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Abstract
This study used the visual world paradigm to investigate novel word learning in adults
from different language backgrounds and the effects of phonology, homophony, and rest
on the outcome. We created Mandarin novel words varied by types of phonological
contrasts and homophone status. During the experiment, native (n = 34) and non-native
speakers (English; n = 30) learned pairs of novel words and were tested twice with a 15-
minute break in between, which was spent either resting or gaming. In the post-break test
of novel word recognition, an interaction appeared between language backgrounds,
phonology, and homophony: non-native speakers performed less accurately than native
speakers only on non-homophones learned in pairs with tone contrasts. Eye movement
data indicated that non-native speakers’ processing of tones may be more effortful than
their processing of segments while learning homophones, as demonstrated by the time
course. Interestingly, no significant effects of rest were observed across language groups;
yet after gaming, native speakers achieved higher accuracy than non-native speakers.
Overall, this study suggests that Mandarin novel word learning can be affected by
participants’ language backgrounds and phonological and homophonous features of
words. However, the role of short periods of rest in novel word learning requires further
investigation.
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Phonology, homophony, and eyes-closed rest in Mandarin novel word
learning: An eye-tracking study in adult native and non-native speakers
When it comes to learning Mandarin, lexical tones are an inevitable topic. There are
four main tones in Mandarin: tone 1 is high-level, tone 2 is high-rising, tone 3 is
low-dipping, and tone 4 is high-falling (Chao, 1930; Zhang & Lai, 2010; Zhu &
Wang, 2015). This tonal system is notorious for being difficult to learn for
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non-native speakers. While some research shows that tonal contrasts are more
difficult for learners from a non-tonal first language (L1) background than for those
from a tonal L1 background (Cooper & Wang, 2012; Poltrock et al., 2018; Schaefer
& Darcy, 2020), speakers of tonal L1s do not necessarily outperform speakers of
non-tonal L1s in non-native tone perception and word learning (Laméris & Post,
2022; So & Best, 2010). However, another characteristic of Mandarin—the
abundance of homophones—is often neglected in adult lexical learning. In the
current study, we investigated the combination of these two Mandarin features,
phonology and homophony, in a novel word learning experiment that tested both
native and non-native speakers. In addition, we were interested in whether
participants’ performance would be affected by a short break with either an eyes-
closed rest or a distractor task (i.e., playing a computer game). The available
evidence suggests that short periods of rest help memory consolidation and facilitate
learning, in a similar manner to sleep (Brokaw et al., 2016; Dewar et al., 2012;
Wamsley, 2019).

Mandarin tonal contrasts and novel word learning

A number of studies have demonstrated the challenge of learning Mandarin tonal
contrasts in adult non-native speakers, who come from a variety of linguistic
backgrounds such as English (Hao, 2018, 2023; Shen & Froud, 2016), Dutch
(Sadakata & McQueen, 2014; Zou et al., 2017), Thai (Wu et al., 2014), and Japanese
(Tsukada et al., 2016). These findings (alongside others, e.g., Kann et al., 2008; Zhu
et al., 2021) suggest that despite difficulties, adult speakers are capable of learning
non-native tones to a certain degree. This is especially the case in tonal L1 speakers
(Chan & Leung, 2020). For example, Wayland and Li (2008) reported that
Mandarin-L1 speakers outperformed English-L1 speakers when discriminating the
low- vs. mid-tone contrast in Thai. Similarly, using a Cantonese tone discrimination
task, Qin and Mok (2011) found that Mandarin-L1 speakers performed significantly
better than English-L1 and French-L1 speakers. Nonetheless, both L1 tonal status
and L1 tone type affect individual performance in tonal learning (Laméris & Post,
2022), and tonal L1 speakers may perform worse than their non-tonal L1
counterparts in certain psycholinguistic tasks. For instance, Hao (2012) observed
significantly lower accuracy among Cantonese-L1 speakers when perceiving
Mandarin tone 4 and producing Mandarin tone 1 than among English-L1
speakers. Therefore, the specific tonal contrasts involved appear to be crucial when
comparing performance between tonal and non-tonal L1 learners. However, the
existing literature has primarily focused on speech perception and production (Ning
et al., 2014; Shen & Froud, 2016; Tsukada et al., 2015; Wang et al., 1999), with much
less research conducted on novel word learning.

Novel words can be defined as pseudowords that are phonologically legal but not
associated with any meaning (Ziegler et al., 1997), i.e., they are possible, but not
existing words. A majority of lexical learning studies using novel word learning
designs pertain to infants and young children (Chan et al., 2011; Chen & Liu, 2014),
especially comparing monolingual and bilingual infants (Burnham et al., 2018;
Byers-Heinlein & Werker, 2013; Singh et al., 2016; Wewalaarachchi & Singh, 2020).
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Among the relatively few studies with adults, most have focused on tonal learning.
For example, Wong and Perrachione (2007) found that non-native tones can be
learned by English-L1 speakers when identifying English pseudowords super-
imposed with pitch patterns resembling Mandarin tones. Also using a lexical
identification task, Laméris and Post (2022) suggested that “tonal rather than
segmental distinctions were the hardest feature to memorize in the pseudolanguage
words” (p. 857) for both English-L1 and Mandarin-L1 speakers, given that most
errors were tone-only errors. Similar findings were observed in Chang and Bowles
(2015), who reported more tonal errors than segmental errors by English-L1
speakers while learning disyllabic Mandarin pseudowords. Note that most of these
studies, like the present one, used stimuli made up of segments that occur in both
Mandarin and English. Therefore, while the pseudowords were new to the learners,
the segmental contrasts distinguishing them were already familiar from English, as
pointed out to us by an anonymous reviewer (but seeWright & Baese-Berk, 2022, on
learning Thai tone contrasts and phonotactics).

In addition to tonal learning, several studies have investigated the role of tonal
and segmental information in Mandarin spoken word recognition (Li et al., 2018;
Malins & Joanisse, 2010; Sereno & Lee, 2015). For example, Wiener et al. (2018,
2021) conducted eye-tracking studies in which English-L1 speakers were trained on
an artificial tonal language that mimics Mandarin’s syllable-tone combinations.
Results indicate that both intermediate learners of Mandarin and naïve listeners
used co-occurring tonal and segmental cues during spoken word recognition.
Nevertheless, few studies have explicitly compared the difference between native
and non-native speakers when learning Mandarin tones and segments, though
findings from Cantonese learning may shed light on this question. For instance,
Poltrock et al. (2018) found that native speakers learned Cantonese pseudowords
better than non-native speakers; within the non-native group, Mandarin-L1
speakers outperformed their French-L1 counterparts in pseudowords that differed
minimally in tones.

Homophony effects in lexical processing

Homophony is a common linguistic phenomenon, where pairs or groups of words
have identical pronunciation but different meanings. However, the proportion of
homophones varies across languages. It has been reported that 3.2% of English
consists of homonyms (i.e., same pronunciation and spelling), whereas 11.6% of
Mandarin is homophonous (Neergaard et al., 2021; Wen, 1980). According to
Duanmu (2007), the average homophone density is 1.4 words per monosyllable in
English (e.g., meat and meet), but five words per syllable in Mandarin. Some forms
like shì (i.e., /ùõ4/ with the falling tone 4; the superscript number indicates the lexical
tone of the syllable) correspond to nearly 30 unique homophonous morphemes
(Wiener et al., 2018). An example of Mandarin disyllabic homophones is shǒushì
/ùoU3ùõ4/, which has two meanings “gesture” (occurring 37 times in a corpus of five
million words) and “jewelry” (occurring 44 times in the same corpus; Chen et al.,
1996; Huang et al., 1998).
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Accordingly, different effects of homophony have been observed in English and
Mandarin when processed by native speakers. For example, in lexical decision tasks,
English homophones show longer response latencies and lower accuracy than
non-homophones, especially among low-frequency words (Rubenstein et al., 1971).
The size of homophony effects is found to be determined by the frequency of the
homophone and its mate, as well as by the orthographic and phonological
characteristics of the homophone (Pexman et al., 2001). Contrarily, Mandarin
homophones exhibit facilitative effects (i.e., faster processing than non-homo-
phones; Ziegler et al., 2000), which are also observed in non-native learners of
Mandarin (Liu & Wiener, 2020, 2022). This homophony advantage is often
attributed to the large amount of homophonic mates in Mandarin, which increases
the phonological familiarity of a homophone and facilitates processing (Ziegler
et al., 2000).

To explore whether the distinct homophony effects in English and Mandarin can
be explained by script type, Hino et al. (2013) studied kanji, which are logographic
Chinese characters used in Japanese writing. Native Japanese speakers showed an
inhibitory effect for homophones with only one homophonic mate, but a facilitatory
effect for those with multiple mates. Therefore, they concluded that the pattern is
predicted by the number of homophonic mates that the target homophone has,
rather than by the script type.

However, most studies in the previous literature focus on visual word recognition
using the lexical decision task. Spoken language has received relatively less attention.
Moreover, even though novel word learning was used in prior research, most work
addresses homophony learning in infants and young children (Dautriche et al.,
2016, 2018; Ramachers et al., 2017; Storkel & Maekawa, 2005). Yet until recently,
some adult studies have examined non-native learning of spoken homophones in
Mandarin. In Liu and Wiener (2020, 2022), for example, native English speakers
from a second-semester Mandarin class learned monosyllabic tonal pairs over three
days. A facilitative homophone effect was observed when the talker variability was
low. That is, new words that were homophonous with previously learned words
were identified more accurately and recognized faster than those that were not
homophonous, if learners were familiar with a single speaker’s voice.

Memory consolidation following learning

Studies have established sleep’s effects on memory enhancement after learning,
when compared to an equivalent period of wakefulness (Diekelmann & Born, 2010;
Korman et al., 2007; Stickgold, 2005). This benefit has also been validated in lexical
learning research for English (Fenn et al., 2003; Weighall et al., 2017) and Cantonese
(Qin & Zhang, 2019). For example, Kurdziel and Spencer (2016) found that in a task
of recalling novel words after a 12-hour delay that included sleep, English speakers
outperformed their peers who spent the time awake. In terms of non-native tonal
learning, Qin and Zhang (2019) trained Mandarin listeners on identifying
Cantonese tonal contrasts and found that those who had an overnight sleep
between training and later post-tests showed improved performance in identifica-
tion accuracy. Recently, Qin et al. (2022) demonstrated that this overnight tone
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consolidation effect can be facilitated by a learner’s ability to detect pitch height
differences.

Furthermore, even short periods of unoccupied rest can induce memory
consolidation. Previous studies often categorize participants into two conditions: the
waking rest condition where participants have an unoccupied rest and the distractor
task condition where participants play a computer game. For instance, Brokaw et al.
(2016) suggested that a 15-minute interval of waking rest can facilitate verbal
declarative memory in a story recalling test, relative to playing a computer game as
distraction (also see Humiston &Wamsley, 2018). Likewise, brief periods of wakeful
resting enhance memory retention in a range of sensorimotor and cognitive tasks
(Dewar et al., 2012; Wamsley, 2019). However, little research has addressed whether
a 15-minute period of unoccupied rest can affect novel word learning, especially
among learners from both native and non-native backgrounds.

The present study
The first aim of this study was to investigate the roles of phonology and homophony
in Mandarin novel word learning among native and non-native (English) speakers.
By combining different Mandarin tones and segments, we created a set of novel
words that consisted of homophones and non-homophones and varied in types of
phonological contrasts: consonant contrasts, tone contrasts, or both. To assess the
time course of online processing after the learning, we tested novel spoken word
recognition using the visual world paradigm, which allows for examining
participants’ interpretation of linguistic stimuli without interruption (Dahan &
Tanenhaus, 2005). The second aim was to explore whether brief periods of
unoccupied rest would aid memory consolidation following the learning session. To
this end, we designed the experiment with a break between the learning and test
phases and compared the performance of participants who spent this interval either
resting or gaming.

The novel word learning task consisted of three sections. The first one was an
integrated Learning Phase/Test Phase I. In each trial, participants learned novel
words via word-object associations and were then tested on the target word by
selecting its matching object. The second section was a 15-minute break, during
which participants either had an eyes-shut rest or played a computer game. The last
section, Test Phase II, was a visual world eye-tracking experiment. Specifically,
participants attended to three objects on a computer screen while listening to a
novel word and selected the target object corresponding to what they heard. The
target object was presented in two settings: in the competitor setting, it was
presented with a competitor picture and a distractor picture; in the no-competitor
setting, it was presented with two distractor pictures. Participants’ response
accuracy in Test Phases I and II was collected, and their eye movements in Test
Phase II were also analyzed.

We asked the following four research questions: (i) Do participants’ language
backgrounds modulate their novel word learning outcome? Given that native
speakers are familiar with the Mandarin phonological system and the task simulates
their native word learning, we predicted that they would outperform non-native
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speakers overall, reflected by higher accuracy and more/earlier looks to the target
object. (ii) Do phonological contrasts between novel words predict the outcome, and
does this depend on participants’ language backgrounds? Considering previous
evidence on the difficulty of tonal learning in non-native speakers (Chang & Bowles,
2015; Laméris & Post, 2022), an interaction between phonological contrasts and
language backgrounds was anticipated; in particular, English speakers would likely
respond to novel words learned with tone contrasts least accurately. (iii) Is the
learning outcome affected by the homophone status of novel words, and does this
depend on participants’ language backgrounds? In light of different homophone
effects in English (Pexman et al., 2001; Rubenstein et al., 1971) and Mandarin
(Ziegler et al., 2000) as well as non-native speakers’ lack of Mandarin experience, it
was predicted that homophony would interact with language backgrounds to affect
the outcome, and a facilitative homophone effect may occur in native speakers only.
(iv) Do different break types predict the outcome, and is this affected by
participants’ language backgrounds? Since tonal learning can be consolidated
overnight (Qin & Zhang, 2019; Qin et al., 2022) and brief periods of rest enhance
memory as well (Brokaw et al., 2016; Dewar et al., 2012; Wamsley, 2019), it was
hypothesized that participants who had a rest would outperform those who played
the game, regardless of their language backgrounds.

Method
Participants

We recruited 68 adults via an online participant pool or flyers at the University of
Alberta in Edmonton, Canada: 67 were students who participated in exchange for
course credits, and one was an employee who received a small payment. Four native
English speakers were excluded due to previous experience with Mandarin and/or
Japanese, considering that the pitch features of Japanese may assist Mandarin tone
learning (Caldwell-Harris et al., 2015; So & Best, 2010). Therefore, a total of 64
participants were included in the final analysis: 34 native Mandarin speakers who
were from mainland China (25 female; Mage = 20.5 years, range = 18–27,
SD = 1.86), and 30 native English speakers who were from Canada and without
tonal language background or experience (21 female; Mage = 22.9 years,
range = 18–63, SD = 9.86). While an a priori power analysis was not performed,
the sample size of each language group in the current study was largely comparable
to that reported in previous research (Brokaw et al., 2016; Poltrock et al., 2018;
Qin & Zhang, 2019; Ziegler et al., 2000).

Given the facilitative effects of musicality on linguistic tone learning (Alexander
et al., 2005; Wong & Perrachione, 2007), we collected information about
participants’ musical background using the Goldsmiths Musical Sophistication
Index, which consists of five dimensions: active engagements, perceptual abilities,
musical training, singing abilities, and emotions (i.e., emotional responses to music;
Müllensiefen et al., 2014). This index was included as a variable of interest in
statistical modeling. All participants reported normal or corrected-to-normal vision
and normal hearing and gave written informed consent prior to participation. The
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experiment protocol and consent procedures were reviewed and approved by the
Research Ethics Board of the University of Alberta.

Materials

Novel words
We created 18 pairs of Mandarin disyllabic novel words (see Table 1). The first
syllables were generated by integrating the six consonants /ph, th, kh, m, n, l/, three
vowels /a, u, i/, and four lexical tones in Mandarin, whereas the second syllables
were constantly /sa1/. We avoided phonological combinations that are real words in
Mandarin (i.e., existing Mandarin disyllabic words were not used). Thus, 28 novel
words were created, of which seven (25%) are homophones: /tha1sa1/, /khu1sa1/,
/mu2sa1/, /ni2sa1/, /li3sa1/, /li4sa1/, and /pha1sa1/. We were not interested in
controlling potential frequency effects; participants encountered phonological
forms of homophones more often than those of non-homophones since they
learned homophonous forms with two (for /pha1sa1/, three) different meanings.

There are three phonological contrast groups. First, pairs in the tone contrast
group differ in the first syllables’ tones only, representing all six possible tonal

Table 1. Mandarin novel words

Phonological contrast Novel word pair

Tone contrast 1 /pha1sa1/ /pha2sa1/

2 /tha1sa1/ /tha3sa1/

3 /khu1sa1/ /khu4sa1/

4 /mu2sa1/ /mu3sa1/

5 /ni2sa1/ /ni4sa1/

6 /li3sa1/ /li4sa1/

Consonant contrast 1 /pha1sa1/ /kha1sa1/

2 /tha2sa1/ /ma2sa1/

3 /khu3sa1/ /nu3sa1/

4 /mu4sa1/ /lu4sa1/

5 /ni1sa1/ /thi1sa1/

6 /li4sa1/ /phi4sa1/

Consonant and tone contrast (Both contrasts) 1 /pha1sa1/ /na2sa1/

2 /tha1sa1/ /la3sa1/

3 /khu1sa1/ /phu4sa1/

4 /mu2sa1/ /thu3sa1/

5 /ni2sa1/ /mi4sa1/

6 /li3sa1/ /khi4sa1/

Note. Novel words in bold are homophones.
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comparisons in Mandarin (i.e., tone 1/tone 2, tone 1/tone 3, tone 1/tone 4, tone 2/
tone 3, tone 2/tone 4, tone 3/tone 4). Second, novel words in the consonant contrast
group differ in the first syllables’ consonants only. To even out the number of pairs
in each group, tones 1 and 4 were used more than once in this group because they
are less difficult than the other two tones for native English speakers (Chang &
Bowles, 2015). Third, the consonant and tone contrast (hereafter referred to as both
contrasts) group incorporates segmental and tonal differences within the first
syllables.

Further, another two novel words /musa/ and /thusa/, carrying the Mandarin
neutral tone in both syllables, were created for the practice trial. The first author, a
native Mandarin speaker from northern China, recorded all novel words in a sound-
attenuated booth and manually split them into separate sound files using Praat
(Boersma & Weenink, 2020).

Novel objects
From the Novel Object and Unusual Name Database (Horst & Hout, 2016), we
selected 47 novel objects that control for complexity in color, shape, and material.
These objects were randomly assigned to the created novel words for participants to
learn (see Appendix A in Supplementary Materials for a list of the word-object
mappings). Except for the two objects in the practice trial, all were used in
experimental trials: 36 as target or competitor objects and nine as distractor objects
(see Appendix B in Supplementary Materials for a list of the distractor objects).

Procedure

Each experimental session was composed of three sections, as illustrated in Figure 1:
the integrated Learning Phase/Test Phase I, Break, and Test Phase II. It took
approximately 35 minutes to complete the whole session.

Learning Phase/Test Phase I
In each trial, participants learned one of the 18 pairs of novel words and then tested
on one of them (cf. Figure 1). During the learning, a novel object randomly appeared
at four different locations on a display screen (24 inches, 1,920 × 1,080 pixel
resolution), with its name (i.e., the novel word) presented auditorily twice at each
place. Then, the second object went through the same process. Thereby, within each
trial, participants were presented with the novel word/object 8 times (4 visual
displays × 2 audio plays). During the test, the two novel objects simultaneously
appeared at the center of the screen, but only one novel word was played. By pulling
one of the two triggers on a gamepad, participants matched the novel word they
heard to its corresponding object. Within the paired novel words, the tested one was
labeled as the target (referring to the target object) and the other one as the
competitor (referring to the competitor object). No feedback was given to
participants after they responded.

This section was programmed with Experiment Builder (SR Research, 2015).
Participants’ eye movements were tracked with an SR Research EyeLink 1000
desktop mount eye tracker, which was run on a Dell PC with a sampling rate of
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either 500 Hz or 1,000 Hz. There was one practice trial for participants to familiarize
themselves with the task, followed by 18 experimental trials (see Appendix C in
Supplementary Materials). It took around 10 minutes to complete this section. We
collected participants’ responses and eye movements, but only analyzed the former.

Break
During the break, participants were randomly assigned to either the game or the rest
group. In the game group, participants played the computer game “Snood” as a
distractor task for 15 minutes. In this game, players clear blocks of colors by joining
three or more icons of the same color. It was chosen because the game is engaging
and involves only minimal hand and eye movements. In the rest group, participants
wore an eye mask while sitting back or lying down on a reclining chair and had an
eyes-closed rest for the same duration.

Test Phase II
At each trial, three novel objects simultaneously appeared on the screen, some of
which had occurred before; the name of one of them (i.e., the target word) was
played auditorily, while participants’ eye gaze to the presented pictures was tracked.
The target object was presented in two settings, either with or without its

Figure 1. Novel word learning task.
Note. The task consisted of three sections: Learning Phase/Test Phase I, Break, and Test Phase II. During the
integrated Learning Phase/Test Phase I, participants learned pairs of novel words (e.g., /li3sa1/ and /li4sa1/; the
glosses illustrate novel words played auditorily and did not appear on the screen during the experiment) and then
tested on one of them (e.g., /li3sa1/). Afterward, there was a 15-min break when participants either had an eyes-shut
rest or played a game. In Test Phase II, participants were tested on one of the novel words (e.g., /li3sa1/) again, which
was presented either with its competitor (/li4sa1/) and a distractor (i.e., the competitor setting on the left) or with two
distractors (i.e., the no-competitor setting on the right).
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competitor. Specifically, in the competitor setting, the target object occurred with its
competitor and one unrelated distractor object; in the no-competitor setting, the
target object appeared with two unrelated distractor objects that participants had
not encountered during the learning. Participants were instructed to use the
computer mouse to click on the target object that matched the spoken novel word
they heard. No feedback was provided after their responses.

This section was programmed with Experiment Builder (SR Research, 2015) as
well, and participants’ eye movements were recorded using the same eye tracker.
Since each novel word (cf. Table 1) served once as the target and once as the
competitor, there were altogether 72 trials (18 novel word pairs × 2 targets × 2
competition settings; see Appendix D in Supplementary Materials for a list of the 72
trials). It took around 10 minutes to complete this section. We collected and
analyzed participants’ response and eye movement data.

Data analysis

Response data
We analyzed response accuracy in Test Phases I and II. Using the lme4 package
(v1.1-28; Bates et al., 2015), we built generalized linear mixed-effects models in R
(v4.1.1; R Core Team, 2021). Estimated p-values were obtained through the lmerTest
package (v3.1-3; Kuznetsova et al., 2017). The dependent variable was Accuracy,
which was coded as a binary variable (Correct vs. Incorrect). Accordingly, we
specified the family argument as binomial in model construction. For fixed effects,
the independent variables consisted of Language Background (Native Mandarin vs.
Native English), Homophony (Homophone vs. Non-homophone), Phonological
Contrast (Consonant Contrast vs. Tone Contrast vs. Both Contrasts), and Musical
Sophistication (Active Engagements vs. Perceptual Abilities vs. Musical Training vs.
Singing Abilities vs. Emotions) in Test Phase I, as well as another two: Break Type
(Rest vs. Game) and Competition (Competitor vs. No-competitor) in Test Phase II.
For random effects, we included random intercepts for Subject andWord and tested
random slopes for all of the manipulated factors mentioned above.

To attain the optimal model, fixed-effects and random-effects structures were
fitted separately using a stepwise backward approach. Specifically, we used the
anova function to compare a complex model to its simpler version which had one
component removed, by inspecting the estimated p-value and Akaike Information
Criterion (AIC) value. The complex model was favored only when the difference
was significant as indicated by the p-value (smaller than the conventional alpha level
of 0.05) and when it provided a better fit for the data as indicated by the AIC value.
Otherwise, we selected the simpler model (Matuschek et al., 2017). After the optimal
model was determined, we used the emmeans package (v1.7.2; Lenth, 2022) to
conduct multiple comparisons for significant factors and interactions and applied
the Tukey adjustment method to guard against Type I error. We report significant
comparisons (p< 0.05) below.

To visualize data, Accuracy was converted to a numeric variable as Accuracy
Proportion. Effects of significant factors and interactions were visualized using the
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ggplot2 (v3.3.5; Wickham, 2016) and lattice (v0.20-45; Sarkar, 2008) packages. To
indicate significant group differences on the graphics, the ggsignif package (v0.6.3;
Constantin & Patil, 2021) was used.

Eye movement data
Eye movements in Test Phase II only were analyzed. For preprocessing, data were
output as a sample report using the SR Research EyeLink Data Viewer and then
preprocessed using the VWPre package (v1.2.4; Porretta et al., 2016). To index each
unique recording sequence of eye movements, Event was created as a combination
of Subject and Trial. Prior to binning the data, we identified events with excessive
trackloss. Specifically, 171 events (3.71%) were detected with more than 25%
trackloss data and thus were removed. We were only interested in eye fixations that
occurred in the target interest area (i.e., target looks). In order to obtain proportion
looks, we aggregated the sample data into 20 ms bins, and each bin was coded as
Target or Nontarget. Since proportions are not suitable for analysis, empirical logits
(Barr, 2008) were calculated for the binned target proportion data, within the time
window from 200 to 1,700 ms after the target stimulus onset. We used 200 ms as the
starting point because it usually takes around that duration of time to program a
saccade and execute an eye movement (Fischer, 1992).

Using the mgcv package (v1.8-39; Wood, 2017), we built generalized additive
mixed-effects models (GAMMs), as they are well designed for analyzing time series
data (Baayen et al., 2017). Eye movements in the correct trials (n = 3,304) only
were modeled. The dependent variable was the logit-transformed proportions of
target looks. The independent variables were the same as those in the accuracy
analysis. The fixed-effects structure consisted of a significant predictor and its
nonlinear interaction with time (i.e., smooth). The random-effects structure
contained a random intercept for Event, a random smooth for Subject by time, and a
random smooth for Word by time.

The fixed-effects and random-effects structures were fitted separately in a
stepwise forward manner. Specifically, we employed the maximum likelihood (ML)
estimation approach for model comparisons, through the compareML function in
the itsadug package (v2.4; van Rij et al., 2020). The contribution of a new component
was evaluated based on the estimated p-value obtained from comparing the models’
ML scores, and the component was included only when the p-value was smaller
than the conventional threshold of 0.05. After the model structure was determined,
considering possible autocorrelation, an AR(1) (i.e., first-order autoregression)
model for the residuals was constructed by specifying the rho parameter and the
starting point for each time series to account for the fact that each value in a time
series is affected by the preceding value.

In terms of data visualization, averaged proportion looks to different interest
areas were plotted using the VWPre package (v1.2.4; Porretta et al., 2016).
Additionally, as the summary of GAMMs does not indicate the exact shape of
regression lines and whether they differ from each other significantly, we used the
itsadug package (v2.4; van Rij et al., 2020) to plot the nonlinear smooths and
significant difference curves.
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Results
There were neither significant effects of musical sophistication on participants’
performance, nor did the Mandarin and English speaker groups differ significantly
with respect to musical sophistication. Thus, we do not further discuss this factor in
the rest of the paper.

Response accuracy

Test Phase I
There were 1,152 trials (64 participants × 18 trials). Model comparisons suggested
that Language Background (p< 0.001) and Phonological Contrast (p = 0.021)
affected response accuracy, whereasHomophony did not (p = 0.908); no significant
interaction was found among the three factors. The random-effects structure
consisted of random intercepts for Subject and Word, as adding random slopes did
not improve the model fit. A summary of the optimal model is presented in Table 2.

For the significant effects, multiple comparisons indicated that Mandarin
speakers had significantly higher accuracy than English speakers (p = 0.0001; see
Figure 2 left panel). Mandarin speakers achieved near-ceiling performance (98.5%
mean accuracy), probably because this test phase occurred right after the learning.
Further, novel words learned in pairs with both contrasts received significantly more
correct responses than those learned in pairs with tone contrasts only (p = 0.028;
see Figure 2 right panel). In the consonant contrast condition, accuracy was slightly
lower than the both contrasts condition and higher than the tone contrast condition,
but neither difference reached the significance level.

Table 2. Model summary: Accuracy in Test Phase I

Generalized linear mixed-effects model fit by maximum likelihood, family: binomial

Fixed effects

Estimate
Standard
Error z-value p-value

Intercept 6.6767 0.9183 7.271 3.58e-13***

Language Background: Native English −1.8209 0.4752 −3.832 0.000127***

Phonological Contrast: Consonant Contrast −1.2418 1.0606 −1.171 0.241684

Phonological Contrast: Tone Contrast −1.3878 0.5414 −2.563 0.010362*

Random effects

Groups Name Variance Standard
Deviation

Subject (Intercept) 0.6471 0.8045

Word
Number of observations: 1152, groups:
Subject, 64; Word, 15

(Intercept) 2.4020 1.5498

Note. ***p< 0.001, **p< 0.01, *p< 0.05.
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Test Phase II
There were 4,608 trials (64 participants × 72 trials). In the final model, the fixed-
effects structure consisted of three significant interactions: a three-way interaction
among Language Background, Phonological Contrast, and Homophony (p< 0.001);
an interaction between Language Background and Break Type (p = 0.011); and an
interaction between Language Background and Competition (p = 0.040). The
random effects included only random intercepts for Subject andWord, since none of
the random slopes improved model performance. A summary of the best model is
shown in Table 3.

Figure 3 displays the effects of these significant interactions. Panel (a) shows the
three-way interaction among Language Background, Phonological Contrast, and
Homophony. Multiple comparisons suggested that when learning non-homophones
in pairs with tone contrasts, English speakers had significantly lower accuracy than
Mandarin speakers (p = 0.002). Within Mandarin speakers, homophones
presented in pairs with consonant contrasts received significantly higher accuracy
than those presented in pairs with tone contracts (p = 0.007), and for words
learned in pairs with consonant contrasts, homophones were significantly more
accurate than non-homophones (p = 0.042). Surprisingly, Mandarin speakers had
lower accuracy than English speakers when learning homophones with tonal
contrasts, though this difference did not reach the significance level. Panel (b)
illustrates the interaction between Language Background and Break Type.
Interestingly, English speakers had higher accuracy after resting, whereas
Mandarin speakers achieved better results after gaming; yet neither of these
differences between resting and gaming was significant. However, after playing the
game, Mandarin speakers performed significantly better than English speakers
(p = 0.002). In addition, the interaction between Language Background and

Figure 2. Significant effects on accuracy in Test Phase I.
Note. Left and right panels show the effects of Language Background and Phonological Contrast on accuracy
proportions (y-axis), respectively. Error bars represent the standard error of mean; asterisks indicate a significant
difference (*p< 0.05, ***p< 0.001).
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Table 3. Model summary: Accuracy in Test Phase II

Generalized linear mixed-effects model fit by maximum likelihood, family: binomial

Fixed effects

Estimate
Standard
Error z-value p-value

Intercept 1.29960 0.24726 5.256 1.47e-07***

Language Background: Native English −1.00540 0.28476 −3.531 0.000415***

Phonological Contrast: Consonant Contrast 0.80459 0.28697 2.804 0.005051**

Phonological Contrast: Tone Contrast −0.22691 0.16929 −1.340 0.180132

Homophony: Non-homophone −0.08743 0.27257 −0.321 0.748383

Break Type: Rest −0.43940 0.22060 −1.992 0.046387*

Competition: No-competitor 0.47765 0.09807 4.871 1.11e-06***

Language Background: Native English &
Phonological Contrast: Consonant Contrast

−0.01398 0.35905 −0.039 0.968945

Language Background: Native English &
Phonological Contrast: Tone Contrast

0.48915 0.23698 2.064 0.039005*

Language Background: Native English &
Homophony: Non-homophone

−0.06788 0.24182 −0.281 0.778944

Phonological Contrast: Consonant Contrast &
Homophony: Non-homophone

−0.98310 0.37661 −2.610 0.009045**

Phonological Contrast: Tone Contrast &
Homophony: Non-homophone

0.19661 0.33375 0.589 0.555792

Language Background: Native English & Break
Type: Rest

0.83448 0.31938 2.613 0.008979**

Language Background: Native English &
Competition: No-competitor

0.28823 0.13943 2.067 0.038720*

Language Background: Native English &
Phonological Contrast: Consonant Contrast &
Homophony: Non-homophone

0.50021 0.41674 1.200 0.230023

Language Background: Native English &
Phonological Contrast: Tone Contrast &
Homophony: Non-homophone

−0.94233 0.34007 −2.771 0.005589**

Random effects

Groups Name Variance Standard
Deviation

Subject (Intercept) 0.3260 0.571

Word (Intercept) 0.1406 0.375

Number of observations: 4608, groups: Subject,
64; Word, 28

Note. ***p< 0.001, **p< 0.01, *p< 0.05.
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Competition is presented in panel (c). The no-competitor setting had significantly
higher accuracy than the competitor setting in both language groups (Mandarin,
p< 0.001; English, p< 0.001), although Mandarin speakers outperformed English
speakers in the competitor setting (p = 0.012).

Eye movements

Eye movement data in Test Phase II consisted of 4,608 events (64 participants × 72
trials). After removing the 171 events identified with more than 25% trackloss data,

Figure 3. Significant effects on accuracy in Test Phase II.
Note. Panel (a) presents the significant three-way interaction among Language Background (x-axis), Phonological
Contrast, and Homophony; (b) presents the interaction between Language Background and Break Type (x-axis);
(c) presents the interaction between Language Background and Competition (x-axis). Across panels, y-axis indicates
accuracy proportions and error bars represent the standard error of mean.
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Table 4. Model summary: Logit-transformed proportions of target looks in the competitor setting

Generalized additive mixed-effects model (GAMM), family: Gaussian

Parametric coefficients Estimate
Standard
Error t-value p-value

Condition: Native Mandarin. Non-homophone.
Both Contrasts

−0.74485 0.16788 −4.437 9.14e−06***

Condition: Native English. Non-homophone.
Both Contrasts

−0.03602 0.19591 −0.184 0.8541

Condition: Native Mandarin. Homophone.Both
Contrasts

−0.53050 0.22124 −2.398 0.0165*

Condition: Native English. Homophone.Both
Contrasts

−0.40599 0.24314 −1.670 0.0950

Condition: Native Mandarin. Non-homophone.
Consonant Contrast

−0.42993 0.20236 −2.125 0.0336*

Condition: Native English. Non-homophone.
Consonant Contrast

−0.53525 0.21897 −2.444 0.0145*

Condition: Native Mandarin.
Homophone.Consonant Contrast

−0.22654 0.28585 −0.793 0.4281

Condition: Native English.
Homophone.Consonant Contrast

−0.29623 0.31586 −0.938 0.3483

Condition: Native Mandarin. Non-homophone.
Tone Contrast

0.34627 0.23561 1.470 0.1417

Condition: Native English. Non-homophone.
Tone Contrast

−0.14093 0.28597 −0.493 0.6221

Condition: Native Mandarin. Homophone.Tone
Contrast

−0.38057 0.22152 −1.718 0.0858

Condition: Native English. Homophone.Tone
Contrast

−0.13460 0.23690 −0.568 0.5699

Smooth terms edf Ref.df F-value p-value

s(Time): Condition: Native Mandarin.
Non-homophone. Both Contrasts

1.001e+00 1.001 5.099 0.02390*

s(Time): Condition: Native English.
Non-homophone. Both Contrasts

2.774e+00 3.520 1.501 0.16559

s(Time): Condition: Native Mandarin.
Homophone.Both Contrasts

6.066e+00 7.363 2.352 0.02769*

s(Time): Condition: Native English.
Homophone.Both Contrasts

1.001e+00 1.002 3.549 0.05958

s(Time): Condition: Native Mandarin.
Non-homophone. Consonant Contrast

2.015e+00 2.483 3.798 0.01613*

s(Time): Condition: Native English.
Non-homophone. Consonant Contrast

1.002e+00 1.002 9.666 0.00187**

s(Time): Condition: Native Mandarin.
Homophone.Consonant Contrast

3.022e+00 3.898 1.216 0.28014

(Continued)
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the remaining dataset contained 326,599 observations. Then, we focused on data
with correct responses, which resulted in a total of 232,564 observations.

For GAMMs analysis, we generated empirical logits of the binned target
proportion data from 200 ms after the target stimulus onset until 1,700 ms, which
served as the dependent variable. The random-effects structure contained a random
intercept for Event, a random smooth for Subject by time, and a random smooth for
Word by time. For the fixed-effects structure, model comparison suggested a
significant three-way interaction among Language Background, Phonological
Contrast, and Homophony (p< 0.001). In order to inspect the effect of time on
this interaction, the three factors were concatenated as a new variable Condition
with 12 (2 × 3 × 2) levels. A smooth term indicating its nonlinear interaction with
time was also significant (p< 0.001). Moreover, model selection revealed a
significant interaction between Condition and Competition (p< 0.001). This was
further evidenced by visualizing the averaged proportions of target looks in different
conditions for the competitor and no-competitor settings (see Appendix E in
Supplementary Materials). Therefore, we analyzed how Condition affected target
looks over time in the two settings separately.

The competitor setting contained 106,774 observations. A summary of the
optimal model is presented in Table 4. According to the smooth terms section, a
significant nonlinear curve over time was found for six levels of Condition, as shown
by the edf (i.e., effective degrees of freedom) value greater than 1 (indicating
wiggliness) and the p-value lower than 0.05. These nonlinear smooths were plotted
in Figure 4. Different patterns were found between the two language groups: overall,
target looks increased over time in Mandarin speakers but fluctuated in English
speakers.

Table 4. (Continued )

Smooth terms edf Ref.df F-value p-value

s(Time): Condition: Native English.
Homophone.Consonant Contrast

4.780e+00 6.087 3.395 0.00235**

s(Time): Condition: Native Mandarin.
Non-homophone. Tone Contrast

2.815e+00 3.510 1.624 0.17626

s(Time): Condition: Native English.
Non-homophone. Tone Contrast

1.002e+00 1.002 3.060 0.08010

s(Time): Condition: Native Mandarin.
Homophone.Tone Contrast

3.570e+00 4.545 1.183 0.35034

s(Time): Condition: Native English.
Homophone.Tone Contrast

7.445e+00 8.447 3.078 0.00343**

s(Time, Subject) 2.798e+02 565.000 1.096 < 2e-16***

s(Time, Word) 2.001e+02 248.000 5.718 < 2e-16***

s(Event) 5.714e-03 1406.000 0.000 1.00000

Note. edf : effective degrees of freedom; Ref.df: reference degrees of freedom; ***p< 0.001, **p< 0.01, *p< 0.05.
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Further, significant difference curves are illustrated in Figure 5. Among
Mandarin speakers, non-homophones generally received more target looks than
homophones when learned in pairs with both contrasts, with a significant difference
from 700 to 1,124 ms (see panel a); non-homophones learned in pairs with both
contrasts had more target looks continuously than those with consonant contrasts,
with a brief period (836–973 ms) showing a significant difference (panel b). Among
English speakers, in the consonant contrast environment, homophones received
significantly more target looks than non-homophones within 321–973 ms, though
the latter had more target looks from 1,276 ms to the end (panel c); homophones
learned in pairs with consonant contrasts received significantly more target looks in
427–821 ms, but less from 1,245 ms until the end, compared to those with tone
contrasts (panel d). In summary, where differences occurred, Mandarin speakers
showed more looks to non-homophones than to homophones learned in the same
conditions, whereas it was the other way around for English speakers. Additionally,
the data provide some evidence that consonant contrasts facilitate early target
identification compared to tone contrasts for English speakers.

The no-competitor setting consisted of 125,790 observations. Table 5 presents a
summary of the final model. The smooth terms section suggests two nonlinear
curves with significant changes over time for Condition, both in English speakers,
which were plotted in the left panel of Figure 6; the right panel shows the significant
differences between these curves. Specifically, we observed a similar pattern as in the
competitor setting: among English speakers, homophones learned in pairs with
consonant contrasts received significantly more target looks than those with tone

Figure 4. Significant nonlinear smooths over time in the competitor setting.
Note. The x-axis indicates the time after the target stimulus onset, from 200 to 1,700 ms; the y-axis indicates logit-
transformed proportions of target looks. Each curve represents a nonlinear smooth, and the shaded area indicates
95% confidence interval. Left panel shows nonlinear smooths for Mandarin speakers. Black curve: non-homophones
learned in pairs with consonant contrasts; light gray curve: non-homophones learned in pairs with both contrasts;
dark gray curve: homophones learned in pairs with both contrasts. Right panel shows nonlinear smooths for English
speakers. Black curve: non-homophones learned in pairs with consonant contrasts; light slate gray curve:
homophones learned in pairs with tone contrasts; dark slate gray curve: homophones learned in pairs with
consonant contrasts.
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contrasts from 609 to 1,033 ms, but less from 1,579 ms until the end. However, there
were no significant nonlinear curves found in Mandarin speakers.

Discussion
This study used the visual world eye-tracking paradigm to explore how adults from
native and non-native backgrounds learn Mandarin novel words, which had
homophones and non-homophones and varied in types of phonological contrasts:
consonant contrasts, tone contrasts, or both. We also examined if brief periods of
unoccupied rest would affect participants’ learning outcome. In Test Phase I, which
occurred immediately after the learning, accuracy results show near-ceiling
performance, with Mandarin speakers outperforming English speakers. In Test
Phase II, which occurred after a 15-minute break, several significant interactions
among the manipulated factors were observed, and Mandarin speakers only
outperformed English speakers under certain circumstances. Further, eye
movement findings reveal that segmental and tonal information may contribute
differently to novel spoken word recognition.

Figure 5. Significant difference curves in the competitor setting.
Note. The x-axis indicates the time after the target stimulus onset, from 200 to 1,700 ms; the y-axis indicates the
difference in logit-transformed proportions of target looks. For each curve, the red interval (with vertical dotted lines)
indicates the time window with a significant difference. The shaded area indicates 95% confidence interval. Panel (a)
compares non-homophones and homophones learned in pairs with both contrasts by Mandarin speakers, with a
significant difference within 700–1,124 ms. Panel (b) compares consonant contrasts and both contrasts in non-
homophones learned by Mandarin speakers, with a significant difference in 836–973 ms. Panel (c) compares
homophones and non-homophones learned in pairs with consonant contrasts by English speakers, with significant
differences within 321–973 ms and 1,276–1,700 ms. Panel (d) compares consonant contrasts and tone contrasts in
homophones learned by English speakers, with significant differences within 427–821 ms and 1,245–1,700 ms.
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Table 5. Model summary: Logit-transformed proportions of target looks in the no-competitor setting

Generalized additive mixed-effects model (GAMM), family: Gaussian

Parametric coefficients Estimate
Standard
Error t-value p-value

Condition: Native Mandarin. Non-homophone.
Both Contrasts

−0.58187 0.16677 −3.489 0.000485***

Condition: Native English. Non-homophone.
Both Contrasts

−0.16856 0.20214 −0.834 0.404355

Condition: Native Mandarin. Homophone.Both
Contrasts

−0.11338 0.21018 −0.539 0.589565

Condition: Native English. Homophone.Both
Contrasts

−0.08932 0.23592 −0.379 0.704995

Condition: Native Mandarin. Non-homophone.
Consonant Contrast

−0.06726 0.19308 −0.348 0.727573

Condition: Native English. Non-homophone.
Consonant Contrast

−0.09514 0.21945 −0.434 0.664629

Condition: Native Mandarin.
Homophone.Consonant Contrast

−0.10613 0.27419 −0.387 0.698708

Condition: Native English.
Homophone.Consonant Contrast

0.01861 0.30581 0.061 0.951487

Condition: Native Mandarin. Non-homophone.
Tone Contrast

0.21722 0.22577 0.962 0.335991

Condition: Native English. Non-homophone.
Tone Contrast

−0.26618 0.25138 −1.059 0.289650

Condition: Native Mandarin. Homophone.Tone
Contrast

−0.28557 0.20360 −1.403 0.160747

Condition: Native English. Homophone.Tone
Contrast

−0.24486 0.23006 −1.064 0.287177

Smooth terms edf Ref.df F-value p-value

s(Time): Condition: Native Mandarin.
Non-homophone. Both Contrasts

1.004e+00 1.007 2.768 0.09532

s(Time): Condition: Native English.
Non-homophone. Both Contrasts

1.003e+00 1.006 2.696 0.10081

s(Time): Condition: Native Mandarin.
Homophone.Both Contrasts

6.476e+00 7.784 1.478 0.14515

s(Time): Condition: Native English.
Homophone.Both Contrasts

1.019e+00 1.037 2.554 0.11153

s(Time): Condition: Native Mandarin.
Non-homophone. Consonant Contrast

6.365e+00 7.544 2.127 0.05664

s(Time): Condition: Native English.
Non-homophone. Consonant Contrast

1.009e+00 1.013 3.770 0.05108

s(Time): Condition: Native Mandarin.
Homophone.Consonant Contrast

1.703e+00 2.161 0.854 0.45917

(Continued)
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Language background effects

We first asked whether participants’ language backgrounds would modulate their
novel word learning outcome and predicted that native speakers would outperform
non-native speakers in general. In Test Phase I, this hypothesis was borne out, as
Mandarin speakers had significantly higher accuracy than English speakers. This

Table 5. (Continued )

Smooth terms edf Ref.df F-value p-value

s(Time): Condition: Native English.
Homophone.Consonant Contrast

5.142e+00 6.527 3.061 0.00415**

s(Time): Condition: Native Mandarin.
Non-homophone. Tone Contrast

3.204e+00 4.087 1.783 0.12908

s(Time): Condition: Native English.
Non-homophone. Tone Contrast

1.004e+00 1.005 0.070 0.79557

s(Time): Condition: Native Mandarin.
Homophone.Tone Contrast

1.002e+00 1.003 3.536 0.05999

s(Time): Condition: Native English.
Homophone.Tone Contrast

1.002e+00 1.003 5.939 0.01471*

s(Time, Subject) 3.100e+02 565.000 1.405 < 2e-16***

s(Time, Word) 2.089e+02 248.000 7.680 < 2e-16***

s(Event) 4.462e-03 1659.000 0.000 1.00000

Note. edf : effective degrees of freedom; Ref.df: reference degrees of freedom; ***p< 0.001, **p< 0.01, *p< 0.05.

Figure 6. Significant nonlinear smooths and difference curve in the no-competitor setting.
Note. Left panel shows two significant nonlinear smooths, both found in English speakers. The x-axis indicates the
time after the target stimulus onset, from 200 to 1,700 ms; the y-axis indicates logit-transformed proportions of target
looks. Each curve represents a nonlinear smooth, and the shaded area indicates 95% confidence interval. Black
curve: homophones learned in pairs with consonant contrasts; dark gray curve: homophones learned in pairs with
tone contrasts. Right panel shows the significant difference curve. It compares consonant contrasts and tone
contrasts in homophones learned by English speakers, with significant differences within 609–1,033 ms and 1,579–
1,700 ms.
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result suggests that Mandarin speakers possessed an advantage due to their native
phonological knowledge, which is in line with Poltrock et al. (2018) who found that
native speakers performed better than non-native (Mandarin-L1 and French-L1)
speakers when learning Cantonese novel words.

In Test Phase II, however, the picture becomes more complicated. Participants’
language backgrounds interacted with phonology and homophony to affect the
accuracy measure. Although English speakers were generally less accurate than
Mandarin speakers, the group difference was only significant when learning non-
homophones in pairs with tone contrasts (see further discussion in the following
sections). Thus, the language background effects here should be interpreted within
the context, where participants were tested on novel words learned a short period of
time before. That said, our results provide further evidence for the relative difficulty
of tonal learning in adult non-native speakers (in line with Hao, 2018; Laméris &
Post, 2022; Pelzl, 2019).

In addition, eye-tracking data showed some patterns unique to English speakers.
For example, when comparing homophones learned in different phonological
environments, English speakers had more target looks to those learned in the
consonant contrast condition during an early stage, but more target looks to those
learned in the tone contrast condition later. This result indicates that English
speakers were able to use not only the segmental information but also tonal cues in
novel word recognition (in line with Wiener et al., 2018, 2021), although the latter
seems to be less straightforward and readily accessible. It is possible that the later
effect of tonal contrasts is simply due to the fact that tonal cues appear mainly on
vowels, i.e., later than consonantal ones, which were localized to syllable onsets
(Cutler and Chen, 1997; Ling and Grüter, 2022, but also see Zhao et al., 2011; Zou
et al., 2022). Yet more evidence is needed to verify this inference, for example, by
comparing the learning of novel words starting with or without an initial consonant.
Overall, our findings suggest that beyond accuracy, participants’ language
backgrounds affected their eye movement behavior, which demonstrates differences
in online language processing.

Phonology effects

We also examined whether different types of phonological contrasts entailed in the
novel word pairs would predict the outcome and whether this would depend on
participants’ language backgrounds. In Test Phase I, different from our hypothesis,
there was a significant effect of phonological contrasts on accuracy, but no
interaction with language backgrounds. Specifically, across language groups, novel
words learned in pairs with both contrasts received significantly higher accuracy
than those with tone contrasts only. This finding can be explained in part by the fact
that the coexistence of segmental and tonal distinctions facilitates novel word
recognition and learning simply due to the availability of two cues rather than just
one. Further, tonal contrasts not only are difficult to learn for native English
speakers (Hao, 2018; Pelzl et al., 2019) but also may pose a challenge for native
Mandarin speakers to identify or process (Taft & Chen, 1992; Ye & Connine, 1999).
For example, Taft and Chen (1992) found that native Mandarin speakers had
significantly longer reaction latency and higher error rates when discriminating
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word pairs that differed in tones than those differed in vowels. Similarly, Ye and
Connine (1999) reported faster reaction time when listening to Mandarin syllables
mismatched on vowels than those mismatched on tones among native speakers. It
has been suggested that tones may be a weaker cue than segments in Mandarin
lexical access, because tones are primarily realized on vowels and thus are available
later than segments in CV syllables (Cutler & Chen, 1997; Ling & Grüter, 2022). Yet,
there are studies showing parallel processing of tonal and segmental information in
Mandarin word recognition (Malins & Joanisse, 2010, 2012; Zhao et al., 2011; Zou
et al., 2022). From another perspective, it can also be hypothesized that tones
provide fewer cues than segments since each tone is associated with far more lexical
entries than each segment is. Ultimately, it is possible that these inherent differences
may account for some of the differences we observed in the learning of novel words
that contrast in Mandarin tones and segments (and their combinations).

In Test Phase II, also different from what we expected, phonological contrasts
interacted with language backgrounds and homophony to influence accuracy. As
stated above, Mandarin speakers outperformed English speakers when learning
non-homophones in pairs with tone contrasts; however, surprisingly, they did not
outperform English speakers in all other conditions. Further, within Mandarin
speakers, homophones learned in pairs with consonant contrasts received more
accurate responses than those with tone contrasts. In other words, tonal information
complicates Mandarin homophone learning, especially in native speakers. This
might be due to a less informative role of tones in Mandarin word retrieval than
segments, and a larger interference from their mental lexicon in native speakers than
non-native speakers. A further study could assess other tonal language speakers with
a different phonology (e.g., Cantonese speakers who have a more complex tonal
system) and consider vowel contrasts to compare learners’ performance on specific
segments and tones.

Homophony effects

We investigated whether the homophone status of a novel word would affect the
learning outcome and whether this would be dependent on participants’ language
backgrounds. We predicted that homophony would interact with language
backgrounds. However, this was not the case in Test Phase I, as we did not find
any homophony effects on accuracy. By contrast, in Test Phase II, homophony and
language backgrounds participated in a three-way interaction. For Mandarin
speakers, homophones received more accurate responses than non-homophones
when novel words were learned in pairs with consonant contrasts. Though a
significant difference only appeared in this particular phonological condition, it is in
line with previous research showing a facilitative effect of homophony on processing
in Mandarin (Ziegler et al., 2000). Nonetheless, this facilitative effect was not
observed in English speakers at all, which is different from the findings of Liu and
Wiener (2020, 2022). A possible explanation could be that the English speakers in
our study did not have any tonal language experience, whereas those in Liu and
Wiener (2020, 2022) had learned Mandarin for at least several months.

Since previous research has mainly used lexical decision tasks to explore different
homophone effects in Mandarin and English (e.g., Ziegler et al., 2000), our study is
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the first empirical investigation of homophony in Mandarin novel word learning
among native and non-native adults. Importantly, our results demonstrate that the
phonological information embedded in Mandarin homophones can interact with
listeners’ language backgrounds to modulate their learning outcome. In particular,
English speakers did not profit from homophony when learning Mandarin novel
words in terms of the accuracy they achieved, though they did show more early
target looks in homophones compared to non-homophones when presented with a
competitor differing in a consonant. Whether the absence of a clear facilitative effect
is due to the lower proportion of homophones and the inhibitory effect associated
with homophones in English (Pexman et al., 2001; Rubenstein et al., 1971) or to
these participants being non-native speakers without experience with tonal
languages is a matter for future research.

Rest effects

Lastly, we asked if different types of break would predict the learning outcome and
whether this would be contingent on participants’ language backgrounds. Our
hypothesis was that the rest group would perform better than the game group,
irrespective of language backgrounds, based on previous research showing the
benefits of sleep or rest in various tasks (Brokaw et al., 2016; Dewar et al., 2012;
Kurdziel & Spencer, 2016; Qin & Zhang, 2019; Wamsley, 2019). However, this was
not corroborated. We found that participants’ break type interacted with their
language backgrounds, with different patterns in the two language groups.
Interestingly, Mandarin speakers benefited from spending the break gaming,
whereas English speakers performed better after resting, though the difference
between resting and gaming was not significant within either language group.
However, Mandarin speakers outperformed English speakers in the gaming
condition, but not in the rest condition. Thus, the present study only provides
limited statistical evidence for an effect of break type. This might be attributed to the
difficulty of the task or the duration of the rest, which raises questions for future
research about the role of rest in novel word learning. Nevertheless, to our
knowledge, this is the first study addressing how brief periods of rest affect novel
word learning in both native and non-native adult speakers.

Limitations
One limitation of our design lies in the number of investigated factors, which have
led to the complexity of statistical models and undermined the statistical power,
especially considering the relatively limited sample size. We addressed multiple
questions related to adult novel word learning in the current study, and most of
these questions are complicated by themselves. Future work could examine them
more closely by focusing on one or two factors or having a larger sample size. In
addition, we acknowledge the exploratory nature of the question about rest. Despite
recent research on sleep-dependent consolidation of learning non-native tones (Qin
& Zhang, 2019; Qin et al., 2022), the role of a short period of rest was not explored
yet, which was the motivation and novelty of our work. Nevertheless, different from
our expectation, the rest interacted with linguistic factors even though they may
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seem loosely related to each other. Thus, a future study could take another approach
to analyze their association further, for example, by first examining the rest effects in
Mandarin novel word learning and then extending to learning tones and segments,
and lastly comparing native and non-native speakers.

Conclusions
Using visual world eye-tracking, this study is the first comprehensive investigation
of Mandarin novel word learning in adult native and non-native speakers. We
integrated two fundamental features of Mandarin, phonology and homophony, and
assessed the effects of rest following lexical learning. Notably, these linguistic and
non-linguistic variables interacted with the learner’s language backgrounds to affect
their learning outcome. For example, native speakers outperformed non-native
speakers only in certain conditions, and the role of short periods of rest remains
unclear. The findings of this research provide insights into how various factors play
a part in novel word learning.
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