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ZEROS OF ITERATED INTEGRALS OF POLYNOMIALS 

PETER B. BORWEIN, WEIYU CHEN AND KARL DILCHER 

ABSTRACT. The operator lm is defined as ra-fold indefinite integration with zero 
constants of integration. The zero distribution of Im(p) for polynomials p is studied 
in general, and for two special classes of polynomials in detail. The main results are: 
(i) The zeros of In(Pn), where Pn(z) is the n-th Legendre polynomial, converge to a 
certain algebraic curve; (ii) the zeros of Y%Ln+\{nz)k/k\ (c > 2 an integer) converge 
to pieces of a circle and of two "Szegô curves". 

1. Introduction. The phenomena associated with the location of roots of polyno­
mials are rich and varied. Consider, for example, 

(1.1) Sn,m(z):= E 77-
k=m+\ K-

These are "parts" of the partial sums for the exponential function. Classic work of 
Szego [15], followed by Dieudonné [4], Rosenbloom [12] and others, give that the zeros 
of the set of "normalized" partial sums to exp, that is 

(1.2) {Sn,-i(nz)} 

are dense in the "Szego curve" defined as 

(1.3) {z: \zel~z\ = 1 and |z| < 1}. 

This is discussed in detail in Varga [16] (see Figure 1). However, a very minor change 
gives very different results. Suppose we consider the partial sums to ez — a (a ^ 0), 
namely 

(1.4) {Sn,-i(nz)-a} 

then, as Rosenbloom [12] shows, the zeros in {z : Re(z) < 0} now approach the half 
circle {z : \z\ — l/e, Re(z) < 0}, while the zeros in the right half plane approach the 
piece of Szego's curve, as before. 

Now consider the polynomials 

(1.5) {W«z)}=( E ~ \ -
\k=n+\ /C! J 
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FIGURE 1: \ze]~z\ = 1 

In Figure 2 we have plotted the zeros for n — 20,40 and 80. From the case n = 20 it 
looks like the zeros might approach a circle {z : \z\ — 2/e} and indeed many of them do. 
But the higher computations show that this is unlikely to be the whole story. Theorem 4 
describes the limit curve for these polynomials (see also Figure 3) and more generally 
for sequences 

(1.6) {ScnAnz)}, 

for a constant integer c > 2. 
In Section 2 we introduce the n-th integration operator and derive some general prop­

erties. The second main result of this paper concerns the n-th integral of the n-th Legendre 
polynomial (Theorem 2). It is an easy consequence of Theorem 1 on the limit proper­
ties of the zeros of a certain class of polynomials. Theorem 3 gives further geometric 
properties of the zeros of these polynomials. 

The theorems are proved in Sections 3-5. A few further properties of zeros of inte­
grals of polynomials are discussed in Section 6, and Section 7 contains some additional 
remarks. 
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FIGURE 2A: ZEROS OF £ 

2. The n-th integration operator; summary of results. The polynomial S2«,n-1 (z) 
is the n-th integral of Sn,-\(z) provided we make the assumption that the constants of 
integration are zero. (It is the problem of the location of the zeros of the n-th integral of 
a polynomial of degree n that interests us most.) We define the ra-th integration operator 

(2.1) 
Im(p(z)) := jf jf ""' • • • J ' p(t0)dt0 dt\-- dtm 

= 7 - ^ j\z-t)m-x
P{t)dt 

(m— 1 ) ! Jo 

for any p integrable in some neighbourhood of zero. (In fact, p will always be a polyno­
mial in this paper.) Then Im(p) is an ra-th antiderivative ofp and has a zero of order ra at 
zero. 

Note that 

(2.2) tr 
k=0 \k 

ME(")«*z* 
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FIGURE 2B: ZEROS OF £ 
k=40 

(40zf 

So the n-th integral of an n-th degree polynomial is 

<23) '-(St 
and the (n + l)-th integral is 

(2.4) /n+1 

k\ n\zn " / In , k 

A:/ j {2n)\^\n + k 

m akZ 
n\zTl A / 2n+l , t 

( 2 « + l ) ! M " + *+l, 

The Gauss-Grace-Lucas Theorem (see, £.#., Marden [8] or Borwein and Erdélyi [2]) says 
that the zeros of the derivative of a polynomial lie in the convex hull of the zeros of the 
polynomial. This is a theorem with many refinements (see, e.g., Marden [8]). There are 
various, but far fewer, results on the location of the zeros of the integral. Some of these 
follow from the Schur-Szego Theorem (see, e.g., Polya and Szego [9, Vol. II, p. 60-611). 

THEOREM A (SCHUR, SZEGÔ). Suppose anbn ^ 0, 

https://doi.org/10.4153/CJM-1995-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-004-1


ZEROS OF ITERATED INTEGRALS OF POLYNOMIALS 69 

+ 

+
 + 

, 1-5 

1 
4 

+ 

+ 

+ 0.5 + + + 

+ 

H - 1 1 | 
-1.5 -1 -0.5 0.5 1.5 

- -0.5 -

+ 

+ 

f 

-1 

-1.5 

+ 

+ 

FIGURE 2C: ZEROS OF £ 

g(z) = b0 + [ Ab\z + [2)
b2Z +"' + 

and 

bn„xz
n~x+bnz\ 

h(z) = «o^o+ ( 1 U i£ i z + [Aa2b2Z2 + --- + I \an-\bn-\z
n l + anbnz

n. 

a) If the zeros off lie in a disc of radius r and the zeros of g lie in a disc of radius s 

then the zeros of h lie in a disc of radius rs. 

b) If the zeros off lie in a convex set K and the zeros of g are real and lie in the 

interval [—1,0] then the zeros of h also lie in K. 

From this result and (2.2) we have the following. 

COROLLARY 1. Suppose p is a polynomial of exact degree n. 

a) If p has all its zeros in a disc of radius 1 then Im(p) has all its zeros in a disc of 

radius rmy where rm is the modulus of the largest zero of 

e (̂z) := £ L rrïïï2*-
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b) Ifp has all its zeros in [—1,0] then all the zeros ofIm(p) lie in the convex hull of 
the zeros of Qnm. 

PROOF. Let QmA take the role of g and p take the role off in the Schur-Szego The­
orem. Then h is lm(p). m 

We see that bounds, which are in fact sharp, for the location of zeros of the integrals 
of polynomials can be derived from precise knowledge of the location of the zeros of the 
Qm,n- With this in mind, we prove, for example, 

„J-~5_--

_,---""'"' "'--... , ' • ' ' ~\. 
y 

/ \ / --.. / 1 \ 
/ / 

/ /--'"" 
I 0.5 
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/ 
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/ 

— ' ! _»_ 
i -1 \ 

\ \ ./'' 
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FIGURE3: |z | = 2/e, \ze]~z\ = 1, I fe 1 ^/ 2 ! = 1 

THEOREM 1. The zeros of 

n\ JL 2n+\ 
Qn,n+\\Z) — / 0 , i \ i 2-M , 1 , 

(2n+ 1)! £r0 \n+ 1 + 

are dense in the curve 

( l+z r 
4z 

1 and\z\ > 1 , 
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and these are the only limit points of the zeros (Figure 4a and 4b). Furthermore, all 
the zeros lie in the convex hull of F so the largest zero of Qn,n+\ is of modulus at most 
3 + 2V 2̂ = 5. 8284 • • • (see Figure 4a and 4b). (The same result holds for {Qn,n(z)}.) 

COROLLARY 2. Suppose p is a polynomial of exact degree n. 
a) Ifp has all its zeros in a disc of radius r then In(p) and In+\ (p) have all their zeros 

in a disc of radius (3 + 2y2)r. 
b) Ifp has all its zeros in [—1,0] then In+\ (p) has all its zeros in the interior ofY. 

This corollary requires Theorem 3 below. We examine two special cases in detail. 
The first, as already described, concerns the partial sums of the exponential function and 
is treated in Theorem 4. The second follows easily from Theorem 1 and concerns the 
Legendre polynomials on [—1,1]. 

FIGURE 4A: ^±fM = 1 

THEOREM 2. Let Pn be the n-th Legendre polynomial on [—1,1]. Then the zeros of 
In(Pn) are dense in the curve 

T 2 : = Z : 
2z 

1 and \z\ > 1 
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FIGURE 4B: ZEROS OF £ (50°+*) 

(and nowhere else). Furthermore, all the zeros lie inside Y^ (see Figure 5a and 5b). 

PROOF. We use the Rodrigues formula for Pn, namely 

( - l ) n dn 

(2.5) Pniz) = 
2nn\ dz -M-&) 

(see, e.g., [1, Ch. 22]) to deduce 

(2.6) hn(P2n) 
\/i 4"(2n)!ÉJ

nU + ^^ Z; ' 

and similarly for 2n + 1. The result now follows from Theorem 1 on changing variables 

(Z^-Z2). m 

THEOREM 3. Let 

Pniz) = £ 
£=0 

2n+\ 

n + k+\ Zk,qn(z) = J2 
k=0 

2n 

n + k z , 

andJn, Knbe the convex hulls of the zeros ofpn(z) and qn(z), respectively. Then 

Kn C Jn C Kn+\ C Jn+\ 
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FIGURE 5A: 

for n = 1,2, 

Before stating Theorem 4, we introduce some notations. Let {z : \zel~z\ = 1} and 
{z : \(z/c)ex~z'c\ — 1} be two Szegô curves, where c > 1 is a real constant. With these 
curves in mind we denote 

Dx :={z: \zel~z\< l , | z |< 1}, 
D2:={z: \zex~z\ > 1}, 
D3 := {z: \zel~z\ < l,|z| > 1}, 
Ex :={z: \^el~z/c\ < l,|z| < c}, 
£ 2 : = { z : | y ^ / c | > l } , 
£ 3 : = { z : | V - ^ | < i , | z | > c } , 
£>12 := {z : I*?1"2! < l,|z| < 1 } U D 2 \ { 0 } , 
En := {z : | ^ I _ z / c | < 1, kl < c}UE2 \ {0}. 

Note that all the above sets are connected open sets. Moreover, let 

Fr.= {z:\z\ = ^-»}nD{2, 
F2 := {z : \zel~z\ = l,\z\ > l } n { z : \\ex-*lc\ < l,\z\ <c}, 
F3:={z: | y - z / c | = l,|z| < c}l~l{z : |ze'-z| < l,|z| > 1}, 
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and 
F:= F{UF2UF3U{0}. 

Then we have the following result. 

THEOREM 4. In the notation of (1.1), z is a limit point of zeros of the sequence of 
normalized sums {Scn,n(nz)}^L\ if and only ifz E F. 

3. Proof of Theorem 1. With the curve T in mind (see Figure 4a and 4b) we denote 

Gl:={z:\^\>l,\z\<l}> 
G2 

G3 

= {z:m<l}. 
U 4Z I > 1 , | * | > ! } • 

Next we observe that the zeros of Qn,n+\(z) must lie in the closed annulus 

n + 2 
< z < 2 n + l , 

by the well-known Enestrôm-Kakeya Theorem (see, e.g., [9, Vol. I, p. 107]). 
Since G\ C {z : |z| < 1}, G\ is free of zeros of {<2n,n+i(z)}^i- It is easy to verify, by 

expanding and integrating, that Qn,n+\(z) has the integral representation 

(3.1) Qn,n+i(z) = (2"*l)l £[(1 ~ t)(l+zt)]ndt. 
(n\Y Jo 

(2K + 1)! t \ 

We proceed to analyse the zeros of Qn,n+\ by an asymptotic analysis of the above integral. 
Now denote 

/ z ( f ) : = 0 - 0 ( l + z 0 , 

and for e > 0 set 

Then 

Bz(e) = \t:t = 

Bz(e) := {t : \fz(t)\ < e}. 

z-lT \fïz^ïf- + 4z(l - re'*) 

2z 
, 0 < r < £ , 0 < 6 / < 2 7 r 

=:B!(e)U57(e), 

where B*(e), (resp. #_, (e)) denote Bz(e) with positive, (resp. negative) principal square 
root. Note that Bt(e) and B~(e) are connected. If 

6 > 
d+Z) 2 

K^) 
let 

then 

4z 

(1+z)2 

4z 

,+ z - l + [ ( z - l ) 2 + 4 z - ( z + l ) 2 ] ' / 2 z - 1 

2z 2z 
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and 
,_ z - 1 - [(z - l)2 + 4z - (z + D2]1/2 * - ! „ - , , 
t := 1 = — — G B^ (s). 

Thus, Bz(e) is connected. 
Now, for any z G G2 we have 

2z 

(1+z)2 

2z 

4z K^) < 1. 

Choose e > 0 such that 1 — d > e; then rf < 1 — e, and 

z - 1 

Let now 

r := 

2z 

z - 1 1 

G fiz(l - e). 

- - [ ( l + z ) 2 - 4 z ( l - £ ) ] ' / 2 ; 
2z 2z 

then t* € B,(l — e) and since Z?;(l — e) is connected, we can find a curve A in Bz{\ — e) 
such that Ma) = f* and A(fc) = 1. For 1 - e < r < 1, let 

z - 1 1 
t(r) := 

2z 2z 
-^[(l+z)2-4zr]'/2; 
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thenf(l -e) = f,t(l) = 0. 

Now we estimate 

|jf1[(i-o(i + ft)rA| 

> |jf [(1 - 0(1 +tz)T dt\ - j j( l -0(1 +tz) dt 

> a 
( ( l + z ) 2 - 4 z r ) 

1 ( ( l + z ) 2 - 4 z r ) 
1/2 

2z 2z 
\+z 

z - \ 
2z 

1/2 

2z 
t'(r)dr - a r c ( A ( r M ) ) ( l - e ) " 

'/2 r , / , , . 2̂ „ \ ' / 2 yi [Tz+1 } ( d + z ) 2 - 4 z r ) / i r z + i ( ( i + z ) 2 - 4 Z r ) 

•A-41 2z 2z J[ 2 2 

lil+zf-4zrTl/2dr 

r l f 1 

- a r c ( A ( f \ l ) ) ( l - £ ) " 

/ L { ^ [ ( 1 +Z)2 ~ ( (1 +z)2 ~4zr)]}"[(l +Z)2 - 4zr]-'/2dr| 

-arc(A(f , l ) ) ( l - e ) " 

= 1 ^ r"[(l + z)2 - 4zr]"'/2 dr\ - arc(A(f*, 1))(1 - ef. 

where arc(7) denotes the length of the curve 7. Write (1 + z)2/4z = de'6; then 

[(1 + z) - 4zr]- ' /2 = (4zr ' /2[Je'e - r ]" 1 / 2 

= (4zr ' /2[r2 - 2</rcos0 + rf2rl/V'a/2, 

where 

cosa = (dcosQ-rXr1 -2dr cos 6 +d2r]/2, 

sina = dsinOir2 -2drcos9 + d2yl/2. 

Then we have 

a 
cos — 

2 
. a 

sin — 

= ( 2 ) [(r2 - 2drcos0 + d2)'/2 + dcos0 - r ^ V - 2Jrcos0 + d 2 r ' / 4 

= ( - ) [(r2-2ûfrcos6» + ̂ 2 ) ' / 2 - J c o s e + r]1/2(r2-2rfrcosé( + ^ 2 r 1 / 4 
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Therefore, 

/ r»[(l+z)2-4zrrl'2dr\ 
J\—e I 

> l8^r1 / 2 | t ^[{r2 -IdrcosO + d2)xt2 + r - dcosO]1!2 

| J\— £ 

•(? -2drcos6 + d2ri/4dr\ 

> |8z|-'/2 /"' /»[(!* -2dr+d2)1/2 + r- d]1/2^ + 2dr + d2)~V2dr 

^ I S z l " 1 / 2 / ' ^ 2 ' / V - d ) , / 2 2 - , / 2 d r 

> | 8 z | - ' / 2 ( l - e - d ) , / 2 / | _ / , r f ' -

and 
|1/B 

| ^ [ ( l - ? ) ( l + f e ) ] " ^ 

> {|8z|-'/2(i - £ - ^ / 2 ( ! _ 0" . |- _arc(^<r*, 1>)(1 — >̂"}*7" 

= ( l - | ) { | f e | - , / 2 d - e - r f ) 1 / 2 | - a i c ( A 0 * , l ) ) ( l - r i 7 ) " } 

Thus, we have with (3.1) 

«) 1/w 

liminfl&^Cz)!1/" 
(3.2) 

r . f / ( 2 / i + l ) ! 
= lim inf < - r — 

n-»oo ( (n\)z 

On the other hand, when z G G3, we have 

d : = ( l+z) 2 

4z = K ^ 
Choose £ > 0 such that s <d—\. Write 

Ojt £ - *« 

jT1 [(l — 0(1 + te)]w * | } 
1/rt 

> 1. 

4z 
and here let 

,+ z-l + [(l+z)2-4z(d-e)ew]1'2 

t := E BAd — e), 
2z 

,_ z - 1 - [(1 + z)2 - 4z(d - e)ew]xl2 

t := eBz(d- e). 
2z 

Let Ai be the curve in B+(d — e) which connects t+ and 1, and A2 be the curve in B~(d — e) 
which connects 0 and t~. Now we connect t~ and (z — l)/2z by 

z - \-[{\+z)2-4zrei9]ll2 C(r) := 
2z 

-, d-e<r<d, 
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and (z — l)/2z and t+ are connected by 

,+, , z- ! + [(!+ z) 2 -4zre ' 9 ] ' / 2 

t (r) := ; , a — e < r < a. 2z 

Then we can write 

> 

fo [(i-m+tz)]"dt\ 

( i + /" + / i + /A,) [ ( i - f ) ( i + f e ) ] ' v f 

(/-"r+Xi)[(i-o(i+ft)]"H 
- I /" [(1 - 0(1 + ft)]" * | - I / [(1 - 0(1 + tz)Y dt 

>\[d {[1 -T ( r ) ] [ l +z/_(r)J}"[(l + z ) 2 - 4 z r e , " V / V < / r 

+ /""'{[I - f » ] [ l +zr+(r)]}"t(l +z)2 - 4 Z r e / f l r l / 2 ( - e ' V r | 

-[arc(Ai) + arc(A2)](rf-e)n 

= 2| f {reiere'e[(l + zf - Azre16^'2 dr\ 

-[arc(A,) + arc(A2)]W-e)w. 

we have 

r* / ' [ ( l + z ) 2 - 4 z r e ' V / 2 ^ | = | l + z r f A\ 
Jd—e I Jd—e V 

r x - l / 2 
dr 

>| l+z| 

> ll+zl" 

d \ l / 2 

)"X r"dr 

^ \ l / 2 £ 6\n 

(<-§) 
Thus, again with (3.1), 

l iminfle^Kz)!1 /" 

'(2«+l)» 
= liminf < (wW'»-"'*«H n-^00 ( (f t!)2 

i/« 

' < / \ > / 2 « ^ 1 / « 
>*(d- | ) liminf j | l + z | - ' ( - ) e_[arc(A,) + a r c ( A 2 ) ] ( l - ^ — )") 

- 4 ( , - | ) . " ° 

Therefore, with this and (3.2), all the zeros of the sequence {Qn,n+\(z)}™=x must lie on 
the curve Y. 
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On the other hand, suppose we have a point z G T which is not a limit point of zeros 
of {Qn,n+\(z)}(^=l. Then there is an open disk centered at z with radius r > 0, D (z, r), 
such that D (z, r) is free of zeros of {Qn,n+\ (z)}(^Ll • We first prove that 

(3.3) [Qn,n+i(z)]l/n->4 asrc-+oo 

uniformly on any compact subset of 

G : = G 2 U iz 

and 

(3.4) l[Qn,n+l(z)ll/n-

(l+zf 

4z 
> h\z\< 1 , 

• 4 — as n 
4z 

oo 

uniformly on any compact subset of G3. 
Indeed, let A := {z : Imz = 0, - 4 < z < -2} C G. Using Problem #198 in [9, 

Vol. I. p. 96], one can easily deduce 

{Qn,n+l(z)}l/n-^4 aSH — OO, 

uniformly on A. Similary, with B := {z : Imz = 0,2 < z < 4} C G3 we find 

{Qn,n+l(z)Y/n Ad+z)2 

• 4 — as n • 

uniformly on B. With the uniqueness theorem for analytic functions and Montel's theo­
rem on normal families, the last two limits imply (3.3) and (3.4), respectively. 

Now, by the same argument we can prove that {Qn,n+\(z)}]/n will converge to 4 uni­
formly on any compact subset of D(z, r) U G. But on the other hand we can also prove, 
again using the above methed, that {Qn,n+\(z)}^n will converge to 4(1 +z)2/4z uniformly 
on any compact subset of G3. Thus, 4 and 4(1 + z)2/4z must agree on D (z, r), which is 
a contradiction. The proof of Theorem 1 is now complete. • 

4. Proof of Theorem 3. 1. We can rewrite pn(z) as 

Pn(z) = E 
*=0 

where 

bk:= 
2n+\ 

n + k+\ 

In 
n + k 

In 
n + k 

kz\ 

2n+l 
n + k+ 1 

Using the Schur-Szegô Composition Theorem (Theorem A), we can see that it suffices 
to prove that 

*=0 W bk *»<*>:= E L IT* 
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has all its zeros in [—1,0]. Now we have 

^ ) = ^ | > + * + 1 ) ( * ) z * 

1
 r(l+z)n~1[(2n+l)z + (n+l) ] , 

2rc+l 

and therefore all the zeros of hn(z) lie in the interval [—1,0], which implies Kn C Jn by 
Theorem A. 

2. Similarly, we write 

g* / 2 n + l \ 2/1 + 2 k 

0\n + k+ IJ n — k+\ k 

so we need to check the zeros of the polynomial 

• ± «tv^'=w. 2n + 2 k=0 \ k I 2 

and Theorem A implies Jn C Kn+\. This completes the proof of Theorem 3. • 

5. Proof of Theorem 4. We use the notation preceding the statement of Theorem 4, 
and we recall that 

(5.1) Scn,n(nz) = Scn(nz) - Sn(nz), 

where 

n ?k 

k=0Kl 

Differentiation now establishes 
Sn{z) = é - - } Fff-'dt 

n\ Jo 

= ez-^- [\tz)ne{l-t)zdt, 
n\ Jo 

and we get 

Similarly, we have 

nn+l7 r\ 

Sn(nz) = enz -± [tze{X-t)zT du 
n\ JO 

cn+l J 

Scn(nz) = enz - — f [(tzYe0-')z]n dt. 
(cn)\ Jo 

These last two identities together with (5.1) give 

„n+\7 r\ ncn+\ i 

Scn,n(nz) = ~ ( [tze<l-'}Tdt- ?—£ [ [(tzye<]-*]ndt 
n\ Jo (cn)\ Jo (5.2) ' n\ Jo (en) 

=:Un(z)-Vn(z). 
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If z G A := {z : Imz = 0, e < z < 1 — e} for some 0 < e < 1/3, then it is easy to 
see that 

{Un(z)}l/n->ez asrc-»oo; 

(see [9, Vol. I, p. 96, # 198] and note that {nn+l/nl}l/n -> e as n -> oo). Similarly, for 
z G 5 := {z : Imz = 0,1 + e < z < 4} we have 

{Un(z)}l/n-^ez asn-+oo. 

Now, since {(Un(z)) } is a sequence of bounded analytic functions on Du, it will 
converge uniformly on compact subsets of Du to ez. For, if {Un(z)}l/n were to fail to 
converge uniformly on a compact subset K C Du, there would be two subsequences of 
{Un(z)}l/n converging to distinct limit functions/ and g. But / and g must agree on A, 
by the uniqueness theorem for analytic functions, and we would have a contradiction. 
Using the same argument, we prove that {Un(z)}l/n —+ ez as n —> oo, uniformly on any 
compact subset of D3. 

Similarly, we have 

{Vn(z)}l/n->QCzc a s n - ^ o o 

uniformly on any compact subset of £"12, and 

{Vn(z)Y/n^ez a s r c ^ o o 

uniformly on any compact subset of £3. 
Let K be any compact subset of {z : |z| < ccl{c~X) / e}HDu', then 

{t/B(Z)}'/"->«, {vn(z)y'n - (^)V 

as AÏ —> 00, uniformly on T̂, and 

Therefore, with (5.2) we have 

(5.3) {Scn*(nz)}l'n = {U„(z)ytn[l-j^ "->ez 

as w —• 00, uniformly on AT. 
Now if AT is a compact subset of D3 D £1 then we have 

{Un(z)}l/n-+* and {v„(z)}'/« _ ( £ ) V 

as n —-> 00, uniformly on AT. Furthermore, since 

(-) |# < H-

v»fe) 
Un(z) 
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Thus, 
I v,(z) 
\Un(z)\ 

I'/" (e/cY\z\c 

< 1, 

and, again with (5.2), 

(5.4) {Sc„,n(nz)Y/n = {Un(z)Yln 1 
Vn(z) 

U„(z) 

l/„ 

• e 

as n —> oo, uniformly on K. 
If K is any compact subset of D3 n £2 then we have again 

{[/„(;)}'/" ̂ , {V„(Z)}'/«^(£)V 

as n —» 00, uniformly on AT. Since |(z/c)<?1-z/c| > 1, we have 

and therefore 

(5.5) {Scn,n{nz)yln = {V„(z)}'/" t/»(z) 
VB(z) 

i/„ 

( ; ) ' * 

as n —> oo, uniformly on AT. 
Finally, if AT is a compact subset of {z : \z\ > ccl{c~X)/e} HD^ , then 

as n —> co, uniformly on K. Since 

I */„(*) 

©> 

V„(z) 

i/„ 

> 1, 

we have 

(5.6) { « ^ ) } ' / n = {Vn(z)y'n 1 t/n(z) 
V„(z) 

1/n 

(D'=' 
as rc —> oo, uniformly on K. Therefore, by (5.3)-(5.6), all the limit points of the zeros of 
the sequence {Scntn(nz)}%Li must belong to F. 

On the other hand, if we have a z G F which is not a limit point of zeros of the sequence 
{Scn,n(flz)}£li then there is an open disk D(£, r) centered at z with radius r > 0 such that 
D(z, r) is free of zeros of any Scn,n(nz). Suppose z E Fi ; then by (5.3) {Scn^n(nz)}^n will 
converges to ez uniformly on any compact subset of D(z, r) U {Z)(0, cc^c~V)/e) Pi D12}. 
But on the other hand, by (5.6) {Scn,n(nz)}l/n converges to {ejeft uniformly on any 
compact subset of D(z, r) U {{z : \z\ > cc/(c-1) /e)}nDn]. Thus, ez and (ejeff must 
agree on D(z, r), a contradiction. 

This completes the proof of Theorem 4. • 
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6. Some general properties of iterated integrals. The main emphasis of this paper 

is on n-th integrals of n-th degree polynomials, with zero constants of integration. In this 

section we will make a few easy remarks on some more general questions. 

1. It is clear that the constant of integration plays an essential role in the distribution 

of the zeros of the integral of a polynomial. If this constant is left to be arbitrary, no rea­

sonable result on the sizes of the zeros will be possible: On the one hand, the zeros can 

clearly be made arbitrarily large; on the other hand, they may not grow at all upon re­

peated integration. (This can be illustrated by the examplep(z) — (z+1 ) n \ the polynomial 

becomes (n\/(n + ra)!)(z + \)n+m upon integrating m times, with appropriate constants.) 

In this last example the constant in the k-th integration is n\/(n + &)!; hence the se­

quence of constants is rapidly decreasing with k. We will now show that this kind of 

decrease is necessary for the zeros of the iterated integrals to remain bounded. 

PROPOSITION 6.1. Let p(z) = anz
n + • • • + a\z + a0 be a polynomial of degree n. 

Suppose that there are constants e > 0 and S > 0 and an infinite sequence of positive 

integers k\ < k^ < • • • such that the constant of integration q after the kj th integration 

satisfies 

(61) N a is^ipir. 
Then the modulus of the largest zero of the k-th iterated integral is unbounded as k grows. 

PROOF. We will show in fact that at least one zero of the kj-th iterated integral sat­

isfies 

\/(n+kj) t 

(6.2) | z | > ' 

m To do this, we note that the kj-th iterated integral of p(z) is 

After normalizing this to a monic polynomial, we see that the product of all zeros of P(z) 

has modulus 

an 
n\ \an\n\ \an\ni \ e J 

here we used (6.1) and Stirling's formula. Now the modulus of one of the n + kj zeros 

has to be at least the (n + kj)-th root of this expression. Thus we obtain (6.2). • 

PROPOSITION 6.2. If the sequence of constants of integration is eventually constant, 

then the modulus of the largest zeros of the k times iterated integral of a polynomial p(z) 

is unbounded as k —• oo, unless p is a monomial and all constants of integration are 

zero. 

PROOF. If the sequence of constants of integration stabilizes to a nonzero constant 

then it obviously satisfies (6.1), and the result follows from Proposition 6.1. 
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If p(z) has at least two nonzero coefficients, or if there is at least one nonzero constant 
of integration with the other constants eventually vanishing, we may assume without loss 
of generality that p(z) is of the form 

p(z) = anz
n + • • • + «o, tfotfn i1 0, n > 1. 

Then the k-th iterated integral is 

(n + k)\ k\ 
Now the product of the n nontrivial zeros of P(z) has modulus 

10o (n + kY._ \ao\ {k+m + 2y„(k + n)>M_ ^ 
( 6 - 3 ) ' ' .n I I , ' 

n\k\ \an\n\ 
Hence one zero has modulus of at least the rc-th root of this last expression; but this is an 
unbounded function of k. m 

The next proposition shows that the zeros move (mostly "outwards") under integration 
in a balanced way. This follows directly from the well-known fact that the zeros of a 
polynomial and of its derivative have the same centroid (or center of mass) if we imagine 
a unit mass attached to each zero, counting multiplicities (see, e.g., [17, p. 7]). 

PROPOSITION 6.3. The zeros of a polynomial and those of each iterated integral with 
arbitrary constants of integration have the same centroid. 

2. We return to the operator Im of ra-times iterated intergration with zero constants. 
In particular, we will now examine the behaviour of Im(p(zj) as m —> oo, for a fixed 
polynomial p(z). It is clear from (6.3) that at least one zero of Im(p(z)) has order of 
magnitude m. This suggests to normalize the polynomials Im (p(z)) by dividing their zeros 
by m. Let the polynomialp(z) := anz

n + • • • + a\z + <?o be given. 
To simplify notation, we introduce 

(6.4) L(p(z)) := m\z-mIm(p)\mz-

PROPOSITION 6.4. The sequence {Im(p)} converges uniformly on compact subset of 
C to the polynomial 

(6.5) Lp(z):=f:aJj\z
i. 

7=0 

Consequently the nonvanishing zeros of Im(p), divided by m, converge to the zeros of 
Lp(z), as m —> oo. 

PROOF. With (2.2) and (6.4) it is clear that 
" m\j\ 

Imip) = 2^ar—-r-^. 
j 3 J{m+j)\ 

Using the fact that for all j = 0, 1, . . . , n we get 

raW m-'-m 
1 as m —> oo, 

(m +j)\ (m + 1) • • • (m +j) 
we obtain the first statement of the proposition. The second statement follows from Hur-
witz's Theorem (see, e.g., [8, p. 4]). • 
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COROLLARY. The nonvanishing zeros ofIm(p) lie in the annulas 

c(p)m < \z\ < C(p)m, 

where c(p) and C{p) are constants depending only on p. 

We note that L, as defined in (6.5), is a linear transformation on the vector space of 
rc-th degree polynomials. Operators of this kind have been studied in greater generality; 
see [10]. We also note that it follows from the results surveyed in [10] that L is a "zero 
diminishing linear transformation", i.e.,Lp(z) cannot have more real zeros thanp(z). Here 
we will use the special structure of L to give a few particular examples. 

EXAMPLES. 1. Let<27 = 1/j!, i.e.,p(z) = T,j=0z!/jl (see Section 1). Then the zeros 
of lm(p), divided by m, converge to the zeros of (zn+l — \)/{z — 1), i.e., to the (n + l)-th 
roots of unity with the exception of z = 1. 

2. For the rc-th degree Laguerre polynomial 

Mz) = L„(z) = è ( - i y 
7=0 

we get 

Lp(z) = ±(-iy( n )z! = (\-zT. 
y=o \n-j) 

Note that the zeros of Ln(z) are all real and positive (see, e.g., [1, Ch. 22]); they are 
mapped under L to an n-fo\d zero at z — 1. 

3. If p(z) is the n-i\\ Legendre polynomial, shifted by 1, 

then Lp(z) is the n-th Bessel polynomial (see, e.g., [7]) 

The zeros of p(z) are all real and located in the interval [—2,0]. The zeros of yn(z) are all 
simple, have negative real part and lie inside the unit circle; at most one zero is real (see 
[7, p. 75 ff.]). 

7. Further remarks. 1. The integration operator Im can be considered as an op­
erator on the sequence of coefficients of a polynomial or power series. Such operators 
have been studied in great generality; results on the distribution of zeros have also been 
obtained (see [11]). However, the results in [11, p. 213] concerning the operator Im as a 
special case are considerably weaker than those obtained here. 

2. For some special polynomials there is a close relationship between the integration 
operator Im and the operation of truncating a polynomial. Indeed, it is clear from the 

•j/f-
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Rodrigues formula (2.5) for the Legendre polynomials that In(pn(zj) is just the polyno­
mial (1 — z2)n, with the "lower half removed (see also the explicit formula (2.6)). The 
polynomials Sn,m(z) in (1.1) can also be obtained both by truncating and by integrating 
repeatedly. The zero distribution of truncated polynomials is an interesting question in 
its own right; for some other special cases, see [5]. 

3. The proof of Theorem 4 can easily be modified to yield analogous results for 
truncations 

en -k 
Scn,dn(z) = S 77» 

k=dn+\ K-

with integers d < c. If we then normalize by the factor dn, rather than n, we get the 
statement of Theorem 4, with c > 1 a rational number. 

4. The Legendre polynomials are special cases of the Gegenbauer (or Ultraspherical) 
polynomials. Other important special cases are the Chebyshev polynomials of the first 
and second kind. It would be interesting to obtain results, analogous to Theorem 2, for 
these polynomials. Numerical experiments indicate that we may expect the same limit 
curve T2 at least for the Chebyshev polynomials Tn(z). 

5. Finally we note that the operation of truncating a power series has been generalized 
in various ways. Already Szego [14] studied the zeros of sequences of polynomials which 
converge uniformly in a region to some function. Another generalization are series of 
functions and their truncations; see [6]. 
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