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Abstract

In this paper we present a short definition of the Witten invariants of 3-manifolds. We also give simple
proofs of invariance of those obtained for r = 3 and r = 4. Our definition is extracted from the 1993
paper of Lickorish and the Prasolov-Sossinsky book, where it is dispersed over 20 pages. We show by
several examples that it is indeed convenient for calculations.
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1. Definition of the Witten invariant

The construction of Witten invariants of 3-manifolds and the proof of their invariance
use deep ideas from the quantum field theory and the theory of Temperley-Lieb
algebras and are not short. But a mathematician might want to calculate and apply
these invariants without necessarily understanding their origin. The definition of
the Witten invariants in [6, page 660] is direct and short, but is not so convenient
for calculations. In this paper we present a short definition of the Witten invariants
(Theorem 1.3) which is extracted from [8] (where it is dispersed over 20 pages, mixed
with the proof of invariance) and we show by several examples that it is indeed more
convenient for calculations. In Section 2 we give a new simple proof of invariance for
r = 4.
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FIGURE 1.

The definition of the Witten invariant is based on the representation of 3-manifolds
by (unoriented) plane diagrams. By a plane diagram we understand a set of circles in
R2 in general position, with chosen undercrossing and overcrossing at each intersection
point. For every single component Dk of the plane diagram D we can determine its
integer framing as follows. Choose any orientation of Dk. Define the framing as the
sum of the signs (± 1) of all of its crossings. Note that this number is independent of
the choice of orientation on Dk.

Suppose that L is an unoriented link in S3 and that an integer g(k) is assigned to
each component Lk of L. Then the pair (L, g) is called & framed link. We say that a
framed link (L, g) is represented by a plane diagram D, if D is a diagram for L in the
usual sense and g(k) equals the framing of Dk, for every single component Dk of D.

It is well known that every closed oriented 3-manifold can be obtained from the
3-sphere S3 by the Dehn surgery on some framed link {L, g). Denote by XD the
3-manifold obtained by the Dehn surgery along the framed unoriented link, corre-
sponding to D.

PROPOSITION 1.1 ([1,3]). Suppose that D and D are plane diagrams. Then XD =
XD' if and only if D can be obtained from D by a sequence of the Reidemeister
moves Q.\, Q2, cind J23 shown in Figure I and the Fenn-Rourke moves shown in
Figures 4 (a)-(b).
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FIGURE 2.

For a plane diagram D—{D\,..., £>„), consider any oriented link L=(Li,..., Ln)
in S3, whose plane projection coincides with D. Let bpq = \k(Lp, Lq) for p ^ q
and let bkk equal the framing of Dk. Denote by b+(D) and £_(£>) the numbers of
positive and negative eigenvalues of the linking coefficients matrix (bpq) of L. Let
cr(D) = b+(D) - b_(D) be the signature of (bpq) and D • D = J2pq

bp<i ( m o d 4)-
Clearly, the above numbers depend only on D, not on L and its orientation. We set
a = a(D) and b± = b±(D) when D is fixed and no confusion can arise. Let \D\
be the number of components in D. Then rk HI(XD, 1) = \D\ - b+(D) - b_(D).
Denote by #D the number of crossings in D. Let |D|+ and \D\_ be the numbers of the
connected components after resolution of all the crossings as shown in Figures 2 (b)
and (c), respectively.

In what follows capital Latin letters denote (unoriented) plane diagrams (in [8]
they are sometimes called framed diagrams). Let U+, U and £/_ be the diagrams
representing the unknot with framings +1,0 and —1, respectively (see Figure 2 (a)).

Everywhere below we suppose that diagrams in the equalities coincide except
where shown in corresponding figures.

The Kauffman bracket is a function (•) : {plane diagrams} -> JJa*1], defined by
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the following three properties (see for example [8, Section 26, (l)-(3)]):

(a) (D) = a(D\) + a~l{D2), where the diagrams D, D\ and D2 are shown in
Figures 2 (b)-(c);
(b) (D u U) = {-a2 - a~2)(D); and
(c) (0) = 1.

The normalization of (c) is not entirely standard, but in this paper it is more
convenient to use (D) instead of the original Kauffman bracket (D)/(—a2 — a~2).

PROPOSITION 1.2 ([2,5,8, Section 26]). The Kauffman bracket is unchanged by the
Reidemeister moves £2',, £22, and £23.

THEOREM 1.3 ([7,8, 27.3, 28.2] cf. [6]). Fix integers r > 3 and k = 1 , . . . , 4r - 1
relatively prime to 2r. Define the polynomial

r~x / A
o)(a) = FT ( a —2cos—I .

For a plane diagram D with n = \D\ components, let D(kl kn) be the diagram
obtained from D by taking kt curves, close and parallel to the i-th component. Define a
polylinear map f D : (C[a])n —> €. on the basic elements by setting f D(ak',... ,a*") =
(D(i| ty at a = e\p(nik/2r). Then the following number (the Witten invariant for
r at a) depends only on the oriented XD-

W(D) = /<;+
MO)(a>) • fu.b-lD\o>) • fD(co co).

REMARK 1.4. It follows from [Lic93, Lemma 4] or [PrSo97, Proposition 29.4] that
/y±(<w) 7̂  0. For r = 3 and r = 4, we easily verify it below.

REMARK 1.5. It is easier to calculate the polynomial co not by the explicit formula
of Theorem 1.3 but by the following algorithm. Define the (renormalized Chebyshev)
polynomials Sn(a) by the recurrence formula 5o = 1, 5i = a and 5n+i = aSn — 5n_i.
Then

Indeed, it suffices to show that the above sum has exactly r — 2 roots 2cos(nl/r),
where 1 < / < r — 1 and k ± / ^ r, 3r (there are exactly r — 2 numbers / with these
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properties). Note that sin* • Sn(2cosx) = sin(n + l)x. Then

2sin(7r/:/r)sin(7r///-)a>(2cos(7r//r))
r-2

= 2 yj(—1)" sin(7rk(n + l)/r) sin(7tl(n + l)/r)

r-l r-\

-1)"+1 cos(n(k + l)n/r) — / (—l)n+1 cos(7r(& — l)n/r)

REMARK 1.6. For odd r in Theorem 1.3, one can also take /fc = 1 , . . . , 2r — 1
relatively prime to 2r, a = e"ik/r and

r—\ , , \

co(a) = IT l a —2 c o s — I .

EXAMPLE 1.7. W(S3) = W(U±) = 1.

EXAMPLE 1.8. It follows from [9, 3.4] that a changing of the orientation of 3-
manifold has the effect of complex conjugation on the Witten invariants.

EXAMPLE 1.9. For a = e"'/3, we have (D) = 1. This can be verified by induction
on the number of crossings in D using the definition of the Kauffman bracket.

EXAMPLE 1.10. Suppose r = 3, k = 1 and a = e"i/3. Then co = 1 + a (see
Remark 1.5) and by Example 1.9, (D) = 1. Hence

PcD

REMARK 1.11. Observe that if co is replaced in Theorem 1.3 throughout by fj,co,
where [i is a constant complex number, then another invariant is obtained. The new
invariant is the old one multiplied by ^rkW'(jfD>Z). Choose ii e C so that /z~2 =
/f/+(«) • fu-{a>)- This means that/^C/xcu)"1 = f^bico). So we obtain the Witten
invariant R(D) — fD(fj,co, /xco, ...,

LEMMA 1.12. For the Kauffman bracket at a = e*'/6, we have

(D) = ( -1) | D | + • i*° = (-I)1 0 1" • r # D = /2IOI-D
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PROOF. First we prove that

(*) (D) = i(D,) = -i(D2),

where the diagrams D, Dt and D2 differ as shown in Figures 2 (b)-(c). This can
be verified by induction on #D. It follows from (a) that we must only prove that
(£>,) = -(D2). The base #D = 0, 1 is easy. If#D > 2, then Di and D2 have a crossing
point. The induction hypothesis then gives (Di) = i(Du) = —i(D2i) = —{D2),
where the diagrams £>, and Dn are identical except where shown in Figure 2 (b)
(i = 1, 2) and (*) is proved. From this at once we obtain the first two equalities of
Lemma 1.12.

Now we prove that {£>) = /2|D|-° D. The equality is evident for trivial diagrams
D (that is, for diagrams without any crossings). By Proposition 1.2 it also holds for
diagrams of the unoriented trivial link. There exists an orientation D — (Du . . . , Dk)
of D such that bpq equals the sum of the signs ±1 of all the crossings where Dp

overcrosses Dq. It is well known that D can be obtained from the diagram of the
trivial link by changing some overcrossings by undercrossings and reverse operations.
Clearly, i~DD is multiplied by —1 under such operation. It follows from (*) that (D)
is also multiplied by —1 and we are done. •

EXAMPLE 1.13. Suppose r = 3, k = 1 and a = e*i/6. Then co = 1 - a, fu+{o>) =
1 - i,fuA<o) = 1 + i, M = 1/V2 and fv_ (fj,co) = e"i/4. Hence, by Lemma 1.12 the
Witten invariant of Remark 1.11 equals

R(D) =
PCD PCD

Note that R(D) is obtained from T3(D) of [4, page 521] by complex conjugation.

EXAMPLE 1.14. Let r = 4, k = 1 and a = e"il%. We have co = a2 - V2a,
{UD = {Ul) = 0,/t/+(o>) = -2e3'r'/8,/t/_(a>) = 2e5""% and /* = 1/2. Therefore,
the Witten invariant from Remark 1.11 equals

R(D) = ( -
PCD

where D o P is the diagram obtained from D by drawing circles, parallel and close to
the components of P, see for example [4, Section 6].

2. Simple proofs of Theorem 1.3 for r = 3 and r = 4

We only consider the case it = 1. The case of arbitrary k (for given r) is proved
analogously.
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LEMMA 2.1. The numbers b+(D) and b-(D) remain unchanged under the moves
in Figures 3 (a)-(b).

PROOF. Let D and D' be the diagrams shown in Figures 3 (a)-(b). It is easy to see
that (bpq) = (xpq)'(b'p(l)(xpq) for xpp = 1, xn = ±1 and xpq = 0 otherwise, where
the first two components of D and D' are specified. Hence the lemma follows. •

It follows from Proposition 1.1 and Proposition 1.2 that for proving the invari-
ance of W(D) one need only verify the invariance under the Fenn-Rourke moves in
Figure 4 (a)-(b).

PROOF OF THEOREM 1.3 FOR r = 3 AND k = 1. Let a = e*i/6. The proof is essen-
tially the same as in [4, page 521], where invariance under the Kirby transformations
was verified. It follows from Lemma 1.12 and Example 1.13 that

R(D) =
PCD PCD
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We prove the invariance under the move in Figure 4 (a) using the formula for R(D)
involving | • | + . The invariance under the move in Figure 4 (b) is verified analogously
using the formula for R(D) involving | • |_. Denote by D, D ', and / the diagrams
shown in Figure 4 (a). Clearly, the Fenn-Rourke move in Figure 4 (a) is decomposed
into / second Kirby moves in Figure 3 (a) (for m = / , . . . , 1) and' one first Kirby
move in Figure 5. Since a(D' U U+) = a(D') + 1, it follows from Lemma 2.1
that a(D) = a(D') + 1. Let P denote an arbitrary subdiagram of D \ I. Clearly,
\PUI\ = |/»| + l a n d | / » U / | + = \P\ + 2. Hence, we have

2~\D'\/2 wia(D')/4

1 PCD\I

_ 2-IO'l/2g»ri<T(D')/4 V ^ / _ \\P\+\P\+

PCD\I l

There exists a natural correspondence between the subdiagrams of D' and D \ / . If
P' and P are the corresponding subdiagrams, then (by Figures 4 (c)-(d)), \P\ = \P'\,
\P\+ = \P'\+, #P = #P' - n2, #(P U / ) = #( /") - n2 + In + 1, where « > 0 is
the number of components in the part of P corresponding to the part of D shown in
Figure 4 (a). Since i'"2 - /-"2+2"+1 = 1 - /, it follows that /?(£>') = R(D). D

LEMMA 2.2. W(D) remains unchanged under the first Kirby move in Figure 5.

PROOF. Clearly, b±(D U U±) = b±(D) + 1, b±(D U t/T) = b±(D), and

Hence W(D U £/_) = W(D) = W(D U U+). D

LEMMA 2.3. W(E) remains unchanged under the Fenn-Rourke moves of the di-
agram E in Figures 4 (a)-(b) if for arbitrary diagrams D and D' that differ as in
Figures 3 (a)-(b) the following equality holds

fD(co, a,a,...,a)= /O'(o>, a, a,..., a).

PROOF. Clearly, the Fenn-Rourke moves in Figures 4 (a)-(b) are decomposed into /
second Kirby moves in Figures 3 (a)-(b) (for m = / , . . . , 1) respectively, and one first
Kirby move in Figure 5. Thus it follows from Lemma 2.1 and Lemma 2.2 that we
only need to check the equality /D(O>, . . . , co) = f &((*>, • • •, &>X where D and D'
are shown in Figure 3 (a) or 3 (b) and their first two components are specified. Let
n = \D\ = \D'\ and ki, k3,..., kn > 0 be arbitrary integers. It suffices to verify that

fD(co, ak\ ak\ ..., ak") =fD'(co, ak\ ak\ ..., a*").
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FIGURE 5.

This equality is clear for k2 — 0. If £, = 0, for some i > 3, we may consider D \ D,
and D' \ £>', instead of D and D'. Therefore we may assume that &3, ... ,kn ^ 0. Let
C and C" be the diagrams obtained from D and D' by taking kt curves, for each i > 3,
close and parallel to the i-th component. Considering C and C instead of D and D'
we may assume that /fc3,..., kn = 1. By induction on k2 it follows that the above
equality for k2 = 1 implies the analogous equation for arbitrary k2. Indeed, suppose
that k2 > 2. Let K = D ' ( l 2 1 " with \K\ = n + I and J'be the second component
of £>'. Obviously, we have D'lk"klA~'l) = ^<*>*2-i.i.i • ,D j ^ e induction hypothesis
for diagrams K and D U J' then gives that

/D-(o), a*2, a, . . . , a ) = fK(co, a*2"1, a, a , . . . , a )

= fD(co,ak2,a, ...,

PROOF OF THEOREM 1.3 FOR r = 4 AND & = 1. From now on assume that the
Kauffman bracket is calculated at a = e"'l%. We prove the invariance of W(D)
under the move in Figure 4 (a). The invariance under the move in Figure 4 (b) is
verified analogously. Let D and D be the diagrams shown in Figure 3 (a). By / and
/ ' we denote their first components.

Since co = a,2 — yfiju it follows by Lemma 2.3 that we must only show that

(**) ( D o / ) - >/2(D) = (D' o I') - V2(D').

Applying (a) to the crossings marked in Figure 6 (a), we obtain — V2(D) — V i a 3 (5),
(Do I) =2(Q)-(T),-y/2(D') = -V2<S')and(D'o/') =-2a~3(Q') + a-

3(T).
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To complete the proof of Theorem 1.3 for r = 4 and i = lwe need the following
simple lemma.

LEMMA 2.4. Suppose that the diagram A contains the part shown in Figure 7 (a),
where k>0. Then (A) — 0.

PROOF. By property (a) of the Kauffman bracket, we may assume that A has no
crossings outside the part shown. It is easy to see that A contains the part shown in
Figure 7 (b). Applying (a) to the two marked crossings in Figure 7 (b) and using (b)
one can easily obtain that (A) = 0. •

Applying (a) to the crossings of T and F\ marked in Figure 6 (b) and Figure 8,
using Proposition 1.2 (for the first and the last equalities) and Lemma 2.4 (for the
second equality) we get that

(T) = (1 +

Hence, ( D o / ) - y/l(D) = V2a3(S) - y/2{S'). Clearly, (**) is equivalent to the
equality V2a3(5) = -2a~3(Q') + a-3{T'). Using Lemma 2.4 (for first equality),
applying (a) to the crossings of F and S marked in Figure 6 (b) and Figure 8 and using
Proposition 1.2 (for the last two equalities) we obtain that

V2a3{S) =

= y/2a3(S) +
= -2a-\Q!)

and we are done. •
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