 denote a sequence of tileable domains,
with associated boundary height functions h1, h2, . . ., respectively. Assume that they converge to a
simply connected subset ℜ → R

2 with piecewise smooth boundary, and a boundary height function
ℎ : 𝜕ℜ → R, respectively. Denoting the height function associated with a uniformly random tiling of
R𝑛 by H𝑛, we have

lim
𝑛→∞
P

(
max
v∈R𝑛



𝑛−1H𝑛 (v) − 𝐻∗(𝑛−1v)


 > 𝜀

)
= 0,

where 𝐻∗ is the unique maximizer of E on ℜ with boundary data h,

𝐻∗ = argmax𝐻 ∈Adm(ℜ;ℎ) E (𝐻). (2.4)

2It might in fact be a union of disconnected walks, but this point will have no effect on our discussion.
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8 A. Aggarwal and J. Huang

The fact that there is a unique maximizer described as in (2.4) follows from [DSS10, Proposition
4.5]. Under a suitable change of coordinates, this maximizer 𝐻∗ solves a complex variant of the Burgers
equation [KO07], which makes it amenable to further analysis; we will discuss this point in more detail
in Section 3.1 below. For any simply connected open subset ℜ ⊂ R2 with Lipschitz boundary and
boundary height function ℎ : 𝜕ℜ → R2 admitting an admissible extension to ℜ, define the liquid region
𝔏 = 𝔏(ℜ; ℎ) ⊂ ℜ

𝔏 =
{
𝑢 = (𝑥, 𝑡) ∈ ℜ :

(
𝜕𝑥𝐻

∗(𝑢), 𝜕𝑡𝐻
∗(𝑢)

)
∈ T

}
, (2.5)

and the arctic boundary 𝔄 = 𝔄(ℜ; ℎ) ⊂ ℜ as the set of points 𝑢 = (𝑥, 𝑡) ∈ 𝜕𝔏 such that for any
sequence of points 𝑢𝑛 ∈ 𝔏 converging to u,(

𝜕𝑥𝐻
∗(𝑢𝑛), 𝜕𝑡𝐻

∗(𝑢𝑛)
)
→ 𝜕T , (2.6)

where 𝐻∗ is as in Equation (2.4). By [DSS10, Proposition 4.1], the set 𝔏 is open. The complement of
the liquid region ℜ \ 𝔏 is called the frozen region.

We will commonly be interested in the case when ℜ is a polygonal domain, given as follows.
Definition 2.2. A subset𝔓 ⊂ R2 is called polygonal if it is a simply connected polygon, and the boundary
edges are in the axes directions of the triangular lattice. We assume the domain3 P = P𝑛 = 𝑛𝔓 ∩ T

is tileable and thus associated with a (unique, up to global shift) boundary height function h = h𝑛. By
translating 𝔓 if necessary, we will assume that 𝔓 ⊂ R × R≥0 and that (0, 0) ∈ 𝜕𝔓. Then by shifting
h if necessary, we will further suppose that h(0, 0) = 0. Under this notation, we set ℎ : 𝜕𝔓 → R by
ℎ(𝑢) = 𝑛−1h(𝑛𝑢) for each 𝑢 ∈ 𝜕𝔓. Moreover, we abbreviate Adm(𝔓) = Adm(𝔓; ℎ), 𝔏(𝔓) = 𝔏(𝔓; ℎ),
and 𝔄(𝔓) = 𝔄(𝔓; ℎ); they do not depend on the above choice of global shift fixing h. We further define
the maximizer 𝐻∗ ∈ Adm(ℜ; ℎ) as in Equation (2.4).

We will make use of the following results from [KO07, ADPZ20] on the behavior of the limit shape
𝐻∗ and arctic boundary 𝔄 when ℜ is polygonal. The first statement in the below lemma is given by
[ADPZ20, Theorem 1.9] and the second by [ADPZ20, Theorem 1.2, Theorem 1.10] (see also [KO07,
Theorem 2, Proposition 5]).
Lemma 2.3 [KO07, ADPZ20]. Adopt the notation of Definition 2.2, and assume that the domain ℜ = 𝔓
is polygonal with at least six sides. Then the following two statements hold.
(1) On 𝔓 \ 𝔏(𝔓), ∇𝐻∗(𝑥, 𝑡) is piecewise constant, taking values in

{
(0, 0), (1, 0), (1,−1)

}
.

(2) The arctic boundary 𝔄(𝔓) is an algebraic curve, and its singularities are all either ordinary cusps
or tacnodes.

The following is an integrality result for the limiting height function 𝐻∗ outside of the associated
liquid region. We provide its proof in Appendix B below.
Proposition 2.4. Adopt the notation of Definition 2.2.
(1) Fix (𝑥, 𝑡) ∈ 𝔓 \ 𝔏 such that ∇𝐻∗(𝑥, 𝑡) = (𝑠, 𝑟) exists and ∇𝐻∗ is continuous at (𝑥, 𝑡). If (𝑠, 𝑟) ∈{

(0, 0), (1, 0), (1,−1)
}
, then 𝑛(𝐻∗(𝑥, 𝑡) − 𝑠𝑥 − 𝑟𝑡) ∈ Z.

(2) For any point 𝑣 ∈ (𝔓 \ 𝔏) ∩ (𝑛−1 · Z)2, we have 𝑛 · 𝐻∗(𝑣) ∈ Z.
It will also be useful to further set notation for the local parabolic shape of 𝔄(𝔓) around any

nonsingular point (𝑥0, 𝑦0) ∈ 𝔄.
Definition 2.5. Fix a nonsingular point (𝑥0, 𝑦0) ∈ 𝔄 = 𝔄(𝔓); assume it is not a tangency location of 𝔄,
which is a point on 𝔄 whose tangent line to 𝔄 has slope in {0, 1,∞}. Define the curvature parameters
(𝔩, 𝔯) =

(
𝔩(𝑥0, 𝑦0;𝔄), 𝔯(𝑥0, 𝑦0;𝔄)

)
∈ R2 associated with (𝑥0, 𝑦0) so that

𝑥 − 𝑥0 = 𝔩(𝑦 − 𝑦0) + 𝔮(𝑦 − 𝑦0)
2 +O

(
(𝑦 − 𝑦3

0)
)
, (2.7)

3We assume throughout that all vertices of 𝑛𝜕𝔓 are in Z2.
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for all (𝑥, 𝑦) ∈ 𝔄 in a sufficiently small neighborhood of (𝑥0, 𝑦0). Since (𝑥0, 𝑦0) is nonsingular and is
not a tangency location, the parameters (𝔩,𝔮) exist, with 𝔩 ∉ {0, 1,∞} and 𝔮 ∉ {0,∞}.

2.4. Edge statistics results

In order to state our results, we first require some notation on edge statistics.

Definition 2.6. For any 𝑠, 𝑡, 𝑥, 𝑦 ∈ R, the extended Airy kernel is given by

K(𝑠, 𝑥; 𝑡, 𝑦) =
∫ ∞

0
𝑒𝑢 (𝑡−𝑠) Ai(𝑥 + 𝑢) Ai(𝑦 + 𝑢)d𝑢, if 𝑠 ≥ 𝑡;

K(𝑠, 𝑥; 𝑡, 𝑦) = −

∫ 0

−∞

𝑒𝑢 (𝑡−𝑠) Ai(𝑥 + 𝑢) Ai(𝑦 + 𝑢)d𝑢, if 𝑠 < 𝑡,

where we recall that the Airy function Ai : R→ R is given by

Ai(𝑥) =
1
𝜋

∫ ∞

−∞

cos
( 𝑧3

3
+ 𝑥𝑧

)
d𝑧.

From this, we define the Airy line ensemble introduced in [PS02, CH14] (see also [AH23], which
provides another, probabilistic interpretation for this object), which will be limits for our edge statistics.

Definition 2.7. The Airy line ensemble A = (A1,A2, . . .) is an infinite collection of continuous curves
A𝑖 : R→ R, ordered so that A1(𝑡) > A2 (𝑡) > · · · for each 𝑡 ∈ R such that

P

(
𝑚⋂
𝑗=1

{(𝑥 𝑗 , 𝑡 𝑗 ) ∈ A}

)
= det

[
K(𝑡𝑖 , 𝑥𝑖; 𝑡 𝑗 , 𝑥 𝑗 )

]
1≤𝑖, 𝑗≤𝑚

𝑚∏
𝑗=1

𝑑𝑥 𝑗 , (2.8)

for any (𝑥1, 𝑡1), (𝑥2, 𝑡2), . . . , (𝑥𝑚, 𝑡𝑚) ∈ R
2. Here, we have written (𝑥, 𝑡) ∈ A if there exists some integer

𝑘 ≥ 1 such that A𝑘 (𝑡) = 𝑥. The existence of such an ensemble was shown as [CH14, Theorem 3.1]
(and the uniqueness follows from the explicit form (2.8) of its multipoint distributions).4 We abbreviate
R =

(
A1(𝑡) − 𝑡2,A2(𝑡) − 𝑡2, . . .

)
, which may be viewed as a function R : Z>0 × R → R by setting

R(𝑖, 𝑡) = R𝑖 (𝑡) = A𝑖 (𝑡) − 𝑡2.

We next impose the following assumption of a polygonal subset 𝔓 ⊂ R2, which excludes certain
conditions on its arctic boundary.

Assumption 2.8. Under the notation of Definition 2.2, assume the following four properties hold.

(1) The arctic boundary 𝔄 = 𝔄(𝔓) has no tacnode singularities.
(2) No cusp singularity of 𝔄 is also a tangency location of 𝔄.
(3) There exists an axis ℓ of T such that any line connecting two distinct cusp singularities of 𝔄 is not

parallel to ℓ.
(4) Any intersection point between 𝔄 and 𝜕𝔓 must be a tangency location of 𝔄. Moreover, ∇𝐻∗(𝑥, 𝑡)

is continuous at any point on 𝔄 that is not a tangency location.

We refer to Figure 1 above for depictions of the four forbidden scenarios. As we will show in Section 6,
the polygonal region 𝔓 satisfying Assumption 2.8 can be decomposed into small pieces that are either
frozen or are ‘double-sided trapezoids’. These ‘double-sided trapezoids’ do not contain tacnodes or
cusp singularities, which are also tangency locations. In this case, the optimal height function of such a
region has been proven in [Hua24, Theorem 2.5] using a dynamical version of the loop equations.

4Its top curve A1 is the Airy2 process.
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Figure 5. Shown to the left is the arctic boundary of an octagon, and shown to the right is the arctic
boundary of a 12-gon. Both examples satisfy the constraints listed in Assumption 2.8.

Remark 2.9. It seems likely to us that the constraints listed in Assumption 2.8 hold for a generic
polygonal domain with a fixed number of sides since each constraint should impose an algebraic relation
between the side lengths of 𝔓. However, we will not pursue a rigorous proof of this here. We refer to
Figure 5 for the arctic boundaries on a generic octagon and 12-gon (obtained by analytically solving for,
and then plotting, the algebraic curves of the appropriate degrees tangent to all sides of these polygons);
it is quickly seen that these arctic boundaries satisfy our assumption.

Now, we can state the following theorem on the convergence to the Airy line ensemble for edge
statistics of uniformly random tilings on polygonal domains satisfying Assumption 2.8. In what follows,
we recall the nonintersecting Bernoulli walk ensemble associated with any tiling of a domain from
Section 2.2 and the curvature parameters from Definition 2.5. Observe that the quantity K defined in
the below theorem is an integer by the first part of Proposition 2.4.

Theorem 2.10. Adopt the notation of Definition 2.2 and the constraint from Assumption 2.8. Fix some
point (𝑥0, 𝑡0) ∈ 𝔄(𝔓) that is not a tangency or cusp location of 𝔄(𝔓), and assume that ∇𝐻∗(𝑥0+𝜀, 𝑡0) =
(0, 0) for all sufficiently small 𝜀 ≥ 0. Denote the curvature parameters associated with (𝑥0, 𝑡0) by (𝔩,𝔮),
and set

𝔰 =





 𝔩2/3(1 − 𝔩)2/3

41/3𝔮1/3





; 𝔯 =





 𝔩1/3 (1 − 𝔩)1/3

21/3𝔮2/3





. (2.9)

Let ℳ denote a uniformly random tiling of P, which is associated with a (random) family
(
x 𝑗 (𝑡)

)
of nonintersecting Bernoulli walks. Denote 𝐾 = 𝑛𝐻∗(𝑥0, 𝑡0), and define the family of functions X𝑛 =
(X1, X2, . . .) by, for each 𝑖 ≥ 0, setting

X𝑖+1(𝑡) = 𝔰−1𝑛−1/3
(
x𝐾−𝑖 (𝑡0𝑛 + 𝔯𝑛2/3𝑡) − 𝑛𝑥0 − 𝔩𝑛2/3𝑡

)
. (2.10)

Then X𝑛 converges to R, uniformly on compact subsets of Z>0 × R, as n tends to ∞.

Observe that Theorem 2.10 stipulates ∇𝐻∗(𝑥0 + 𝜀, 𝑡0) = (0, 0) for small 𝜀. Since for a polygonal
domain 𝔓 ⊂ R2 we have ∇𝐻∗(𝑥, 𝑦) ∈

{
(0, 0), (1, 0), (1,−1)

}
for almost any (𝑥, 𝑦) ∉ 𝔏(𝔓) (by the

first statement of Lemma 2.3), there are six possibilities for the behavior of ∇𝐻∗ around any (𝑥0, 𝑡0) ∈
𝔄(𝔓). Specifically, we either have ∇𝐻∗(𝑥0 + 𝜀, 𝑡0) ∈

{
(0, 0), (1, 0), (1,−1)

}
or ∇𝐻∗(𝑥0 − 𝜀, 𝑡0) ∈{

(0, 0), (1, 0), (1,−1)
}
, with the former if (𝑥0, 𝑡0) is on a ‘right part’ of the arctic boundary and the

latter if it is on a ‘left part’. By rotating or reflecting the tileable domain P if necessary, establishing
convergence for the edge statistics in any one of these six situations also shows it for the remaining
cases, and so for brevity we only stated Theorem 2.10 when ∇𝐻∗(𝑥0, 𝑡0 + 𝜀) = (0, 0).

3. Convergence of edge statistics

In this section, we establish Theorem 2.10, assuming the concentration estimate Theorem 3.10 below.
We begin in Section 3.1 by recalling complex analytic properties of tiling limit shapes in relation to the
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complex Burgers equation; in Section 3.2, we discuss classical locations of these limit shapes. Next, in
Section 3.3 we state a concentration bound for the tiling height function of polygonal domains satisfying
Assumption 2.8, which we use in Section 3.4 to compare the edge statistics on such polygons to those
on hexagonal domains. We then establish Theorem 2.10 in Section 3.5.

3.1. Complex slopes and complex Burgers equation

In this section, we recall from [KO07, ADPZ20] various complex analytic aspects of the tiling limit
shapes discussed in Section 2.3; they will be briefly used in the proof of Lemma 3.7 below, and then
more extensively in our discussion of tilted height profiles later. In what follows, we fix a simply
connected open subset ℜ ⊂ R2 and a boundary height function ℎ : 𝜕ℜ → R. We recall the maximizer
𝐻∗ ∈ Adm(ℜ; ℎ) of E defined in Equation (2.4), as well as the liquid region 𝔏 = 𝔏(ℜ; ℎ) and arctic
boundary 𝔄 = 𝔄(ℜ; ℎ) defined in Equations (2.5) and (2.6).

Then define the complex slope 𝑓 : 𝔏 → H− by, for any 𝑢 ∈ 𝔏, setting 𝑓 (𝑢) ∈ H− to be the unique
complex number satisfying

arg∗ 𝑓 (𝑢) = −𝜋𝜕𝑥𝐻
∗(𝑢); arg∗

(
𝑓 (𝑢) + 1

)
= 𝜋𝜕𝑦𝐻

∗(𝑢), (3.1)

where for any 𝑧 ∈ H− we have set arg∗ 𝑧 = 𝜃 ∈ [−𝜋, 0] to be the unique number in [−𝜋, 0] satisfying
𝑒−i𝜃 𝑧 ∈ R; see Figure 6 for a depiction, where there we interpret 1 − 𝜕𝑥𝐻

∗(𝑢) and −𝜕𝑦𝐻
∗(𝑢) as the

approximate proportions of tiles of types 1 and 2 around 𝑛𝑢 ∈ R𝑛, respectively (which follows from the
definition of the height function from Section 2.1).

The following result from [KO07] indicates that f satisfies the complex Burgers equation.

Proposition 3.1 [KO07, Theorem 1]. For any (𝑥, 𝑡) ∈ 𝔏, let 𝑓𝑡 (𝑥) = 𝑓 (𝑥, 𝑡) we have

𝜕𝑡 𝑓𝑡 (𝑥) + 𝜕𝑥 𝑓𝑡 (𝑥)
𝑓𝑡 (𝑥)

𝑓𝑡 (𝑥) + 1
= 0. (3.2)

Remark 3.2. As explained in [ADPZ20, Section 3.2.2], the composition 𝑓̃ = 𝑀 ◦ 𝑓 of 𝑓𝑡 (𝑧) with a
certain Möbius transformation M solves the Beltrami equation 𝜕𝑧 𝑓̃ = 𝑓̃ · 𝜕𝑧 𝑓̃ . Thus, after a change of
variables, any solution of the complex Burgers equation also solves the Beltrami equation.

The following result from [KO07, ADPZ20] describes properties of the complex slope 𝑓𝑡 (𝑥) when
ℜ is polygonal.

Proposition 3.3 [KO07, ADPZ20]. Adopt the notation of Definition 2.2, and assume that the domain
ℜ = 𝔓 polygonal with at least six sides. Then the following three statements hold.

Figure 6. Shown above the complex slope 𝑓 = 𝑓 (𝑢).
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(1) The complex slope 𝑓𝑡 (𝑥) extends continuously to the arctic boundary 𝔄(𝔓).
(2) Fix (𝑥0, 𝑡0) ∈ 𝔏. There exists a neighborhood 𝔘 ⊂ C2 of (𝑥0, 𝑡0) and a real analytic function

𝑄0 : 𝔘 → C such that, for any (𝑥, 𝑡) ∈ 𝔘 ∩ 𝔏, we have

𝑄0
(
𝑓𝑡 (𝑥)

)
= 𝑥

(
𝑓𝑡 (𝑥) + 1

)
− 𝑡 𝑓𝑡 (𝑥). (3.3)

There exists a nonzero rational function 𝑄 : C2 → C2 such that, for any (𝑥, 𝑡) ∈ 𝔏, we have

𝑄

(
𝑓𝑡 (𝑥), 𝑥 −

𝑡 𝑓𝑡 (𝑥)

𝑓𝑡 (𝑥) + 1

)
= 0. (3.4)

(3) For any (𝑥, 𝑡) ∈ 𝔘 ∩ 𝔏, 𝑓𝑡 (𝑥) is a double root of Equation (3.3) if and only if (𝑥, 𝑡) ∈ 𝜕𝔏.
Remark 3.4. The first statement of Proposition 3.3 is [ADPZ20, Theorem 1.10]. The local existence of
𝑄0 in Equation (3.3) in the second is [Gor21, Theorem 10.5] (see also [KO07, Corollary 2] or [ADPZ20,
Theorem 5.2]), and the global existence of Q in Equation (3.4) is a quick consequence of the first part
and Equation (3.3); see [Hua24, Proposition A.2(3)]. The third statement follows from the facts that
(𝑥, 𝑡) ∈ 𝔄(𝔓) if and only if 𝑓𝑡 (𝑥) ∈ R, by Equation (3.1) and that any root of 𝑄0 is real if and only if it
is a double root, as 𝑄0 is real anaytic (see also the discussion at the end of [KO07, Section 1.6]).

3.2. Classical Locations

In the remainder of this section, we adopt the notation of Theorem 2.10. To establish Theorem 2.10,
we will use a concentration estimate for the Bernoulli walk locations x𝑖 associated with the uniformly
random tiling ℳ of P. To state this result, we require some additional notation that will be in use
throughout the remainder of this paper.
Definition 3.5. For any integer 𝑖 ∈ Z and real number 𝑡 ≥ 0, define the classical location 𝛾𝑖 (𝑡) to be the
(deterministic) real number

𝛾𝑖 (𝑡) := inf
{
𝑥 ∈ R : 𝑛𝐻∗(𝑥, 𝑡) = 𝑖

}
, (3.5)

if it exists (whenever this quantity is used, we will always implicitly assume that the parameters (𝑖, 𝑡)
are such that it exists).

We will use an estimate for the classical locations 𝛾𝑖 (𝑡) around the arctic boundary.
Lemma 3.6. Recall Definition 2.5, and adopt the notation of Theorem 2.10. For any integer 𝑗 ≥ 0 and
𝑡 ∈ R≥0, we have

𝛾𝐾− 𝑗 (𝑡) = 𝑥0 + 𝔩(𝑡 − 𝑡0) + 𝔮(𝑡 − 𝑡0)
2 − 𝔰3/2

(
3𝜋 𝑗

2𝑛

)2/3
+O

(
𝑗𝑛−1 + |𝑡 − 𝑡0 |

3) ,
where the implicit constant in the error is uniform if (𝑥0, 𝑡0) is bounded away from a singularity or
tangency location of 𝔄(𝔓).

To establish Lemma 3.6, we require the following lemma expressing the curvature parameters (𝔩, 𝔯)
in terms of the analytic function 𝑄0 from Proposition 3.3 (associated with some point (𝑥0, 𝑡0) ∈ 𝔏). Its
proof, which essentially follows from a Taylor expansion, is given in Appendix A below.
Lemma 3.7. Recall Definition 2.5, adopting the notation of Theorem 2.10, and abbreviate (𝑥, 𝑡) =
(𝑥0, 𝑡0). We have

𝔩 =
𝑓𝑡 (𝑥)

𝑓𝑡 (𝑥) + 1
; 𝔮 = −

1
2
(
𝑓𝑡 (𝑥) + 1

)−3
𝑄 ′′

0
(
𝑓𝑡 (𝑥)

)−1
.

Now, we can establish Lemma 3.6.
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Proof of Lemma 3.6. We may assume throughout that |𝑡 − 𝑡0 | and 𝑗𝑛−1 are sufficiently small, for other-
wise |𝑡−𝑡0 |

3+ 𝑗𝑛−1 is of order 1 (and thus of diam(𝔓) ≥ 𝛾𝐾− 𝑗 (𝑡)). Then, observe that
(
𝛾𝐾 (𝑠), 𝑠

)
∈ 𝔄(𝔓)

for each s in a neighborhood of 𝑡0. Indeed, since ∇𝐻∗(𝑤, 𝑠) = (0, 0) for all (𝑤, 𝑠) ∈ 𝔓 \ 𝔏(𝔓) suffi-
ciently close to (𝑥0, 𝑡0), we have 𝑛𝐻∗(𝑤, 𝑠) = 𝑛𝐻 (𝑥0, 𝑡0) = 𝐾 for each (𝑤, 𝑠) ∈ 𝔄(𝔓) in a neighborhood
of (𝑥0, 𝑡0), implying

(
𝛾𝐾 (𝑠), 𝑠

)
= (𝑤, 𝑠) ∈ 𝔄(𝔓).

Throughout this proof, set 𝑥̃ = 𝛾𝐾− 𝑗 (𝑡). We first consider the case 𝑡 = 𝑡0. Fix some 𝑥 ∈ [𝑥̃, 𝑥0], and
abbreviate 𝑓0 = 𝑓𝑡0 (𝑥0) and 𝑓 = 𝑓𝑡0 (𝑥). We will approximately express f in terms of 𝑓0, and then we
will use this with (3.1) to compare the classical locations 𝛾𝐾− 𝑗 (𝑡0) and 𝛾𝐾 (𝑡0) = 𝑥0. To that end, the
second part of Proposition 3.3 implies

𝑄0 ( 𝑓0) = 𝑥0 ( 𝑓0 + 1) − 𝑡0 𝑓0; 𝑄0 ( 𝑓 ) = 𝑥( 𝑓 + 1) − 𝑡0 𝑓 .

Subtracting these and applying a Taylor expansion yields

( 𝑓 − 𝑓0)𝑄
′
0( 𝑓0) +

( 𝑓 − 𝑓0)
2

2
𝑄 ′′

0 ( 𝑓0) +O
(
| 𝑓 − 𝑓0 |

3) = 𝑄0 ( 𝑓 ) −𝑄0 ( 𝑓0)

= ( 𝑓 + 1) (𝑥 − 𝑥0) + (𝑥0 − 𝑡0) ( 𝑓 − 𝑓0),

where the error depends on the first three derivatives of 𝑄0 at f, which is uniformly bounded if (𝑥0, 𝑡0) is
bounded away from a singularity or tangency location of 𝔄(𝔓). Since the third part of Proposition 3.3
gives 𝑄 ′

0 ( 𝑓0) = 𝑥0 − 𝑡0, we find that

( 𝑓 − 𝑓0)
2 =

2( 𝑓0 + 1)
𝑄 ′′

0 ( 𝑓0)
(𝑥 − 𝑥0) +O

(
| 𝑓 − 𝑓0 |

3) .
In particular, | 𝑓0 − 𝑓 | = O

(
|𝑥 − 𝑥0 |

1/2) and, more specifically,

𝑓 − 𝑓0 =

(
2( 𝑓0 + 1)
𝑄 ′′

0 ( 𝑓0)

)1/2
(𝑥 − 𝑥0)

1/2 +O
(
|𝑥 − 𝑥0 |

3/2) . (3.6)

Since 𝛾𝐾− 𝑗 (𝑡0) = 𝑥̃ ≤ 𝑥 ≤ 𝑥0 ≤ 𝛾𝐾 (𝑡0), we have (𝑥 − 𝑥0)
1/2 ∈ iR. Since moreover 𝑓0 ∈ R, which

implies 𝑄 ′′
0 ( 𝑓0) ∈ R, we deduce

arg∗ 𝑓 = 𝑓 −1
0 Im( 𝑓 − 𝑓0) +O

(
| 𝑓 − 𝑓0 |

3 + |𝑥 − 𝑥0 |
3/2)

=

(
2| 𝑓0 + 1|
𝑓 2
0



𝑄 ′′
0 ( 𝑓0)




)1/2

(𝑥0 − 𝑥)1/2 +O
(
|𝑥0 − 𝑥 |3/2) .

In particular, since 𝑛𝐻∗(𝑥0, 𝑡0) = 𝐾 and 𝑛𝐻∗(𝑥̃, 𝑡0) = 𝐾 − 𝑗 , this implies by Equation (3.1) that

𝑗

𝑛
= 𝐻∗(𝑥0, 𝑡0) − 𝐻∗(𝑥̃, 𝑡0) =

∫ 𝑥0

𝑥̃
𝜕𝑥𝐻

∗(𝑤, 𝑡0)d𝑤

=
1
𝜋

∫ 𝑥0

𝑥̃
arg∗ 𝑓𝑡0 (𝑤)d𝑤

=

(
8| 𝑓0 + 1|

9𝜋2 𝑓 2
0



𝑄 ′′
0 ( 𝑓0)




)1/2

(𝑥0 − 𝑥̃)3/2 +O
(
|𝑥0 − 𝑥̃ |5/2) .
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Hence,

𝛾𝐾 (𝑡0) − 𝛾𝐾− 𝑗 (𝑡0) = 𝑥0 − 𝑥̃ =

(
𝑓 2
0


𝑄 ′′

0 ( 𝑓0)




2| 𝑓0 + 1|

)1/3 (3𝜋 𝑗

2𝑛

)2/3
+O( 𝑗𝑛−1), (3.7)

which by Lemma 3.7 and the definition of 𝔰 from (2.9) implies the lemma when 𝑡 = 𝑡0.
If 𝑡 ≠ 𝑡0, then set 𝑥̂0 = 𝛾𝐾 (𝑡) ∈ 𝔄(𝔓) and 𝑓̂0 = 𝑓𝑡 (𝑥̂0). Then, the same reasoning as used to deduce

Equation (3.7) implies

𝛾𝐾 (𝑡) − 𝛾𝐾− 𝑗 (𝑡) =

(
𝑓̂ 2
0


𝑄 ′′

0 ( 𝑓̂0)




2| 𝑓̂0 + 1|

)1/3 (
3𝜋 𝑗

2𝑛

)2/3
+O( 𝑗𝑛−1)

=

(
𝑓 2
0


𝑄 ′′

0 ( 𝑓0)




2| 𝑓0 + 1|

)1/3 (3𝜋 𝑗

2𝑛

)2/3
+O

(
|𝑡 − 𝑡0 | 𝑗

2/3𝑛−2/3 + 𝑗𝑛−1) ,
where in the last equality we used the fact that 𝑓𝑡 is uniformly smooth in t around 𝑡0 along 𝔄(𝔓). By
Equation (2.7), it follows that

𝛾𝐾− 𝑗 (𝑡) = 𝛾𝐾 (𝑡) −

(
𝑓 2
0


𝑄 ′′

0 ( 𝑓0)




2| 𝑓0 + 1|

)1/3 (3𝜋 𝑗

2𝑛

)2/3
+O

(
|𝑡 − 𝑡0 | 𝑗

2/3𝑛−2/3 + 𝑗𝑛−1)
= 𝛾𝐾 (𝑡0) + 𝔩(𝑡 − 𝑡0) + 𝔮(𝑡 − 𝑡0)

2 −

(
𝑓 2
0


𝑄 ′′

0 ( 𝑓0)




2| 𝑓0 + 1|

)1/3 (3𝜋 𝑗

2𝑛

)2/3
+O

(
𝑗𝑛−1 + |𝑡 − 𝑡0 |

3) ,
which implies the lemma due to Lemma 3.7 and Equation (2.9) again. �

3.3. Concentration estimate for the height function

In this section, we state a concentration estimate for the height function of a random tiling of P. We
begin with the following definition for events that hold with very high probability.

Definition 3.8. We say that an event ℰ𝑛 occurs with overwhelming probability if the following holds.
For any real number 𝐷 > 1, there exists a constant 𝐶 > 1 (dependent on D and also possibly on other
implicit parameters, but not n, involved in the definition of ℰ𝑛) such that P(ℰ𝑛) ≥ 1 − 𝑛−𝐷 for any
integer 𝑛 > 𝐶.

Recalling the notation of Theorem 2.10 and letting H denote the height function associated with
the random tiling ℳ of P, our concentration estimate will state that the following two points with
overwhelming probability. First, H is within 𝑛𝛿 of the deterministic function 𝑛𝐻∗ everywhere on 𝔓.
Second, H is frozen (deterministic) at a ‘sufficiently far mesoscopic distance’ from the liquid region
𝔏(𝔓). To make the latter point precise, we require the following definition.

Definition 3.9. Adopt the notation of Theorem 2.10, and abbreviate 𝔏 = 𝔏(𝔓) and 𝔄 = 𝔄(𝔓). Then,
define the augmented liquid region

𝔏𝛿
+ (𝔓) = 𝔏 ∪

⋃
𝑢∈𝔄

𝔅(𝑢; 𝑛𝛿−2/3).

Under this notation, the following theorem then provides a concentration bound for the height function
associated with ℳ; it will be established in Section 6.2 below.

Theorem 3.10. Adopt the notation of Theorem 2.10, and let H : P → Z denote the height function
associated with ℳ. For any real number 𝛿 > 0, the following two statements hold with overwhelming
probability.
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(1) We have


H(𝑛𝑢) − 𝑛𝐻∗(𝑢)



 < 𝑛𝛿 for any 𝑢 ∈ 𝔓.
(2) For any 𝑢 ∈ 𝔓 \ 𝔏𝛿

+ (𝔓), we have H(𝑛𝑢) = 𝑛𝐻∗(𝑢).

Together with Lemma 3.6, Theorem 3.10 implies the following corollary that estimates trajectories
for the random Bernoulli walks associated with ℳ (recall the Bernoulli walk locations associated with
the uniformly random tiling ℳ of P from Theorem 2.10 and Section 2.2) near the arctic boundary. The
estimate is optimal up to the extra 𝑛𝛿 factor and is reminiscent of the optimal rigidity estimates of edge
eigenvalues in random matrix theory; see [EYY12, Theorem 2.2].

Corollary 3.11. Adopt the notation of Theorem 2.10, and fix a real number 𝛿 ∈
(
0, 1/100

)
. For any

integers 𝑗 ∈ [1, 2𝑛10𝛿] and 𝑠 ∈ [−𝑛2/3+20𝛿 , 𝑛2/3+20𝛿], we have with overwhelming probability that




x𝐾− 𝑗+1(𝑠 + 𝑡0𝑛) −

(
𝑥0𝑛 + 𝔩𝑠 + 𝔮𝑛−1𝑠2 − 𝔰3/2

(3𝜋 𝑗

2

)2/3
𝑛1/3

)




 ≤ 𝑗−1/3𝑛1/3+𝛿 .

Proof. We first show that Theorem 3.10 implies, for any t in a sufficiently small (independent of n)
neighborhood of 𝑡0, that with overwhelming probability we have

𝛾𝐾− 𝑗−𝑛𝛿+1(𝑡) − 𝑛−1 ≤ 𝑛−1x𝐾− 𝑗+1 (𝑡𝑛) ≤ min
{
𝛾𝐾− 𝑗+𝑛𝛿+1(𝑡), 𝛾𝐾 (𝑡) + 𝑛𝛿/2−2/3}, (3.8)

where we recall the classical locations 𝛾𝑖 (𝑡) from Definition 3.5 (and we assume that 𝑡𝑛 ∈ Z for
notational convenience). Let us only show the second bound in Equation (3.8), for the proof of the
first is entirely analogous. Then, from the bijection between tilings and nonintersecting Bernoulli walk
ensembles described in Section 2.2, we have 𝑛−1 (x𝐾− 𝑗+1 (𝑡𝑛)+1) ≤ 𝑥 if and only if H(𝑥𝑛, 𝑡𝑛) ≥ 𝐾− 𝑗+1.

So, setting 𝛾 = 𝛾𝐾− 𝑗+𝑛𝛿+1 (𝑡), the first part of Theorem 3.10 implies with overwhelming probability
that H(𝛾𝑛, 𝑡𝑛) ≥ 𝑛𝐻∗(𝛾𝑛, 𝑡𝑛) − 𝑛𝛿 = 𝐾 − 𝑗 + 1. Hence, x𝐾− 𝑗+1 (𝑡𝑛) ≤ 𝛾𝐾− 𝑗+𝑛𝛿+1(𝑡) holds with
overwhelming probability. Moreover, denoting 𝑥′ = 𝛾𝐾 (𝑡) + 𝑁 𝛿/2−2/3, we have by the second part of
Theorem 3.10 that H(𝑥 ′𝑛, 𝑡𝑛) = 𝑛𝐻∗(𝑥 ′, 𝑡) = 𝑛𝐻∗

(
𝛾𝐾 (𝑡), 𝑡

)
= 𝐾 with overwhelming probability, where

in the second equality we used the fact that ∇𝐻∗(𝑥, 𝑡) = (0, 0) for (𝑥, 𝑡) in a neighborhood of (𝑥0, 𝑡0)
to the right of 𝔄. Hence, 𝑛−1x𝐾− 𝑗+1 (𝑡) ≤ 𝑛−1x𝐾 (𝑡) ≤ 𝑥 ′ = 𝛾𝐾 (𝑡) + 𝑁 𝛿/2−2/3 with overwhelming
probability. This confirms Equation(3.8).

Now, Equation (3.8) and Lemma 3.6 together imply that

𝑛−1x𝐾− 𝑗+1 (𝑡𝑛) = 𝑥0 + 𝔩(𝑡 − 𝑡0) + 𝔮(𝑡 − 𝑡0)
2 − 𝔰3/2

(3𝜋 𝑗

2𝑛

)2/3

+O
(
𝑗𝑛−1 + |𝑡 − 𝑡0 |

3 + 𝑗−1/3𝑛𝛿−2/3) (3.9)

holds for each 𝑗 ∈ Z and 𝑡 ∈ R, with overwhelming probability. Here, we have also used the fact
that Lemma 3.6 implies the classical locations 𝛾 𝑗 (𝑡) (from Definition 3.5) with respect to 𝔓 satisfy
𝛾 𝑗 (𝑡) − 𝛾 𝑗−𝑛𝛿 (𝑡) = O( 𝑗−1/3𝑛−2/3). Since 𝛿 ∈

(
0, 1/100

)
and 𝑗 ∈ [1, 2𝑛10𝛿], we have 𝑗𝑛−1 + |𝑡 − 𝑡0 |

3 +

𝑗−1/3𝑛𝛿−2/3 ≤ 3 𝑗−1/3𝑛𝛿−2/3 for 𝑗 ∈ [1, 2𝑛10𝛿] and |𝑡 − 𝑡0 | ≤ 𝑛20𝛿−2/3. Setting 𝑠 = (𝑡 − 𝑡0)𝑛 in (3.9) then
yields the corollary. �

3.4. Comparison to hexagonal edge statistics

We will prove Theorem 2.10 through a local comparison of a random tiling of P with one of a suitably
chosen hexagonal domain, whose universality of edge statistics has been proven in [Pet14, DM18,
BKMM07, DDV23]. In this section, we set notation and state known properties for such hexagonal
domains.

Definition 3.12. For any real numbers 𝑎, 𝑏, 𝑐 > 0, let 𝔈𝑎,𝑏,𝑐 ⊂ R2 denote the 𝑎 × 𝑏 × 𝑐 hexagon, that is,
the polygon with vertices

{
(0, 0), (𝑎, 0), (𝑎+𝑐, 𝑐), (𝑎+𝑐, 𝑏+𝑐), (𝑐, 𝑏+𝑐), (0, 𝑏)

}
. By [CLP98, Theorem

1.1], its liquid region 𝔏𝑎,𝑏,𝑐 = 𝔏(𝔈𝑎,𝑏,𝑐) is bounded by the ellipse inscribed in 𝔈𝑎,𝑏,𝑐 .
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f x−1 x0 x1 x2

d−1 d0 d1 d2

g

e−1 e0 e1 e2

Figure 7. Shown above is an ensemble of nonintersecting Bernoulli walks X = (x−1, x0, x1, x2) with
initial data d = (d−1, d0, d1, d2); ending data e = (e−1, e0, e1, e2); left boundary f; and right boundary g.

We refer to the middle of Figure 3 for a depiction when (𝑎, 𝑏, 𝑐) = (5, 4, 3). The following result
from [Pet14, DM18, BKMM07, DDV23] is the case of Theorem 2.10 when P is a hexagon.

Proposition 3.13 [Pet14, DM18, BKMM07, DDV23]. Let 𝑎 = 𝑎𝑛, 𝑏 = 𝑏𝑛 and 𝑐 = 𝑐𝑛 be real numbers
bounded away from 0 and ∞, and set (a, b, c) = (a𝑛, b𝑛, c𝑛) = (𝑛𝑎, 𝑛𝑏, 𝑛𝑐); assume that a, b, c ∈ Z.
Then Theorem 2.10 holds with the 𝔓 there equal to the 𝑎 × 𝑏 × 𝑐 hexagon (and P equal to the a × b × c
hexagon).

Remark 3.14. Since Proposition 3.13 does not appear to have been stated exactly in above form in the
literature, let us briefly outline how it follows from known results. First, [DDV23, Theorem 4.1] (see
also the proof of [DDV23, Theorem 1.5]) indicates that, to show uniform convergence of the normalized
discrete nonintersecting Bernoulli walks X𝑖 (𝑡) from Equation (2.10) to the shifted Airy line ensemble
R from Definition 2.7, it suffices to establish convergence in the sense of distributions, that is,

lim
𝑛→∞
P

(
𝑚⋂
𝑖=1

{
X 𝑗𝑖 (𝑡𝑖) ≤ 𝑧𝑖

})
= P

(
𝑚⋂
𝑖=1

{
R 𝑗𝑖 (𝑡𝑖) ≤ 𝑧𝑖

})
, (3.10)

for any 𝑗1, 𝑗2, . . . , 𝑗𝑚 ∈ Z≥1 and 𝑡1, 𝑡2, . . . , 𝑡𝑚, 𝑧1, 𝑧2, . . . , 𝑧𝑚 ∈ R. Next, [Pet14, Theorem 8.1] and
[DM18, Theorem 1.12] show that the nonintersecting Bernoulli walk ensemble

(
x 𝑗 (𝑡)

)
is a determinantal

point process, whose correlation kernel under the scaling (2.10) converges to the extended Airy kernel
from Definition 2.6. Since probabilities as in the left side of Equation (3.10) are expressible in terms
of unbounded sums involving this correlation kernel (see, for example, [Joh05, Equation (3.9)]), to
conclude the distributional convergence (3.10) from the kernel limit, it suffices to show one-point
tightness of the extremal Bernoulli walk X1 (in order to effectively cut off5 the sum mentioned above).
This tightness is provided by [BKMM07, Theorem 3.14], which in fact shows that the one-point law of
X1 converges to the Tracy–Widom distribution, originally derived from studying the largest eigenvalue
of the Gaussian Unitary ensemble.

To proceed, we require some additional notation on nonintersecting Bernoulli walk ensembles. Let
X = (x𝑙 , x𝑙+1, . . . , x𝑚) denote a family of nonintersecting Bernoulli walks, each with time span [𝑠, 𝑡],
so that x 𝑗 =

(
x 𝑗 (𝑠), x 𝑗 (𝑠 + 1), . . . , x 𝑗 (𝑡)

)
for each 𝑗 ∈ [𝑙, 𝑚]. Given functions f, g : [𝑠, 𝑡] → R, we say

that X has (f; g) as a boundary condition if f(𝑟) ≤ x 𝑗 (𝑟) ≤ g(𝑟) for each 𝑟 ∈ [𝑠, 𝑡]. We refer to f and g
as a left boundary and right boundary for X, respectively, and allow f and g to be −∞ or ∞. We further
say that X has entrance data d = (d𝑙 , d𝑙+1, . . . , d𝑚) and exit data e = (e𝑙 , e𝑙+1, . . . , e𝑚) if x 𝑗 (𝑠) = d 𝑗
and x 𝑗 (𝑡) = e 𝑗 , for each 𝑗 ∈ [𝑙, 𝑚]; see Figure 7 for a depiction. Then, there is a finite number of
nonintersecting Bernoulli walk ensembles with any given entrance and exit data (d; e) and (possibly
infinite) boundary conditions (f; g).

5One could alternatively prove sufficient decay of the kernel, as in [Joh05, Lemma 3.1(b)].

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2024.16
Downloaded from https://www.cambridge.org/core. IP address: 18.188.189.204, on 17 Apr 2025 at 23:31:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2024.16
https://www.cambridge.org/core


Forum of Mathematics, Pi 17

The below lemma from [CEP96] provides a monotonicity property for nonintersecting Bernoulli walk
ensembles randomly sampled under the uniform measure on the set of such families with prescribed
entrance, exit and boundary conditions. In what follows, for any functions f, f′ : [𝑠, 𝑡] → R we write
f ≤ f′ if f(𝑟) ≤ f′(𝑟) for each 𝑟 ∈ [𝑠, 𝑡]. Similarly, for any sequences d = (d𝑙 , d𝑙+1, . . . , d𝑚) ⊂ R and
d′ = (d′

𝑙 , d′
𝑙+1, . . . , d′

𝑚) ⊂ R, we write d ≤ d′ if d 𝑗 ≤ d′
𝑗 for each 𝑗 ∈ [𝑙, 𝑚].

Lemma 3.15 [CEP96, Lemma 18]. Fix integers 𝑠 ≤ 𝑡 and 𝑙 ≤ 𝑚; functions f, f, g, g′ : [𝑠, 𝑡] → R; and
(𝑚 − 𝑙 + 1)-tuples d, d′, e, e′ with coordinates indexed by [𝑙, 𝑚]. Let X = (x𝑙 , x𝑙+1, . . . , x𝑚) denote a
uniformly random nonintersecting Bernoulli walk ensemble with boundary data (f, g), entrance data d
and exit data e. Define X′ = (x′𝑙 , x′𝑙+1, . . . , x′𝑚) similarly but with respect to (f′; g′) and (d′; e′). If f ≤ f′,
g ≤ g′, d ≤ d′ and e ≤ e′, then there exists coupling between X and X′ such that x 𝑗 ≤ x′𝑗 almost surely,
for each 𝑗 ∈ [𝑙, 𝑚].

Remark 3.16. An equivalent way of stating Lemma 3.15 (as was done in [CEP96]) is through the height
functions associated with the Bernoulli walk ensembles X and X′. Specifically, let D ⊂ T be a finite
domain, and let h, h′ : 𝜕H → Z denote two boundary height functions such that h(𝑣) ≥ h′(𝑣), for each
𝑣 ∈ 𝜕D. Let H, H′ : D → Z denote two uniformly random height functions on D with boundary data
H|𝜕D = h and H′ |𝜕D = h′. Then, Lemma 3.15 implies (and is equivalent to) the existence of a coupling
between H and H′ such that H(u) ≥ H′(u) almost surely, for each u ∈ D.

Remark 3.17. Due to the correspondence from Section 2.2 between tilings and nonintersecting
Bernoulli walk ensembles, the uniform measure on the set of free tilings6 of a strip domain of the form
Z × [𝑠, 𝑡] ⊂ T is equivalent to that on the set of nonintersecting Bernoulli walk ensembles with time
spans [𝑠, 𝑡] under specified entrance, exit and boundary conditions. Moreover, if X = (x𝑙 , x𝑙+1, . . . , x𝑚)
is sampled under the uniform measure, then it is quickly verified that it satisfies the following Gibbs
property7 [Gor21, Section 13.2]. For any 𝑠 ≤ 𝑠′ ≤ 𝑡 ′ ≤ 𝑡 and 𝑙 ≤ 𝑙 ′ ≤ 𝑚′ ≤ 𝑚, the law of
(x𝑙′ , x𝑙′+1, . . . , x𝑚′ ) restricted to Z× [𝑠′, 𝑡 ′] is uniform measure on those nonintersecting Bernoulli walk
ensembles with entrance data

(
x𝑙′ (𝑠′), x𝑙′+1(𝑠

′), . . . , x𝑚′ (𝑠′)
)
; exit data

(
x𝑙′ (𝑡 ′), x𝑙′+1(𝑡

′), . . . , x𝑚′ (𝑡 ′)
)
;

and boundary conditions (x𝑙′−1; x𝑚′+1).

3.5. Proof of Theorem 2.10

In this section, we establish Theorem 2.10. We begin with the following proposition that provides
edge statistics for nonintersecting random Bernoulli walks with an approximately quadratic boundary
condition.

Proposition 3.18. Fix 𝛿 ∈
(
0, 1/100

)
and real numbers 𝔮 = 𝔮𝑛 and 𝔩 = 𝔩𝑛 bounded away from 0 and

∞. Define 𝔰, 𝔯 ∈ R from (𝔩,𝔮) through Equation (2.9), set 𝑚 = �𝑛10𝛿� and T = �𝑛2/3+20𝛿� and let
f : [−T, T] → R be a function satisfying

sup
𝑠∈[−T,T]



f(𝑠) + 𝐾0 − 𝔩𝑠 − 𝔮𝑠2𝑛−1

 < 𝑛1/3−𝛿 , where 𝐾0 = 𝔰3/2𝑛1/3
(3𝜋𝑚

2

)2/3
. (3.11)

Further, let d = (d1, d2, . . . , d𝑚) and e = (e1, e2, . . . , e𝑚) be integer sequences satisfying

d 𝑗 − f(−T)


 < 𝑛1/3+10𝛿 ;



e 𝑗 − f(T)


 < 𝑛1/3+10𝛿 , (3.12)

6Here, a free tiling of a domain D is a covering of D by disjoint tiles such that at least one (triangular) face of each tile lies
inside D; see [CKP01, Section 3].

7Informally, the Gibbs property is a statement of conditional uniformity. It indicates that that the law obtained by conditioning
on some of the walks in an ensemble of nonintersecting Bernoulli walks, under the uniform measure, is also that of a uniformly
random nonintersecting Bernoulli walk ensemble, whose boundary data are fixed by the conditioning.
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for each 𝑗 ∈ [1, 𝑚]. Let X = (x1, x2, . . . , x𝑚) denote a uniformly random ensemble of nonintersecting
Bernoulli walks with time span [−T, T]; boundary data (f;∞); entrance data d; and exit data e. Define
the family of functions X𝑛 = (X1, X2, . . . , X𝑛) by

X𝑖 (𝑡) = 𝔰−1𝑛−1/3
(
x𝑚−𝑖+1(𝔯𝑛

2/3𝑡) − 𝔩𝑛2/3𝑡
)
. (3.13)

Then X𝑛 converges to R, uniformly on compact subsets of Z>0 × R, as n tends to ∞.

Proof. Throughout, we assume 𝔮 > 0, as the proof when 𝔮 < 0 is entirely analogous. This proposition
will follow from a comparison between the random Bernoulli walk ensemble X and the one associated
with a random tiling of a suitably chosen hexagon. So, we begin by identifying real numbers 𝑎, 𝑏, 𝑐 > 0
and a point (𝑥0, 𝑡0) ∈ 𝔄(𝑎, 𝑏, 𝑐) = 𝜕𝔏𝑎,𝑏,𝑐 on the ellipse inscribed in the hexagon 𝔈𝑎,𝑏,𝑐 (recall
Definition 3.12) whose curvature parameters are given by (𝔩,𝔮). To that end, first observe that there are
two points on 𝔄(1, 1, 1) at which a line with inverse slope 𝔩 is tangent. Let (𝑥̃, 𝑡̃) ∈ 𝔄(1, 1, 1) be the one
whose curvature parameters (̃𝔩, 𝔮̃) = (𝔩, 𝔮̃) are such that sgn 𝔮̃ = sgn𝔮 = 1. Since 𝔩̃ = 𝔩 is bounded away
from 0 and ∞, as is 𝔮̃. Then setting 𝑟 = 𝔮̃𝔮−1, (𝑎, 𝑏, 𝑐) = (𝑟, 𝑟, 𝑟) and (𝑥0, 𝑡0) = (𝑟𝑥̃, 𝑟 𝑡̃) ∈ 𝔄(𝑎, 𝑏, 𝑐),
the curvature parameters at (𝑥0, 𝑡0) are (𝔩,𝔮).

We will now perturb the quadratic curvature parameter of (𝑥0, 𝑡0) with respect to 𝔄(𝔈𝑎,𝑏,𝑐) through
scaling by 𝜅 and 𝜈, where

𝜅 = 1 + 𝑛−20𝛿 ; 𝜈 = 1 − 𝑛−20𝛿 .

Set (𝑎′, 𝑏′, 𝑐′) = (𝜅−1𝑎, 𝜅−1𝑏, 𝜅−1𝑐) and (𝑎′′, 𝑏′′, 𝑐′′) = (𝜈−1𝑎, 𝜈−1𝑏, 𝜈−1𝑐); further, let (𝑥 ′0, 𝑡
′
0) =

(𝜅−1𝑥0, 𝜅
−1𝑡0) and (𝑥 ′′0 , 𝑡

′′
0 ) = (𝜈−1𝑥0, 𝜈

−1𝑡0). Observe that the curvature parameters at (𝑥 ′0, 𝑡
′
0) with

respect to 𝔄(𝑎′, 𝑏′, 𝑐′) and at (𝑥 ′′0 , 𝑡
′′
0 ) with respect to 𝔄(𝑎′′, 𝑏′′, 𝑐′′) are given by (𝔩 ′,𝔮′) = (𝔩, 𝜅𝔮) and

(𝔩 ′′,𝔮′′) = (𝔩, 𝜈𝔮), respectively.
Next, define (a′, b′, c′) = (𝑛𝑎′, 𝑛𝑏′, 𝑛𝑐′) and (a′′, b′′, c′′) = (𝑛𝑎′′, 𝑛𝑏′′, 𝑛𝑐′′), which we assume for

notational simplicity are integers. Denote the hexagons P′ = 𝔈a′,b′,c′ and P′′ = 𝔈a′′,b′′,c′′; let ℳ′ and
ℳ′′ denote uniformly random tilings of P′ and P′′, which are associated with nonintersecting Bernoulli
walk ensembles Y′ = (y′1, y′2, . . . , y′a′ ) and Y′′ = (y′′1 , y′′1 , . . . , y′′a′′ ), respectively. Define the Bernoulli
walk ensembles X′ = (x′1, x′2, . . . , x′𝑚) and X′′ = (x′′1 , x′′2 , . . . , x′′𝑚) through a spacial and index shift of Y′

and Y′′, respectively; specifically, for each j and t, set

x′𝑗 (𝑡) = y′a′+ 𝑗−𝑚(𝑡 + 𝑡 ′0𝑛) − 𝑥 ′0𝑛 + 3𝑛1/3−𝛿 ; x′′𝑗 (𝑡) = y′′a′′+ 𝑗−𝑚 (𝑡 + 𝑡 ′′0 𝑛) − 𝑥 ′′0 𝑛 − 3𝑛1/3−𝛿 .

Given this notation, we will first use Lemma 3.15 to bound the ensemble X between X′ and X′′;
see Figure 8. Then, we will apply Proposition 3.13 to show that (X′, X′′) converges to the same
Airy line ensemble under the normalization (3.13). To implement the former, define the sequences
d′, e′, d′′, e′′ ∈ Z𝑚 by

d′ =
(
x′1(−T), x′2(−T), . . . , x′𝑚(−T)

)
; e′ =

(
x′1(T), x′2 (T), . . . , x′𝑚(T)

)
;

d′′ =
(
x′′1 (−T), x′′2 (−T), . . . , x′′𝑚 (−T)

)
; e′′ =

(
x′′1 (T), x′′2 (T), . . . , x′′𝑚 (T)

)
,

and the functions f′, f′′ : [−T, T] → Z by

f′(𝑡) = x′0(𝑡); f′′(𝑡) = x′′0 (𝑡).

Then, by the Gibbs property described in Remark 3.17, X′ is a uniformly random nonintersecting
Bernoulli walk ensemble with entrance data d′, exit data e′ and boundary conditions (x′0;∞); a similar
statement holds for X′′. Let us show with overwhelming probability that

d′′ ≤ d ≤ d′; e′′ ≤ e ≤ e′; f′′ ≤ f ≤ f′. (3.14)
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𝑡 = −T

𝑡 = 0

𝑡 = T

d′′
𝑗

e′′
𝑗

d 𝑗

e 𝑗

d′
𝑗

e′
𝑗

Figure 8. Shown above trajectories for the paths x′𝑗 ≤ x 𝑗 ≤ x′′𝑗 in the proof of Proposition 3.18; they
approximately coincide in the shaded region.

To verify the first statement of Equation (3.14), observe for any 𝑗 ∈ [1, 𝑚] that Equations (3.11) and
(3.12) imply

d 𝑗 ≤ 𝔮𝑛−1T2 − 𝔩T + 5(𝔰2 + 1)𝑛1/3+10𝛿 ≤ 𝔮′𝑛−1T2 − 𝔩T − 5(𝔰2 + 1)𝑛1/3+10𝛿 . (3.15)

To deduce the first bound, we used the facts that 𝑛1/3−𝛿 ≤ 𝔰−3/2𝐾0 ≤ 3𝑚2/3𝑛1/3 ≤ 𝑛1/3+10𝛿 since
𝑚 = �𝑛10𝛿�; to deduce the second, we used the facts that 𝔮′ = 𝜅𝔮 = (1 + 𝑛−20𝛿)𝔮 and T = �𝑛2/3+20𝛿�.

Moreover, Corollary 3.11 (applied with the P there equal to P′ here) implies with overwhelming
probability that

x′𝑚− 𝑗 (−T) = y′a′− 𝑗 (𝑡0𝑛 − T) − 𝑥 ′0𝑛 + 3𝑛1/3−𝛿 ≥ 𝔮′𝑛−1T2 − 𝔩T − 5(𝔰2 + 1)𝑛1/3+10𝛿 , (3.16)

where we have again used the facts that 𝑛1/3−𝛿 ≤ 𝔰−3/2 ≤ 𝐾0 ≤ 3𝑚2/3𝑛1/3 ≤ 𝑛1/3+10𝛿 . Combining
Equations (3.15) and (3.16), it follows that d ≤ d′. The proof that d′′ ≤ d is entirely analogous, thereby
establishing the first statement of Equation (3.14); the second is shown similarly.

The third statement of Equation (3.14) follows from the fact that for any 𝑡 ∈ [−T, T] we have

f′(𝑡) = x′0(𝑡) = y′a′−𝑚(𝑡 + 𝑡 ′0𝑛) − 𝑥 ′0𝑛 + 3𝑛1/3−𝛿

≥ 𝔩𝑡 + 𝔮′𝑛−1𝑡2 − 𝐾 ′
0 − 𝑚−1/3𝑛1/3+𝛿 + 3𝑛1/3−𝛿 (3.17)

≥ f(𝑡) + 𝐾0 − 𝐾 ′
0 + (𝔮′ − 𝔮)𝑛−1𝑡2 + 𝑛1/3−𝛿 ≥ f(𝑡),

where we have set

𝐾 ′
0 = 𝔰′3/2𝑛1/3

(3𝜋𝑚
2

)2/3
= 𝜅−1/2𝐾0,

and we have denoted

𝔰′ =



 𝔩2/3(1 − 𝔩)2/3

41/3𝔮′1/3




; 𝔯′ =



 𝔩1/3(1 − 𝔩)1/3

21/3𝔮′1/3




. (3.18)

The first and second statements of Equation (3.17) follow from the definitions of f′ and x′, the third
from Corollary 3.11 (applied with j there equal to m here), the fourth from Equation (3.11) and the
definition 𝑚 = �𝑛10𝛿� and the fifth from the facts that 𝔮′ = 𝜅𝔮 ≥ 𝔮 and that

|𝐾0 − 𝐾 ′
0 | ≤ |1 − 𝜅−1/2 |𝐾0 ≤ 𝑛−10𝛿𝐾0 ≤ 5𝔰3/2𝑛1/3−10𝛿𝑚2/3 = o(𝑛1/3−𝛿),
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as 𝑚 ≤ 𝑛10𝛿 . Hence, f ≤ f′; similarly, f′′ ≤ f. This verifies that Equation (3.14) holds with overwhelming
probability. So, it follows from Lemma 3.15 that there exists a coupling between (X, X′, X′′) such that
x′′𝑗 ≤ x 𝑗 ≤ x′𝑗 holds for each 𝑗 ∈ [1, 𝑚], with overwhelming probability.

Define normalizations of these Bernoulli walk ensembles, denoted X ′
𝑛 = (X′

1, X′
2, . . . , X′

𝑚), X ′′
𝑛 =

(X′′
1 , X′′

2 , . . . , X′′
𝑛 ), W ′

𝑛 = (W′
1, W′

2, . . . , W′
𝑚) and W ′′

𝑛 = (W′′
1 , W′′

2 , . . . , W′′
𝑚) by (recall the notation from

Equation (3.18)) setting

X′
𝑖 (𝑡) = 𝔰−1𝑛−1/3

(
x′𝑚−𝑖+1(𝔯𝑛

2/3𝑡) − 𝔩𝑛2/3𝑡
)
; X′′

𝑖 (𝑡) = 𝔰−1𝑛−1/3
(
x𝑚−𝑖+1(𝔯𝑛

2/3𝑡) − 𝔩𝑛2/3𝑡
)
;

W′
𝑖 (𝑡) = 𝔰′−1𝑛−1/3

(
x′𝑚−𝑖+1(𝔯

′𝑛2/3𝑡) − 𝔩𝑛2/3𝑡
)
; W′′

𝑖 (𝑡) = 𝔰′′−1𝑛−1/3
(
x𝑚−𝑖+1(𝔯

′′𝑛2/3𝑡) − 𝔩𝑛2/3𝑡
)
.

Then, Proposition 3.13 implies that W ′
𝑛 and W ′′

𝑛 converge to R, uniformly on compact subsets of
Z>0 ×R, as n tends to ∞. Since Equation (3.18) and the facts that (𝔮,𝔮′) = (𝜅𝔮, 𝜈𝔮) and 𝜅 − 1 = 1− 𝜈 =
𝑛−20𝛿 = o(1) imply 𝔰′ = 𝔰

(
1+o(1)

)
, 𝔯′ = 𝔯

(
1+o(1)

)
, 𝔰′′ = 𝔰

(
1+o(1)

)
and 𝔯′′ = 𝔯

(
1+o(1)

)
, we deduce

that


W′

𝑗 (𝑡) − X′
𝑗 (𝑡)



 and


W′′

𝑗 (𝑡) − X′′
𝑗 (𝑡)



 = o(1) for each 𝑗 ∈ [1, 𝑚], uniformly on compact subsets of
Z>0 × R. Hence, X ′

𝑛 and X ′′
𝑛 both converge to R. Since x′′𝑗 ≤ x 𝑗 ≤ x′′𝑗 , it follows that X′′

𝑗 ≤ X 𝑗 ≤ X′
𝑗 ,

and thus the same convergence holds for X𝑛. �

We can now establish Theorem 2.10.

Proof of Theorem 2.10. This will follow from Proposition 3.18. Fix a real number 𝛿 ∈
(
0, 1/100

)
, and

define 𝑚 = 𝑛10𝛿 and T = 𝑛2/3+20𝛿 (as in Proposition 3.18), which we assume for notational convenience
are integers. Define the nonintersecting Bernoulli walk ensemble Y = (y1, y2, . . . , y𝑚) by

y𝑖 (𝑡) = x𝐾+𝑖−𝑚(𝑡0𝑛 + 𝑡) − 𝑥0𝑛. (3.19)

Denoting the sequences d, e ∈ Z𝑚 and function f : [−T, T] → Z by

d =
(
y1 (−T), y2(−T), . . . , y𝑚 (−T)

)
; e =

(
y1 (T), y2(T), . . . , y𝑚 (T)

)
;

f(𝑡) = x𝐾−𝑚 (𝑡0𝑛 + 𝑡) − 𝑥0𝑛,

it follows from the Gibbs property described in Remark 3.17 that Y is a uniformly random nonintersecting
Bernoulli walk ensemble with entrance and exit data (d; e) and boundary conditions (f;∞). Let us verify
that (d, e, f) satisfy Equations (3.12) and (3.11).

To that end, since 𝑚 = 𝑛10𝛿 , the 𝑗 = 𝑚 case of Corollary 3.11 implies with overwhelming probability
that

max
𝑠∈[−T,T]





f(𝑠) − 𝔩𝑠 − 𝔮𝑛−1𝑠2 + 𝔰3/2
(3𝜋𝑚

2

)3/2
𝑛1/3





 < 𝑚−1/3𝑛1/3+𝛿 < 𝑛1/3−𝛿 , (3.20)

and so f satisfies Equation (3.11). Applying Corollary 3.11 with 𝑗 ∈ [0, 𝑚 − 1] and also using Equa-
tion (3.20) yields 

y1 (−T) − 𝑓 (−T)



 ≤ 2𝔰3/2
(3𝜋𝑚

2

)2/3
𝑛1/3 + 2𝑛1/3 ≤ 𝑛1/3+10𝛿 ,

where to deduce the last inequality we used the fact that 𝑚 = 𝑛10𝛿 . This verifies that d satisfies (3.12)
with overwhelming probability; the proof that e does as well is very similar and thus omitted.

Hence, Proposition 3.18 applies and gives that Y𝑛 = (Y1, Y2, . . . , Y𝑚) converges to R, uniformly on
compact subsets of Z>0 × R, as n tends to ∞, where

Y𝑖 (𝑡) = 𝔰−1𝑛−1/3
(
y𝑚−𝑖+1(𝔯𝑛

2/3𝑡) − 𝔩𝑛2/3𝑡
)
.

By Equation (3.19), Y𝑖 (𝑡) = X𝑖 (𝑡), meaning that Y𝑛 = X𝑛, so the same convergence holds for X𝑛. �
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4. Mixing and concentration bounds

By the content in Section 3.5, it remains to establish Theorem 3.10. In this section, we collect several
miscellaneous results that will be used in its proof, to appear in Section 6 below. More specifically, in
Section 4.1 we state a preliminary concentration estimate for a class of tilings whose arctic boundaries
are constrained to only have one cusp (in addition to other, less essential conditions); in Section 4.2, we
state a mixing time bound for certain dynamics on the set of tilings, which we prove in Section 4.3.

4.1. Preliminary concentration estimate

In this section, we state a concentration estimate for tiling height functions on ‘double-sided trapezoid
domains’ (one may also view these as tilings of a strip). These domains are different from the ones
considered in earlier works, such as [Pet14, Pet15, DM18] since they will accommodate nonfrozen
boundary conditions along both their north and south edges (instead of only their south ones).

Throughout this section, we fix real numbers 𝔱1 < 𝔱2 and denote 𝔱 = 𝔱2 − 𝔱1. We fix linear functions
𝔞, 𝔟 : [𝔱1, 𝔱2] with 𝔞′(𝑠), 𝔟′(𝑠) ∈ {0, 1} such that 𝔞(𝑠) ≤ 𝔟(𝑠) for each 𝑠 ∈ [𝔱1, 𝔱2]. Define the trapezoid
domain

𝔇 = 𝔇(𝔞, 𝔟; 𝔱1, 𝔱2) =
{
(𝑥, 𝑡) ∈ R × (𝔱1, 𝔱2) : 𝔞(𝑡) < 𝑥 < 𝔟(𝑡)

}
, (4.1)

and denote its four boundaries by

𝜕so (𝔇) =
{
(𝑥, 𝑡) ∈ 𝔇 : 𝑡 = 𝔱1

}
; 𝜕no(𝔇) =

{
(𝑥, 𝑡) ∈ 𝔇 : 𝑡 = 𝔱2

}
;

𝜕we(𝔇) =
{
(𝑥, 𝑡) ∈ 𝔇 : 𝑥 = 𝔞(𝑡)

}
; 𝜕ea(𝔇) =

{
(𝑥, 𝑡) ∈ 𝔇 : 𝑥 = 𝔟(𝑡)

}
. (4.2)

We refer to Figure 9 for a depiction.
Let ℎ : 𝜕𝔇 → R denote a function admitting an admissible extension to 𝔇. We assume throughout

that h is constant along both 𝜕we(𝔇) and 𝜕ea(𝔇). Let 𝐻∗ ∈ Adm(𝔇; ℎ) denote the maximizer of E
from Equation (2.3), as in Equation (2.4), and let the liquid region 𝔏 = 𝔏(𝔇; ℎ) and arctic boundary
𝔄 = 𝔄(𝔇; ℎ) be as in Equation (2.6). Recall that a point on 𝔄 is a tangency location if the tangent line
to 𝔄 through it has slope either {0, 1,∞}.

We may then define the complex slope 𝑓 : 𝔏 → H
− as in Equation (3.1), which upon denoting

𝑓𝑡 (𝑥) = 𝑓 (𝑥, 𝑡) satisfies the complex Burgers equation (3.2). Further let 𝔏no = 𝔏no(𝔇; ℎ) denote the
interior of𝔏∩𝜕no(𝔇), and let𝔏so = 𝔏so (𝔇; ℎ) denote the interior of𝔏∩𝜕so(𝔇); these are the extensions
of the liquid region ℜ to the north and south boundaries of 𝔏. For all 𝑡 ∈ (𝔱1, 𝔱2), we define slices of the
liquid region (along the horizontal line 𝑦 = 𝑡) by

𝐼𝑡 =
{
𝑥 : (𝑥, 𝑡) ∈ 𝔏

}
; 𝐼𝔱1 = 𝔏so; 𝐼𝔱2 = 𝔏no.

For any real number 𝛿 > 0, we define the augmented variant of 𝔏 (as in Definition 3.9) by

𝔏𝛿
+ (𝔇) = 𝔏𝛿

+ (𝔇; ℎ) = 𝔏 ∪
⋃
𝑢∈𝔄

𝔅(𝑢; 𝑛𝛿−2/3).

𝑦 = 𝔱1

𝑦 = 𝔱2
𝜕no(𝔇)

𝜕ea(𝔇)𝜕we(𝔇)

𝜕so (𝔇)

Figure 9. Shown above are the four possibilities for 𝔇.
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𝑡 = 𝔱1

𝑡 = 𝔱2

𝑡 = 𝔱1

𝑡 = 𝔱2
𝑡 = 𝔱′

𝔏 𝔏
𝑡 = 𝔰 𝑡 = 𝔰

Figure 10. Shown to the left is an example of limit shape admitting an extension to time 𝔱′ > 𝔱2; shown
to the right is a liquid region that is packed with respect to h.

Next, let us formulate certain conditions on the limit shape 𝐻∗. For any 𝔱′ ≥ 𝔱2, we say that 𝐻∗ can
be extended to time 𝔱′ if there exists a simply connected, open subset 𝔏 ⊂ R2 containing 𝔏 such that
the set

{
𝑥 : (𝑥, 𝑡) ∈ 𝔏

}
is nonempty and connected for each 𝑡 ∈ [𝔱2, 𝔱′], and there exists an extension

𝑓̃ : 𝔏 → H− of 𝑓𝑡 (𝑥) satisfying the complex Burgers equation (3.2). In this case, 𝔏no = 𝐼𝔱2 is a single
interval. We also call 𝜕no(𝔇) packed (with respect to h) if 𝜕𝑥ℎ(𝑣) = 1 for each 𝑣 ∈ 𝜕no(𝔇); in this case,
𝔏∩ 𝜕no(𝔇) constitutes at most a single point, and so 𝔏no is empty. We refer to Figure 10 for a depiction.

Now, let 𝑛 ≥ 1 be an integer; denote t1 = 𝔱1𝑛, and t2 = 𝔱2𝑛. Suppose D = 𝑛𝔇 ⊂ T2 so that t1, t2 ∈ Z>0.
Let h : 𝜕D → Z denote a boundary height function. We next stipulate the following assumption on the
continuum limit shape 𝐻∗. Here, we fix a real number 𝛿 > 0 and a (large) positive integer n. Below, we
view the quantities 𝔱1 < 𝔱2 < 𝔱′; functions 𝔞, 𝔟; and polygonal domain 𝔓 as independent of n. In what
follows, a horizontal tangency location of 𝜕𝔏 is a tangency location on 𝔄 at which the tangent line is
horizontal (parallel to the x-axis).

Assumption 4.1. Assume the following constraints hold.

(1) The boundary height function h is constant along both 𝜕ea(𝔇) and 𝜕we(𝔇).
(2) Either 𝜕no(𝔇) is packed with respect to h or there exists 𝔱′ > 𝔱2 such that 𝐻∗ admits an extension to

time 𝔱′.
(3) There exists 𝔱̃ ∈ [𝔱1, 𝔱2) such that the following holds. For 𝑡 ∈ [𝔱1, 𝔱̃), the set 𝐼𝑡 consists of two

nonempty disjoint intervals, and for 𝑡 ∈ [̃𝔱, 𝔱2], the set 𝐼𝑡 consists of one nonempty interval.8
(4) Any tangency location along 𝜕𝔏 is of the form min 𝐼𝑡 or max 𝐼𝑡 , for some 𝑡 ∈ (𝔱1, 𝔱2). At most one

tangency location is of the form min 𝐼𝑡 , and at most one is of the form max 𝐼𝑡 .
(5) There exists an algebraic curve Q such that, for any (𝑥, 𝑡) ∈ 𝔏, we have

𝑄

(
𝑓𝑡 (𝑥), 𝑥 −

𝑡 𝑓𝑡 (𝑥)

𝑓𝑡 (𝑥) + 1

)
= 0.

Furthermore, the curve Q ‘approximately comes from a polygonal domain’ in the following
sense. There exists a polygonal domain 𝔓 satisfying Assumption 2.8 with liquid region 𝔏(𝔓) and
a real number 𝛼 = 𝛼𝑛 ∈ R with |𝛼 − 1| < 𝑛−𝛿 such that, if 𝑄𝔏(𝔓) is the algebraic curve associated
with 𝔏(𝔓) from Proposition 3.3, then

𝑄(𝑢, 𝑣) =
𝑢 + 1

𝛼−1𝑢 + 1
𝑄𝔏(𝔓) (𝛼

−1𝑢, 𝑣).

Let us briefly comment on these constraints. The first guarantees that the associated tiling is one of
a trapezoid, as depicted in Figure 9. The second and third guarantee that the arctic boundary for the
tiling has only one cusp. The fourth implies that are are most two tangency locations along the arctic
boundary (and are along the leftmost and rightmost components of the arctic curve, if they exist); the
fifth implies that the limit shape for the tiling is part of (an explicit perturbation of) one given by a
polygonal domain. The last two conditions could in principle be weakened; we impose them since doing
so will substantially simplify notation in the proofs later.

8In this way, if 𝔱̃ = 𝔱1, then 𝐼𝑡 only consists of one nonempty interval for all 𝑡 ∈ [𝔱1, 𝔱2 ].
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The next assumption indicates how the tiling boundary data h approximate h along 𝜕𝔇.

Assumption 4.2. Adopt Assumption 4.1, and assume the following on how h converges to h.

(1) For each 𝑣 ∈ 𝜕𝔇, we have


h(𝑛𝑣) − 𝑛ℎ(𝑣)



 < 𝑛𝛿/2.
(2) For each 𝑣 ∈ 𝜕ea(𝔇) ∪ 𝜕we(𝔇), and each 𝑣 ∈ 𝜕no𝔇 ∪ 𝜕so𝔇 such that 𝑣 ∉ 𝔏𝛿/2

+ (𝔇), we have
h(𝑛𝑣) = 𝑛ℎ(𝑣).

The first assumption states that h approximates its limit shape, and the second states that it coincides
with its limit shape in the frozen region.9 Recalling that 𝒢(h) denotes the set of height functions on D
with boundary data h. We can now state the following concentration estimate for a uniformly element
of 𝒢(h) from part I of this series [Hua24]. In particular, the below result appears as [Hua24, Theorem
2.5], where Assumption 2.3 there is verified by Assumption 4.1 and [Hua24, Proposition A.4].

Theorem 4.3 [Hua24, Theorem 2.5]. There exists a constant 𝔠 = 𝔠(𝔓) > 0 such that the following
holds. Adopt Assumption 4.1 and Assumption 4.2, and further assume that 𝔱2 − 𝔱1 < 𝔠. Let H : D → Z

denote a uniformly random element of𝒢(h). Then, the following two statements hold with overwhelming
probability.

(1) We have


H(𝑛𝑢) − 𝑛𝐻∗(𝑢)



 < 𝑛𝛿 , for any 𝑢 ∈ 𝔇.
(2) For any 𝑢 ∈ 𝔇 \ 𝔏𝛿

+ (𝔇), we have H(𝑛𝑢) = 𝑛𝐻∗(𝑢).

Remark 4.4. Recall from Section 2.2 that the height function H from Theorem 4.3 can equivalently be
interpreted as a family of nonintersecting Bernoulli walks on D. The fact that h is constant along both
𝜕ea(𝔇) and 𝜕we(𝔇) implies that h is constant along the east and west boundaries of D. This is equivalent
to not imposing any left or right boundary constraints (f; g) for these nonintersecting random Bernoulli
walks (in the sense described in Section 3.4).

4.2. Mixing time estimates

As mentioned in Section 1, we will establish the general concentration estimate Theorem 3.10 by
decomposing our domain into a bounded number of subregions that each satisfy Assumption 4.1. We
introduce a Markov chain, called the alternating dynamics, that uniformly resamples the tiling in one
subregion and leaves it fixed in the others. At each step of these dynamics, we show that our concentration
bound is preserved with overwhelming probability, by using the preliminary concentration estimate
Theorem 4.3. Theorem 3.10 would then follow by running the alternating dynamics until they mix.

A point of caution here is that Theorem 4.3 is not deterministic; there is some, subpolynomial,
probability that the preliminary concentration estimate does not hold. So, if the number of steps required
for the alternating dynamics to mix were sufficiently (superpolynomially) large, then in principle the
concentration estimate could be lost at some point in these dynamics. In this section, we will indicate
that this does not happen; after introducing the alternating dynamics (Definition 4.5), we will state that
they mix in polynomial time (Proposition 4.6 below).

In what follows, we fix a domain R ⊂ T and a boundary height function h : 𝜕R → Z. Let us
introduce the following Markov dynamics on 𝒢(h) that, given a certain decomposition of R as a union
R =

⋃𝑘
𝑖=1 R𝑖 of domains, ‘alternate’ between uniformly resampling H ∈ 𝒢(h) on each of the R𝑖 .

Definition 4.5. Fix an integer 𝑘 ≥ 1, a domain R ⊂ T, and a boundary height function h : 𝜕R → Z.
Suppose that R \ 𝜕R and 𝒢(h) are both nonempty and that 𝑘 ≤ diam R. Let R1, R2, . . . , R𝑘 ⊆ R denote
domains such that R =

⋃𝑘
𝑖=1 R𝑖 and such that any interior vertex of R is an interior vertex of some R𝑖 ,

that is, for each v ∈ R \ 𝜕R, there exists 𝑖 ∈ [1, 𝑘] for which v ∈ R𝑖 \ 𝜕R𝑖 . The alternating dynamics on
R with respect to (R1, R2, . . . , R𝑘 ), denoted by 𝑀alt, is the discrete-time Markov chain on 𝒢(h), whose
state H𝑡+1 ∈ 𝒢(h) at any time 𝑡 + 1 ∈ Z≥1 is defined from H𝑡 as follows.

9Observe since 𝜕𝑥𝐻 ≤ 1 that, if 𝜕no (𝔇) is packed, then the second part of Assumption 4.2 implies that h(𝑛𝑣) = 𝑛ℎ (𝑣) for
each 𝑣 ∈ 𝜕no (𝔇) .
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Let 𝑖 ∈ [1, 𝑘] denote the integer such that k divides 𝑡 − 𝑖 + 1, and let h𝑡+1 = H𝑡 |𝜕R𝑖 . Further, let
F𝑡+1 ∈ 𝒢(h𝑡+1) denote a uniformly random height function on R𝑖 . Then, define H𝑡+1 : R → Z by setting
H𝑡+1 |R𝑖 = F𝑡+1 and H𝑡+1 |R\R𝑖 = H𝑡 |R\R𝑖 .

Observe (as is quickly verified by induction on |R|) that the alternating dynamics are irreducible.
Thus, they admit a unique stationary measure [LPW09, Corollary 1.17], which is the uniform one𝒢(h).

We will bound the rate of convergence to stationarity for these alternating dynamics, so let us recall
some notion on mixing times. Fix a discrete state space 𝒮, and let 𝒫(𝒮) denote the set of probability
measures on 𝒮. The total variation distance between two measures 𝜈, 𝜈′ ∈ 𝒫(𝒮) is

𝑑TV(𝜈, 𝜈
′) = max

𝒜⊆𝒮



𝜈(𝒜) − 𝜈′(𝒜)


.

In addition, fix an irreducible Markov chain 𝑀 : 𝒫(𝒮) → 𝒫(𝒮) on 𝒮, whose unique stationary
measure is denoted by 𝜌. For any real number 𝜀 > 0, the mixing time with respect to M is given by

𝑡mix(𝜀; 𝑀) = min
{
𝑡 ∈ Z≥0 : max

𝜈∈𝒫 (𝒮)
𝑑TV(𝑀

𝑡𝜈, 𝜌) ≤ 𝜀
}
, (4.3)

which by [LPW09, Exercise 4.3] (which is a quick consequence of [LPW09, Proposition 4.7]) satisfies

𝑑TV(𝑀
𝑡𝜈, 𝜌) ≤ 𝑑TV(𝑀

𝑡mix (𝜀;𝑀 )𝜈, 𝜌) ≤ 𝜀, whenever 𝑡 ≥ 𝑡mix(𝜀; 𝑀). (4.4)

We now state the following (very coarse) estimate on the mixing time for the dynamics 𝑀alt. Its proof
will appear in Section 4.3 below.

Proposition 4.6. There exists a constant 𝐶 > 1 such that the following holds. Adopt the notation of
Definition 4.5, and set 𝐴 = (diam R)2. If 𝐴 ≥ 𝐶, then 𝑡mix(𝑒

−𝐴; 𝑀alt) ≤ 𝐴11.

4.3. Proof of Proposition 4.6

There are likely many ways of establishing Proposition 4.6; the proof below will proceed through a
comparison between the alternating dynamics and the Glauber (‘flip’) dynamics. To define the latter,
given a height function H : R → Z and an interior vertex v ∈ R \ 𝜕R, we say v is increasable with
respect to H if the function H′ : R → Z defined by

H′(v) = H(v) + 1; H′(u) = H(u), for u ∈ R \ {𝑣},

is a height function on R. In this case, we say that H′ is the unit increase of H at v. We define decreasable
vertices and unit decreases of H analogously. Observe that a vertex of R cannot simultaneously be
increasable and decreasable with respect to a given height function H on R.

Definition 4.7. Given a height function H ∈ 𝒢(h) and an interior vertex v ∈ R \ 𝜕R, the random flip of
H at v is the random height function H′ ∈ 𝒢(h) defined as follows.

• If v is neither increasable nor decreasable with respect to H, then set H′ = H.
• If v is increasable with respect to H, then with probability 1

2 set H′ to be the unit increase of H at v.
Otherwise, set H′ = H.

• If v is decreasable with respect to H, then with probability 1
2 set H′ to be the unit decrease of H at v.

Otherwise, set H′ = H.

Now, we define two Markov chains on 𝒢(h), the flip dynamics and the region-flip dynamics. Each
update of either chain is obtained by applying a random flip to an interior vertex v of R. In the flip
dynamics, v ∈ R\𝜕R is selected uniformly at random; in the region-flip dynamics v is selected uniformly
at random from R𝑖 \ 𝜕R𝑖 , where i is determined from the time of the update.
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Definition 4.8. The flip dynamics on R, denoted by 𝑀fl, is the discrete-time Markov chain on 𝒢(h)
whose state H𝑡+1 at time 𝑡 + 1 ≥ 1 is defined from H𝑡 as follows. Select an interior vertex v ∈ R \ 𝜕R
uniformly at random, and set H𝑡+1 to be the random flip of H𝑡 at v.

The region-flip dynamics on R with respect to (R1, R2, . . . , R𝑘 ), denoted by 𝑀rf , is the discrete-time
Markov chain on 𝒢(h) whose state H𝑡+1 at time 𝑡 + 1 ≥ 1 is defined from H𝑡 as follows. Let 𝑖 ∈ [1, 𝑘]
denote the integer such that (𝑘𝑡0 + 𝑖 − 1)𝐴5 < 𝑡 + 1 ≤ (𝑘𝑡0 + 𝑖)𝐴5, for some 𝑡0 ∈ Z≥0. Select a vertex
v ∈ R𝑖 \ 𝜕R𝑖 uniformly at random, and set H𝑡+1 to be the random flip of H𝑡 at v.

We then have the following result from [RT00] bounding the mixing time for the flip dynamics.

Proposition 4.9 [RT00, Theorem 5]. Adopting the notation of Proposition 4.6, we have for any real
number 𝜀 ∈ (0, 1) that

𝑡mix(𝜀; 𝑀fl) < 𝐶𝐴4 log 𝐴 + 𝐶𝐴3 log 𝐴 log 𝜀−1.

We now state the following two lemmas, which will be established below.

Lemma 4.10. Under the notation of Proposition 4.6,

𝑡mix(𝑒
−2𝐴; 𝑀rf) ≤ 144𝐴11 ·

(
𝑡mix

( 𝑒−2𝐴

32𝐴4 ; 𝑀fl

)
+ 1

)
.

Lemma 4.11. Under the notation of Proposition 4.6, 𝐴5𝑡mix(𝑒
−𝐴; 𝑀alt) ≤ 𝑡mix(𝑒

−2𝐴; 𝑀rf).

Given these two results, we can quickly establish Proposition 4.6.

Proof of Proposition 4.6. This follows from Lemma 4.11, Lemma 4.10 and Proposition 4.9 (the last
applied with the 𝜀 there equal to 𝑒−2𝐴

32𝐴4 here). �

The proofs of Lemma 4.10 and Lemma 4.11 will use ‘weighted’ and ‘censored’ forms of the flip
dynamics from Definition 4.8. To define these, adopting the notation of Definition 4.5, for each 𝑖 ∈ [1, 𝑘]
let

𝑝𝑖 = |R𝑖 \ 𝜕R𝑖 | ·

(
𝑘∑
𝑗=1

|R 𝑗 \ 𝜕R 𝑗 |

)−1

∈ [0, 1] . (4.5)

For any vertex 𝑣 ∈ R \ 𝜕R, we further let

𝔪(v) = #
{
𝑗 ∈ [1, 𝑘] : v ∈ R 𝑗 \ 𝜕R 𝑗

}
; 𝔐 =

∑
v∈R\𝜕R

𝔪(v) =
𝑘∑
𝑗=1

|R 𝑗 \ 𝜕R 𝑗 |; 𝔪 =
∑

v∈R\𝜕R

𝔪(v)−1.

Definition 4.12. The weighted flip dynamics, denoted by 𝑀wf, is the discrete-time Markov chain on
𝒢(h), whose state H𝑡+1 at time 𝑡 + 1 is defined from H𝑡 as follows. Select an interior vertex v ∈ R \ 𝜕R
with probability 𝔪(v) ·𝔐−1, and set H𝑡+1 to be the random flip of H𝑡 at v.

The censored weighted flip dynamics, denoted by 𝑀cwf, is the discrete-time Markov chain on 𝒢(h),
whose state H𝑡+1 at time 𝑡 + 1 is defined from H𝑡 as follows. Select an interior vertex v ∈ R \ 𝜕R with
probability 𝔪(v) ·𝔐−1. Then set H𝑡+1 to be the random flip of H𝑡 at v with probability 𝔪(v)−1 · 𝔪−1,
and set H𝑡+1 = H𝑡 with the complementary probability 1 −𝔪(v)−1 ·𝔪−1.

Remark 4.13. By Definition 4.12, we may interpret the censored weighted flip dynamics 𝑀cwf as the
following ‘lazy’ version of the flip dynamics from Definition 4.8. With probability 1−|R\𝜕R| · (𝔐 ·𝔪)−1,
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we perform a lazy step and set H𝑡+1 = H𝑡 . Otherwise, we perform a active step, by selecting a vertex
v ∈ R \ 𝜕R uniformly at random and setting H𝑡+1 to be the random flip of H𝑡 at v.

The following lemma compares the mixing time for 𝑀cwf to that of the flip dynamics 𝑀fl, using
Remark 4.13.

Lemma 4.14. For any real number 𝜀 ∈
(
0, 1

2
]
, we have

𝑡mix(2𝜀; 𝑀cwf) ≤ 4𝐴3 (log 𝜀−1)2 ·
(
𝑡mix(𝜀; 𝑀fl) + 1

)
.

Proof. Throughout this proof, we recall the interpretation of 𝑀cwf as a lazy version of 𝑀fl from
Remark 4.13; we also recall the notation of that remark and set 𝑇0 = 4𝐴3(log 𝜀−1)2 ·

(
𝑡mix(𝜀; 𝑀fl)

)
+2 ≤

4𝐴3 (log 𝜀−1)2 ·
(
𝑡mix(𝜀; 𝑀fl) + 1

)
. By Chernoff’s inequality, with probability at least 1 − 𝜀, the number

of active steps in this walk after some time 𝑇 ≥ 𝑇0 ≥ 4𝐴3 (log 𝜀−1)2 is at least

|R \ 𝜕R|

𝔪 ·𝔐
· 𝑇 − 𝑇1/2 log 𝜀−1 ≥

𝑇

𝔐
− 𝑇1/2 log 𝜀 ≥ 𝐴−3/2𝑇 − (log 𝜀−1)𝑇1/2 ≥

𝑇0

2𝐴3/2 ,

where we used the fact that 𝔪 ≤ |R \ 𝜕R| (as 𝔪(v) ≥ 1 for each v ∈ R \ 𝜕R) in the first bound, the fact
that 𝔐 ≤ 𝑘 · |R \ R| ≤ (diam R)3 = 𝐴3/2 (as 𝔪(v) ≤ 𝑘 ≤ diam R for each V ∈ R \ 𝜕R) in the second
and the fact that 𝑇 ≥ 𝑇0 ≥ 4𝐴3 (log 𝜀)2 in the third. It follows for 𝑇 ≥ 𝑇0 that the number of active steps
in these dynamics is at least 𝑡mix(𝜀; 𝑀fl), with probability at least 1 − 𝜀. Conditioning on this event,
we find for any H0 ∈ 𝒢(h) that we may couple 𝑀 �𝑇0 �

cwf H0 to coincide with a uniformly random element
F ∈ 𝒢(h) with probability 1 − 𝜀. Hence, by a union bound, we may couple 𝑀 �𝑇0 �

cwf H0 to coincide with F
with probability 1 − 2𝜀, from which the lemma follows, as 𝑇0 ≤ 4𝐴3 (log 𝜀−1)2 ·

(
𝑡mix(𝜀; 𝑀fl) + 1

)
. �

We further require a censored version of the region-flip dynamics from Definition 4.8.

Definition 4.15. The censored region-flip dynamics, denoted by 𝑀crf , is the discrete-time Markov chain
on 𝒢(h) whose state H𝑡+1 at time 𝑡 + 1 is defined from H𝑡 as follows. First, let X = (𝑋1, 𝑋2, . . .) ∈ Z≥1
denote the sequence of integer-valued random variables defined by first setting P(𝑋1 = 𝑖) = 𝑝𝑖 for each
𝑖 ∈ [1, 𝑘]. Then, given 𝑋𝑟 , we define 𝑋𝑟+1 ∈ {𝑋𝑟 +1, 𝑋𝑟 +2, . . . , 𝑋𝑟 +𝑘} by setting P(𝑋𝑟+1 = 𝑋𝑟 +𝑖) = 𝑝 𝑗 ,
where 𝑗 ∈ [1, 𝑘] is such that k divides 𝑋𝑟 + 𝑖 − 𝑗 .

Now, let 𝑠 ≥ 1 denote the integer such that (𝑠 − 1)𝐴5 < 𝑡 + 1 ≤ 𝑠𝐴5, and let 𝑖′ ∈ [1, 𝑘] denote the
integer such that 𝑘𝑡0 + 𝑖′ = 𝑠 for some 𝑡0 ∈ Z≥0. If 𝑠 ∈ X and 𝑡 = (𝑠 − 1)𝐴5, then select an interior
v ∈ R𝐼 ′ \ 𝜕R𝐼 ′ uniformly at random, and let H𝑡+1 denote the random flip of H𝑡 at v. If instead 𝑠 ∉ X or
𝑡 − (𝑠 − 1)𝐴5 > 0, then set H𝑡+1 = H𝑡 .

The process 𝑀crf censors any step in the region-flip dynamics 𝑀rf from Definition 4.8 in the time
interval

[
(𝑠 − 1)𝐴5 + 2, 𝑠𝐴5] and also the step at time (𝑠 − 1)𝐴5 if 𝑠 ∉ X .

Denote the maximal and minimal configurations of 𝒢(h) by Htop, Hbtm ∈ 𝒢(h), which for any
H ∈ 𝒢(h) satisfy Htop (v) ≥ H(v) ≥ Hbtm(v), for each v ∈ R. Further, let 𝛿Htop , 𝛿Hbtm ∈ 𝒫

(
𝒢(h)

)
denote the delta masses at Htop and Hbtm, respectively. The following result from [PW13] shows that
the above censorings (weakly) increase the mixing time for these dynamics when started from the top
configuration or the bottom one.10

Proposition 4.16 [PW13, Theorem 1.1]. Letting 𝜌 denote the uniform measure on 𝒢(h), we have for
any integer 𝑡 ≥ 0 that

𝑑TV(𝑀
𝑡
wf𝛿Htop , 𝜌) ≤ 𝑑TV(𝑀

𝑡
cwf𝛿Htop , 𝜌); 𝑑TV(𝑀

𝑡
wf𝛿Hbtm , 𝜌) ≤ 𝑑TV(𝑀

𝑡
cwf𝛿Hbtm , 𝜌);

𝑑TV(𝑀
𝑡
rf𝛿Htop , 𝜌) ≤ 𝑑TV(𝑀

𝑡
crf𝛿Htop , 𝜌); 𝑑TV(𝑀

𝑡
rf𝛿Hbtm , 𝜌) ≤ 𝑑TV(𝑀

𝑡
crf𝛿Hbtm , 𝜌).

10This statement was only explicitly made in [PW13, Therorem 1.1] for starting the dynamics from the top configuration, but
the fact that it also holds when started from the bottom one follows by symmetry.
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Recalling the notation from Equation (4.3), we also denote for any irreducible Markov chain 𝑀 :
𝒫

(
𝒢(ℎ)

)
→ 𝒫

(
𝒢(ℎ)

)
the quantities (where below 𝜌 denotes the stationary measure of M)

𝑅(𝜀; 𝑀) = min
{
𝑡 ∈ Z≥0 : 𝑑TV(𝑀

𝑡𝛿Htop , 𝜌) < 𝜀
}
;

𝑆(𝜀; 𝑀) = min
{
𝑡 ∈ Z≥0 : 𝑑TV(𝑀

𝑡𝛿Hbtm , 𝜌) < 𝜀
}
.

The following lemma bounds the mixing times of weighted flip and region-flip dynamics by the
associated R and S.

Lemma 4.17. For any 𝜀 ∈ (0, 1), we have

𝑡mix(𝜀, 𝑀wf) ≤ 𝑅
( 𝜀

4𝐴2 ; 𝑀wf

)
+ 𝑆

( 𝜀

4𝐴2 ; 𝑀wf

)
; 𝑡mix(𝜀, 𝑀rf) ≤ 𝑅

( 𝜀

4𝐴2 ; 𝑀rf

)
+ 𝑆

( 𝜀

4𝐴2 ; 𝑀rf

)
. (4.6)

Proof. We only establish the second statement of Equation (4.6), as the proof of the first is entirely
analogous. First, observe that there exists a grand coupling the region-flip dynamics 𝑀rf over all choices
of initial data in 𝒢(h) by running them under the same choices of sequences X = (𝑋1, 𝑋2, . . .) and
vertices v (at which each flip is made) from Definition 4.15. It is quickly verified (see [Gor21, Proposition
25.7], for example) that this coupling is monotone, meaning that if for some H1, H2 ∈ 𝒢(h) we have
H1 (v) ≤ H2(v) for each v ∈ R, then it holds that 𝑀 𝑡

rfH1 (v) ≤ 𝑀 𝑡
rfH2 (v) for each 𝑡 ≥ 0 and 𝑣 ∈ R.

Observe that it suffices to show under these coupled dynamics that, with probability at least 1 − 𝜀,
the models started at Htop and at Hbtm coincide after time 𝑅

(
𝜀

4𝐴2 , 𝑀rf
)
+ 𝑆

(
𝜀

4𝐴2 , 𝑀rf
)
, that is,

P[𝑀𝑇
rf Htop = 𝑀𝑇

rf Hbtm] ≥ 1 − 𝜀, if 𝑇 ≥ 𝑅
( 𝜀

4𝐴2 ; 𝑀rf

)
+ 𝑆

( 𝜀

4𝐴2 ; 𝑀rf

)
. (4.7)

Indeed, given Equation (4.7), it follows since Hbtm ≤ F ≤ Htop for each F ∈ 𝒢(h) that with probability
at least 1 − 𝜀 the 𝑀𝑇

rf F all, over every F ∈ 𝒢(h), coincide for 𝑇 ≥ 𝑅
(
𝜀

4𝐴2 , 𝑀rf
)
+ 𝑆

(
𝜀

4𝐴2 , 𝑀rf
)
. In

particular, sampling F under the stationary measure 𝜌 for 𝑀rf , we deduce for any H ∈ 𝒢(h) that one
can couple 𝑀𝑇

rf H to coincide with a height function sampled under 𝜌, with probability 1 − 𝜀; hence,
𝑡mix(𝜀; 𝑀rf) ≤ 𝑅

(
𝜀

4𝐴2 , 𝑀rf
)
+ 𝑆

(
𝜀

4𝐴2 , 𝑀rf
)
, confirming the lemma.

It remains to verify Equation (4.7). Since 𝑇 ≥ 𝑅
(
𝜀

4𝐴2 ; 𝑀rf
)
, we have by Equation (4.4) that it is

possible to couple 𝑀𝑇
rf Htop with a height function F sampled under the stationary measure 𝜌 of 𝑀rf such

that 𝑀𝑇
rf Htop = F with probability at least 1 − 𝜀

4𝐴2 . Moreover, since 𝑀𝑇
rf Htop (u) = h(u) = F(u) for each

u ∈ 𝜕R and since diam R ≤ 𝐴, it follows (as H is 1-Lipschitz) that


𝑀𝑇

rf Htop(v) −F(v)


 ≤ 2𝐴. Combining

these two statements, we deduce that E
[
𝑀𝑇

rf Htop (v)
]
≤ E

[
F(v)

]
+ 𝜀

2𝐴 , for each v ∈ R. Similarly, we
have E

[
𝑀𝑇

rf Hbtm(v)
]
≤ E

[
F(v)

]
− 𝜀

2𝐴 .
Therefore, E

[
𝑀𝑇

rf Htop(v)
]
≤ E

[
𝑀𝑇

rf Hbtm(v) |
]
+ 𝜀

𝐴 for any v ∈ R. Together with the above grand
coupling satisfying 𝑀𝑇

rf Hbtm ≤ 𝑀𝑇
rf Htop, the fact that any height function is integer-valued and a Markov

inequality, we deduce that P
[
𝑀𝑇

rf Htop(v) ≠ 𝑀𝑇
rf Hbtm(v)

]
≤ 𝜀

𝐴 , under this grand coupling. A union
bound over all |R| ≤ 𝐴 vertices v ∈ R then yields Equation (4.7) and thus the lemma. �

Next, we have the following lemma that compares the mixing times of the flip and censored region-
flip dynamics.

Lemma 4.18. Adopting the notation of Proposition 4.6, and fixing a real number 𝜀 ∈
(
0, 1

2
]
, we have

𝑡mix(8𝐴2𝜀; 𝑀crf) ≤ 8𝐴9 (log 𝜀−1)2 ·
(
𝑡mix(𝜀; 𝑀fl) + 1

)
.

Proof. We first bound the mixing time of 𝑀crf in terms of that of 𝑀wf. To that end, recall that the state
H𝑡 at time 𝑡 ≥ 1 under 𝑀wf is defined from H𝑡−1 by performing a random flip at a vertex v ∈ R \ 𝜕R
chosen with probability 𝔪(v) ·𝔐−1. Observe that we equivalently sample v by first selecting an index
𝑖 ∈ [1, 𝑘] with probability 𝑝𝑖 and then selecting v ∈ R𝑖 \𝜕R𝑖 uniformly at random. Recalling the random
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sequence X = (𝑋1, 𝑋2, . . .) from Definition 4.15, this is in turn equivalent to sampling v ∈ R𝑋𝑡 \ 𝜕R𝑋𝑡

uniformly at random, where we have denoted R 𝑗 = R𝑖 for 𝑖 ∈ [1, 𝑘] the integer such that k divides 𝑗 − 𝑖.
It follows that 𝑀fl and 𝑀crf can be coupled so that the former at time t coincides with the latter at time

(𝑋𝑡 − 1)𝐴5 ≤ 𝑘𝑡𝐴5, where in the last equality we used the fact that 𝑋𝑡 ≤ 𝑘𝑡 (as 𝑋𝑡 − 𝑋𝑡−1 ≤ 𝑘). Hence,

𝑡mix(8𝐴2𝜀; 𝑀crf) ≤ 𝑘𝐴5𝑡mix(8𝐴2𝜀; 𝑀wf) ≤ 𝐴6𝑡mix(8𝐴2𝜀; 𝑀wf). (4.8)

Moreover, we have

𝑡mix(8𝐴2𝜀; 𝑀wf) ≤ 𝑅(2𝜀; 𝑀wf) + 𝑆(2𝜀; 𝑀wf) ≤ 2𝑡mix(2𝜀; 𝑀cwf)

≤ 8𝐴3 (log 𝜀−1)2 ·
(
𝑡mix(𝜀; 𝑀fl) + 1

)
,

where in the first inequality we applied Lemma 4.17, in the second we applied Proposition 4.16 and in
the third we applied Lemma 4.14. Combining this with Equation (4.8) yields the lemma. �

Given the above, we can quickly establish Lemma 4.10 and Lemma 4.11.

Proof of Lemma 4.10. By Lemma 4.17, Proposition 4.16, and Lemma 4.18, we have for sufficiently
large A that

𝑡mix(𝑒
−2𝐴; 𝑀rf) ≤ 𝑅

( 𝑒−2𝐴

4𝐴2 , 𝑀rf

)
+ 𝑆

( 𝑒−2𝐴

4𝐴2 , 𝑀rf

)
≤ 𝑅

( 𝑒−2𝐴

4𝐴2 , 𝑀crf

)
+ 𝑆

( 𝑒−2𝐴

4𝐴2 , 𝑀crf

)
≤ 2𝑡mix

( 𝑒−2𝐴

4𝐴2 , 𝑀crf

)
≤ 16𝐴9 (3𝐴)2 ·

(
𝑡mix

( 𝑒−2𝐴

32𝐴4 ; 𝑀fl

)
+ 1

)
,

which yields the lemma. �

Proof of Lemma 4.11. First, observe that for sufficiently large A we have 𝑡mix
(
𝑒−2𝐴

4𝐴2 ; 𝑀fl
)
≤ 𝐴5

200 , by
Proposition 4.9; thus, Lemma 4.10 implies that 𝑡mix(𝑒

−2𝐴; 𝑀rf) ≤ 𝐴16. So, to establish the lemma it
suffices to couple the dynamics 𝑀alt at time t to coincide with 𝑀rf at time 𝐴5𝑡 for each 𝑡 ∈ [0, 𝐴11],
away from an event of probability at most 𝐴11𝑒−2𝐴 ≤ 𝑒−𝐴 − 𝑒−2𝐴.

To that end, let H𝑡 denote the state after 𝑡 ≥ 0 steps of the dynamics 𝑀rf . Furthermore, for any integer
𝑠 ≥ 0 and 𝑖 ∈ [1, 𝑘] such that k divides 𝑠− 𝑖+1, set H′

𝑠 = H𝑠𝐴5 and h′
𝑠+1 = H𝑠𝐴5 |𝜕R𝑖 . Then, Definition 4.8

implies H′
𝑠+1 ∈ 𝒢(h′

𝑠+1) is obtained from H′
𝑠 ∈ 𝒢(h′

𝑠) from applying the flip dynamics 𝑀fl on R𝑖 for
time 𝐴5. Hence, since 𝑡mix(𝑒

−2𝐴; 𝑀fl) ≤ 𝑡mix
(
𝑒−2𝐴

4𝐴2 ; 𝑀fl
)
≤ 𝐴5, we may couple H′

𝑠 |R𝑖 with a uniformly
random element of 𝒢(h′

𝑠), away from an event of probability at most 𝑒−2𝐴.
It follows that the sequence {H′

0, H′
1, . . . , H′

𝑠} can be coupled with s steps of the alternating dynamics
𝑀alt with initial data H0, away from an event of probability at most 𝑠𝑒−2𝐴. Taking 𝑠 = 𝑡mix(𝑒

−2𝐴; 𝑀fl) ≤
𝐴11 and recalling that H′

𝑠 = H𝑠𝐴5 , we deduce the lemma. �

5. Tilted height functions and comparison estimates

In this section, we discuss how height functions can be ‘tilted’ in a specific way. Section 5.1 introduces
the notion of a tilted height function and states results comparing tilted height functions to random tiling
height functions; we prove the latter comparison results in Section 5.2 and Section 5.3.

5.1. Tilted height functions

In this section, we describe a way of ‘tilting’ the height function of a random tiling that will enable
us to apply Theorem 4.3 in an effective way. Throughout this section, we recall the notation from
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Definition 2.2 and more generally from Section 2.3 and Section 3.1; this includes the polygonal domain
𝔓 and associated boundary height function ℎ : 𝜕𝔓 → R; the liquid region 𝔏(𝔓) and arctic curve 𝔄(𝔓)

from Equations (2.5) and (2.6); the associated complex slope 𝑓𝑡 (𝑥) = 𝑓 (𝑥, 𝑡) from Equation (3.1);
the polygonal domain P = 𝑛𝔓 ∩ T2 and its associated boundary height function h : P → Z. For any
(𝑥, 𝑠) ∈ 𝔏(𝔓), we also set

Ω𝑠 (𝑥) =
1
𝜋

Im
𝑓𝑠 (𝑥)

𝑓𝑠 (𝑥) + 1
=

1
𝜋

Im 𝑓𝑠 (𝑥)

| 𝑓𝑠 (𝑥) + 1|2
; Υ𝑠 (𝑥) =

𝑓𝑠 (𝑥)(
𝑓𝑠 (𝑥) + 1

)2 , (5.1)

and further set Ω𝑠 (𝑥) = 0 when (𝑥, 𝑠) ∉ 𝔏(𝔓). The parameters Ω𝑠 (𝑥) and Υ𝑠 (𝑥) will quantitatively
govern how height functions change under ‘tilts’, to be described further in Proposition 5.4 below.

Remark 5.1. Observe thatΩ𝑠 (𝑥) ≤ 0 since 𝑓𝑠 (𝑥) ∈ H
−∪R. Moreover, if (𝑥, 𝑠) ∈ 𝔄(𝔓), then 𝑓𝑠 (𝑥) ∈ R,

so Υ𝑠 (𝑥) ∈ R. Then Υ𝑠 (𝑥) > 0 holds if 𝑓𝑠 (𝑥) > 0, and Υ𝑠 (𝑥) < 0 holds if 𝑓𝑠 (𝑥) < 0. The former
implies arg∗ 𝑓𝑠 (𝑥) = 0, which by Equation (3.1) implies 𝜕𝑥𝐻

∗(𝑥, 𝑠) = 0. Similarly, the latter implies
𝜕𝑥𝐻

∗(𝑥, 𝑠) = 1.

Throughout this section, we fix real numbers 𝔱1 < 𝔱2 with 𝔱 = 𝔱2−𝔱1; linear functions 𝔞, 𝔟 : [𝔱1, 𝔱2] →
R, with slopes in {0, 1}; and the domain 𝔇 = 𝔇(𝔞, 𝔟; 𝔱1, 𝔱2) from Equation (4.1) with boundaries (4.2),
as in Section 4.1. We view them all as independent from n. We will impose the following condition on
𝔇 concerning its relation to 𝔓 (see Figure 10 for possible depictions).

Assumption 5.2. Adopt the notation of Theorem 2.10, and suppose 𝔇 ⊆ 𝔓, with D = 𝑛𝔇 ⊆ T. Assume
that the second, third and fourth constraints listed in Assumption 4.1 hold for 𝔇 (with respect to 𝐻∗).
Further, suppose that either 𝜕ea(𝔇) is disjoint with 𝔏(𝔓) or that 𝜕ea(𝔇) ⊂ 𝜕𝔓; similarly, suppose that
either 𝜕we (𝔇) is disjoint with 𝔏(𝔓) or that 𝜕we(𝔇) ⊂ 𝜕𝔓. We denote the liquid region inside 𝔇 as
𝔏 = 𝔏(𝔓) ∩𝔇. Additionally, fix a real number 𝔰 ∈ [𝔱1, 𝔱2], and assume that no cusp or tangency location
of 𝔄(𝔓) in 𝔇 is of the form (𝑥, 𝑦), with 𝑥 ∈ R and 𝑦 ∈ {𝔱1, 𝔰, 𝔱2}.

Remark 5.3. Under Assumption 5.2, Υ𝑡 (𝑥) is uniformly bounded away from 0 and ∞, for any (𝑥, 𝑡) ∈
𝔄(𝔓) with 𝑡 ∈ {𝔱1, 𝔰, 𝔱2}. This holds since ( 𝑓𝑡 (𝑥) + 1)/ 𝑓𝑡 (𝑥) is the slope of the tangent line to 𝔄(𝔓) at
(𝑥, 𝑡) (by Lemma 3.7), and since no tangency location of 𝔄(𝔓) has y-coordinate in

{
𝔱1, 𝔰, 𝔱2}. Moreover,

if 𝑢 = (𝑥, 𝑡) ∈ 𝔏(𝔓) satisfies 𝑡 ∈ {𝔱1, 𝔰, 𝔱2}, and we denote 𝑑 = dist(𝑢,𝔄(𝔓)), then there exists a
constant 𝑐 = 𝑐(𝔓,𝔇) > 0 such that 𝑐𝑑1/2 ≤ −Ω𝑡 (𝑥) ≤ 𝑐−1𝑑1/2. This follows from the square root
decay of Im 𝑓𝑡 (𝑥) around smooth points of 𝔄(𝔓) (see Lemma A.1 below) and the fact that no cusp or
tangency location of 𝔄(𝔓) in 𝔇 has y-coordinate in {𝔱1, 𝔰, 𝔱2}.

Next, we state the following proposition, to be established in Section 7 below, indicating how a height
function can be ‘tilted’. Here, the parameters Ω𝑠 (𝑥) and Υ𝑠 (𝑥) from Equation (5.1) will govern how the
height function and edge of the liquid region change under such a tilt, respectively. In what follows, all
implicit constants (including notions of being ‘sufficiently small’) will only depend on the parameters
𝔓, 𝔇 and 𝜀 in the statement of the proposition. We also recall maximizers of E from Equation (2.4),
and the liquid regions 𝔏(𝔇; 𝑔), 𝔏no(𝔇; 𝑔), and 𝔏so(𝔇; 𝑔) for any function 𝑔 : 𝜕𝔇 → R from Equations
(2.5) and (2.6) and Section 4.1.

Proposition 5.4. Fix 𝜀 > 0, and adopt Assumption 5.2. Also, let 𝜉1, 𝜉2 ∈ R be real numbers of
the same sign (that is, 𝜉1𝜉2 ≥ 0), with |𝜉1 |, |𝜉2 | sufficiently small. Further, assume that |𝜉2 − 𝜉1 | ≥
𝜀 max

{
|𝜉1 |, |𝜉2 |

}
, and define the function 𝜔 : [𝔱1, 𝔱2] → R interpolating 𝜉1 and 𝜉2:

𝜔(𝑡) = 𝜉2
𝑦 − 𝔱1
𝔱2 − 𝔱1

+ 𝜉1
𝔱2 − 𝑡

𝔱2 − 𝔱1
. (5.2)
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Then there exists a function ℎ̂ : 𝜕𝔇 → R admitting an admissible extension to R2 such that the
maximizer 𝐻∗ = argmax𝐹 ∈Adm(𝔇,ℎ̂) E (𝐹) of E satisfies the following properties. In the below, we fix one
of three real numbers 𝑡 ∈ {𝔱1, 𝔰, 𝔱2}, and we abbreviate 𝔏 = 𝔏(𝔇; ℎ̂) ∪ 𝔏no (𝔇; ℎ̂) ∪ 𝔏so (𝔇; ℎ̂).

(1) For any (𝑥, 𝑡) ∈ 𝔏 ∩ 𝔏, we have

𝐻∗(𝑥, 𝑡) − 𝐻∗(𝑥, 𝑡) − 𝜔(𝑡)Ω𝑡 (𝑥)


 = O

(
|𝜉1 |

3/2 + |𝜉2 |
3/2) . (5.3)

(2) Suppose
{
𝑥 : (𝑥, 𝑡) ∈ 𝔏

}
is a union of 𝑘 ≥ 1 disjoint open intervals (𝑥1, 𝑥

′
1)∪(𝑥2, 𝑥

′
2)∪· · ·∪ (𝑥𝑘 , 𝑥

′
𝑘 ).

Then,
{
𝑥 : (𝑥, 𝑡) ∈ 𝔏

}
is also a union of k disjoint open intervals (𝑥̂1, 𝑥̂

′
1) ∪ (𝑥̂2, 𝑥̂

′
2) ∪ · · · ∪ (𝑥̂𝑘 , 𝑥̂

′
𝑘 ).

Moreover, for any index 1 ≤ 𝑗 ≤ 𝑘 , we have

𝑥̂ 𝑗 − 𝑥 𝑗 = 𝜔(𝑡)Υ𝑡 (𝑥 𝑗 ) +O(𝜉2
1 + 𝜉2

2); 𝑥̂ ′𝑗 − 𝑥 ′𝑗 = 𝜔(𝑡)Υ𝑡 (𝑥
′
𝑗 ) +O(𝜉2

1 + 𝜉2
2), (5.4)

and 𝐻∗(𝑥, 𝑡) = 𝐻∗(𝑥, 𝑡) whenever (𝑥, 𝑡) ∈ 𝔇 and (𝑥, 𝑡) ∉ 𝔏 ∪ 𝔏.
(3) Under the notation of Equation (5.4), fix any endpoint 𝑥 ∈

⋃𝑘
𝑖=1{𝑥𝑖 , 𝑥

′
𝑖}; set 𝑥̂ = 𝑥̂𝑖 or 𝑥̂ = 𝑥̂ ′𝑖 if

𝑥 = 𝑥𝑖 or 𝑥 = 𝑥 ′𝑖 , respectively. For any real number Δ with |Δ | sufficiently small, we have

𝐻∗(𝑥̂ + Δ) − 𝐻∗(𝑥̂) = 𝐻∗(𝑥 + Δ) − 𝐻∗(𝑥) +O
(
(|𝜉1 | + |𝜉2 |) |Δ |3/2 + Δ2) . (5.5)

(4) The domain 𝔇 satisfies five assumptions listed in Assumption 4.1, with respect to 𝐻∗.

Let us briefly comment on Proposition 5.4. We view 𝜔(𝑡) as quantifying how ‘tilted’ 𝐻∗ is with
respect to 𝐻∗ along a fixed horizontal slice 𝑡 ∈ {𝔱1, 𝔰, 𝔱2}. In particular, 𝜉1 and 𝜉2 parameterize this
tiltedness along the north and south boundaries of 𝔇, respectively, and Equation (5.2) implies that this
tiltedness linearly interpolates between these two boundaries. The first part of Proposition 5.4 quantifies
how the height function in the liquid region tilts in terms of Ω𝑠 , and the second part quantifies how
the edges of the liquid region tilt in terms of Υ𝑠 . The tilted function 𝐻∗ will eventually be obtained
by perturbing solutions of the complex Burgers equation (3.2), and these functions Ω𝑠 and Υ𝑠 can be
viewed as derivatives arising from this procedure; see Lemma 7.2 and Lemma 7.3 below. The third part
of Proposition 5.4 states that the gradient around the edges does not change too much under the tilting.
The fourth part verifies properties of 𝐻∗ that will enable us to later apply Theorem 4.3.

Remark 5.5. We will use notation such as 𝐻∗ and 𝐻∗ for deterministic height functions (which will
be maximizers of E), and notation such as H and 𝐻 for random height functions (which are associated
with random tilings).

In view of Equations (5.3) and (5.4), we introduce the following more precise notion of tiltedness. It
will be useful to define it through estimates, instead of the close approximations provided by Proposi-
tion 5.4.

Definition 5.6. Suppose 𝔇 ⊆ 𝔓; fix real numbers 𝜉, 𝜇, 𝜁 ≥ 0; and fix an admissible function 𝐻 ∈

Adm(𝔇). For any (𝑥, 𝑠) ∈ 𝔇, we say that H is (𝜉; 𝜇)-tilted with respect to 𝐻∗ at (𝑥, 𝑠) if (recalling that
Ω𝑠 (𝑥) ≤ 0 by Remark 5.1) we have

𝐻 (𝑥, 𝑠) − 𝐻∗(𝑥, 𝑠)



 ≤ 𝜇 − 𝜉Ω𝑠 (𝑥).

We also say that the edge of H is 𝜁-tilted with respect to 𝐻∗at level s if the following two conditions
hold. For 𝑢 = (𝑥, 𝑠) ∈ 𝔇, we let (𝑥0, 𝑠) ∈ 𝔄(𝔓) denote any point on 𝔄(𝔓) with |𝑥 − 𝑥0 | minimal so that
𝜕𝑥𝐻

∗(𝑥0, 𝑠) ∈ {0, 1} (that is, 𝐻∗ is frozen at (𝑥0, 𝑠)).
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(1) Fix any 𝑢 = (𝑥, 𝑠) ∉ 𝔏 with |𝑥0 − 𝑥 | ≥ 𝜁


Υ𝑠 (𝑥0)



. We have 𝐻 (𝑢) = 𝐻∗(𝑢).
(2) Fix any 𝑢 = (𝑥, 𝑠) ∈ 𝔇 with11 |𝑥0 − 𝑥 | ≤ 𝜁8/9. If 𝜕𝑥𝐻

∗(𝑥0, 𝑠) = 0 (so Υ𝑠 (𝑥0) > 0 by Remark 5.1),
then

𝐻∗
(
𝑥 − 𝜁Υ𝑠 (𝑥0), 𝑠

)
≤ 𝐻 (𝑥, 𝑠) ≤ 𝐻∗

(
𝑥 + 𝜁Υ𝑠 (𝑥0), 𝑠

)
.

If instead 𝜕𝑥𝐻
∗(𝑥0, 𝑠) = 1 (so Υ𝑠 (𝑥0) < 0 by Remark 5.1), then

𝐻∗
(
𝑥 − 𝜁Υ𝑠 (𝑥0), 𝑠

)
+ 𝜁Υ𝑠 (𝑥0) ≤ 𝐻 (𝑥, 𝑠) ≤ 𝐻∗

(
𝑥 + 𝜁Υ𝑠 (𝑥0), 𝑠

)
− 𝜁Υ𝑠 (𝑥0).

We sometimes refer to the former notion described in Definition 5.6 as a ‘bulk’ form of tiltedness,
and the latter as an ‘edge’ form. The bulk form imposes a bound on |𝐻 − 𝐻∗ | of a similar form to
Equation (5.4) in Proposition 5.4. The edge form constitutes two parts. The first is an estimate for the
edge ponts of H, of a similar form to Equation (5.4); the second bounds |𝐻 − 𝐻∗ | near these edge
points (this is eventually related to (5.5)). We will often view the tiltedness parameters 𝜉, 𝜇, 𝜁 as small
(decaying as a negative power of n), even though this was not needed to formulate Definition 5.6.

To proceed, for any real number 𝛿 > 0, we require the ‘reduced’ version of the liquid region inside𝔇

𝔏𝛿
− =

{
𝑢 ∈ 𝔏 : dist(𝑢,𝔄(𝔓)) > 𝑛𝛿−2/3}. (5.6)

Given this notation, we will state two results concerning the tiltedness of a random height function
on D along a middle horizontal slice, given its tiltedness on the north and south boundaries of D. Let us
introduce the following notation and assumption to set this context.
Assumption 5.7. Adopt Assumption 5.2; fix 𝜀, 𝜍, 𝛿 ∈ (0, 1/50), and suppose that 𝔰 ∈ [𝔱1 + 𝜀𝔱, 𝔱2 − 𝜀𝔱].
Let h̃ : 𝜕D → Z denote a boundary height function that is constant along the east and west boundaries of
D; if 𝜕no (𝔇) is packed with respect to h, then we further assume that h̃ = h along 𝜕no (𝔇). Let H̃ : D → Z

denote a uniformly random element of 𝒢(h̃), and define 𝐻 ∈ Adm(𝔇) by setting 𝐻 (𝑢) = 𝑛−1H̃(𝑛𝑢)
for each 𝑢 ∈ 𝔇. Further, let 𝜉1, 𝜉2, 𝜁1, 𝜁2, 𝜇 ∈ [0, 𝑛𝛿−2/3] be real numbers satisfying the inequalities
min

{
𝜉1, 𝜉2, |𝜉1 − 𝜉2 |

}
≥ 𝜍 (𝜉1 + 𝜉2) and min

{
𝜁1, 𝜁2, |𝜁1 − 𝜁2 |

}
≥ 𝜍 (𝜁1 + 𝜁2). Assume the following two

statements hold for each 𝑗 ∈ {1, 2}.
(1) At each (𝑥, 𝔱 𝑗 ) ∈ 𝔏𝛿

− , we have that 𝐻 is (𝜉 𝑗 ; 𝜇)-tilted with respect to 𝐻∗.
(2) The edge of 𝐻 is 𝜁 𝑗 -tilted with respect to 𝐻∗ at level 𝔱 𝑗 .

Observe that the latter two points in the above assumption are more constraints on the deterministic
boundary data h̃ (equivalently, ℎ̃) than on the random height function 𝐻. Indeed, the restriction of 𝐻 to
levels 𝔱1 and 𝔱2 is fully determined by ℎ̃ since these levels constitute the south and north boundaries of
𝔇, respectively.

Now, we state the following two results to be established in Section 5.2 and Section 5.3 below.
Qualitatively, they both state that the tiltedness of 𝐻 along the intermediate horizontal slice 𝑡 = 𝔰 lies
between its tiltedness along the top and bottom boundaries of 𝔇. The two statements differ in that
Proposition 5.8 addresses both the bulk and edge forms of tiltedness but imposes that its tiltedness
parameters 𝜁1, 𝜁2 � 𝑛−2/3; Proposition 5.9 only addresses the bulk form of tiltedness but allows for
smaller tiltedness parameters 𝜉1, 𝜉2 � 𝑛−1.
Proposition 5.8. Adopt Assumption 5.7, and set

𝜁 = max
{
𝜀

2
𝜁1 +

(
1 −

𝜀

2

)
𝜁2,

(
1 −

𝜀

2

)
𝜁1 +

𝜀

2
𝜁2

}
. (5.7)

Assume that 𝜇 = 0, and that 𝜉 𝑗 ≤ 𝜁 𝑗 ≤ 𝑛𝛿/2−2/3 and 𝜁 𝑗 ≥ 𝑛𝛿/100−2/3 for each 𝑗 ∈ {1, 2}. Then, the
following two statements hold with overwhelming probability.

11The power 𝜁 8/9 is taken for convenience and should not be viewed as optimal in any way.
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(1) At each (𝑥, 𝔰) ∈ 𝔏𝛿
− , we have that 𝐻 is (𝜁 ; 0)-tilted with respect to 𝐻∗.

(2) The edge of 𝐻 is 𝜁-tilted with respect to 𝐻∗ at level 𝔰.

Proposition 5.9. Adopt Assumption 5.7, and set

𝜉 = max
{
𝜀

2
𝜉1 +

(
1 −

𝜀

2

)
𝜉2,

(
1 −

𝜀

2

)
𝜉1 +

𝜀

2
𝜉2

}
.

Assume that 𝜉 𝑗 ≤ 𝑛−2/3 and 𝜁 𝑗 ≤ 𝑛𝛿/50−2/3 for each 𝑗 ∈ {1, 2}. Further, fix 𝑈0 = (𝑋0, 𝔰) ∈ 𝔏𝛿
− , and

assume that 𝜉 𝑗 ≥ 𝑛𝛿/4−1 dist(𝑈0,𝔄(𝔓))−1/2 for each 𝑗 ∈ {1, 2}. Then, 𝐻 is (𝜉; 𝜇)-tilted with respect to
𝐻∗ at 𝑈0, with overwhelming probability.

Remark 5.10. By rotating 𝔇, Proposition 5.8 and Proposition 5.9 also hold if in Assumption 5.2 the
constraints on 𝜕no(𝔇) are instead imposed on 𝜕so(𝔇).

5.2. Proof of Proposition 5.8

In this section, we establish Proposition 5.8. Throughout this section, we adopt the notation of that
proposition. For any 𝑢 = (𝑥, 𝔰) ∈ 𝔇, with (𝑥0, 𝔰) ∈ 𝔄(𝔓) denoting a point with |𝑥 − 𝑥0 | minimal, it
suffices to show with overwhelming probability that

𝐻∗(𝑢) + 𝜁Ω𝔰 (𝑥) ≤ 𝐻 (𝑢) ≤ 𝐻∗(𝑢) − 𝜁Ω𝔰 (𝑥), if 𝑢 ∈ 𝔏𝛿
− ;

𝐻 (𝑢) = 𝐻∗(𝑢), if 𝑢 ∉ 𝔏 and |𝑥 − 𝑥0 | ≥ 𝜁


Υ𝔰 (𝑥0)



, (5.8)

and, if |𝑥 − 𝑥0 | ≤ 𝜁8/9, that

𝐻∗
(
𝑥 − 𝜁Υ𝔰 (𝑥0), 𝔰) ≤ 𝐻 (𝑢) ≤ 𝐻∗

(
𝑥 + 𝜁Υ𝔰 (𝑥0), 𝔰

)
, if 𝜕𝑥𝐻∗(𝑥0, 𝔰) = 0;

𝐻∗
(
𝑥 − 𝜁Υ𝔰 (𝑥0), 𝔰

)
+ 𝜁Υ𝔰 (𝑥0) ≤ 𝐻 (𝑢) ≤ 𝐻∗

(
𝑥 + 𝜁Υ𝔰 (𝑥0), 𝔰

)
− 𝜁Υ𝔰 (𝑥0), if 𝜕𝑥𝐻∗(𝑥0, 𝔰) = 1.

(5.9)

We only establish the upper bounds in Equations (5.8) and (5.9), as the proofs of the lower bounds
are entirely analogous. In what follows, we will assume that 𝜁1 ≥ 𝜁2, as the proof in the complementary
case 𝜁1 < 𝜁2 is entirely analogous. Let us also fix a small real number 𝜃 ∈ (0, 1/50) (it suffices to take
𝜃 = 1/100), and we define slightly larger versions of 𝜁1, 𝜁2 by

𝜁 ′1 = (1 + 𝜃𝜀)𝜁1; 𝜁 ′2 = (1 + 𝜃𝜀)𝜁2. (5.10)

Throughout, we further set ℎ̃ = 𝐻 |𝜕𝔇 from Assumption 5.7.
Before continuing, let us briefly outline how we will proceed. First, we use Proposition 5.4 to obtain

a ‘(−𝜁 ′1,−𝜁
′
2)-tilted’ boundary function ℎ̂ : 𝜕𝔇 → R, with associated maximizer 𝐻∗ ∈ Adm(𝔇; ℎ̂)

of E ; properties of this tilting from Proposition 5.4 will imply ℎ̂ ≥ ℎ̃. Next, we consider a tiling of D
whose (scaled) boundary height function is given by ℎ̂. Applying Theorem 4.3, we will deduce that the
(scaled) height function 𝐻 associated with this tiling is close to 𝐻∗. Together with the bound ℎ̂ ≥ ℎ̃ and
the monotonicity result Lemma 3.15, this will essentially imply that 𝐻∗ ≈ 𝐻 ≥ 𝐻. This, with the fact
(implied by Proposition 5.4) that 𝐻∗ is approximately 𝜁-tilted with respect to 𝐻∗, will yield the upper
bounds in Equations (5.8) and (5.9).

Now, let us implement this procedure in detail. Apply Proposition 5.4 with the (𝜉1, 𝜉2) there equal
to (−𝜁 ′1,−𝜁

′
2) here. This yields a function ℎ̂ : 𝜕𝔇 → R and its associated maximizer 𝐻∗ ∈ Adm(𝔇; ℎ̂)

of E satisfying the four properties listed there. Define its discretization ĥ : 𝜕D → Z of ℎ̂ by setting
ĥ(𝑛𝑣) =

⌊
𝑛ℎ̂(𝑣)

⌋
, for each 𝑣 ∈ 𝜕𝔇.

Lemma 5.11. For each v ∈ 𝜕D, we have that h̃(v) ≤ ĥ(v).
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Proof. Let us first verify the lemma when 𝑣 = 𝑛−1v ∈ 𝜕ea(𝔇) ∪ 𝜕we(𝔇). In this case, Assumption 5.2
implies that the four corners

{(
𝔞(𝔱1), 𝔱1

)
,
(
𝔟(𝔱1), 𝔱1

)
,
(
𝔞(𝔱2), 𝔱2

)
,
(
𝔟(𝔱2), 𝔱2

)}
of 𝔇 are outside of 𝔏; they

are thus bounded away from𝔏 (recall we view𝔇 and𝔓 as fixed with respect to n). Since 𝜁1, 𝜁2 ≤ 𝑛𝛿−2/3,
the edge of 𝐻 is 𝑛𝛿−2/3 � 1 tilted with respect to 𝐻∗ at levels 𝔱1 and 𝔱2. Hence, 𝐻 (𝑣) = 𝐻∗(𝑣) at these
four corners, so h̃(𝑛𝑣) = H̃(𝑛𝑣) = 𝑛𝐻∗(𝑣) = 𝑛ℎ(𝑣) = h(𝑛𝑣) there. The second part of Proposition 5.4,
together with the fact that 𝜁 𝑗Υ𝔱 𝑗 (𝑥) +O(𝜁2

1 ) = O(𝑛𝛿−2/3), implies that the edge of 𝐻∗ is also 𝑛𝛿−2/3 � 1
tilted with respect to 𝐻∗. So, similar reasoning gives ℎ̂(𝑣) = ℎ(𝑣) at these four corners, yielding
ĥ(𝑛𝑣) = h(𝑛𝑣) = h̃(𝑛𝑣) there. Since h̃ is constant along the east and west boundaries of D, it follows
that ĥ(v) = h̃(v) = h̃(v) there.

We next verify h̃(v) ≤ ĥ(v) when 𝑣 = 𝑛−1v ∈ 𝜕no(𝔇) ∪𝜕so(𝔇). Set 𝑣 = (𝑥, 𝔱 𝑗 ), and let 𝑣0 = (𝑥0, 𝔱 𝑗 ) ∈
𝜕𝔄(𝔓) denote a point with |𝑥 − 𝑥0 | minimal.

First, suppose |𝑥 − 𝑥0 | ≥ (𝜁 ′𝑗 )
8/9 and 𝑣 ∉ 𝔏. Then, by Remark 5.3 and the bound |𝜁 𝑗 | = O(𝑛𝛿−2/3),

we have |𝑥 − 𝑥0 | ≥ 𝜁 ′𝑗


Υ𝔱 𝑗 (𝑥0)



 for sufficiently large n. Since the edges of 𝐻 and 𝐻∗ are 𝜁 ′𝑗 -tilted with
respect to 𝐻∗ at level 𝔱 𝑗 (as 𝜁 𝑗 ≤ 𝜁 ′𝑗 ), we have ℎ̃(𝑣) = ℎ(𝑣) = ℎ̂(𝑣), so ĥ(v) = h̃(v).

Next, suppose that |𝑥 − 𝑥0 | ≤ (𝜁 ′𝑗 )
8/9. Then, 𝑣0 = (𝑥0, 𝔱 𝑗 ) is either a left or right endpoint of 𝔄(𝔓),

and 𝜕𝑥𝐻
∗(𝑣0) ∈ {0, 1}. We assume in what follows that 𝑣0 is a right endpoint of 𝔄(𝔓) and that

𝜕𝑥𝐻
∗(𝑣0) = 0, as the alternative cases are entirely analogous. Define 𝑥̂0 ∈ R such that 𝑣̂0 = (𝑥̂0, 𝔱 𝑗 )

denotes an endpoint of 𝔏so(𝔇; ℎ̂) or 𝔏no (𝔇; ℎ̂) (depending on whether 𝑗 = 1 or 𝑗 = 2, respectively)
such that |𝑥̂0 − 𝑥0 | is minimal. By Equation (5.4), we have 𝑥̂0 − 𝑥0 + 𝜁 ′𝑗Υ𝔱 𝑗 (𝑥0) = O(𝜁2

1 + 𝜁2
2 ) (recall

that the 𝜉 𝑗 there is −𝜁 𝑗 here). In particular, since Υ𝔱 𝑗 (𝑥0) is positive (by Remark 5.1) and bounded away
from 0 (by Remark 5.3), we have 𝑥̂0 ≤ 𝑥0 and 𝑥0 − 𝑥̂0 = O(𝜁1 + 𝜁2).

If 𝑥 ≥ 𝑥̂0, then 𝑣 = (𝑥, 𝔱 𝑗 ) ∉ 𝔏 (as (𝑥̂0, 𝔱 𝑗 ) must be a right endpoint of 𝔏). Since 𝑥0 ≥ 𝑥̂0 and
𝜕𝑥𝐻

∗(𝑥 ′, 𝔱 𝑗 ) = 𝜕𝑥𝐻
∗(𝑥0, 𝔱 𝑗 ) = 0 for 𝑥 ′ > 𝑥̂0, this implies 𝐻∗(𝑥, 𝔱 𝑗 ) = 𝐻∗(𝑥0, 𝔱 𝑗 ) = 𝐻∗(𝑥0, 𝔱 𝑗 ) (where

the last equality follows from Equation (5.4) of Proposition 5.4, since (𝑥0, 𝔱 𝑗 ) ∉ 𝔏 ∪ 𝔏). Hence,
ℎ̂(𝑣) = ℎ(𝑥0, 𝔱 𝑗 ). Since the edge of 𝐻 is 𝜁 𝑗 -tilted with respect to 𝐻∗ and 𝜁 𝑗 = o(𝑛1/2), we also have
ℎ̃(𝑣) ≤ ℎ̃(𝑥+𝑛−1/2, 𝔱 𝑗 ) = 𝐻∗(𝑥+𝑛−1/2, 𝔱 𝑗 ) = 𝐻∗(𝑥0, 𝔱 𝑗 ) = ℎ(𝑥0, 𝔱 𝑗 ). Thus ℎ̃(𝑣) ≤ ℎ(𝑣) = ℎ̂(𝑣), meaning
ĥ(v) ≥ h̃(v) if 𝑥 ≥ 𝑥̂0.

If instead 𝑥 < 𝑥̂0, then

𝐻∗(𝑥, 𝔱 𝑗 ) ≥ 𝐻∗(𝑥̂0, 𝔱 𝑗 ) + 𝐻∗(𝑥 + 𝑥0 − 𝑥̂0, 𝔱 𝑗 ) − 𝐻∗(𝑥0, 𝔱 𝑗 ) +O(𝜁16/9
1 )

= 𝐻∗(𝑥 + 𝑥0 − 𝑥̂0, 𝔱 𝑗 ) +O(𝜁16/9
1 ) ≥ 𝐻∗

(
𝑥 + 𝜁 ′𝑗Υ𝔱 𝑗 (𝑥0), 𝔱 𝑗

)
+O(𝜁16/9

1 ). (5.11)

Here, the first statement follows from Equation (5.5) and the fact that |𝑥−𝑥̂0 | = O
(
|𝑥−𝑥0 |+ |𝑥0−𝑥̂0 |

)
=

O(𝜁8/9
1 ); the second from the fact that 𝐻∗(𝑥̂0, 𝔱 𝑗 ) = 𝐻∗(𝑥0, 𝔱 𝑗 ) = 𝐻∗(𝑥0, 𝔱 𝑗 ), which holds by the equality

𝜕𝑥𝐻
∗(𝑥̂0, 𝔱 𝑗 ) = 𝜕𝑥𝐻

∗(𝑥0, 𝔱 𝑗 ) = 0 (as 𝑥0 ≥ 𝑥̂0) and the second part of Proposition 5.4; and the third from
the facts that 𝐻∗ is 1-Lipschitz and that 𝑥̂0 − 𝑥0 + 𝜁 ′𝑗Υ𝔱 𝑗 (𝑥0) = O(𝜁2

1 ) by Equation (5.4).
Next, observe that (𝑥, 𝔱 𝑗 ) ∈ 𝔏 ∩ 𝔏 since 𝑥 < 𝑥̂0 ≤ 𝑥0 and |𝑥 − 𝑥̂0 | = O(𝜁8/9

1 ). By Remark A.2
concerning the square root decay of 𝜕𝑥𝐻∗ around 𝔄(𝔓), and the fact that 𝜕𝑥𝐻∗(𝑥0, 𝑡) = 0, we therefore
deduce the existence of a constant 𝑐 = 𝑐(𝔓,𝔇, 𝜃) > 0 such that

𝐻∗
(
𝑥 + 𝜁 ′𝑗Υ𝔱 𝑗 (𝑥0), 𝔱 𝑗

)
≥ 𝐻∗

(
𝑥0 + 𝜁 𝑗Υ𝔱 𝑗 (𝑥0), 𝔱 𝑗

)
+ 𝑐𝜁3/2

𝑗 , (5.12)

where we have used the fact (5.10) that 𝜁 ′𝑗 − 𝜁 𝑗 = 𝜃𝜁 𝑗 (as well as the fact that Υ𝔱 𝑗 (𝑥0) is bounded away
from 0, from Remark 5.3). Inserting Equation (5.12) into Equation (5.11) yields

𝐻∗(𝑥, 𝔱 𝑗 ) ≥ 𝐻∗
(
𝑥 + 𝜁 𝑗Υ𝔱 𝑗 (𝑥0), 𝔱 𝑗

)
+ 𝑐𝜁3/2

𝑗 +O(𝜁16/9
1 ) ≥ 𝐻 (𝑥, 𝔱 𝑗 ) + 𝑐𝜁3/2

𝑗 +O(𝑛−1) ≥ 𝐻 (𝑥, 𝔱 𝑗 ),

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2024.16
Downloaded from https://www.cambridge.org/core. IP address: 18.188.189.204, on 17 Apr 2025 at 23:31:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2024.16
https://www.cambridge.org/core


34 A. Aggarwal and J. Huang

where the second inequality holds since |𝜁1 | ≤ 𝑛𝛿−2/3, and the third follows from the facts that the edge
of 𝐻 is 𝜁 𝑗 -tilted and that 𝜁 𝑗 ≤ 𝑛𝛿/100−2/3. Hence, ℎ̂(𝑣) ≥ ℎ̃(𝑣), meaning ĥ(v) ≥ h̃(v).

It thus remains to consider the case when |𝑥 − 𝑥0 | ≥ (𝜁 ′𝑗 )
8/9 and 𝑣 = (𝑥, 𝔱 𝑗 ) ∈ 𝔏. In particular,

|𝑥 − 𝑥0 | ≥ 𝜁 ′𝑗Υ𝔱 𝑗 (𝑥0) + O(𝜁2
𝑗 ), which implies by Equation (5.4) that 𝑣 = (𝑥, 𝔱 𝑗 ) ∈ 𝔏 ∩ 𝔏. Thus,

Equation (5.3) yields

𝐻∗(𝑣) ≥ 𝐻∗(𝑣) − 𝜁 ′𝑗Ω𝔱 𝑗 (𝑥) +O
(
(𝜁 ′1 + 𝜁 ′2)

3/2) ≥ 𝐻 (𝑣) − 𝜃𝜁 𝑗Ω𝔱 𝑗 (𝑥) +O(𝜁3/2
1 ),

where to deduce the last inequality we used the facts that 𝜁 ′𝑗 = (1 + 𝜃)𝜁 𝑗 and that 𝐻 is (𝜁 𝑗 ; 0)-tilted at
v (since 𝑣 ∈ 𝔏𝛿

− , as |𝑥 − 𝑥0 | ≥ (𝜁 ′𝑗 )
8/9 ≥ 𝑛𝛿−2/3 and 𝜉 𝑗 ≤ 𝜁 𝑗 ). By Remark 5.3, there exists a constant

𝑐 = 𝑐(𝔓) > 0 such that −Ω𝔱 𝑗 (𝑥) ≥ 𝑐 |𝑥 − 𝑥0 |
1/2. In particular, since |𝑥 − 𝑥0 | ≥ (𝜁 ′𝑗 )

8/9 ≥ 𝑛𝛿𝜁1 (as
𝜁 𝑗 ≤ 𝑛𝛿/2−2/3 and 𝛿 < 1/50), we deduce that −Ω𝔱 𝑗 (𝑥) ≥ 𝑛𝛿/3𝜁1/2

1 . So,

𝐻∗(𝑣) ≥ 𝐻 (𝑣) + 𝑐𝜃𝜁 𝑗 |𝑥 − 𝑥0 |
1/2 +O(𝜁3/2

1 ) ≥ 𝐻 (𝑢),

which once again implies that ℎ̂(𝑣) ≥ ℎ̃(𝑣) so that ĥ(v) ≥ h̃(v). This verifies the lemma in all cases. �

Given this lemma, we can establish Proposition 5.8.

Proof of Proposition 5.8. Let Ĥ : D → Z denote a uniformly random element of𝒢(ĥ). By Lemma 5.11
and Lemma 3.15 (alternatively, Remark 3.16), we may couple Ĥ with H̃ such that Ĥ(u) ≥ H̃(u), for each
u ∈ D. In particular, denoting 𝐻 : 𝔇 → R by 𝐻 (𝑢) = 𝑛−1Ĥ(𝑛𝑢) for each 𝑢 ∈ 𝔇, we have 𝐻 (𝑢) ≥ 𝐻 (𝑢).

Apply Theorem 4.3, with the (ℎ; 𝐻∗; H; 𝛿) there equal to
(
ℎ̂; 𝐻∗; Ĥ; 𝛿/500

)
here. By the fourth part

of Proposition 5.4, Assumption 4.1 applies. Moreover, Assumption 4.2 applies since ĥ(𝑛𝑣) =
⌊
𝑛ℎ̂(𝑣)

⌋
for each 𝑣 ∈ 𝜕𝔇. Then, letting ℰ denote the event on which

𝐻 (𝑢) − 𝐻∗(𝑢)



 < 𝑛𝛿/500−1, for each 𝑢 ∈ 𝔇;

𝐻 (𝑢) = 𝐻∗(𝑢), if 𝑢 ∉ 𝔏 and dist(𝑢, 𝜕𝔏) ≥ 𝑛𝛿/500−2/3, (5.13)

Theorem 4.3 implies that ℰ holds with overwhelming probability. In what follows, let us fix 𝑢 =
(𝑥, 𝔰) ∈ 𝔇, and let 𝑢0 = (𝑥0, 𝔰) ∈ 𝔄(𝔓) denote a point with |𝑥 − 𝑥0 | minimal. We will show that the
upper bounds in Equations (5.8) and (5.9) hold on ℰ.

First, assume that 𝑢 ∈ 𝔏𝛿
− , in which case 𝑢 ∈ 𝔏 and |𝑥 − 𝑥0 | ≥ 𝑛𝛿−2/3 ≥ (𝜁1 + 𝜁2)



Υ𝔰 (𝑥)


. Hence,

(5.4) implies that 𝑢 ∈ 𝔏, and so Equation (5.3) applies and gives

𝐻 (𝑥, 𝔰) ≤ 𝐻∗(𝑥, 𝔰) + 𝑛𝛿/500−1 ≤ 𝐻∗(𝑥, 𝔰) − 𝜔(𝔰)Ω𝔰 (𝑥) + 𝑛𝛿/500−1 +O(𝜁3/2
1 ), (5.14)

where 𝜔 : [𝔱1, 𝔱2] → R is given by

𝜔(𝑡) = 𝜁 ′2
𝑡 − 𝔱1
𝔱2 − 𝔱1

+ 𝜁 ′1
𝔱2 − 𝑡

𝔱2 − 𝔱1
.

In particular, since (1 − 𝜀)𝔱1 + 𝜀𝔱2 = 𝔱1 + 𝜀𝔱 ≤ 𝔰 ≤ 𝔱2 − 𝜀𝔱 = 𝜀𝔱1 + (1 − 𝜀)𝔱2, we have (recalling the
definition (5.7) of 𝜁 , as well as the bounds 𝜁1 ≥ 𝜁2, 𝜁1 − 𝜁2 ≥ 𝜍 (𝜁1 + 𝜁2) and 𝜃 < 1/50) that

𝜔(𝔰) ≤ (1 − 𝜀)𝜁 ′1 + 𝜀𝜁 ′2 ≤ (1 − 3𝜃𝜀)𝜁 . (5.15)

Together, Equations (5.14) and (5.15) (with the fact that 𝑛𝛿/500−1 ≤ 𝜁3/2
1 ) yield on ℰ that

𝐻 (𝑢) ≤ 𝐻 (𝑥, 𝔰) ≤ 𝐻∗(𝑥, 𝔰) − (1 − 3𝜃𝜀)𝜁Ω𝔰 (𝑥) +O(𝜁3/2
1 ) ≤ 𝐻∗(𝑥, 𝔰) − 𝜁Ω𝔰 (𝑥) = 𝐻∗(𝑢) − 𝜁Ω𝔰 (𝑥),
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where the third inequality follows from the fact that Remark 5.3 implies −Ω𝔰 (𝑥) ≥ |𝑥 − 𝑥0 |
1/2 and

|𝑥 − 𝑥0 | ≥ 𝑛𝛿−2/3 ≥ 𝑛𝛿/4 (𝜁1 + 𝜁2) (as 𝜁1, 𝜁2 ≤ 𝑛𝛿/2−2/3). This verifies the upper bound in the first
statement of (5.8).

To verify the second, assume that 𝑢 ∉ 𝔏 and |𝑥−𝑥0 | ≥ 𝜁


Υ𝔰 (𝑥)



. Since 𝜁1, 𝜁2 ≥ 𝑛𝛿/100−2/3, we deduce
dist(𝑢,𝔄(𝔓)) � 𝑛𝛿/500−2/3; by Equation (5.13) this implies 𝐻 (𝑢) = 𝐻∗(𝑢) on the eventℰ. Additionally,
the second of Proposition 5.4 implies that 𝐻∗(𝑢) = 𝐻∗(𝑢) if |𝑥 − 𝑥0 | ≥ 𝜔(𝔰)



Υ𝔰 (𝑥0)


 + O(𝜁2

1 ). Since
Equation (5.15) yields 𝜔(𝔰) ≤ (1− 3𝜃𝜀)𝜁 , we obtain |𝑥 − 𝑥0 | ≥ 𝜁



Υ𝔰 (𝑥0)


 ≥ 𝜔(𝔰)



Υ𝔰 (𝑥0)


+O(𝜁2

1 ), and
so this condition is satisfied. Hence, on ℰ, we have 𝐻 (𝑢) ≤ 𝐻 (𝑢) = 𝐻∗(𝑢), and so the upper bound in
the second statement of (5.8) holds.

It thus remains to assume |𝑥−𝑥0 | ≤ 𝜁8/9 and verify that the upper bound in Equation (5.9) holds onℰ.
To that end, we assume in what follows that (𝑥0, 𝔰) is a right endpoint of 𝔄(𝔓) and that 𝜕𝑥𝐻∗(𝑥0, 𝔰) = 0,
as the proofs in all other cases are entirely analogous. Then, let (𝑥̂0, 𝔰) ∈ 𝜕𝔏 denote the point such that
|𝑥 − 𝑥̂0 | is minimal. By Equation (5.4), we have 𝑥0 − 𝑥̂0 = 𝜔(𝔰)Υ𝔰 (𝑥0) + O(𝜁2

1 ). In particular, since
Υ𝔰 (𝑥0) > 0 (by Remark 5.3), it follows that 𝑥0 ≥ 𝑥̂0 and 𝑥0 − 𝑥̂0 = O(𝜁).

Let us first assume that 𝑥 ≥ 𝑥̂0 − 𝜃𝜀𝜁Υ𝔰 (𝑥0). Then, since 𝜕𝑥𝐻
∗(𝑥 ′, 𝔰) = 𝜕𝑥𝐻

∗(𝑥0, 𝔰) for 𝑥 ′ ≥ 𝑥̂0, we
have

𝐻∗(𝑥, 𝔰) ≤ 𝐻∗(𝑥̂0, 𝔰) ≤ 𝐻∗(𝑥0, 𝔰) = 𝐻∗(𝑥0, 𝔰) ≤ 𝐻∗
(
𝑥 + 𝜁Υ𝔰 (𝑥0), 𝔰

)
. (5.16)

Here, the first inequality follows from the fact that either 𝑥 ≤ 𝑥̂0 (in which case 𝐻∗(𝑥, 𝔰) ≤ 𝐻∗(𝑥̂0, 𝔰))
or 𝑥 > 𝑥̂0 (in which case 𝐻∗(𝑥, 𝔰) = 𝐻∗(𝑥̂0, 𝔰)); the second inequality holds since 𝑥0 ≥ 𝑥̂0. The equality
follows from the second statement of Equation (5.4), and the last inequality follows from the fact that

𝑥 + 𝜁Υ𝔰 (𝑥0) ≥ 𝑥̂0 + (1 − 𝜃𝜀)𝜁Υ𝔰 (𝑥0) ≥ 𝑥̂0 + 𝜔(𝔰)Υ𝔰 (𝑥0) +O(𝜁2
1 ) ≥ 𝑥0,

where we have used Equation (5.4). Additionally, Equation (5.13) implies that 𝐻 (𝑥, 𝔰) = 𝐻∗(𝑥, 𝔰),
since |𝑥 − 𝑥̂0 | � 𝜁1+𝛿/500 � 𝑛𝛿/500−2/3. Together with Equation (5.16), this implies that on ℰ we have
𝐻 (𝑢) ≤ 𝐻 (𝑥, 𝔰) = 𝐻∗(𝑥, 𝔰) = 𝐻∗

(
𝑥 + 𝜁Υ𝔰 (𝑥0), 𝔰

)
, thereby verifying the upper bound in Equation (5.9).

So, let us instead assume that 𝑥 < 𝑥̂0 − 𝜃𝜀𝜁Υ𝔰 (𝑥0). Then the bound 𝑥0 − 𝑥̂0 = 𝜔(𝔰)Υ𝔰 (𝑥0) +O(𝜁2),
together with Equation (5.5) and the fact that 𝐻∗ is 1-Lipschitz, implies

𝐻∗(𝑢) ≤ 𝐻∗(𝑥̂0, 𝔰) + 𝐻∗(𝑥 + 𝑥0 − 𝑥̂0, 𝔰) − 𝐻∗(𝑥0, 𝔰) +O(𝜁2
1 )

≤ 𝐻∗
(
𝑥 + 𝜔(𝔰)Υ𝔰 (𝑥0), 𝔰

)
+ 𝐻∗(𝑥̂0, 𝔰) − 𝐻∗(𝑥0, 𝔰) +O(𝜁2) (5.17)

= 𝐻∗
(
𝑥 + 𝜔(𝔰)Υ𝔰 (𝑥0), 𝔰

)
+O(𝜁2).

Here, to deduce the last equality we used the fact that 𝐻∗(𝑥̂0, 𝔰) = 𝐻∗(𝑥0, 𝔰) = 𝐻∗(𝑥0, 𝔰), which
holds since 𝑥0 ≥ 𝑥̂0, since 𝜕𝑥𝐻

∗(𝑥 ′, 𝔰) = 𝜕𝑥𝐻
∗(𝑥0, 𝔰) = 0 for 𝑥 ′ ≥ 𝑥̂0, and by the second statement

of Proposition 5.4. Next, since 𝜔(𝔰) ≤ (1 − 3𝜀𝜃)𝜁 (by Equation (5.15)), the square root decay of 𝜕𝐻∗

around 𝔄(𝔓) (see Remark A.2) yields a constant 𝑐 = 𝑐(𝔓,𝔇, 𝜀, 𝜃) > 0 such that

𝐻∗
(
𝑥 + 𝜔(𝔰)Υ𝔰 (𝑥0), 𝔰

)
≤ 𝐻∗

(
𝑥 + 𝜁Υ𝔰 (𝑥0), 𝔰

)
− 𝑐𝜁3/2.

This, together with Equations (5.13) and (5.17), implies on ℰ that

𝐻 (𝑢) ≤ 𝐻 (𝑢) ≤ 𝐻∗(𝑢) + 𝑛𝛿/500−1 ≤ 𝐻∗
(
𝑥 + 𝜁Υ𝔰 (𝑥0), 𝔰

)
− 𝑐𝜁3/2 + 𝑛𝛿/500−1 +O(𝜁2)

≤ 𝐻∗
(
𝑥0 + 𝜁Υ𝔰 (𝑥0), 𝔰

)
,

where for the last bound we used the fact that 𝜁 ≥ 𝑛𝛿/100−2/3. Thus, the upper bound in Equation (5.9)
holds in ℰ. As mentioned earlier, the proofs of all lower bounds are entirely analogous and therefore
omitted; this establishes the proposition. �
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5.3. Proof of Proposition 5.9

In this section, we establish Proposition 5.9.

Proof of Proposition 5.9 (Outline). Since the proof of this proposition is similar to that of Proposi-
tion 5.8, we only outline it. It suffices to show that, with overwhelming probability, we have

𝐻∗(𝑋0, 𝔰) + 𝜉Ω𝔰 (𝑋0) − 𝜇 ≤ 𝐻 (𝑋0, 𝔰) ≤ 𝐻∗(𝑋0, 𝔰) − 𝜉Ω𝔰 (𝑋0) + 𝜇. (5.18)

We only establish the upper bound in Equation (5.18), as the proof of the lower bound is entirely
analogous. Throughout, we set ℎ̃ = 𝐻 |𝜕𝔇 from Assumption 5.7.

To do this, we apply Proposition 5.4 with the (𝜉1, 𝜉2) there equal to (−𝜉1,−𝜉2) here. This yields a
function ℎ̂ : 𝜕𝔇 → R and its associated maximizer 𝐻∗ ∈ Adm(𝔇; ℎ̂) of E satisfying the four properties
listed there. Define ℎ̆ : 𝜕𝔇 → R; the associated maximizer 𝐻̆∗ ∈ Adm(𝔇; ℎ̆) of E ; and the discretization
h̆ : 𝜕D → Z of ℎ̆ by setting

ℎ̆(𝑣) = ℎ̂(𝑣) + 𝜇 + 𝑛𝛿/20−1, so that 𝐻̆∗(𝑢) = 𝐻∗(𝑢) + 𝜇 + 𝑛𝛿/20−1, and h̆(𝑛𝑣) =
⌊
𝑛ℎ̆(𝑣)

⌋
,

(5.19)

for each 𝑢 ∈ 𝔇 and 𝑣 ∈ 𝜕𝔇. We claim that h̃(v) ≤ h̆(v), for each v ∈ 𝜕D.
The proof that this holds when 𝑣 = 𝑛−1v ∈ 𝜕ea(𝔇) ∪ 𝜕we(𝔇) is very similar to that in the proof

of Lemma 5.11, so it is omitted. Thus, suppose that 𝑣 = (𝑥, 𝔱 𝑗 ) ∈ 𝜕no (𝔇) ∪ 𝜕so (𝔇). If 𝑣 ∉ 𝔏 and
dist(𝑣,𝔄(𝔓)) ≥ 𝜁8/9

𝑗 , then the proof is again entirely analogous to that in the proof of Lemma 5.11.
So, let us first assume that 𝑣 = (𝑥, 𝔱 𝑗 ) ∈ 𝔏𝛿

− . Since 𝐻 is (𝜉 𝑗 ; 𝜇)-tilted at v, we have

𝐻 (𝑣) ≤ 𝐻∗(𝑣) − 𝜉 𝑗Ω𝔱 𝑗 (𝑥) + 𝜇.

This, together with Equations (5.3), (5.19) and the bound 𝜉 𝑗 ≤ 𝑛−2/3 gives

𝐻̆∗(𝑣) = 𝐻∗(𝑣) + 𝜇 + 𝑛𝛿/20−1 ≥ 𝐻∗(𝑣) − 𝜉 𝑗Ω𝔱 𝑗 (𝑥) + 𝜇 + 𝑛𝛿/20−1 +O(𝜉3/2
𝑗 )

≥ 𝐻 (𝑣) + 𝑛𝛿/20−1 +O(𝜉3/2
𝑗 ) ≥ 𝐻 (𝑣) + 𝑛−1. (5.20)

Hence, 𝑛ℎ̆(𝑣) ≥ 𝑛ℎ̃(𝑣) + 1, and so h̆(v) ≥ h̃(v) whenever 𝑣 = 𝑛−1v ∈ 𝔏𝛿
− .

Thus, assume instead 𝑣 ∉ 𝔏𝛿
− and dist(𝑣,𝔄(𝔓)) ≤ 𝜁8/9

𝑗 , and let 𝑣0 = (𝑥0, 𝔱 𝑗 ) ∈ 𝔄(𝔓) be such that
|𝑥 − 𝑥0 | is minimal. We suppose that 𝑣0 is a right endpoint of 𝔄(𝔓) and that 𝜕𝑥𝐻

∗(𝑣0) = 0, as the
alternative cases are entirely analogous; then, Υ𝔱 𝑗 (𝑥0) > 0 by Remark 5.1. The fact that the edge of 𝐻

is 𝜁 𝑗 -tilted with respect to 𝐻∗ at level 𝔱 𝑗 implies that 𝐻 (𝑥, 𝔱 𝑗 ) ≤ 𝐻∗
(
𝑥 + 𝜁 𝑗Υ𝔱 𝑗 (𝑥0), 𝔱 𝑗

)
. Applying the

square root decay of 𝜕𝑥𝐻
∗ around 𝔄(𝔓) from Remark A.2 (and the fact that 𝜕𝑥𝐻

∗(𝑥0, 𝔱 𝑗 ) = 0), we
therefore deduce the existence of a constant 𝑐 = 𝑐(𝔓,𝔇) > 0 such that

𝐻 (𝑥, 𝔱 𝑗 ) ≤ 𝐻∗
(
𝑥 + 𝜁 𝑗Υ𝔱 𝑗 (𝑥0), 𝔱 𝑗

)
≤ 𝐻∗(𝑥, 𝔱 𝑗 ) + 𝑐𝜁3/2

𝑗 ≤ 𝐻∗(𝑣) +O(𝑛𝛿/30−1). (5.21)

Now, let us compare 𝐻∗(𝑣) and 𝐻∗(𝑣). To that end, define 𝑥̂0 ∈ R such that 𝑣̂0 = (𝑥̂0, 𝔱 𝑗 ) is an endpoint
of 𝜕so (𝔏) or 𝜕no(𝔏) and |𝑥̂0−𝑥0 | is minimal. By Equation (5.4), we have 𝑥̂0−𝑥0 = −𝜉 ′𝑗Υ𝔱 𝑗 (𝑥0)+O(𝜉2

1+𝜉
2
2).

In particular, 𝑥̂0 ≤ 𝑥0 and 𝑥0− 𝑥̂0 = O(𝜉 𝑗 ), the former of which implies that 𝑣0 = (𝑥0, 𝔱 𝑗 ) ∉ 𝔏∪𝔏. Hence,
the second statement of Proposition 5.4 implies that 𝐻∗(𝑥0, 𝔱 𝑗 ) = 𝐻∗(𝑥̂0, 𝔱 𝑗 ). Since 𝜕𝑥𝐻

∗(𝑥, 𝔱 𝑗 ) = 0 for
𝑥 ≥ 𝑥̂0, we find that 𝐻∗(𝑥̂0, 𝔱 𝑗 ) = 𝐻∗(𝑥0, 𝔱 𝑗 ) = 𝐻∗(𝑥0, 𝔱 𝑗 ), and so Equation (5.5) yields

𝐻∗(𝑥, 𝔱 𝑗 ) = 𝐻∗(𝑥̂0, 𝔱 𝑗 ) + 𝐻∗(𝑥 − 𝑥̂0 + 𝑥0, 𝔱 𝑗 ) − 𝐻∗(𝑥0, 𝔱 𝑗 ) +O
(
(𝜉1 + 𝜉2) (𝑥 − 𝑥̂0)

3/2 + (𝑥 − 𝑥̂0)
2)

= 𝐻∗(𝑥 − 𝑥̂0 + 𝑥0, 𝔱 𝑗 ) +O(𝜉2
1) ≥ 𝐻∗(𝑥, 𝔱 𝑗 ) − 𝑐(𝑥̂0 − 𝑥0)

3/2 − 𝑛−1 ≥ 𝐻∗(𝑣) +O(𝑛−1) (5.22)
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after decreasing c if necessary. Here, to deduce the third statement we used Remark A.2 and to deduce
the fourth we used the facts that 𝑥0 − 𝑥̂0 = O(𝜉 𝑗 ) = O(𝑛−2/3). Combining Equations (5.20), (5.21) and
(5.22) then gives

ℎ̆(𝑣) = 𝐻̆∗(𝑣) = 𝐻∗(𝑣) + 𝜇 + 𝑛𝛿/20−1 ≥ 𝐻∗(𝑣) + 𝑛𝛿/20−1 +O(𝑛𝛿/30−1)

≥ 𝐻 (𝑣) + 𝑛𝛿/20−1 +O(𝑛𝛿/30−1)

≥ 𝐻 (𝑣) + 𝑛−1 = ℎ̃(𝑣) + 𝑛−1,

which again gives h̆(v) =
⌊
𝑛ℎ̆(𝑣)

⌋
≥

⌊
𝑛ℎ̃(𝑣)

⌋
= h̃(v). This verifies h̆(v) ≥ h̃(v), for each v ∈ 𝜕D.

Now, let H̆ : D → Z denote a uniformly random element of 𝒢(h̆), and set 𝐻̆ (𝑢) = 𝑛−1H̆(𝑛𝑢) for each
𝑢 ∈ 𝔇. By Lemma 3.15 (and Remark 3.16), we may couple H̆(u) ≥ H̃(u), for each u ∈ D; thus, under
this coupling we have 𝐻̆ (𝑢) ≥ 𝐻 (𝑢) for each 𝑢 ∈ 𝔇.

Let us next apply Theorem 4.3, with the (ℎ; 𝐻∗; H; 𝛿) there equal to the
(
ℎ̆; 𝐻̆∗; H̆; 𝛿/30

)
. This yields

with overwhelming probability that

𝐻 (𝑈0) ≤ 𝐻̆ (𝑈0) ≤ 𝐻̆∗(𝑋0, 𝔰) + 𝑛𝛿/30−1 ≤ 𝐻∗(𝑋0, 𝔰) + 𝜇 + 2𝑛𝛿/20−1. (5.23)

Defining 𝜔 : [𝔱1, 𝔱2] → R as in Equation (5.2), the first property listed there yields

𝐻∗(𝑋0, 𝔰) ≤ 𝐻∗(𝑋0, 𝔰) − 𝜔(𝔰)Ω𝔰 (𝑋0) +O
(
𝜉3/2

1 + 𝜉3/2
2

)
. (5.24)

The hypotheses of the proposition and Remark 5.3 together imply (after decreasing c if necessary)
that

𝜔(𝔰) ≤ max
{
(1 − 𝜀)𝜉1 + 𝜀𝜉2, 𝜀𝜉1 + (1 − 𝜀)𝜉2

}
<

(
1 −

𝜀

10

)
𝜉 ≤

(
1 −

𝜀

10

)
𝑛𝛿/10−1 dist(𝑈0,𝔄(𝔓))−1/2;

−Ω𝔰 (𝑋0) ≥ 𝑐 dist(𝑈0,𝔄(𝔓))1/2; 𝜉3/2
1 + 𝜉3/2

2 = O(𝑛𝛿/30−1).

Together with Equations (5.23) and (5.24), this gives

𝐻 (𝑈0) ≤ 𝐻∗(𝑋0, 𝔰) − 𝜉Ω𝔰 (𝑋0) + 𝜇 +
(
𝜉 − 𝜔(𝔰)

)
Ω𝔰 (𝑋0) +O(𝑛𝛿/30−1)

≤ 𝐻∗(𝑋0, 𝔰) − 𝜉Ω𝔰 (𝑋0) + 𝜇 −
𝑐𝜀

10
𝑛𝛿/10−1 +O(𝑛𝛿/30−1) ≤ 𝐻∗(𝑈0) − 𝜉Ω𝔰 (𝑋0) + 𝜇,

which confirms the upper bound in Equation (5.18). �

6. Proof of concentration estimate on polygons

In this section, we establish Theorem 3.10. Before proceeding, let us briefly outline the proof; we adopt
the notation of Theorem 3.10 throughout this section.

Since the preliminary concentration result Theorem 4.3 is in itself too restrictive to this end, we will
first decompose our polygonal subset 𝔓 =

⋃𝑘
𝑖=1 ℜ𝑖 into subregions such that each ℜ𝑖 is either frozen

(outside the liquid region of 𝔓) or is a ‘double-sided trapezoid’ 𝔇(𝔞, 𝔟; 𝔱1, 𝔱2) from Equation (4.1).
Scaling by n, this induces a decomposition P =

⋃𝑘
𝑖=1 R𝑖 on our (tileable) polygonal domain. We then

apply the alternating dynamics from Section 4.2 to this decomposition. Each step corresponds to a
resampling of our tiling on some R𝑖 (conditioned on its restriction to P\R𝑖), to which Theorem 4.3 applies
and shows that its tiling height function is within 𝑛𝛿 of its limit shape. Unfortunately, Proposition 4.6
shows that these dynamics only mix after about 𝑛22 steps, which could in principle allow the previously
mentioned 𝑛𝛿 error to accumulate macroscopically.
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To remedy this, we use the notion of tiltedness from Section 5.1. In particular, we introduce parameters
quantifying the tiltedness of certain horizontal levels P (that include the north and south boundaries
of any R𝑖). Then Proposition 5.8 and Proposition 5.9 will imply that, under any step of the alternating
dynamics to some R𝑖 , the tiltedness along a middle row of R𝑖 is likely bounded between those along
its north and south boundaries. Since the tiltedness along 𝜕P is zero, we will be to show in this way
that ‘small tiltedness’ is preserved under the alternating dynamics with high probability. Running these
dynamics until they mix, this indicates that the uniformly random tiling height function H : P → Z has
small tiltedness, which will establish Theorem 3.10.

6.1. Decomposition of P

In this section, we explain a decomposition of P = 𝑛𝔓 into subregions that are either frozen or where
Theorem 4.3 will eventually apply. Recall that we have adopted the notation of Theorem 3.10; let us
abbreviate the liquid region 𝔏 = 𝔏(𝔓) and arctic boundary 𝔄 = 𝔄(𝔓). By Assumption 2.8, there exists
an axis ℓ of T such that no line connecting two distinct cusp singularities of 𝔄 is parallel to ℓ. By rotating
𝔓 if necessary, we may assume that ℓ is the x-axis. We also distinguish a tangency location of 𝔄 to be
horizontal if the tangent line to 𝔄 through it is parallel the x-axis (has slope 0). In what follows, we
recall the trapezoid 𝔇 = 𝔇(𝔞, 𝔟; 𝔱1, 𝔱2) from Equation (4.1) and its boundaries Equation(4.2).

We begin with the following definition that will (partially) constrain what types of regions can be
our decomposition; observe that the assumptions below are similar to Assumption 4.1.

Definition 6.1. A trapezoid 𝔇 is adapted to 𝐻∗ if the following five conditions hold.

(1) The boundary 𝜕ea(𝔇) is disjoint with 𝔏, unless 𝜕ea(𝔇) ⊂ 𝜕𝔓 and 𝔄 is tangent to 𝜕ea(𝔇); the same
must hold for 𝜕we(𝔇).

(2) The function 𝐻∗ is constant along 𝜕ea(𝔇) and along 𝜕we(𝔇).
(3) There exists 𝔱̃ ∈ [𝔱1, 𝔱2] such that one of the following two conditions holds.

(a) For 𝑡 ∈ [𝔱1, 𝔱̃], the set 𝐼𝑡 consists of one nonempty interval, and for 𝑡 ∈ (̃𝔱, 𝔱2] the set 𝐼𝑡 consists
of two nonempty disjoint intervals.

(b) For 𝑡 ∈ [𝔱1, 𝔱̃), the set 𝐼𝑡 consists of two nonempty disjoint intervals, and for 𝑡 ∈ (̃𝔱, 𝔱2] the set
𝐼𝑡 consists of one nonempty interval.

(4) Any tangency location of 𝔄 ∩𝔇 is of the form max 𝐼𝑡 or min 𝐼𝑡 , for some 𝑡 ∈ (𝔱1, 𝔱2). Moreover, at
most one is of the form max 𝐼𝑡 , and at most one is of the form min 𝐼𝑡 .

(5) We have 𝔱1 − 𝔱2 ≤ 𝔠, where 𝔠 = 𝔠(𝔓) > 0 is given by Theorem 4.3.

Lemma 6.2. If 𝑢 ∈ 𝔏 is not a tangency location of 𝔄, then there exists a trapezoid 𝔇(𝑢) adapted to 𝐻∗,
containing u in its interior.

Proof. Let 𝑢 = (𝑥0, 𝑡0) and ℓ0 = {𝑡 = 𝑡0} ⊂ R
2 denote the line through u parallel to the x-axis. To create

𝔇(𝑢) = 𝔇(𝔞, 𝔟; 𝔱1, 𝔱2), we will first specify segments containing its east and west boundaries, and then
specify (𝔱1, 𝔱2) to make it sufficiently ‘short’ (that is, with 𝔱2 − 𝔱1 small).

To that end, first assume that u is a cusp of 𝔄; we refer to Figure 11 for a depiction. Let 𝑥1 ∈ R be
maximal and 𝑥2 ∈ R be minimal such that 𝑥1 < 𝑥0 < 𝑥2; 𝑢1 = (𝑥1, 𝑡0) ∈ 𝔄, and 𝑢2 = (𝑥2, 𝑡0) ∈ 𝔄.
By Assumption 2.8, neither 𝑢1 nor 𝑢2 is a cusp of 𝔄. If 𝑢1 ∈ 𝜕𝔓, then it is a (nonhorizontal) tangency
location of 𝔄, so it lies along a side of 𝜕𝔓 with slope 1 or ∞. We may then let this side contain the west
boundary of 𝔇(𝑢). If instead 𝑢1 ∉ 𝜕𝔓, then there exists a real number 𝜀 = 𝜀(𝔓, 𝑢) ∈ (0, 1) such that
(𝑥, 𝑡0) ∈ 𝔓 \𝔏 for each 𝑥1 − 𝜀1/2 < 𝑥 < 𝑥1, and such that either

(
(𝑥1 − 𝜀1/2, 𝑥2 + 𝜀1/2) × (𝑡0, 𝑡0 + 𝜀)

)
∩𝔏

or
(
(𝑥1 − 𝜀1/2, 𝑥2 + 𝜀1/2) × (𝑡0 − 𝜀, 𝑡0)

)
∩ 𝔏 is connected (see Figure 11).

Next, recall from the first statement in Lemma 2.3 that, on𝔓\𝔏(𝔓),∇𝐻∗ is piecewise constant, taking
values in

{
(0, 0), (1, 0), (1,−1)

}
. If (𝑥1, 𝑡0) ∈ 𝔄 is a continuous point of ∇𝐻∗, then (upon decreasing 𝜀

if necessary) there exists 𝜆 = 𝜆(𝔓, 𝑢) > 0 ∈ (0, 𝜀) such that the disk 𝔅𝜆(𝑥1 − 𝜀1/2, 𝑡0) does not intersect
𝔏, and ∇𝐻∗(𝑥1, 𝑡0) is constant on 𝔅𝜆(𝑥1 − 𝜀1/2, 𝑡0). Then, depending on whether ∇𝐻∗(𝑥1, 𝑡0) = (1,−1)
or ∇𝐻∗(𝑥1, 𝑡0) ∈

{
(0, 0), (1, 0)

}
, the west boundary of 𝔇(𝑢) is contained in the segment obtained as
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𝜕𝔓

𝑢

𝔇(𝑢)

...

ℓ0
𝑢1 𝑢2

Figure 11. Shown above is an example of the trapezoid 𝔇(𝑢) from Lemma 6.2; only part of the polygon
𝔓 and its liquid region 𝔏 are depicted.

the intersection between 𝔅𝜆(𝑥1 − 𝜀1/2, 𝑡0) and the line passing through (𝑥1 − 𝜀1/2, 𝑡0) with slope 1 or
∞, respectively; then, 𝐻∗ is constant along this line.

If (𝑥1, 𝑡0) ∈ 𝔄 is a discontinuity point of ∇𝐻∗, then, by Assumption 2.8, (𝑥1, 𝑡0) ∈ 𝔄 is a tangency
location. From our choice of 𝑥1, (𝑥1, 𝑡0) cannot be a horizontal tangency location. Thus, its tangent line
has slope 1 or ∞. For 𝜀 small enough, the part of the tangent line between 𝑡 = 𝑡0 − 𝜀 and 𝑡 = 𝑡0 + 𝜀
is contained in the 𝔓 \ 𝔏(𝔓). By the relations (3.1) between ∇𝐻∗ and the complex slope, and the
Equation (3.7) between the complex slope and the slope of the tangent line of the arctic curve, if
the tangent line has slope 1, then ∇𝐻∗ ∈

{
(0, 0), (1,−1)

}
, and if the tangent line has slope ∞, then

∇𝐻∗ ∈
{
(0, 0), (1, 0)

}
. In both cases 𝐻∗ is constant along the tangent line. This again specifies a

segment containing the west boundary of 𝔇(𝑢) where 𝐻∗ is a constant along it, and one containing its
east boundary can be specified similarly.

In either case (whether (𝑥1, 𝑡0) is a continuity or discontinuity point of ∇𝐻∗), we let 𝔱1 = 𝑡0 − 𝜆0
and 𝔱2 = 𝑡0 + 𝜆0, where 𝜆0 is chosen sufficiently small so that the east and west boundary of 𝔇(𝑢) are
contained in the segments specified above and so that 𝔇 satisfies the third, fourth and fifth conditions of
Definition 6.1. This determines 𝔇(𝑢), which contains u in its interior and is quickly seen to be adapted
to 𝐻∗.

The proof is similar if instead u is not a cusp of 𝔄, so we only outline it. If 𝑢 ∈ 𝔏, then the above
reasoning applies, unless either 𝑢1 or 𝑢2 is a cusp of 𝔄. Assuming for example that the former is, there
exists a trapezoid 𝔇(𝑢1) adapted to 𝐻∗ that contains 𝑢1 in its interior. Then 𝔇(𝑢1) must also contain u
in its interior since ℓ0 passes through u before intersecting 𝔄, so we may set 𝔇(𝑢) = 𝔇(𝑢1). If instead
𝑢 ∈ 𝔄 and is not a cusp, then the above reasoning (in the case when u is cusp) again applies, with the
mild modification that we allow 𝑢 = 𝑢1 or 𝑢 = 𝑢2, depending on whether u is a left or right boundary
point of 𝔄, respectively. �

Now, for each point 𝑢 ∈ 𝔓, in the following, we define an open subset ℜ(𝑢) ⊂ 𝔓 such that 𝑢 ∈ ℜ(𝑢)

if 𝑢 ∈ 𝔓, and 𝑢 ∈ ℜ(𝑢) if 𝑢 ∈ 𝜕𝔓. In each case, ℜ(𝑢) will be the union of at most two trapezoids
(intersected with 𝔓). We always assume (by applying a small shift if necessary) that the north and south
boundaries of any such trapezoid does not contain any cusps or tangency locations of 𝔄, except for
possibly if u is a horizontal tangency location.

(1) If 𝑢 ∈ 𝔏 is not a horizontal tangency location of 𝔄, then let ℜ(𝑢) ⊆ 𝔓 denote a trapezoid adapted
to 𝐻∗, containing u in its interior.

(2) If 𝑢 ∈ 𝔄 is horizontal tangency location on 𝔄 ∩ 𝜕𝔓, then let ℜ(𝑢) ⊆ 𝔓 denote a trapezoid adapted
to 𝐻∗ such that u is in the interior of either 𝜕no(𝔇) or 𝜕so(𝔇).

(3) If 𝑢 ∈ 𝔄 is a horizontal tangency location on 𝔄 not in 𝜕𝔓, then let ℜ(𝑢) = 𝔇1(𝑢) ∪𝔇2(𝑢). Here,
𝔇1 = 𝔇1(𝑢) and 𝔇2 = 𝔇2(𝑢) are trapezoids adapted to 𝐻∗ such that u is in the interior of 𝜕no(𝔇2)
and of 𝜕so(𝔇1) and such that either 𝔇1 or 𝔇2 is disjoint with 𝔏.

(4) If 𝑢 ∉ 𝔏, then let ℜ(𝑢) = 𝔇(𝑢) ∩𝔓, for some trapezoid 𝔇(𝑢) ⊂ R2 containing u in its interior such
that 𝔇(𝑢) is disjoint with 𝔏.

We may further assume (after applying a small shift, if necessary) that 𝑛ℜ(𝑢) ⊂ T, for each 𝑢 ∈ 𝔓.
The existence of these regions ℜ𝑖 follows from Lemma 6.2 in the first case and is quickly verified from
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𝜕𝔓
𝔄

...

𝑢

𝜕𝔓

𝔄
...

...
𝑢

𝜕𝔓

𝔄
...

...
𝑢

Figure 12. Shown to the left, middle and right are examples of the ℜ(𝑢) (shaded) when 𝑢 ∈ 𝜕𝔓 is a
horizontal tangency location of 𝔄, when 𝑢 ∉ 𝔄 is a horizontal tangency location of 𝔄, and when 𝑢 ∉ 𝔏,
respectively. In all cases, only part of the polygon 𝔓 and its liquid region 𝔏 are depicted.

the definitions in all other cases.12 We refer to Figure 11 for a depiction in the first case and to Figure 12
for depictions in the remaining three cases.

Since 𝔓 is compact, the ℜ(𝑢) are open, and
⋃
𝑢∈𝔓 ℜ(𝑢) = 𝔓, there exists a finite subcover

⋃𝑘
𝑖=1 ℜ𝑖 =

𝔓; here, eachℜ𝑖 = ℜ(𝑢𝑖) for some 𝑢𝑖 ∈ 𝔓. In what follows, we fix such a cover and let 𝔱0 < 𝔱1 < · · · < 𝔱𝑚
denote all real numbers for which either a north or south boundary of some ℜ𝑖 lies along a line {𝑡 = 𝔱 𝑗 }.
Observe that, if such a boundary of some ℜ𝑖 lies along {𝑡 = 𝔱0} or {𝑡 = 𝔱𝑚}, then it must lie along 𝜕𝔓.
Moreover, since the 𝔱 𝑗 are pairwise distinct, there exists a constant 𝜀0 = 𝜀0 (𝔓) > 0 such that, for each
1 ≤ 𝑗 ≤ 𝑚,

min
1≤ 𝑗≤𝑚

(𝔱 𝑗 − 𝔱 𝑗−1) ≥ 𝜀0 (𝔱𝑚 − 𝔱0). (6.1)

Further, let R𝑖 = 𝑛ℜ𝑖 ⊂ T for each 1 ≤ 𝑖 ≤ 𝑘 . Observe, since the ℜ𝑖 are open and cover 𝔓, that any
interior vertex of P is an interior vertex of some R𝑖 . Thus, we may consider the alternating dynamics
(from Definition 4.5) on P with respect to (R1, R2, . . . , R𝑘 ). In particular, let us fix the height function
H0 ∈ 𝒢(h) by setting H0(𝑢) =

⌊
𝑛𝐻∗(𝑛−1𝑢)

⌋
, for each 𝑢 ∈ P; observe that H0(𝑢) = 𝑛𝐻∗(𝑛−1𝑢) for each

𝑢 ∈ P \ (𝑛 · 𝔏), by Proposition 2.4. Then, run the alternating dynamics on 𝒢(h) with initial state H0.
For each integer 𝑟 ≥ 0, let H𝑟 ∈ 𝒢(h) denote the state of this Markov chain at time r; define its scaled
version 𝐻𝑟 ∈ Adm(𝔇; ℎ) by 𝐻𝑟 (𝑢) = 𝑛−1H𝑟 (𝑛𝑢) for each 𝑢 ∈ 𝔇.

6.2. Proof of Theorem 3.10

In this section, we establish Theorem 3.10. To that end, recalling the notation from Section 6.1, we
define for any integer 𝑟 ≥ 0 the events

ℱ𝑟 =
⋂
𝑢∈𝔓

{

𝐻𝑟 (𝑢) − 𝐻∗(𝑢)


 < 𝑛𝛿−1

}
∩

⋂
𝑢∈𝔓\𝔏𝛿

+ (𝔓)

{
𝐻𝑟 (𝑢) = 𝐻∗(𝑢)

}
;

ℱ∞ =
⋂
𝑢∈𝔓

{

H(𝑛𝑢) − 𝑛𝐻∗(𝑢)


 < 𝑛𝛿

}
∩

⋂
𝑢∈𝔓\𝔏𝛿

+ (𝔓)

{
H(𝑛𝑢) = 𝑛𝐻∗(𝑢)

}
. (6.2)

Then, Theorem 3.10 indicates that ℱ∞ should hold with overwhelming probability. As r becomes
large, the alternating dynamics tend to stationarity, so 𝑛𝐻𝑟 (𝑢) converges in law to H(𝑛𝑢); hence, it instead
suffices to show that ℱ𝑟 likely holds for large r. We would like to proceed inductively by showing that ℱ𝑟

implies ℱ𝑟+1 with high probability. It is not transparent to us how to do this directly; we instead prove a
stronger version of this implication involving the notion of tilting, which we recall from Definition 5.6.

12For the third, we are using the fact that no horizontal tangency location of 𝔄 is also a cusp of 𝔄 (and that 𝔄 has no tacnode
singularities), as stipulated by Assumption 2.8.
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We first require some notation. Recall that 𝜀0 = 𝜀0 (𝔓) > 0 satisfies Equation (6.1), and set

𝜈𝑖 = 1 −

(
𝜀0
10

) 𝑖+1
, 0 ≤ 𝑖 ≤ 𝑚. (6.3)

Also, recall the subset 𝔏𝛿
− = 𝔏𝛿

− (𝔓) ⊂ 𝔏 from Equation (5.6).
For any real number 𝑧 ≥ 𝑛−1, define the functions

𝜘(𝑧) = 𝑛𝛿/12−1𝑧−1; 𝜛(𝑧) = 𝑛𝛿/12−1 log(𝑛𝑧). (6.4)

The explicit forms of 𝜘 and 𝜛 above will not be central for our purposes, but a useful point will be
that 𝐴𝜘(𝑧) +𝜛(𝑧) is minimized when 𝑧 = 𝐴.

Now, recall the subset 𝔏𝛿
− = 𝔏𝛿

− (𝔓) ⊂ 𝔏 from Equation (5.6), and for any integers 𝑟 ≥ 0 and
0 ≤ 𝑖 ≤ 𝑚 define the events

ℰ
(1)
𝑟 (𝑖) =

{
The edge of 𝐻𝑟 is 𝜈𝑖𝑛

𝛿/240−2/3 -tilted with respect to 𝐻∗ at level 𝔱𝑖
}
;

ℰ
(2)
𝑟 (𝑖) =

⋂
(𝑥,𝔱𝑖 ) ∈𝔏

𝛿/4
−

{
At (𝑥, 𝔱𝑖), 𝐻𝑟 is (𝜈𝑖𝑛

𝛿/240−2/3; 0) -tilted with respect to 𝐻∗
}
. (6.5)

For any 𝑥 ∈ R such that (𝑥, 𝔱𝑖) ∈ 𝔏𝛿/4
− , further define the event

ℰ
(3)
𝑟 (𝑖; 𝑥) =

{
sup
𝑧≥𝑛−1

(
𝐻∗(𝑥, 𝔱𝑖) + 𝜈𝑖𝜘(𝑧)Ω𝔱𝑖 (𝑥) −𝜛(𝑧)

)
≤ 𝐻𝑟 (𝑥, 𝔱𝑖) ≤ inf

𝑧≥𝑛−1

(
𝐻∗(𝑥, 𝔱 𝑗 ) − 𝜈𝑖𝜘(𝑧)Ω𝔱𝑖 (𝑥) +𝜛(𝑧)

)}
, (6.6)

where we recall Ω𝑠 (𝑥) from Equation (5.1), and let

ℰ
(3)
𝑟 (𝑖) =

⋂
(𝑥,𝔱𝑖 ) ∈𝔏

𝛿/4
−

ℰ
(3)
𝑟 (𝑖; 𝑥).

Then define the events

ℰ𝑟 (𝑖) =ℰ
(1)
𝑟 (𝑖) ∩ℰ

(2)
𝑟 (𝑖) ∩ℰ

(3)
𝑟 (𝑖); ℰ𝑟 =

𝑚⋂
𝑖=0

ℰ𝑟 (𝑖); 𝒜𝑟 =ℰ𝑟 ∩ℱ𝑟 . (6.7)

Under this notation, we have the following proposition.

Proposition 6.3. For any real number 𝐷 > 1, there exists a constant 𝐶 = 𝐶 (𝔓, 𝐷) > 1 such that the
following holds whenever 𝑛 > 𝐶. For any integer 𝑟 ≥ 0, we have P(𝒜𝑟+1) ≥ P(𝒜𝑟 ) − 𝑛−𝐷 .

Given Proposition 6.3, we can quickly establish Theorem 3.10.

Proof of Theorem 3.10. First, observe that 𝒜0 holds deterministically since 𝐻0(𝑢) = 𝑛−1H0 (𝑛𝑢) and
H(𝑛𝑢) =

⌊
𝑛𝐻∗(𝑢)

⌋
hold for each 𝑢 ∈ 𝔇 (and 𝐻0(𝑢) = 𝐻∗(𝑢) for each 𝑢 ∈ 𝔓 \ 𝔏, by Proposition 2.4).

Then, inductively applying Proposition 6.3, with the D there equal to 2𝐷 + 45 here, yields P
(
𝒜𝑛40

)
≥

1 − 𝑛−2𝐷 for sufficiently large n. By the definition (6.7) of 𝒜𝑟 , this implies P
(
ℱ𝑛40

)
≥ 1 − 𝑛−2𝐷 . Since

diam R = 𝑛 diamℜ, the bound Proposition 4.6 on the mixing time for the alternating dynamics (together
with the definitions (6.2) of ℱ𝑟 and ℱ∞) gives

P(ℱ∞) ≥ P
(
ℱ𝑛40

)
− 𝑒−𝑛 ≥ 1 − 𝑛−2𝐷 − 𝑒−𝑛 ≥ 1 − 𝑛−𝐷 ,

for sufficiently large n. Since this holds for any D (if n is sufficiently large), this implies the theorem. �
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6.3. Proof of Proposition 6.3

In this section, we establish Proposition 6.3.

Proof of Proposition 6.3. Throughout this proof, we restrict to the event 𝒜𝑟 ; it suffices to show that
𝒜𝑟+1 holds with overwhelming probability. In what follows, we will frequently use the equality

𝐻𝑟 (𝑢) = 𝐻∗(𝑢), if 𝑢 ∈ 𝔓 \ 𝔏 is bounded away from 𝔏, (6.8)

which holds since we have restricted to the event ℱ𝑟 ⊆ 𝒜𝑟 from Equation (6.2).
Updating H𝑟 to H𝑟+1 involves resampling it on a subdomain R 𝑗 = 𝑛ℜ 𝑗 , for some index 1 ≤ 𝑗 ≤ 𝑚, in

the decomposition P =
⋃𝑘

𝑗=1 R 𝑗 . Recall from Section 6.1 that ℜ 𝑗 = ℜ(𝑢 𝑗 ), for some 𝑢 𝑗 ∈ 𝔓, and that
there are four possible cases for ℜ(𝑢 𝑗 ), depending on whether 𝑢 𝑗 ∈ 𝔏 is not a tangency location of 𝔄;
𝑢 𝑗 ∈ 𝔄 is a tangency location of 𝔄 that lies on 𝜕𝔓; 𝑢 𝑗 ∈ 𝔄 is a tangency location that does not lie on
𝜕𝔓; or 𝑢 ∉ 𝔏 is outside the liquid region. We will address each of these cases.

To that end, first consider the fourth case when 𝑢 𝑗 ∉ 𝔏. Then, ℜ 𝑗 ⊆ 𝔓 \ 𝔏; in particular, it is
bounded away from 𝔏, so Equation (6.8) implies H𝑟 (𝑛𝑢) = 𝑛𝐻∗(𝑢) for each 𝑢 ∈ ℜ 𝑗 . Since ∇𝐻∗(𝑢) ∈{
(1, 0), (1,−1), (1,−1)

}
for almost every 𝑢 ∉ 𝔏 (by the first statement of Lemma 2.3), it follows that

there is only one height function on R 𝑗 with boundary data H𝑟 |𝜕R 𝑗 , that is, this domain is frozen. This
implies that H𝑟+1 = H𝑟 , so each of the estimates involved in the definitions of the events in Equations
(6.2), (6.5), (6.6) for 𝐻𝑟+1 follow from their counterparts for 𝐻𝑟 guaranteed by 𝒜𝑟 . Thus, 𝒜𝑟+1 holds
deterministically in this case.

Next, we consider the first or second case, namely, when 𝑢 𝑗 ∈ 𝔏 and is not a horizontal tangency
location outside of 𝜕𝔓. If 𝑢 𝑗 is a horizontal tangency location of 𝔄, then we assume 𝑢 𝑗 ∈ 𝜕no(ℜ 𝑗 ), as
the proof when 𝑢 𝑗 ∈ 𝜕so (ℜ 𝑗 ) is entirely analogous by rotation (see Remark 5.10). Then ℜ 𝑗 = ℜ(𝑢 𝑗 )
is a double-sided trapezoid satisfying the conditions of Assumption 5.2 since it is adapted with respect
to 𝐻∗ (recall Definition 6.1). By Equation (6.7), suffices to show that ℰ𝑟+1 and ℱ𝑟+1 both hold with
overwhelming probability.

We begin with the former. Fix an index 1 ≤ 𝑖0 ≤ 𝑚; we must showℰ𝑟+1(𝑖0) holds with overwhelming
probability. Define indices 1 ≤ 𝑖, 𝑖′ ≤ 𝑚 so that 𝜕so(ℜ 𝑗 ) and 𝜕no(ℜ 𝑗 ) are contained in the horizontal
lines {𝑦 = 𝔱𝑖} and {𝑦 = 𝔱𝑖′ }, respectively. Without loss of generality, we assume that 𝑖 < 𝑖′. Since the
update from 𝐻𝑟 to 𝐻𝑟+1 only affects its restriction to ℜ 𝑗 ⊂

{
(𝑥, 𝑦) ∈ 𝔓 : 𝔱𝑖 < 𝑡 < 𝔱𝑖′ }, for 𝑖0 ∉ (𝑖, 𝑖′) the

event ℰ𝑟+1(𝑖0) holds deterministically if ℰ𝑟 (𝑖0) does. Hence, we may assume that 𝑖 < 𝑖0 < 𝑖′. In what
follows, we further denote the restrictions ℎ𝑟 = 𝐻𝑟 |ℜ 𝑗 and h𝑟 = H𝑟 |R 𝑗 ,

We first verify that ℰ (1)
𝑟+1(𝑖0) and ℰ

(2)
𝑟+1(𝑖0) from Equation (6.5) both hold with overwhelming prob-

ability by suitably applying Proposition 5.8. To that end, observe that Assumption 5.7 holds with the
parameters (𝜀, 𝜍, 𝛿;𝔇, D;𝔰; 𝔱1, 𝔱2; h̃, H̃; 𝜉1, 𝜉2; 𝜁1, 𝜁2; 𝜇) there equal to(
𝜀0,

( 𝜀0
20

)𝑚+1
,
𝛿

4
;ℜ 𝑗 , R 𝑗 ; 𝔱𝑖0 ; 𝔱𝑖 , 𝔱𝑖′; h𝑟 , H𝑟+1;𝜈𝑖𝑛𝛿/240−2/3, 𝜈𝑖′𝑛

𝛿/240−2/3; 𝜈𝑖𝑛𝛿/240−2/3, 𝜈𝑖′𝑛
𝛿/240−2/3; 0

)
,

(6.9)

here. To see this, first observe that h𝑟 is constant along the east and west boundaries of 𝜕R 𝑗 . Indeed,
Equation (6.8) and the fact that 𝜕ea(ℜ 𝑗 ) and 𝜕we(ℜ 𝑗 ) are either subsets of 𝜕𝔓 or bounded away from 𝔏,
together imply that 𝐻𝑟 = 𝐻∗ along 𝜕ea (ℜ 𝑗 )∪𝜕we(ℜ 𝑗 ). In particular, h𝑟 (𝑛𝑣) = 𝑛ℎ𝑟 (𝑣) = 𝑛ℎ(𝑣) = 𝑛𝐻∗(𝑣)
holds for each 𝑣 ∈ 𝜕ea(ℜ 𝑗 ) ∪ 𝜕we(ℜ 𝑗 ). So, since ℜ 𝑗 is adapted to 𝐻∗, h is constant both 𝜕ea(ℜ 𝑗 ) and
𝜕we(ℜ 𝑗 ); thus, ℎ𝑟 is as well. Next, the inequalities on (𝔱1, 𝔰, 𝔱2) with respect to 𝜀 and on (𝜉1, 𝜉2) and
(𝜁1, 𝜁2) with respect to 𝜍 , in Assumption 5.7 follow from Equations (6.1) and (6.3). Moreover, the
edge-tiltedness for 𝐻𝑟 with respect to 𝐻∗ along 𝜕so (ℜ 𝑗 ) ∪ 𝜕no(ℜ 𝑗 ) is a consequence of our restriction
to the event ℰ (1)

𝑟 (𝑖) ∩ℰ
(1)
𝑟 (𝑖′) ⊆ 𝒜𝑟 . Similarly, the bulk-tiltedness of 𝐻𝑟 with respect to 𝐻∗ at each

(𝑥, 𝔱𝑖), (𝑥, 𝔱𝑖′ ) ∈ 𝔏𝛿/4
− holds follows from our restriction to ℰ

(2)
𝑟 (𝑖) ∩ℰ

(2)
𝑟 (𝑖′) ⊆ 𝒜𝑟 .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2024.16
Downloaded from https://www.cambridge.org/core. IP address: 18.188.189.204, on 17 Apr 2025 at 23:31:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2024.16
https://www.cambridge.org/core


Forum of Mathematics, Pi 43

Thus, Proposition 5.8 applies. Under the choice of parameters (6.9), the 𝜁 in Proposition 5.8 equals

𝜈′ =
𝜀0
2
𝜈𝑖 +

(
1 −

𝜀0
2

)
𝜈𝑖′ < 𝜈𝑖0 , (6.10)

where to deduce the last inequality we used Equation (6.3) and the fact that 𝑖 < 𝑖0 < 𝑖′. In particular,
Proposition 5.8 implies with overwhelming probability that the edge of 𝐻𝑟+1 is 𝜈𝑖0𝑛

𝛿/240−2/3-tilted with
respect to 𝐻∗ at level 𝔱𝑖0 , and that 𝐻𝑟+1 is (𝜈𝑖0𝑛𝛿/240−2/3; 0)-tilted with respect to 𝐻∗ at any (𝑥, 𝔱𝑖0) ∈ 𝔏𝛿/4

𝑖 .
So, by Equation (6.5), ℰ (1)

𝑟+1(𝑖0) and ℰ
(2)
𝑟+1(𝑖0) both hold with overwhelming probability.

Next, let us show that ℰ (3)
𝑟+1(𝑖0) holds with overwhelming probability. To that end, we fix 𝑥 ∈ R such

that (𝑥, 𝔱𝑖0) ∈ 𝔏𝛿/4
− , and set

𝜆 = −𝜈′Ω𝔱𝑖0
(𝑥) ≥ 𝑛−1, (6.11)

where the latter inequality follows from Remark 5.3 (and we recall 𝜈′ from Equation (6.10)). We will
first use Proposition 5.9 to show with overwhelming probability that

𝐻∗(𝑥, 𝔱𝑖0) + 𝜈′𝜘(𝜆)Ω𝔱𝑖0
(𝑥) −𝜛(𝜆) ≤ 𝐻𝑟+1(𝑥, 𝔱𝑖0) ≤ 𝐻∗(𝑥, 𝔱𝑖0) − 𝜈′𝜘(𝜆)Ω𝔱𝑖0

(𝑥) +𝜛(𝜆), (6.12)

which since 𝐴𝜘(𝑧) +𝜛(𝑧) is minimized at 𝑧 = 𝐴 implies

sup
𝑧≥𝑛−1

(
𝐻∗(𝑥, 𝔱𝑖0) + 𝜈′𝜘(𝑧)Ω𝔱𝑖0

(𝑥) −𝜛(𝑧)
)

≤ 𝐻𝑟+1(𝑥, 𝔱𝑖0) ≤ inf
𝑧≥𝑛−1

(
𝐻∗(𝑥, 𝔱𝑖0) + 𝜈′𝜘(𝑧)Ω𝔱𝑖0

(𝑥) −𝜛(𝑧)
)
. (6.13)

We will then deduce that the event ℰ (3)
𝑟+1(𝑖0) likely holds by taking a union bound over x.

To implement this, first observe that Assumption 5.7 applies, with the parameters

(𝜀, 𝜍, 𝛿;𝔇, D;𝔰; 𝔱1, 𝔱2; h̃, H̃; 𝜉1, 𝜉2; 𝜁1, 𝜁2; 𝜇),

there equal to(
𝜀0,

( 𝜀0
20

)𝑚+1
,
𝛿

4
;ℜ 𝑗 , R 𝑗 ; 𝔱𝑖0 ; 𝔱𝑖 , 𝔱𝑖′; h𝑟 , H𝑟+1;𝜈𝑖𝜘(𝜆), 𝜈𝑖′𝜘(𝜆); 𝜈𝑖𝑛𝛿/240−2/3, 𝜈𝑖′𝑛

𝛿/240−2/3; 𝜛(𝜆)

)
,

(6.14)

here, where we recall that 𝜆 = −𝜈′Ω𝔱𝑖0
(𝑥) ≥ 𝑛−1. The verification that this assumption holds is very

similar to that in the previous setting, except that the (𝜉; 𝜇)-tiltedness condition now follows from the
fact that we restricted to the event ℰ (3)

𝑟 (𝑖) ∩ℰ
(3)
𝑟 (𝑖′) ⊆ 𝒜𝑟 . To verify that the parameters (6.14) satisfy

the inequalities stipulated in Proposition 5.9, let 𝑑 = min
{
|𝑥 − 𝑥 ′ | : (𝑥 ′, 𝔱𝑖0) ∈ 𝔄

}
; then Remark 5.3

implies the existence of a constant 𝑐 = 𝑐(𝔓) > 0 such that 𝑐𝑑1/2 < 𝜆 < 𝑐−1𝑑1/2. Under our choice
Equation (6.11) of 𝜆 and the definitions (6.4) of 𝜘 and 𝜛, we have

𝜘(𝜆) ≥ 𝑐𝑛𝛿/12−1𝑑−1/2 ≥ 𝑛𝛿/16−2/3𝑑−1/2; 𝜘(𝜆) ≤ 𝑐−1𝑛𝛿/12−1𝑑−1/2 ≤ 𝑛−2/3,

where in the second inequality we used the fact that 𝑑 ≥ 𝑛𝛿/4−2/3, since (𝑥, 𝔱𝑖0) ∈ 𝔏𝛿/4
− .

Thus, we may apply Proposition 5.9 to deduce that 𝐻𝑟+1 is
(
𝜈′𝜘(𝜆), 𝜛(𝜆)

)
-tilted at (𝑥, 𝔱𝑖0) with

overwhelming probability, where 𝜈′ is given by Equation (6.10). This implies with overwhelming prob-
ability that Equation (6.12) holds, which as mentioned above yields Equation (6.13) with overwhelming
probability. This applies to a single x, so from a union bound, it follows that Equation (6.13) holds
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simultaneously for all 𝑥 ∈ 𝑛−2
Z such that (𝑥, 𝔱𝑖0) ∈ 𝔏𝛿/4

− . From the 1-Lipschitz property of 𝐻𝑟+1, we
deduce with overwhelming probability that, for all 𝑥 ∈ R such that (𝑥, 𝔱𝑖0) ∈ 𝔏𝛿/4

− , we have

sup
𝑧≥𝑛−1

(
𝐻∗(𝑥, 𝔱𝑖0) + 𝜈′𝜘(𝑧)Ω𝔱𝑖0

(𝑥) −𝜛(𝑧) − 𝑛−2
)

≤ 𝐻𝑟+1(𝑥, 𝔱𝑖0) ≤ inf
𝑧≥𝑛−1

(
𝐻∗(𝑥, 𝔱𝑖0) + 𝜈′𝜘(𝑧)Ω𝔱𝑖0

(𝑥) −𝜛(𝑧) + 𝑛−2
)
.

Using the fact (6.10) that 𝜈′ < 𝜈𝑖0 and that Ω𝔱𝑖0
(𝑥) ≥ 𝑛−1 for (𝑥, 𝔱𝑖0) ∈ 𝔏𝛿/4

− , it follows that ℰ (3)
𝑟+1(𝑖0)

holds with overwhelming probability.
This shows that the event ℰ (1)

𝑟 (𝑖0) ∩ℰ
(2)
𝑟 (𝑖0) ∩ℰ

(3)
𝑟 (𝑖0) holds with overwhelming probability, for

any index 0 ≤ 𝑖0 ≤ 𝑚. By a union bound, we deduce that the eventℰ𝑟 (from Equation (6.7)) holds with
overwhelming probability. So, it remains to show that ℱ𝑟 does as well.

This will follow from an application of Theorem 4.3; let us verify that (ℎ, 𝐻∗; h𝑟 ;ℜ 𝑗 , R 𝑗 ) satisfies
the constraints on (ℎ, 𝐻∗; h;𝔇, D) listed in Assumption 4.1 and Assumption 4.2. First, observe, if
𝑢 𝑗 ∈ 𝜕no(ℜ 𝑗 ) is a tangency location for 𝔄, then 𝜕no(ℜ 𝑗 ) ⊂ 𝜕𝔓. Thus, H𝑟+1(𝑛𝑣) = 𝑛ℎ(𝑣), and 𝜕no(ℜ 𝑗 )

is packed with respect to h. Otherwise, 𝔏 extends beyond 𝜕no (ℜ 𝑗 ) and 𝜕so(ℜ 𝑗 ), and so 𝐻∗ admits
an extension beyond the north and south boundaries of ℜ 𝑗 . This shows that ℜ 𝑗 satisfies the second
condition on 𝔇 in Assumption 4.1. The first, third and fourth follow from the adaptedness of ℜ 𝑗 to 𝐻∗;
the fifth follows from taking the (𝔓, 1) there equal to (𝔓, 1) here.

To verify that it satisfies Assumption 4.2, observe by Equation (6.8), the fact that 𝜕ea(ℜ 𝑗 ) and 𝜕we(ℜ 𝑗 )

are either subsets of 𝜕𝔓 or bounded away from𝔏 gives 𝐻𝑟 = 𝐻∗ along 𝜕ea(ℜ 𝑗 ) ∪𝜕we(ℜ 𝑗 ). In particular,
h𝑟 (𝑛𝑣) = 𝑛ℎ𝑟 (𝑣) = 𝑛ℎ(𝑣) for each 𝑣 ∈ 𝜕ea(ℜ 𝑗 ) ∪ 𝜕we(ℜ 𝑗 ). Since ℜ 𝑗 is adapted to 𝐻∗, h is constant
both 𝜕ea(ℜ 𝑗 ) and 𝜕we(ℜ 𝑗 ). Further, observe since we have restricted toℰ (1)

𝑟 (𝑖) ∩ℰ
(1)
𝑟 (𝑖′) that the edge

of 𝐻𝑟 is 𝑛𝛿/240−2/3-tilted with respect to 𝐻∗. This implies that h𝑟 (𝑛𝑣) = 𝑛ℎ𝑟 (𝑣) = 𝑛ℎ(𝑣) for any 𝑣 ∉ 𝔏
and dist(𝑣,𝔄) ≥ O(𝑛𝛿/200−2/3). In particular, this holds for any 𝑣 ∉ 𝔏𝛿/2

+ , thereby verifying the second
property listed in Assumption 4.2.

It remains to verify the first one, namely that


h𝑟 (𝑛𝑣) − 𝑛ℎ(𝑛𝑣)



 ≤ 𝑛𝛿/2 for each 𝑣 ∈ 𝜕ℜ 𝑗 . This
is already implied by the second property for 𝑣 ∈ 𝜕ea(ℜ 𝑗 ) ∪ 𝜕we(ℜ 𝑗 ), so we must show it for 𝑣 ∈

𝜕no (ℜ 𝑗 )∪𝜕so(ℜ 𝑗 ). We only consider 𝑣 ∈ 𝜕so (ℜ 𝑗 ) since the case when 𝑣 ∈ 𝜕no(ℜ 𝑗 ) is entirely analogous.
To that end, observe since since we restricted to the event ℰ (3)

𝑟 (𝑖) that

sup
𝑧≥𝑛−1

(
𝐻∗(𝑥, 𝔱𝑖) + 𝜈𝑖𝜘(𝑧)Ω𝔱𝑖 (𝑥) −𝜛(𝑧)

)
≤ 𝐻𝑟 (𝑥, 𝔱𝑖) ≤ inf

𝑧≥𝑛−1

(
𝐻∗(𝑥, 𝔱 𝑗 ) − 𝜈𝑖𝜘(𝑧)Ω𝔱𝑖 (𝑥) +𝜛(𝑧)

)
,

holds for each (𝑥, 𝔱𝑖) ∈ 𝔏𝛿/4
− . In particular, we my take 𝑧 = −Ω𝔱𝑖 (𝑥) ≥ 𝑛−1, which by (6.4) gives

𝐻𝑟 (𝑥, 𝔱𝑖) − 𝐻∗(𝑥, 𝔱𝑖)



 ≤ 𝑛𝛿/12−1 + 𝑛𝛿/12−1 log 𝑛 ≤ 2𝑛𝛿/12−1 log 𝑛 ≤ 𝑛𝛿/2−1,

for any (𝑥, 𝔱𝑖) ∈ 𝜕so (ℜ 𝑗 ). This yields the first property listed in Assumption 4.2 so that assumption holds.
In particular, Theorem 4.3 applies (with the (h, H) there equal to (h𝑟 , H𝑟+1) here), implying that ℱ𝑟+1
holds with overwhelming probability. Hence,ℰ𝑟+1 ∩ℱ𝑟+1 = 𝒜𝑟+1 holds with overwhelming probability
upon restricting to 𝒜𝑟 , thereby establishing the proposition if ℜ 𝑗 is of the first or second type listed in
Section 6.1.

It remains to consider the case when ℜ 𝑗 = ℜ(𝑢 𝑗 ) is of the third type listed in Section 6.1, that is,
when 𝑢 𝑗 is a horizontal tangency location of 𝔄 that does not lie on 𝜕𝔓. Then, ℜ 𝑗 = 𝔇1 ∪𝔇2 for two
trapezoids 𝔇1 = 𝔇1(𝑢 𝑗 ) and 𝔇2(𝑢 𝑗 ) that contain 𝑢 𝑗 in the interiors of their south and north boundaries,
respectively; set D1 = 𝑛𝔇1 ⊂ T and D2 = 𝑛𝔇2 ⊂ T. Either 𝔇1 or 𝔇2 is disjoint with 𝔏; let us assume
the former is, as the proof in the alternative case is entirely analogous.

Then, the top three boundaries 𝜕no(𝔇1) ∪ 𝜕ea(𝔇1) ∪ 𝜕ea(𝔇1) of 𝔇1 are bounded away from 𝔇. By
Equation (6.8), this yields ℎ𝑟 (𝑣) = 𝐻∗(𝑣) for any 𝑣 ∈ 𝜕no(𝔇) ∪ 𝜕ea(𝔇) ∪ 𝜕we(𝔇). Moreover ∇𝐻∗ is
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constant,13 and an element of {(0, 0), (1, 0), (1,−1)}, along 𝜕no(𝔇) ∪𝜕ea(𝔇) ∪𝜕we(𝔇). Hence, the same
holds for ∇𝐻𝑟 , from which it follows that there is only one height function on D1 with boundary data
H𝑟 |D1 . Hence, H𝑟+1(𝑛𝑣) = 𝑛𝐻∗(𝑣) = H𝑟 (𝑛𝑣), for each 𝑣 ∈ 𝔇1. The inequalities (6.2), (6.5) and (6.6)
hold deterministically inside 𝔇1.

Furthermore, the fact that H𝑟 (𝑛𝑣) = 𝑛𝐻∗(𝑣) for 𝑣 ∈ 𝔇1 implies that the 𝜕so (𝔇1) is packed with respect
to ℎ𝑟 ; thus, the same statement holds for 𝜕no(𝔇2). Therefore, the same reasoning as applied above in
the second case for ℜ 𝑗 listed in Section 6.1 (when u is a horizontal tangency location of 𝔄 that lies
on 𝜕𝔓) applies to show that the inequalities (6.2), (6.5) and (6.6) hold with overwhelming probability
inside 𝔇2. It follows that these inequalities hold with overwhelming probability on 𝔇1 ∪𝔇2 = ℜ 𝑗 . This
implies that 𝒜𝑟+1 holds with overwhelming probability, which yields the proposition. �

7. Existence of tilted height functions

In this section, we establish Proposition 5.4. Instead of directly producing the tilted height function 𝐻∗

as described there, we first in Section 7.1 define its complex slope as a solution to Equation (3.3), with
the function 𝑄0 there modified in an explicit way. In Section 7.2, we solve this equation perturbatively
and compare its solution to the original one. We then define the tilted height function from its complex
slope using Equation (3.1) and establish Proposition 5.4 in Section 7.3.

7.1. Modifying Q

In this section, we introduce a function F𝑡 (𝑥; 𝛼0) that will eventually be the complex slope for our
tilted height profile. Throughout this section, we adopt the notation from Proposition 5.4, recalling in
particular the complex slope 𝑓𝑡 (𝑥) associated with 𝐻∗, defined for (𝑥, 𝑡) ∈ 𝔏(𝔓). We denote the liquid
region inside 𝔇 as 𝔏 = 𝔇 ∩ 𝔏(𝔓).

The function F𝑡 (𝑥; 𝛼0) may be interpreted as the solution to the complex Burgers equation

𝜕𝑡F𝑡 (𝑥; 𝛼0) + 𝜕𝑥F𝑡 (𝑥; 𝛼0)
F𝑡 (𝑥; 𝛼0)

F𝑡 (𝑥; 𝛼0) + 1
= 0, with initial data F0(𝑥; 𝛼0) = 𝛼0 𝑓𝔱0 (𝑥), (7.1)

for suitable real numbers 𝛼0 = 1 + O
(
|𝜉1 + 𝜉2 |

)
and 𝔱0; stated alternatively, we first time-shift the

solution 𝑓𝑡 (𝑥) of Equation (3.2) by 𝔱0 and then multiply its initial data by a ‘drift’ 𝛼0. However, making
this precise would involve justifying the existence and uniqueness of a solution to Equation (7.1). To
circumvent this, we instead define F𝑡 (𝑥; 𝛼0) as the solution to an ‘𝛼0-deformation’ of Equation (7.7).

To implement this, we define real numbers 𝔱0 and 𝛼0 by

𝔱0 =
𝜉2𝔱1 − 𝜉1𝔱2
𝜉2 − 𝜉1

; 𝛼0 =
𝜉2 − 𝜉1
𝔱2 − 𝔱1

+ 1 =
𝜉1

𝔱1 − 𝔱0
+ 1 =

𝜉2
𝔱2 − 𝔱0

+ 1 (7.2)

so that 𝛼0 = 1 +O
(
|𝜉1 + 𝜉2 |

)
. We next introduce a time-shifted variant of 𝑓𝑡 (𝑥) given by

F𝑠 (𝑥; 1) = 𝑓𝑠+𝔱0 (𝑥), whenever (𝑥, 𝑠 + 𝔱0) ∈ 𝔏. (7.3)

Although the complex slope for the tilted height function 𝐻∗ from Proposition 5.4 will eventually be
related to an 𝛼0-deformation of F𝑠 (𝑥; 1) with 𝛼0 given explicitly by Equation (7.2), it will be useful to
define this deformation (denoted by F𝑡 (𝑥; 𝛼)) for any 𝛼 ∈ R with |𝛼 − 1| sufficiently small. To that end,
recalling the rational function 𝑄 : C2 → C satisfying Equation (3.4) with respect to 𝑓𝑡 , we also define
its time-shift Q1and 𝛼-deformation Q𝛼, for any 𝛼 ∈ R by

Q1(𝑢, 𝑣) = 𝑄

(
𝑢, 𝑣 −

𝔱0𝑢
𝑢 + 1

)
; Q𝛼 (𝑢, 𝑣) =

𝑢 + 1
𝛼−1𝑢 + 1

Q1(𝛼
−1𝑢, 𝑣),

13This holds since 𝔄 has no singularities that are simultaneously cusps and tangency locations; recall Assumption 2.8.
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observing in particular that Equations (3.4) and (7.3) together imply

Q1

(
F𝑡 (𝑥; 1), 𝑥 −

𝑡F𝑡 (𝑥; 1)
F𝑡 (𝑥; 1) + 1

)
= 0. (7.4)

If |𝛼−1| is sufficiently small (in a way only dependent on 𝔓), this implies the existence of an analytic
function F𝑡 (𝑥; 𝛼), defined for (𝑥, 𝑡 + 𝔱0) in an open subset of 𝔏, that is continuous in 𝛼 and satisfies

Q𝛼

(
F𝑡 (𝑥; 𝛼), 𝑥 −

𝑡F𝑡 (𝑥; 𝛼)
F𝑡 (𝑥; 𝛼) + 1

)
= 0. (7.5)

For example, recall from the third part of Proposition 3.3 that there exists a real analytic functionQ0;1,
locally defined around any solution of Equation (7.4) (obtained by solving Equation (7.4)) such that

Q0;1
(
F𝑡 (𝑥; 1)

)
= 𝑥

(
F𝑡 (𝑥; 1) + 1

)
− 𝑡F𝑡 (𝑥; 1).

Then, we may set

Q0;𝛼 (𝑢) =
𝑢 + 1

𝛼−1𝑢 + 1
Q0;1(𝛼

−1𝑢), (7.6)

for u in the domain of Q0;1 and let F𝑡 (𝑥; 𝛼) denote the root of

Q0;𝛼
(
F𝑡 (𝑥; 𝛼)

)
= 𝑥

(
F𝑡 (𝑥; 𝛼) + 1

)
− 𝑡F𝑡 (𝑥; 𝛼), (7.7)

chosen so that it is continuous in 𝛼; it is directly verified that it satisfies Equation (7.5). Such a root is well
defined on a nonempty open subset of𝔏 that contains no double root of Equation (7.5) or equivalently of
Equation (7.7) (such a subset exists for |𝛼−1| sufficiently small). Since any double root of Equation (7.5)
is real, we may extend F𝑡 (𝑥; 𝛼) to the 𝛼-deformed liquid region 𝔏𝛼 and its arctic curve 𝔄𝛼, defined by

𝔏𝛼 =
{
(𝑥, 𝑡) ∈ R2 : (𝑥, 𝑡 + 𝔱0) ∈ 𝔇,F𝑡 (𝑥; 𝛼) ∈ H−

}
;

𝔄𝛼 =
{
(𝑥, 𝑡) ∈ 𝜕𝔏𝛼 : F𝑡 (𝑥; 𝛼) ∈ R

}
,

where we observe for |𝛼 − 1| sufficiently small that 𝔏𝛼 is simply connected since 𝔏 (and thus 𝔏1) is.
We next have the below lemma that, given a solution of an equation of the type (7.7), evaluates its

derivatives with respect to x and t, and shows that it satisfies the complex Burgers equation. Its proof
essentially follows from a Taylor expansion and will be provided in Appendix A below.

Lemma 7.1. Fix (𝑥0, 𝑡0) ∈ R2; let F𝑡 (𝑥) denote a function that is real analytic in a neighborhood of
(𝑥0, 𝑡0), and let Q0 denote a function that is real analytic in a neighborhood of F𝑡0 (𝑥0). Assume in a
neighborhood of (𝑥0, 𝑡0) that

Q0
(
F𝑡 (𝑥)

)
= 𝑥

(
F𝑡 (𝑥) + 1

)
− 𝑡F𝑡 (𝑥). (7.8)

Then for all (𝑥, 𝑡) in a neighborhood of (𝑥0, 𝑡0) we have

𝜕𝑥F𝑡 (𝑥) =
F𝑡 (𝑥) + 1

Q′
0
(
F𝑡 (𝑥)

)
− 𝑥 + 𝑡

; 𝜕𝑡F𝑡 (𝑥) = −
F𝑡 (𝑥)

Q′
0
(
F𝑡 (𝑥)

)
− 𝑥 + 𝑡

, (7.9)

and in particular

𝜕𝑡F𝑡 (𝑥) + 𝜕𝑥F𝑡 (𝑥)
F𝑡 (𝑥)

F𝑡 (𝑥) + 1
= 0. (7.10)
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7.2. Comparison between F𝒕 (𝒙;𝜶) and F𝒕 (𝒙; 1)

In this section, we provide two estimates comparingF𝑡 (𝑥; 𝛼) andF𝑡 (𝑥; 1). The first (given by Lemma 7.2
below) compares their logarithms, where in what follows, we take the branch of the logarithm to be so
that Im log 𝑢 ∈ [−𝜋, 𝜋). The second (given by Lemma 7.3 below) compares the endpoints of their arctic
boundaries. These results will eventually be the sources of the quantities Ω and Υ from Equation (5.1).

Lemma 7.2. Suppose |𝛼 − 1| is sufficiently small, and 𝑣 = (𝑥, 𝑡) ∈ 𝔏1 ∩ L𝛼 is any point bounded away
from a cusp or tangency location of 𝔄1. Setting 𝑑 = dist(𝑣,𝔄1), we have the following estimates, where
the implicit constants in the error below only depend on the first three derivatives of Q0;1 at F𝑡 (𝑥; 1).

1. If 𝑑 ≥ |𝛼 − 1|, then

logF𝑡 (𝑥; 𝛼) − log 𝛼 − logF𝑡 (𝑥; 1) = 𝑡 (1 − 𝛼)𝜕𝑥

(
F𝑡 (𝑥; 1)

F𝑡 (𝑥; 1) + 1

) (
1 +O

(
𝑑−1 |𝛼 − 1| + |𝛼 − 1|1/2) ) .

2. For any 𝑑 > 0, we have


 logF𝑡 (𝑥; 𝛼) − log 𝛼 − logF𝑡 (𝑥; 1)



 = O
(
|𝛼 − 1|1/2) .

Proof. Letting F = F𝑡 (𝑥; 1) and F ′ = F𝑡 (𝑥; 𝛼), we have by Equation (7.7) that

Q0;1(F) = 𝑥(F + 1) − 𝑡F ; Q0;𝛼 (F ′) = 𝑥(F ′ + 1) − 𝑡F ′. (7.11)

Next, Equation (7.6) implies for (𝑢, 𝑥 − 𝑡𝑢/(𝑢 + 1)) in a neighborhood of (F ′, 𝑥 − 𝑡F ′/(F ′ + 1)) that

Q0;𝛼 (𝑢) =
𝑢 + 1

𝛼−1𝑢 + 1
Q0;1(𝛼

−1𝑢).

Letting F̃ = 𝛼−1F ′, we deduce from the second statement of Equation (7.11) that

Q0;1(F̃) +
(𝛼 − 1)F̃
F̃ + 1

Q0;1 (F̃) = Q0;𝛼 (F ′) = 𝑥(F̃ + 1) − 𝑡F̃ + (𝛼 − 1) (𝑥 − 𝑡)F̃ .

Together with the first statement of Equation (7.11), this gives

Q0;1(F̃) −Q0;1(F) = (F̃ − F) (𝑥 − 𝑡) +
(1 − 𝛼)F̃
F̃ + 1

Q0;1(F̃) + (𝛼 − 1) (𝑥 − 𝑡)F̃ . (7.12)

By a Taylor expansion, we have

Q0;1(F̃) −Q0;1(F) = (F̃ − F)Q′
0;1(F) +

1
2
(F̃ − F)2Q′′

0;1 (F) +O
(
|F̃ − F |3

)
,

and which by Equation (7.12) implies, since F is bounded away from {−1, 0,∞} (as (𝑥, 𝑡) is bounded
away from a tangency location of 𝔄1), that

(F̃ − F)
(
Q′

0;1(F) − 𝑥 + 𝑡
)
+

1
2
(F̃ − F)2Q′′

0;1(F)

= (𝛼 − 1)
(
(𝑥 − 𝑡)F −

F
F + 1

Q0;1(F)

)
+O

(
|𝛼 − 1| |F̃ − F | + |F̃ − F |3

)
(7.13)

=
(1 − 𝛼)𝑡F
F + 1

+O
(
|𝛼 − 1| |F̃ − F | + |F̃ − F |3

)
,

where to deduce the last equality we used the first statement of Equation (7.11).
Now, if 𝑑 < 𝛿 for some 𝛿 = 𝛿(𝔓) > 0, then Q′′

0;1(F) is bounded away from 0 since (𝑥, 𝑡) is bounded
away from a cusp of 𝔄1, so Equation (7.13) implies |F̃ − F | = O

(
|𝛼 − 1|1/2) . If instead 𝑑 ≥ 𝛿, then
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ImQ′
0;1(F) is bounded away from 0, which implies that |F̃ −F | = O

(
|𝛼− 1|

)
. In either case, this gives

|F̃ − F | = O
(
|𝛼 − 1|1/2) , which verifies the second statement of the lemma.

Next, observe from the first statement of Equation (7.9) that

1
Q′

0;1(F) − 𝑥 + 𝑡
=

𝜕𝑥F
F + 1

. (7.14)

By the square root decay of F𝑡 (𝑥) as (𝑥, 𝑡) nears 𝔄1 (see Remark A.2 below), there exist constants
𝑐 = 𝑐(𝔓) > 0 and 𝐶 = 𝐶 (𝔓) > 1 such that 𝑐𝑑−1/2 < 𝜕𝑥F𝑡 (𝑥; 1) < 𝐶𝑑−1/2. After decreasing c and
increasing C if necessary, Equation (7.14) then implies

𝑐𝑑1/2 < Q′
0;1(F) − 𝑥 + 𝑡 < 𝐶𝑑1/2.

This, together with Equation (7.13), the bound |F̃ −F | = O
(
|𝛼 − 1|1/2) and the fact that Q′′

0;1 (F) is
bounded away from 0 for (𝑥, 𝑡) sufficiently close to 𝔄1 quickly gives for 𝑑 ≥ |𝛼 − 1| that

F̃ − F
F = 𝑡 (1 − 𝛼)

𝜕𝑥F
(F + 1)2

(
1 +O

(
𝑑−1 |𝛼 − 1| + |𝛼 − 1|1/2) ) .

It follows that

log
(
F̃
F

)
=
F̃
F − 1 +O

(
(F̃ − F)2)

= 𝑡 (1 − 𝛼)

(
𝜕𝑥F𝑡 (𝑥; 1)(
F𝑡 (𝑥; 1) + 1

)2

) (
1 +O

(
𝑑−1 |𝛼 − 1| + |𝛼 − 1|1/2) ) ,

which implies the first statement of the lemma. �

Next, we show that if no cusp or tangency location of 𝔄1 is of the form (𝑥, 𝑡) with 𝑥 ∈ R, then the time
slices

{
𝑥 : (𝑥, 𝑡) ∈ 𝔏1

}
and

{
𝑥 : (𝑥, 𝑡) ∈ 𝔏𝛼

}
contain the same number of intervals; we also estimate

the distance between their endpoints.

Lemma 7.3. The following holds for |𝛼 − 1| sufficiently small.

(1) Let (𝑥0, 𝑡) ∈ 𝔄1 denote a right (or left) boundary point of 𝔄1, bounded away from a cusp or
horizontal tangency location of 𝔄1. Then, there exists (𝑥 ′0, 𝑡) ∈ 𝔄𝛼, which is a right (or left,
respectively) boundary point of 𝔄𝛼 so that

𝑥 ′0 − 𝑥0 = 𝑡 (𝛼 − 1)
F𝑡 (𝑥0)(

F𝑡 (𝑥0) + 1
)2 +O

(
|𝛼 − 1|2

)
. (7.15)

(2) Fix 𝑡 ∈ R; suppose that
{
𝑥 : (𝑥, 𝑡) ∈ 𝔏1

}
is a union of 𝑘 ≥ 1 disjoint open intervals (𝑥1, 𝑥

′
1) ∪

(𝑥2, 𝑥
′
2)∪· · ·∪(𝑥𝑘 , 𝑥

′
𝑘 ), and that it is bounded away from a cusp or horizontal tangency location of𝔄1.

Then,
{
𝑥 : (𝑥, 𝑡) ∈ 𝔏𝛼

}
is also a union of k disjoint open intervals (𝑥̂1, 𝑥̂

′
1) ∪ (𝑥̂2, 𝑥̂

′
2) ∪ · · ·∪ (𝑥̂𝑘 , 𝑥̂

′
𝑘 ).

Moreover, for any index 𝑗 ∈ [1, 𝑘], we have

𝑥̂ 𝑗 − 𝑥 𝑗 = 𝑡 (𝛼 − 1)
F𝑡 (𝑥 𝑗 )(

F𝑡 (𝑥 𝑗 ) + 1
)2 +O

(
|𝛼 − 1|2

)
𝑥̂ ′𝑗 − 𝑥 ′𝑗 = 𝑡 (𝛼 − 1)

F𝑡 (𝑥
′
𝑗 )(

F𝑡 (𝑥
′
𝑗 ) + 1

)2 +O
(
|𝛼 − 1|2

)
. (7.16)
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Proof. For the first statement, we will only prove the case that (𝑥0, 𝑡) is a left boundary point of 𝔄1, as
the proof of the case that it is a right boundary point is entirely analogous. Observe by the second and
third parts of Proposition 3.3 that (𝑥, 𝑡) ∈ 𝔄𝛼 if and only if

Q0;𝛼
(
F𝑡 (𝑥; 𝛼)

)
= 𝑥

(
F𝑡 (𝑥; 𝛼) + 1

)
− 𝑡F𝑡 (𝑥; 𝛼); Q′

0;𝛼
(
F𝑡 (𝑥; 𝛼)

)
= 𝑥 − 𝑡,

that is, if and only if

Q0;𝛼
(
F𝑡 (𝑥; 𝛼)

)
=

(
F𝑡 (𝑥; 𝛼) + 1

)
Q′

0;𝛼
(
F𝑡 (𝑥; 𝛼)

)
+ 𝑡; 𝑥 = Q′

0;𝛼
(
F𝑡 (𝑥; 𝛼)

)
+ 𝑡. (7.17)

In particular, Equation (7.17) holds if (𝑥, 𝛼) = (𝑥0, 1). Let us produce a solution to Equation (7.17)
for 𝛼 close to 1 by perturbing around 𝑥0. To that end, abbreviate F = F (𝑥0; 1), let x be close to 𝑥0
and abbreviate F ′ = F (𝑥; 𝛼). Then recall from the first statement of Equations (7.7) and (7.6) that for
|𝛼 − 1| sufficiently small and

(
𝑢, 𝑥 − 𝑡𝑢/(𝑢 + 1)

)
in a neighborhood of (F , 𝑥 − 𝑡F/(F + 1)), we have

Q0;𝛼 (𝑢) =
𝑢 + 1

𝛼−1𝑢 + 1
Q0;1(𝛼

−1𝑢) = 𝛼Q0;1(𝛼
−1𝑢) +

𝛼(1 − 𝛼)

𝑢 + 𝛼
Q0;1 (𝛼

−1𝑢)

so that

Q′
0;𝛼 (𝑢) = Q′

0;1(𝛼
−1𝑢) +

𝛼 − 1
𝑢 + 𝛼

(
𝛼

𝑢 + 𝛼
Q0;1(𝛼

−1𝑢) −Q′
0;1(𝛼

−1𝑢)

)
. (7.18)

Thus, denoting F̃ = 𝛼−1F ′, the first statement of Equation (7.17) holds if and only if

𝛼F̃ + 1
F̃ + 1

Q0;1(F̃) = (𝛼F̃ + 1)

(
Q′

0;1(F̃) +
𝛼 − 1
𝛼F̃ + 𝛼

(
1

F̃ + 1
Q0;1(F̃) −Q′

0;1(F̃)

))
+ 𝑡.

This is equivalent to

Q0;1(F̃) = (F̃ + 𝛼−1)Q′
0;1(F̃) +

𝛼 − 1
𝛼F̃ + 𝛼

Q0;1(F̃) +
𝑡 (F̃ + 1)
𝛼F̃ + 1

= (F̃ + 1)Q′
0;1(F̃) + 𝑡 + (𝛼 − 1)

(
Q0;1(F̃)

𝛼F̃ + 𝛼
−

𝑡F̃
𝛼F̃ + 1

− 𝛼−1Q′
0;1(F̃)

)
,

which upon subtracting from the (𝑥, 𝛼) = (𝑥0, 1) case of Equation (7.17) is true if and only if

Q0;1 (F) − (F + 1)Q′
0;1(F) −Q0;1(F̃) − (F̃ + 1)Q′

0;1(F̃)

= (1 − 𝛼)

(
Q0;1(F̃)

𝛼F̃ + 𝛼
−

𝑡F̃
𝛼F̃ + 1

− 𝛼−1Q′
0;1(F̃)

)
. (7.19)

Now, observe that the derivative of Q0;1(𝑧) − (𝑧 + 1)Q′
0;1(𝑧) is −(𝑧 + 1)Q′′

0;1(𝑧), which is bounded
away from 0 for 𝑧 = F since (𝑥, 𝑡) is bounded away from a horizontal tangency location or singularity
of 𝔄. Hence, the implicit function theorem implies that, for |𝛼 − 1| sufficiently small, Equation (7.19)
admits a solution with |F̃ − F | = O

(
|𝛼 − 1|

)
. Taylor expanding then gives

(F̃ − F) (F + 1)Q′′
0;1(F) =

1 − 𝛼

F + 1
(
Q0;1 (F) − (F + 1)Q′

0;1(F) − 𝑡F
)
+O

(
|𝛼 − 1|2

)
=

𝑡 (𝛼 − 1) (F − 1)
F + 1

+O
(
|𝛼 − 1|2

)
, (7.20)
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where in the last equality we used the first statement of Equation (7.17). Inserting this into the second
statement of Equation (7.17) and applying Equation (7.18) yields

𝑥 − 𝑥0 = Q′
0;𝛼 (F ′) −Q′

0;1(F)

= Q′
0;1(F̃) −Q′

0;1(F) +
𝛼 − 1
𝛼F̃ + 𝛼

(Q0;1(F̃)

F̃ + 1
−Q′

0;1(F̃)

)
= (F̃ − F)Q′′

0;1(F) +
𝛼 − 1
F + 1

(Q0;1(F)

F + 1
−Q′

0;1 (F)

)
+O

(
|𝛼 − 1|2

)
=

𝑡 (𝛼 − 1)F
(F + 1)2 +O

(
|𝛼 − 1|2

)
,

where in the last equality we applied Equation (7.20) and first statement of Equation (7.17). Setting
𝑥 ′0 = 𝑥 implies the first statement of Equation (7.3).

The second statement of Lemma 7.3 that
{
𝑥 : (𝑥, 𝑡) ∈ 𝔏𝛼

}
is a union of k disjoint open intervals

follows from the first statement and the fact that L𝛼 is continuous in 𝛼. The estimates (7.16) follow from
Equation (7.15) and the assumption that

{
𝑥 : (𝑥, 𝑡) ∈ 𝔏1

}
is bounded away from a cusp or horizontal

tangency location of 𝔄1. �

7.3. Proof of Proposition 5.4

In this section, we establish Proposition 5.4; throughout, we recall the notation from that proposition
and from Section 7.1. In particular, 𝔱0 and 𝛼0 are given by Equation (7.2). We first define a height
function 𝐻𝛼 from F𝑡 (𝑥; 𝛼) for 𝛼 ∈ R with |𝛼 − 1| sufficiently small, whose complex slope is given by
F𝑡−𝔱0 (𝑥; 𝛼). The eventual tilted height function 𝐻∗ : 𝔇 → R given by Proposition 5.4 will be defined
by setting 𝐻∗ = 𝐻𝛼0 .

To that end, first set 𝐻𝛼 (𝑣0) = 𝐻∗(𝑣0) for 𝑣0 =
(
𝔞(𝔱1), 𝔱1

)
equal to the southwest corner of 𝜕𝔇.

To define 𝐻𝛼 on the remainder of 𝔇, it suffices to fix its gradient almost everywhere. Similarly to in
Equation (3.1), for any 𝑢 = (𝑥, 𝑠) ∈ 𝔇 such that (𝑥, 𝑠−𝔱0) ∈ 𝔏𝛼, define ∇𝐻𝛼 (𝑢) =

(
𝜕𝑥𝐻𝛼 (𝑢), 𝜕𝑡𝐻𝛼 (𝑢)

)
by setting

𝜕𝑥𝐻𝛼 (𝑢) = −𝜋−1 arg∗ F𝑠−𝔱0 (𝑥; 𝛼); 𝜕𝑡𝐻𝛼 (𝑢) = 𝜋−1 arg∗
(
F𝑠−𝔱0 (𝑥; 𝛼) + 1

)
, (7.21)

where we observe that we are implementing the same shift by 𝔱0 as in Equation (7.3).
If instead 𝑢 = (𝑥, 𝑠) ∈ 𝔇 satisfies (𝑥, 𝑠 − 𝔱0) ∉ 𝔏𝛼, then define ∇𝐻𝛼 (𝑢) as follows.

(1) For 𝛼 = 1, set ∇𝐻𝛼 (𝑢) = ∇𝐻∗(𝑢) ∈
{
(0, 0), (1, 0), (1,−1)

}
.

(2) For 𝛼 ≠ 1 with |𝛼 − 1| sufficiently small, define ∇𝐻𝛼 (𝑢) so that it remains among the three frozen
slopes

{
(0, 0), (1, 0), (1,−1)

}
and is continuous in 𝛼 at almost every 𝑢 ∈ 𝔇.

For |𝛼 − 1| sufficiently small, the existence of ∇𝐻𝛼 (𝑢) satisfying these properties follows from the
fact that 𝔄𝛼 deforms continuously in 𝛼 (by Lemma 7.3); alternatively, it can be viewed as a consequence
of [ADPZ20, Remark 8.6]. This determines ∇𝐻𝛼 (𝑢) for almost all 𝑢 ∈ 𝔇, fixing 𝐻𝛼 : 𝔇 → R.

We then define 𝐻∗ : 𝔇 → R and ℎ̂ : 𝜕𝔇 → R by setting

𝐻∗ = 𝐻𝛼0 ; ℎ̂ = 𝐻∗ |𝜕𝔇.

By Lemma 7.1, the complex slope F𝑡 (𝑥; 𝛼0) associated with 𝐻∗ satisfies the complex Burgers
equation (3.2). We will later use [ADPZ20, Remark 8.6] or [ADPZ20, Theorem 8.3] to show that
𝐻∗ ∈ Adm(𝔇; ℎ̂) is a maximizer of E .

Recalling the liquid region 𝔏 associated with 𝐻∗ from Proposition 5.4, observe that

𝔏 =
{
𝑢 ∈ 𝔇 : 𝑢 − (0, 𝔱0) ∈ 𝔏𝛼

}
. (7.22)
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Given these points, we can now establish Proposition 5.4. In the below, we will frequently use the
identity

(𝛼0 − 1) (𝑡 − 𝔱0) = 𝜔(𝑡), for any 𝑡 ∈ R, (7.23)

which follows from Equations (5.2) and (7.2).

Proof of Proposition 5.4. We will verify that 𝐻∗ satisfies the second, third, first and fourth statement of
the proposition, in this order. Throughout this proof, we fix 𝑡 ∈ {𝔱1, 𝔰, 𝔱2}.

We first establish the second statement of the proposition. To show Equation (5.4), observe from the
(𝑡, 𝛼) = (𝑡 − 𝔱0, 𝛼) case of the second statement of Lemma 7.3 that the time slice {𝑥 : (𝑥, 𝑡 − 𝔱0) ∈ 𝔏𝛼}

is also a union of k disjoint open intervals (𝑥̂1, 𝑥̂
′
1) ∪ (𝑥̂2, 𝑥̂

′
2) ∪ · · · ∪ (𝑥̂𝑘 , 𝑥̂

′
𝑘 ). Moreover, for any index

1 ≤ 𝑖 ≤ 𝑘 , we have

𝑥̂𝑖 − 𝑥𝑖 = (𝑡 − 𝔱0) (𝛼 − 1)
F𝑡−𝔱0 (𝑥𝑖; 1)(

F𝑡−𝔱0 (𝑥𝑖; 1) + 1
)2 +O

(
|𝛼 − 1|2

)
= (𝑡 − 𝔱0) (𝛼 − 1)

𝑓𝑡 (𝑥𝑖)(
𝑓𝑡 (𝑥𝑖) + 1

)2 +O
(
|𝛼 − 1|2

)
= (𝑡 − 𝔱0) (𝛼 − 1)Υ𝑡 (𝑥𝑖) +O

(
|𝛼 − 1|2

)
, (7.24)

where to deduce the second equality we used Equation (7.3) and to deduce the third we used the
definition (5.1) of Υ𝑡 . Implementing similar reasoning for the difference of 𝑥̂ ′𝑖 − 𝑥 ′𝑖 , setting 𝛼 = 𝛼0 in
Equation (7.24), applying Equations (7.23) and (7.22) and using the fact that |𝛼0 − 1| = O

(
|𝜉1 | + |𝜉2 |

)
,

we deduce Equation (5.4).
We next show 𝐻∗(𝑢) = 𝐻∗(𝑢) for 𝑢 ∈ 𝔇with 𝑢 ∉ 𝔏∪𝔏. We will more generally prove 𝐻𝛼 (𝑢) = 𝐻∗(𝑢)

for (𝑥, 𝑡) = 𝑢 ∈ 𝔇 satisfying (𝑥, 𝑡−𝔱0) ∉ 𝔏1∪𝔏𝛼, for |𝛼−1| sufficiently small. From this, 𝐻∗(𝑢) = 𝐻∗(𝑢)
would follow by taking 𝛼 = 𝛼0.

First, we verify that 𝐻𝛼 (𝑢) is constant for 𝑢 ∈ 𝜕ea(𝔇) and for 𝑢 ∈ 𝜕we(𝔇); we only consider the case
𝑢 ∈ 𝜕ea(𝔇) as the proof is entirely analogous if 𝑢 ∈ 𝜕we(𝔇). By Assumption 5.2, 𝜕ea(𝔇) is either disjoint
with 𝔏 or is a subset of 𝜕𝔓. In the former case, 𝜕ea(𝔇) is bounded away from 𝔏, so the first statement
in Lemma 7.3 implies for |𝛼 − 1| sufficiently small that 𝜕ea(𝔇) is disjoint from 𝔏𝛼 + (0, 𝔱0). Since 𝐻𝛼

is Lipschitz, ∇𝐻1(𝑢) = ∇𝐻∗(𝑢), the gradient ∇𝐻𝛼 (𝑢)
{
(0, 0), (1, 0), (1,−1)} and is continuous in 𝛼 for

almost every 𝑢 ∉ 𝔏𝛼 + (0, 𝔱0) and 𝐻∗ is constant along 𝜕ea(𝔇), it follows that 𝐻𝛼 is also constant along
𝜕ea(𝔇).

If instead 𝜕ea(𝔇) and 𝔏 are not disjoint, then 𝜕ea(𝔇) ⊂ 𝜕𝔓, so 𝜕ea(𝔇) is tangent to 𝔏 at some point
(𝑥0, 𝑡0). In particular, the shift 𝜕ea(𝔇) − (0, 𝔱0) is tangent to 𝔄1 at (𝑥0, 𝑡0 − 𝔱0). Then, it is quickly verified
from Equations (7.6) and (7.7) that 𝜕ea(𝔇) − (0, 𝔱0) remains tangent to 𝔄𝛼. In particular, 𝜕ea(𝔇) is
disjoint from the open set 𝔏𝛼 + (0, 𝔱0). Then following the same reasoning as above gives that 𝐻𝛼 is
constant along 𝜕ea(𝔇).

This verifies that 𝐻𝛼 and 𝐻∗ are constant along 𝜕ea(𝔇); by similar reasoning, they are also constant
along 𝜕we (𝔇). This, together with the fact that they coincide at the southwest vertex of 𝔇, implies that
𝐻𝛼 = 𝐻∗ along 𝜕we(𝔇). Since the definition of ∇𝐻𝛼 implies that ∇𝐻𝛼 (𝑥, 𝑡) = ∇𝐻∗(𝑥, 𝑡) whenever
(𝑥, 𝑡− 𝔱0) ∉ 𝔏1 ∪𝔏𝛼, to show 𝐻𝛼 (𝑥, 𝑡) = 𝐻∗(𝑥, 𝑡) for (𝑥, 𝑡− 𝔱0) ∉ 𝔏1 ∪𝔏𝛼, it suffices to show that height
differences are ‘conserved along liquid regions’ of 𝜕no(𝔇) and 𝜕so (𝔇). More specifically, let us fix a
left and right endpoint

(
𝐸1 (𝛼), 𝑡 − 𝔱0

)
,
(
𝐸2 (𝛼), 𝑡 − 𝔱0

)
∈ 𝔄𝛼, respectively, such that 𝐸 𝑗 (𝛼) is continuous

in 𝛼 for each 𝑗 ∈ {1, 2} and such that
(
𝑥, 𝑡 − 𝔱0

)
∈ 𝔏𝛼 for each 𝐸1(𝛼) < 𝑥 < 𝐸2 (𝛼). Abbreviating

𝐸1 = 𝐸1 (1) and 𝐸2 = 𝐸2(1), we must show that(
𝐻𝛼

(
𝐸2 (𝛼), 𝑡

)
− 𝐻𝛼

(
𝐸1(𝛼), 𝑡

) )
−

(
𝐻∗(𝐸2, 𝑡) − 𝐻∗(𝐸1, 𝑡)

)
=

(
𝐸2 (𝛼) − 𝐸2

)
𝜕𝑥𝐻

∗(𝐸2, 𝑡) −
(
𝐸1(𝛼) − 𝐸1

)
𝜕𝑥𝐻

∗(𝐸1, 𝑡). (7.25)
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Indeed, the equality 𝐻𝛼 (𝑢) = 𝐻∗(𝑢) for (𝑥, 𝑡) = 𝑢 ∈ 𝔇 satisfying (𝑥, 𝑡 − 𝔱0) ∉ 𝔏1 ∪ 𝔏𝛼 would then
follow from the fact that ∇𝐻𝛼 (𝑢) = ∇𝐻∗(𝑢) for all such u and the fact that 𝐻𝛼 and 𝐻∗ coincide at the
northwest and southwest corners of 𝔇.

Observe that Equation (7.25) holds at 𝛼 = 1, since 𝐻1 = 𝐻∗. Thus, it suffices to show that the
derivatives with respect to 𝛼 of both sides of Equation (7.25) are equal, namely,

𝜕𝛼

(
𝐻𝛼

(
𝐸2(𝛼), 𝑡

)
− 𝐻𝛼

(
𝐸1 (𝛼), 𝑡

) )
= 𝜕𝑥𝐻

∗(𝐸2, 𝑡)𝜕𝛼𝐸2 (𝛼) − 𝜕𝑥𝐻
∗(𝐸1, 𝑡)𝜕𝛼𝐸1 (𝛼). (7.26)

To do this, observe from Equation (7.21) that the left side of Equation (7.26) is given by

𝜕𝛼

(
𝐻𝛼

(
𝐸2(𝛼), 𝑡

)
− 𝐻𝛼

(
𝐸1 (𝛼), 𝑡

) )
= 𝜕𝛼

∫ 𝐸2 (𝛼)

𝐸1 (𝛼)
𝜕𝑥𝐻𝛼 (𝑥, 𝑡)d𝑥

= −𝜋−1𝜕𝛼

( ∫ 𝐸2 (𝛼)

𝐸1 (𝛼)
Im logF𝑡−𝔱0 (𝑥; 𝛼)d𝑥

)
.

Thus,

𝜕𝛼

(
𝐻𝛼

(
𝐸2 (𝛼), 𝑡

)
− 𝐻𝛼

(
𝐸1 (𝛼), 𝑡

) )
= −𝜋−1 Im

∫ 𝐸2 (𝛼)

𝐸1 (𝛼)
𝜕𝛼 logF𝑡−𝔱0 (𝑥; 𝛼)d𝑥

+ 𝜋−1 Im
(

logF𝑡−𝔱0

(
𝐸1(𝛼); 𝛼

) )
𝜕𝛼𝐸1(𝛼)

− 𝜋−1 Im
(

logF𝑡−𝔱0

(
𝐸2 (𝛼); 𝛼

) )
𝜕𝛼𝐸2(𝛼). (7.27)

Letting |𝛼 − 1| tend to 0 in the first statement of Lemma 7.2 gives

𝜕𝛼 logF𝑡−𝔱0 (𝑥; 𝛼) = (𝑡 − 𝔱0)𝜕𝑥

(
F𝑡 (𝑥; 𝛼)

F𝑡 (𝑥; 𝛼) + 1

)
+ 1.

Inserting this into Equation (7.27), using the fact that F𝑡−𝔱0

(
𝐸𝑖 (𝛼); 𝛼

)
∈ R, using the equality

(following from Equation (7.21) and the continuity of ∇𝐻𝛼 almost everywhere in 𝔏𝛼 + (0, 𝔱0))

𝜋−1 Im logF𝑡−𝔱0

(
𝐸𝑖 (𝛼); 𝛼

)
= −𝜕𝑥𝐻𝛼

(
𝐸𝑖 (𝛼), 𝑡

)
= −𝜕𝑥𝐻

∗(𝐸𝑖 , 𝑡)

and using the fact that

Im
∫ 𝐸2 (𝛼)

𝐸1 (𝛼)

(
(𝑡 − 𝔱0)𝜕𝑥

( F𝑡−𝔱0 (𝑥; 𝛼)
F𝑡−𝔱0 (𝑥; 𝛼) + 1

)
+ 1

)
d𝑥

= (𝑡 − 𝔱0) Im

(
F𝑡−𝔱0

(
𝐸2 (𝛼)

)
F𝑡−𝔱0

(
𝐸2(𝛼)

)
+ 1

−
F𝑡−𝔱0

(
𝐸1(𝛼)

)
F𝑡−𝔱0

(
𝐸1(𝛼)

)
+ 1

+ 𝐸2 (𝛼) − 𝐸1(𝛼)

)
= 0,

then yields Equation (7.26). As mentioned above, this implies Equation (7.25) and hence that 𝐻∗(𝑥, 𝑡) =
𝐻∗(𝑥, 𝑡) for (𝑥, 𝑡) ∈ 𝔇 with (𝑥, 𝑡) ∉ 𝔏 ∪ 𝔏. This verifies that 𝐻∗ satisfies the second statement of the
proposition.

To show that 𝐻∗ satisfies the third statement, we must verify Equation (5.5) for sufficiently small Δ .
Let us assume in what follows that (𝑥, 𝑡) and (𝑥̂, 𝑡) are right endpoints of 𝔏 and 𝔏, respectively, as the
proof in the case when they are left endpoints is entirely analogous. Then we may assume that Δ ≤ 0,
for otherwise the fact that 𝜕𝑥𝐻∗(𝑥, 𝑡) = 𝜕𝑥𝐻

∗(𝑥̂, 𝑡) (which holds by the almost everywhere continuity
of ∇𝐻𝛼 in 𝛼, together with the facts that (𝑥, 𝑡) ∉ 𝔏 and (𝑥̂, 𝑡) ∉ 𝔏) implies 𝐻∗(𝑥 + Δ , 𝑡) − 𝐻∗(𝑥, 𝑡) =
Δ𝜕𝑥𝐻

∗(𝑥, 𝑡) = Δ𝜕𝑥𝐻
∗(𝑥̂, 𝑡) = 𝐻∗(𝑥̂ + Δ , 𝑡) − 𝐻∗(𝑥̂, 𝑡).
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So we must show Equation (5.5) for Δ ≤ 0. Since it holds at Δ = 0 and since |𝛼− 1| = O
(
|𝜉1 | + |𝜉2 |

)
,

it suffices to show that

𝜕𝑥𝐻
∗(𝑥̂ + Δ , 𝑡) = 𝜕𝑥𝐻

∗(𝑥 + Δ , 𝑡) +O
(
|Δ |1/2 |𝛼0 − 1| + |Δ |

)
,

for sufficiently small Δ . In view of Equation (7.21), this is equivalent to showing that



 Im F𝑡−𝔱0 (𝑥̂ + Δ; 𝛼0)

F𝑡−𝔱0 (𝑥̂; 𝛼0)
− Im

F𝑡−𝔱0 (𝑥 + Δ; 1)
F𝑡−𝔱0 (𝑥; 1)





 = O
(
|Δ |1/2 |𝛼0 − 1| + |Δ |

)
. (7.28)

To that end, observe from Equation (3.6) that

F𝑡−𝔱0 (𝑥 + Δ; 1) − F𝑡−𝔱0 (𝑥; 1) =
(2

(
F𝑡−𝔱0 (𝑥; 1) + 1

)
Q′′

0;1
(
F𝑡−𝔱0 (𝑥; 1)

) )1/2
|Δ |1/2 +O

(
|Δ |3/2);

F𝑡−𝔱0 (𝑥̂ + Δ; 𝛼0) − F𝑡−𝔱0 (𝑥̂; 𝛼0) =

( 2
(
F𝑡−𝔱0 (𝑥̂; 𝛼0) + 1

)
Q′′

0;𝛼0

(
F𝑡−𝔱0 (𝑥̂; 𝛼0)

) )1/2
|Δ |1/2 +O

(
|Δ |3/2) . (7.29)

Now, observe, for uniformly bounded 𝑢 ∈ C, we have

F𝑡−𝔱0 (𝑥̂; 𝛼0) − F𝑡−𝔱0 (𝑥; 1)


 = O

(
|𝛼0 − 1|

)
;



Q′′
0;𝛼0

(𝑢) −Q′′
0;1(𝑢)



 = O
(
|𝛼0 − 1|

)
, (7.30)

where the former estimate follows from Equation (7.20) and the latter from Equation (7.6). Applying the
two approximations in Equations (7.29) and (7.30) (with the fact that F𝑡−𝔱0 (𝑥, 1) and Q′′

0;1
(
F𝑡−𝔱0 (𝑥; 1)

)
are bounded away from 0) then yields Equation (7.28). As mentioned above, this implies Equation (5.4),
thereby verifying that 𝐻∗ satisfies the third statement of the proposition.

We next show that 𝐻∗ satisfies the first statement of the proposition. To that end, observe from the
second and third statements of the proposition (together with Remark A.2), it suffices to show for any
(𝑥, 𝑡), (𝑥 ′, 𝑡) ∈ 𝔏 ∩ 𝔏 such that (𝑧, 𝑡) ∈ 𝔏 ∩ 𝔏 for each 𝑧 ∈ [𝑥, 𝑥 ′] that

𝐻∗(𝑥 ′, 𝑡) − 𝐻∗(𝑥, 𝑡) = 𝐻∗(𝑥 ′, 𝑡) − 𝐻∗(𝑥, 𝑡) + 𝜔(𝑡)
(
Ω𝑡 (𝑥

′) −Ω𝑡 (𝑥)
)
+O

(
|𝛼0 − 1|3/2) . (7.31)

This will follow from a suitable application of Lemma 7.2. Indeed, we have(
𝐻∗(𝑥 ′, 𝑡) − 𝐻∗(𝑥 ′, 𝑡)

)
−

(
𝐻∗(𝑥, 𝑡) − 𝐻∗(𝑥, 𝑡)

)
=

∫ 𝑥′

𝑥

(
𝜕𝑧𝐻

∗(𝑧, 𝑡) − 𝜕𝑧𝐻
∗(𝑧, 𝑡)

)
d𝑧

= 𝜋−1
∫ 𝑥′

𝑥
Im

(
logF𝑡−𝔱0 (𝑧; 1) − logF𝑡−𝔱0 (𝑧; 𝛼0)

)
d𝑧

= 𝜋−1(𝑡 − 𝔱0) (𝛼0 − 1) Im
∫ 𝑥′

𝑥
𝜕𝑧

( F𝑡−𝔱0 (𝑧; 1)
F𝑡−𝔱0 (𝑧; 1) + 1

)
d𝑧 +O

(
|𝛼0 − 1|3/2)

= 𝜋−1𝜔(𝑡) Im
(

𝑓𝑡 (𝑥
′)

𝑓𝑡 (𝑥 ′) + 1
−

𝑓𝑡 (𝑥)

𝑓𝑡 (𝑥) + 1

)
+O

(
|𝛼0 − 1|3/2)

= 𝜔(𝑡)
(
Ω𝑡 (𝑥

′) −Ω𝑡 (𝑥)
)
+O

(
|𝛼0 − 1|3/2) ,

where the second equality follows from Equation (7.21), the third from Lemma 7.2, the fourth from
Equations (7.3) and (7.23) and the fifth from Equation (5.1). This confirms Equation (7.31) and thus the
first statement of the proposition.

To establish the fourth statement of the proposition, we must verify that 𝔇 satisfies the five assump-
tions listed in Assumption 4.1 with respect to 𝐻∗. We have already verified the first, namely, that 𝐻∗ is
constant along 𝜕ea(𝔇) and 𝜕we(𝔇). That the third holds follows from Lemma 7.3, together with the fact
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that 𝔇 satisfies the third assumption in Assumption 4.1 with respect to 𝐻∗ (by Assumption 5.2). That
the fourth holds follows from the continuity of F in 𝛼, together with the fact that 𝔇 satisfies the fourth
assumption in Assumption 4.1 with respect to 𝐻∗. The fifth follows from the fact that F𝑡 (𝑥; 𝛼0) was
defined to satisfy Equation (7.5). To verify the second, first suppose that 𝜕no(𝔇) ∩ 𝔏 is connected and
nonempty. Then, 𝔏 admits an extension beyond the north boundary of 𝔇, and so 𝐻∗ admits an extension
to some time 𝔱′ > 𝔱2. That 𝐻∗ does as well then follows from Lemma 7.3 and the continuity of 𝐻𝛼 in 𝛼.

If instead 𝜕no(𝔇) is packed with respect to h, then we must show that ℎ̂(𝑣) = 𝐻∗(𝑣) for each
𝑣 ∈ 𝜕no (𝔇). To that end, observe since the northwest corner

(
𝔞(𝔱2), 𝔱2

)
and northeast corner

(
𝔟(𝔱2), 𝔱2

)
of 𝔇 are outside of (and thus bounded away from) 𝔏, it follows from the second statement of the
proposition that 𝐻∗ and 𝐻∗ coincide on them. Since 𝜕no (𝔇) is packed with respect to h, we must have
that 𝜕𝑥𝐻∗(𝑣) = 1 for each 𝑣 ∈ 𝜕no(𝔇). Since 𝐻∗ is 1-Lipschitz, it follows that 𝐻∗(𝑣) = 𝐻∗(𝑣) for each
𝑣 ∈ 𝜕no(𝔇), implying that 𝜕no(𝔇) is packed with respect to ℎ̂. This shows that 𝐻∗ satisfies the four
properties listed by the proposition.

It remains to show that 𝐻∗ ∈ Adm(𝔇; ℎ̂) is a maximizer of E . This follows from checking the frozen
star ray property in [ADPZ20, Definition 8.2], from which the claim follows by [ADPZ20, Remark 8.6]
or [ADPZ20, Theorem 8.3]. We only briefly outline this verification here, as it is very similar to what
was done in [ADPZ20]. Item i), ii) and iii) of the frozen star ray property in [ADPZ20, Definition 8.2]
are quickly verified in our setting since the domain 𝔇 satisfies Assumption 4.1. Item iv) in [ADPZ20,
Definition 8.2] may fail to hold in our setting since, if we parametrize the leftmost and rightmost arctic
boundaries of 𝐻∗ by 𝐸1 (𝑡) = inf

{
𝑥 : (𝑥, 𝑡) ∈ 𝔏

}
by 𝐸2 (𝑡) = sup

{
𝑥 : (𝑥, 𝑡) ∈ 𝔏

}
, then the two frozen

regions
{
(𝑥, 𝑡) : 𝔞(𝑡) ≤ 𝑥 ≤ 𝐸1(𝑡)

}
and

{
(𝑥, 𝑡) : 𝐸1(𝑡) ≤ 𝑥 ≤ 𝔟(𝑡)

}
may not be covered by the family

of rays as in [ADPZ20, Definition 8.2]. However, in this case the proof of [ADPZ20, Theorem 8.3] still
applies. Indeed, in the region not covered by those rays, one can extend the function Φ(𝑧) appearing
in [ADPZ20, Proposition 8.1] continuously to be a constant function, and the proofs of [ADPZ20,
Proposition 8.1, Theorem 8.3, and Remark 8.6] still continue to go through. This idea was already
applied in a completely analogous way in the short proof of [ADPZ20, Theorem 8.4] (where the same
phenomenon arose), so we refer there for a more detailed discussion. �

Appendix A. Complex Burgers equation

In this section, we collect some quantitative results on the complex Burgers equation and establish
Lemma 3.7 and Lemma 7.1. We recall the polygonal domain 𝔓 from Definition 2.2, the associated
boundary height function ℎ : 𝜕𝔓 ↦→ R, the maximizer 𝐻∗ ∈ Adm(𝔓; ℎ) of E from Equation (2.4),
the complex slope 𝑓𝑡 (𝑥) associated with 𝐻∗ through Equation (3.1) and the liquid region 𝔏 = 𝔏(𝔓, ℎ)
and arctic boundary 𝔄 = 𝔄(𝔓, ℎ) from Equations(2.5) and (2.6). We further recall that there exists an
analytic function 𝑄0 satisfying Equation (3.3). If (𝑥, 𝑡) ∈ 𝔄 and 𝑓𝑡 (𝑥) is a triple root of Equation (3.3),
then (𝑥, 𝑡) is a cusp of 𝔄. If the tangent line through a point 𝑢 ∈ 𝔄 to 𝔄 has slope in the set {0, 1,∞},
then u is a tangency location of 𝔄; in this case, the slope of u is the slope of this tangent line.

Given this notation, the following result provides the behavior of the complex slope 𝑓𝑡 (𝑥) along
generic points of 𝔄. It follows quickly from [KO07, Section 1.6] and [ADPZ20, Theorem 1.8(c)],
together with the analyticity of 𝑓 (𝑥, 𝑡), and it can be also deduced directly from (3.3) by a Taylor
expansion, so its proof is omitted.

Lemma A.1 [KO07, ADPZ20]. For any fixed (𝑥0, 𝑡) ∈ 𝔄 which is not a tangency location or cusp of 𝔄,
there exists a constant 𝐶 = 𝐶 (𝑥0, 𝑡,𝔓) > 0 and a neighborhood 𝔘 ⊂ 𝔓 of (𝑥0, 𝑡) such that the following
holds. For (𝑥, 𝑡) ∈ 𝔘 ∩ 𝔏, we have

𝑓𝑡 (𝑥) = 𝑓𝑡 (𝑥0) + (𝐶𝑥 − 𝐶𝑥0)
1/2 +O

(
|𝑥 − 𝑥0 |

3/2) ,
where the implicit constant in the error only depends on 𝔓 and the distance from (𝑥, 𝑡) to a tangency
location or cusp of 𝔄. Here, the branch of the root is so that it lies in H−.
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Remark A.2. Suppose 𝑢 = (𝑥, 𝑡) ∈ 𝔏 is bounded away from a cusp or tangency location of 𝔄;
let 𝑑𝑢 = inf

{
|𝑥 − 𝑥0 | : (𝑥0, 𝑡) ∈ 𝔄

}
. Then, the fact that 𝑓𝑡 (𝑥0) ∈ R if (𝑥0, 𝑡) ∈ 𝔄 (from (3.1)),

Lemma A.1 and Equation (3.1) together imply that there exists a small constant 𝔠 > 0 such that
𝔠𝑑1/2 <



𝜕𝑥𝐻∗(𝑥, 𝑡) − 𝜕𝑥𝐻
∗(𝑥0, 𝑡)



 < 𝔠−1𝑑1/2.

Now, let us show Lemma 3.7.

Proof of Lemma 3.7. Throughout this proof, let (𝑥̃, 𝑡̃) ∈ 𝔄 be some point on the arctic boundary
𝔄 = 𝔄(𝔓) near (𝑥, 𝑡). Abbreviating 𝑓 = 𝑓𝑡 (𝑥) and 𝑓̃ = 𝑓𝑡 (𝑥̃), Equation (3.3) and the third part of
Proposition 3.3 together imply

𝑄0 ( 𝑓 ) = 𝑥( 𝑓 + 1) − 𝑡 𝑓 ; 𝑄 ′
0 ( 𝑓 ) = 𝑥 − 𝑡; 𝑄0 ( 𝑓̃ ) = 𝑥( 𝑓̃ + 1) − 𝑡 𝑓̃ ; 𝑄 ′

0( 𝑓̃ ) = 𝑥 − 𝑡. (A.1)

From this, we deduce

𝑄0( 𝑓 ) = ( 𝑓 + 1)𝑄 ′
0( 𝑓 ) + 𝑡; 𝑄0 ( 𝑓̃ ) = ( 𝑓̃ + 1)𝑄 ′

0( 𝑓̃ ) + 𝑡̃,

which together imply

𝑄0 ( 𝑓̃ ) −𝑄0 ( 𝑓 ) = ( 𝑓 + 1)
(
𝑄 ′

0( 𝑓̃ ) −𝑄 ′
0( 𝑓 )

)
+ ( 𝑓̃ − 𝑓 )𝑄 ′

0( 𝑓̃ ) + 𝑡̃ − 𝑡. (A.2)

We will first use Equation (A.2) to approximately solve for 𝑓̃ in terms of ( 𝑓 , 𝑡̃, 𝑡) and then use
Equation (A.1) to solve for 𝑥̃ in terms of (𝑥, 𝑓 , 𝑡̃, 𝑡). To that end, applying a Taylor expansion in
Equation (A.2) (and using the fact that (𝑥̃, 𝑡̃) is close to (𝑥, 𝑡), which implies that 𝑓̃ is close to f by the
analyticity of 𝑓𝑡 (𝑥) for (𝑥, 𝑡) ∈ 𝔏(𝔓)) gives

( 𝑓̃ − 𝑓 )𝑄 ′
0( 𝑓 ) +

( 𝑓̃ − 𝑓 )2

2
𝑄 ′′

0 ( 𝑓 ) +O
(
| 𝑓̃ − 𝑓 |3

)
= ( 𝑓 + 1)

(
( 𝑓̃ − 𝑓 )𝑄 ′′

0 ( 𝑓 ) +
𝑄 ′′′

0 ( 𝑓 )

2
( 𝑓̃ − 𝑓 )2 +O

(
| 𝑓̃ − 𝑓 |3

) )
+ ( 𝑓̃ − 𝑓 )𝑄 ′

0( 𝑓 ) + ( 𝑓̃ − 𝑓 )2𝑄 ′′
0 ( 𝑓 ) +O

(
| 𝑓̃ − 𝑓 |3

)
+ 𝑡̃ − 𝑡.

This implies

( 𝑓̃ − 𝑓 ) ( 𝑓 + 1)𝑄 ′′
0 ( 𝑓 ) +

( 𝑓̃ − 𝑓 )2

2
(
𝑄 ′′

0 ( 𝑓 ) + ( 𝑓 + 1)𝑄 ′′′
0 ( 𝑓 )

)
+O

(
| 𝑓̃ − 𝑓 |3

)
= 𝑡 − 𝑡̃ .

In particular, it follows that 𝑓̃ − 𝑓 = O
(
|̃𝑡 − 𝑡 |

)
and, more precisely, that

𝑓̃ − 𝑓 =
𝑡 − 𝑡̃

( 𝑓 + 1)𝑄 ′′
0 ( 𝑓 )

−
(𝑡 − 𝑡̃)2

2( 𝑓 + 1)3𝑄 ′′
0 ( 𝑓 )

3
(
𝑄 ′′

0 ( 𝑓 ) + ( 𝑓 + 1)𝑄 ′′′
0 ( 𝑓 )

)
+O

(
|𝑡 − 𝑡̃ |3

)
. (A.3)

Since Equation (A.1) indicates that

𝑥 = 𝑄 ′
0 ( 𝑓 ) + 𝑡; 𝑥̃ = 𝑄 ′

0( 𝑓̃ ) + 𝑡̃,

subtracting, applying Equation (A.3) and Taylor expanding again gives

𝑥̃ − 𝑥 = 𝑄 ′
0 ( 𝑓̃ ) −𝑄 ′

0 ( 𝑓 ) + 𝑡̃ − 𝑡 = ( 𝑓̃ − 𝑓 )𝑄 ′′
0 ( 𝑓 ) + ( 𝑓̃ − 𝑓 )2 𝑄

′′′
0 ( 𝑓 )

2
+ 𝑡̃ − 𝑡 +O

(
| 𝑓̃ − 𝑓 |3

)
=

𝑓 (̃𝑡 − 𝑡)

𝑓 + 1
−

(̃𝑡 − 𝑡)2

2( 𝑓 + 1)3𝑄 ′′
0 ( 𝑓 )

+O
(
|̃𝑡 − 𝑡 |3

)
,

which implies the lemma upon matching with Equation (2.7). �
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Next, we establish Lemma 7.1.

Proof of Lemma 7.1. It suffices to establish Equation (7.9), as Equation (7.10) follows from it. Since
the derivation of both statements of Equation (7.9) are similar, we only establish the former. To that end,
let (𝑥 ′, 𝑡) be some point close to (𝑥, 𝑡), and set F = F𝑡 (𝑥

′). Then, Equation (7.8) implies

Q0 (F) = 𝑥(F + 1) − 𝑡F ; Q0(F ′) = 𝑥 ′(F ′ + 1) − 𝑡F ′,

from which it follows that

Q0(F ′) −Q0(F) = (F ′ − F) (𝑥 − 𝑡) + (𝑥 ′ − 𝑥) (F ′ + 1).

From a Taylor expansion, we deduce

(F ′ − F)
(
Q′

0(F) − 𝑥 + 𝑡) = (𝑥 ′ − 𝑥) (F + 1) +O
(
|F ′ − F |2 + |𝑥 ′ − 𝑥 | |F ′ − F |

)
.

Letting |𝑥 ′ − 𝑥 | tend to 0, it follows that

𝜕𝑥F𝑡 (𝑥) = lim
𝑥′→𝑥

F ′ − F
𝑥 ′ − 𝑥

=
F + 1

Q′
0(F) − 𝑥 + 𝑡

,

which yields the first statement of Equation (7.9). �

Appendix B. Proof of Proposition 2.4

In this section, we establish Proposition 2.4; throughout, we adopt the notation from that proposition.
Let us begin by recalling some results from [DSS10, ADPZ20]. There exist two functions 𝑚, 𝑀 ∈

Adm(𝔓; ℎ) (sometimes called obstacles) such that

𝑚(𝑧) ≤ 𝐻 (𝑧) ≤ 𝑀 (𝑧), for any 𝐻 ∈ Adm(𝔓) and 𝑧 ∈ 𝔓.

They are explicitly given by (see [ADPZ20, Equation (2.23)])

𝑚(𝑣) = max
𝑢∈𝜕𝔓

(
− max

𝑝∈T
〈𝑝, 𝑢 − 𝑣〉 + ℎ(𝑢)

)
, 𝑀 (𝑣) = min

𝑢∈𝜕𝔓

(
max
𝑝∈T

〈𝑝, 𝑣 − 𝑢〉 + ℎ(𝑢)

)
, (B.1)

where we recall the triangle T from Equation (2.1). The following result due to [DSS10] indicates
continuity properties for the gradient ∇𝐻∗ of the maximizer 𝐻∗ of E on 𝔓, as well as convexity
properties for its arctic boundary. In what follows, for any direction 𝜔 ∈ R2 \

{
(0, 0)

}
, the graph 𝐺 ⊂ R2

of a (possibly discontinuous) function (whose domain is possibly disconnected or empty) is said to be
convex (or concave) in the 𝜔 direction, if the following holds. Let 𝜌𝜔 : R2 → R2 denote the rotation
such that 𝜌𝜔 (𝜔) ∈ R>0 · (0, 1) points vertically upwards. Then, each connected component of 𝜌𝜔 (𝐺)

is convex (or concave, respectively).

Proposition B.1 [DSS10, Theorem 1.3 and 4.2]. The following two statements hold.

(1) The gradient ∇𝐻∗ exists and is continuous on the set
{
𝑧 ∈ 𝔓 : 𝑚(𝑧) < 𝐻∗(𝑧) < 𝑀 (𝑧)

}
.

(2) Fix a real number 𝑐 ∈ R; a vertex 𝑝0 ∈
{
(0, 0), (1, 0), (1,−1)

}
∈ T ; and a direction 𝜔 ∈

R
2 \

{
(0, 0)

}
such that

𝜔 · (𝑝 − 𝑝0) > 0, for all 𝑝 ∈ T \ {𝑝0}. (B.2)

Let S denote the interior of the set {𝑧 ∈ 𝔓 : 𝐻∗(𝑧) = 𝑐 + 𝑝0 · 𝑧}; assume that 𝑆 ≠ ∅. Then 𝜕𝑆 ∩𝔓
consists of the union of a convex graph (by above) and a concave graph (by below) in the 𝜔 direction.
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The following lemma, which is a quick consequence of Definition 2.2, provides integrality properties
for the boundary height function ℎ : 𝜕𝔓 → R.

Lemma B.2. The following two statements hold.

(1) For any (𝑥, 𝑡) ∈ (𝑛−1 · Z)2, we have ℎ(𝑥, 𝑡) ∈ 𝑛−1 · Z.
(2) Along any edge of 𝜕𝔓 of slope 0, we have 𝜕𝑥ℎ = 1.
(3) Along any edge of 𝜕𝔓 of slope ∞ or 1, h is constant and takes value ℎ ∈ 𝑛−1 · Z.

Proof. Since (by Definition 2.2) 𝔓 is a polygonal domain and (0, 0) ∈ 𝜕𝔓, each corner vertex of the
polygon 𝔓 lies on (𝑛−1 · Z)2. The fact that h is constant along any edge of 𝜕𝔓 of slope ∞ or 1 and that
𝜕𝑥ℎ = 1 along any edge of 𝜕𝔓 of slope 0, follows from the fact that 𝔓 is polygonal (together with the
conventions relating tilings to height functions described in Section 2.1); this confirms Item B.2 and
the first part of Item B.2 of the lemma. Using this, with the facts that ℎ(0, 0) = 0 and that each corner
vertex of 𝔓 lies on (𝑛−1 ·Z)2, it follows that ℎ(𝑥, 𝑡) ∈ 𝑛−1 ·Zwhenever (𝑥, 𝑡) ∈ (𝑛−1 ·Z)2. This confirms
Item B.2 of the lemma. Then the second part of Item B.2 of the lemma follows from the fact that h is
constant along each edge of 𝜕𝔓 with slope ∞ or 1, and again the fact that each corner vertex of 𝔓 lies
on (𝑛−1 · Z)2. �

The below lemma states, at lattice points 𝑣 ∈ (𝑛−1 · Z)2, that 𝑛 · 𝑚(𝑣) and 𝑛 · 𝑀 (𝑣) are integers.

Lemma B.3. For any point 𝑣 ∈ 𝔓 ∩ (𝑛−1 · Z)2, we have 𝑛 · 𝑚(𝑣) ∈ Z and 𝑛 · 𝑀 (𝑣) ∈ Z.

Proof. The proof follows from analyzing the two formulas (B.1). The proofs are the same for m and M,
so we will only give the proof that 𝑛 · 𝑀 (𝑣) ∈ Z. By Equation (B.1),

𝑀 (𝑣) = min
𝑢∈𝜕𝔓

(
max
𝑝∈T

〈𝑝, 𝑣 − 𝑢〉 + ℎ(𝑢)

)
. (B.3)

Let the minimum over 𝑢 ∈ 𝜕𝔓 in Equation (B.3) be attained at 𝑢∗ ∈ 𝜕𝔓 (if there are multiple such
𝑢∗, then we select one arbitrarily). Further observe that the maximum over 𝑝 ∈ T in Equation (B.3) is
attained at a vertex 𝑝∗ ∈

{
(0, 0), (1, 0), (1,−1)

}
of the triangle T . Without loss of generality (for the

proofs in the remaining cases are entirely analogous), we assume that

𝑝∗ = (0, 0), so that 𝑀 (𝑣) = ℎ(𝑢∗).

Then,

max
{〈
(1, 0), 𝑣 − 𝑢∗

〉
,
〈
(1,−1), 𝑣 − 𝑢∗

〉}
≤ 〈𝑝∗, 𝑣 − 𝑢∗〉 = 0

so that

𝑣 − 𝑢∗ ∈
{
(𝑥, 𝑦) ∈ R≤0 × R : 𝑥 − 𝑦 ≤ 0

}
. (B.4)

Now, let us consider several cases, depending on the side ℓ = ℓ(𝑢∗) of 𝜕𝔓 that 𝑢∗ lies on. If the slope
of ℓ is either 1 or ∞, then Item B.2 of Lemma B.2 yields 𝑀 (𝑣) = ℎ(𝑢∗) ∈ 𝑛−1 · Z. Otherwise, ℓ has
slope 0 (that is, ℓ is a horizontal edge of 𝜕𝔓), and 𝑢∗ is not a corner vertex of 𝔓. Observe in this case
that 𝑢∗ · (0, 1) ∈ 𝑛−1 · Z, that is, the second coordinate of 𝑢∗ is in 𝑛−1 · Z (as the second coordinate of
any horizontal edge of 𝜕𝔓 is in 𝑛−1 · Z).

We claim that either 𝑣 − 𝑢∗ ∈ R≥0 · (0, 1) or 𝑣 − 𝑢∗ ∈ R≥0 · (−1, 1). Otherwise, by Equation (B.4),
there would exist some 𝑢′ ∈

{
𝑢 + R<0 · (1, 0)

}
∩ ℓ (that is, on ℓ and to the left of u) such that

𝑣 − 𝑢′ ∈
{
(𝑥, 𝑦) ∈ R≤0 × R : 𝑥 − 𝑦 ≤ 0

}
. Since

〈
𝑝, (−1, 0)

〉
≤ 0 for each 𝑝 ∈ T , it follows that

max𝑝∈T 〈𝑝, 𝑣−𝑢′〉 ≤ max𝑝∈T 〈𝑝, 𝑣−𝑢∗〉 = 0. Together with the fact that ℎ(𝑢′) = ℎ(𝑢∗)+(1, 0) · (𝑢′−𝑢) <

https://www.cambridge.org/core/terms. https://doi.org/10.1017/fmp.2024.16
Downloaded from https://www.cambridge.org/core. IP address: 18.188.189.204, on 17 Apr 2025 at 23:31:34, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fmp.2024.16
https://www.cambridge.org/core


58 A. Aggarwal and J. Huang

ℎ(𝑢∗) (by Item B.2 of Lemma B.2), this yields

max
𝑝∈T

〈𝑝, 𝑣 − 𝑢′〉 + ℎ(𝑢′) < max
𝑝∈T

〈𝑝, 𝑣 − 𝑢∗〉 + ℎ(𝑢∗),

which is a contradiction. Hence, 𝑣 − 𝑢∗ ∈ R≥0 · (0, 1) or 𝑣 − 𝑢∗ ∈ R≥0 · (−1, 1).
In the first situation 𝑣 − 𝑢∗ ∈ R≥0 · (0, 1), the first coordinates of v and 𝑢∗ coincide. Thus, the first

coordinate of v is in 𝑛−1 ·Z; the same therefore holds for 𝑢∗. Together with the fact that 𝑢∗ · (0, 1) ∈ 𝑛−1 ·Z,
it follows that 𝑢∗ ∈ (𝑛−1 · Z)2, from which Item B.2 of Lemma B.2 yields 𝑀 (𝑣) = ℎ(𝑢∗) ∈ 𝑛−1 · Z.
In the second situation 𝑣 − 𝑢∗ ∈ R≥0 · (0, 1), we have 𝑢∗ · (1, 1) = 𝑣 · (1, 1) ∈ 𝑛−1 · Z. Again together
with the fact that 𝑢∗ · (0, 1) ∈ 𝑛−1 · Z, this yields 𝑢∗ ∈ (𝑛−1 · Z)2, and so Item B.2 of Lemma B.2 gives
𝑀 (𝑣) = ℎ(𝑢∗) ∈ 𝑛−1 · Z. This finishes the proof of Lemma B.3. �

Now, we can establish Proposition 2.4.

Proof of Proposition 2.4. We begin by establishing the first statement of the proposition; observe that it
suffices to address the case when (𝑥, 𝑡) ∈ 𝔓\𝔏, for then the extension to the case (𝑥, 𝑡) ∈ 𝜕𝔏would follow
from the continuity of 𝐻∗. To that end, recall from Lemma 2.3 that ∇𝐻∗(𝑥, 𝑡) ∈

{
(0, 0), (1, 0), (1,−1)

}
,

as (𝑥, 𝑡) ∈ 𝔓 \ 𝔏. Since ∇𝐻∗ is continuous at (𝑥, 𝑡), there exists a small neighborhood N (𝑥, 𝑡) ⊂ 𝔓 of
(𝑥, 𝑡) such that ∇𝐻∗ is constant on N (𝑥, 𝑡), on which it takes one of the values

{
(0, 0), (1, 0), (1,−1)

}
.

We assume in what follows that ∇𝐻∗(𝑢) = (0, 0) for each 𝑢 ∈ N (𝑥, 𝑡), for the other cases can be proven
in an entirely analogous way.

Let S denote the interior of the connected component of
{
𝑢 : 𝐻∗(𝑢) = 𝐻∗(𝑥, 𝑡)

}
containing (𝑥, 𝑡);

then S is nonempty, and we may assume (after taking a subset of N (𝑥, 𝑡) if necessary) that N (𝑥, 𝑡) ⊆ 𝑆.
Take any direction 𝜔 ∈ R2 such that

𝜔 · 𝑝 > 0, for all 𝑝 ∈ T \
{
(0, 0)

}
. (B.5)

This is equivalent to the argument of 𝜔 being in (−𝜋/2, 𝜋/4); we may assume in what follows that the
argument of 𝜔 is in a small neighborhood of −𝜋/8. Then 𝐻∗ is nondecreasing in the 𝜔 direction, and S
is bounded (in the 𝜔 direction) between two Lipschitz curves Ctop and Cbtm. We can assume that the left
and right boundary of S (in 𝜔 direction) are given by points l and r, respectively (as if they are given by
segments in 𝜔 direction, we can slightly perturb 𝜔 to avoid such nongeneric situation). In this way, the
two curves Ctop and Cbtm are from l to r.

First, observe that Ctop, Cbtm ⊄ 𝔓. Indeed, the second statement of Proposition B.1 would otherwise
imply that Ctop is convex and Cbtm is concave in the 𝜔 direction. Hence, Ctop lies below the line connecting
l to r in the 𝜔 direction, while Ctop lies above this line, which is impossible since Ctop bounds S from
above and Cbtm bounds S from below in the 𝜔 direction. Thus, we must instead have Ctop ∪ Cbtm ⊄ 𝔓,
meaning that there exists some point 𝑞 ∈ (Ctop ∪ Cbtm) ∩ 𝜕𝔓 ≠ ∅, with 𝑞 ∉ Ctop ∩ Cbtm. If q belongs to a
vertical boundary edge or a boundary edge with slope 1, then 𝐻∗(𝑥, 𝑡) = ℎ(𝑞) ∈ 𝑛−1 · Z by Item B.2 of
Lemma B.2.

Otherwise, q belongs to a horizontal edge ℓ of 𝜕𝔓, but it is not a corner vertex of 𝔓. Without loss of
generality, we assume (by rotating 𝔓 if necessary) that 𝑞 ∈ Cbtm, meaning that 𝑞 ∉ Ctop. We can take a
small 𝜀 > 0 such that the short interval

[
𝑞 − (𝜀, 0), 𝑞 + (𝜀, 0)

]
also belongs to the same edge ℓ of 𝜕𝔓.

Since 𝑞 ∈ Cbtm \ (Cbtm ∩ Ctop), the point q is in the interior of Cbtm, and so we can take 𝜀 small enough
so that there exists some 𝑟 ≥ 0 such that 𝑞 + (𝜀, 0) + 𝑟𝜔 ∈ 𝑆; see Figure A1 for a depiction. This yields
a contradiction, because

𝐻∗
(
𝑞 + (𝜀, 0) + 𝑟𝜔

)
≥ 𝐻∗

(
𝑞 + (𝜀, 0)

)
= ℎ∗

(
𝑞 + (𝜀, 0)

)
> ℎ∗(𝑞) = 𝐻∗

(
𝑞 + (𝜀, 0) + 𝑟𝜔

)
,

where in the first statement we used the fact that, in the 𝜔 direction, 𝐻∗ is nondecreasing; in the second,
we used that

[
𝑞 − (𝜀, 0), 𝑞 + (𝜀, 0)

]
belongs to a horizontal boundary edge of 𝔓; in the third, we used
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Figure A1. If 𝑞 ∈ Cbtm ∩ 𝜕𝔓 belongs to a horizontal boundary edge of 𝔓, then we can take 𝜀 small
enough so that there exists some 𝑟 ≥ 0 such that 𝑞 + (𝜀, 0) + 𝑟𝜔 ∈ 𝑆.

Item B.2 of Lemma B.2, and in the fourth, we used that 𝑞, 𝑞 + (𝜀, 0) + 𝑟𝜔 ∈ 𝑆. This confirms that
𝐻∗(𝑥, 𝑡) ∈ 𝑛−1 · Z and finishes the proof of the first statement in Proposition 2.4.

To establish the second statement, we set Λ =
{
𝑢 ∈ 𝔓 : 𝐻∗(𝑢) = 𝑚(𝑢) or 𝐻∗(𝑢) = 𝑀 (𝑢)

}
. If

(𝑥, 𝑡) ∈ Λ then it follows from Lemma B.3 that 𝑛 · 𝐻∗(𝑥, 𝑡) ∈ Z. Otherwise (𝑥, 𝑡) ∈ 𝔓 \ (𝔏 ∪Λ), and so
the first statement in Proposition B.1 implies that∇𝐻∗ is continuous at (𝑥, 𝑡). Setting∇𝐻∗(𝑥, 𝑡) = (𝑠, 𝑟) ∈{
(0, 0), (1, 0), (1,−1)

}
, the first statement of Proposition 2.4 implies that 𝑛(𝐻∗(𝑥, 𝑡) − 𝑠𝑥 − 𝑟𝑡) ∈ Z. By

our assumption (𝑥, 𝑡) ∈ (𝑛−1 ·Z)2, so 𝑛(𝑠𝑥 + 𝑟𝑡) ∈ Z and we conclude that 𝑛 ·𝐻∗(𝑥, 𝑡) ∈ Z. This finishes
the second statement of Proposition 2.4. �
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