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A note on the --torsion order of a knot

Dirk Schütz

Abstract. We show that the --torsion order of a knot, which is defined in terms of a generalised Lee
complex, can be calculated using the reduced Bar-Natan–Lee–Turner spectral sequence. We use this
for extensive calculations, including an example of --torsion order 4.

1 Introduction

In recent years torsion invariants for knots arising from Khovanov homology appeared
in many contexts. For example, they give rise to lower bounds for unknotting numbers
and Gordian distance [Ali19, AD19, LMZ24], rational unknotting numbers [ILM21],
band unknotting numbers [Zhu22], ribbon distance [Sar20, Guj20], and Turaev genus
[CGL+21].
They are defined from deformations of Khovanov homology over a polynomial ring
with coefficients in a field F, using the maximal torsion order of the homology viewed
as amodule over the polynomial ring. These deformations comewith spectral sequences
that start with the Khovanov homology of the knot and converge to the (shifted) Kho-
vanov homology of the unknot. There is a close relation between the torsion order and
the number of pages of the spectral sequence. The odd one out here is the --torsion
order xoF ( ), which only satisfies xoF ( ) ∈ {2: − 3, 2: − 2} with : the number of
pages in the Lee spectral sequence (we assume that the �1-page is the Khovanov homol-
ogy, and �: the first page equal to �∞). By using the --action on the Lee complex, one
can get a spectral sequence where this is more precise, but our main theorem states that
we can also use the reduced Bar-Natan–Lee–Turner spectral sequence.

Theorem 1.1. Let  be a knot and F a field of characteristic different from 2. Then

xoF ( ) = p̃gF ( ) − 1,

where p̃gF ( ) is the number of pages in the reduced Bar-Natan–Lee–Turner spectral sequence
of  with coefficients in F.
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2 Dirk Schütz

2 Lee and Bar-Natan homology

A (commutative) Frobenius system is a tuple F = (', �, Y,Δ) with � a commutative ring
and a subring ', Y : � → ' an '-module map, Δ : � → � ⊗' � an �-bimodule map
that is co-associative and co-commutative, such that (Y ⊗ id) ◦ Δ = id.
Given a Frobenius system F = (', �, Y,Δ) such that � is free of rank 2 over ', Kho-
vanov [Kho06] showed that for a link diagram � one can define a cochain complex
� (�;F ) over ' whose homology is a link invariant.
The original example of Khovanov homology is obtained by choosing ' = Z, � =

/ [-]/(-2), Y(1) = 0 and Y(-) = 1, and Δ is given by Δ(1) = 1 ⊗ - + - ⊗ 1. With
Δ(-) = - ⊗ - one has indeed that Δ is an �-bimodule map.
We will be mainly interested in two deformations of this system, which we name after
Lee and Bar-Natan.

2.1 Lee homology

The Lee deformation of Khovanov homology can be described as follows. For the
ground ring we use '[)] , and � = '[-,)]/(-2 − )). Both rings are graded by
declaring deg(1) = 0, deg()) = −4 and deg(-) = −2. The Frobenius system is given by

Δ�(1) = 1 ⊗ - + - ⊗ 1 Δ�(-) = - ⊗ - + ) ⊗ 1

and co-unit Y : �→ '[)] given by Y(1) = 0, Y(-) = 1.Note that since tensor products
are over '[)] , ) ⊗ 1 = 1 ⊗ ) .
We denote this Frobenius systembyFLee and the resulting link homology chain complex
for a link diagram � by �Lee (�; '[)]). Using creative grading shifts, one can ensure
that this complex is bigraded, that is, it has a grading different from the homological
grading, called the @-grading, which is preserved by the boundary.
As an '[)]-module, � is free of rank 2, with a basis given by {1, -}. Since ) = -2 in
�, we have � � '[-]. By choosing a base point on � , we can turn�Lee (�; '[)]) into
an '[-]-chain complex.
If ' = F is a field, then F[-] is a Euclidean domain, and therefore

�Lee (�;F[)]) �
⊕
8∈�

�8 , (1)

where � is a finite set, �8 is either a single copy of F[-] , or �8 is concentrated in two
adjacent homological degrees, and is of the form

F[-] -
:8

−→ F[-],

where :8 is a non-negative integer. This follows from the usual Smith-Normalization
process, noting that we can keep this grading-preserving at every step. Also, we allow
:8 = 0, so that we get an isomorphism of F[-] complexes in (1). As) = -2, we can also
view this as an isomorphism of F[)] complexes.
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A note on the --torsion order of a knot 3

Note that the free part for a knot is just one copy, see Turner [Tur20]. More generally, if
! is a 2-component link and F a field of characteristic different from 2, the homology
of�Lee (�;F[)]) decomposes into F[-]22−1 ⊕ ) (!), where

) (!) = {0 ∈ �Lee (!;F[)]) | -=0 = 0 for some =}.

Definition 2.1. Let ! be a link with basepoint and F a field of characteristic different
from 2. The --torsion order of !, denoted xoF (!), is defined as the minimal = such that
-=) (!) = 0.

Notice that xoF (!) is the largest :8 that appears in the decomposition (1).

Remark 2.2. For a knot the basepoint does not affect xoF (!), but for a link it can
make a difference. The easiest way to see this is to consider a split link with an unknot
component.

Lee [Lee05] originally worked overQ. To get the cochain complex from [Lee05], we only
need to use the change of base ring homomorphism [ : Q[)] → Q sending ) to 1.

2.2 Bar-Natan homology

To get the Bar-Natan deformation of Khovanov homology we write the ground ring as
'[�] and use � = '[-, �]/(-2 − -�), with co-multiplication given by

Δ� (1) = 1 ⊗ - + - ⊗ 1 − � ⊗ 1 Δ� (-) = - ⊗ -,

and co-unit Y : �→ '[�] given by Y(1) = 0, Y(-) = 1.
We write FBN for this Frobenius system. Again we get gradings on the ground ring and
� by setting deg(1) = 0, deg(�) = −2 = deg(-).
For a link diagram � we denote the resulting chain complex by�BN (�; '[�]) and the
homology by �BN (�; '[�]). Again this is bigraded.
As in the case of the Lee complex, when viewed as an '[�]-module, � is free of rank
2 with basis given by {1, -}. However, as - (- − �) = 0 in �, we do not get an
isomorphism with '[-].
The advantage of the Bar-Natan complex is that it behaves better over Z, and in partic-
ular, over F2, the field with two elements. If F is a field of characteristic different from
2, it is also closely related to the Lee complex, as we will see in Section 3.
To explain what we mean by ‘behaving better’ than the Lee complex, consider the
following two observations.

• If [ : Z[�] → ( is a ring homomorphism such that [(�) is a unit, then
�BN ( ; () = � (�BN ⊗Z[� ] () � ( ⊕ (, concentrated in homological degree 0.
This follows from [LS22, Prop.2.1].

• There is a well defined reduced complex

�̃BN (�;Z[�]) = - · �BN (�;Z[�])
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after choosing a basepoint on the link diagram �. With [ as above we get
�̃BN (!; () = � (�̃BN ⊗Z[� ] () � (2

2−1 for a 2-component link !.

3 Proof of the Main Theorem

In this section, F is a field of characteristic different from 2.
Let us introduce a formal variable )

1
2 with () 1

2 )2 = ) and consider the inclusion
F[)] → F[) 1

2 ]. We get a new Frobenius system F Lee = FLee ⊗F[) ] F[)
1
2 ] , that is, the

ground ring is F[) 1
2 ] , � is given by F[-,) 1

2 ]/(-2 −)), and Y andΔ are as in FLee. The
resulting link complex is denoted by�Lee (�;F[)

1
2 ]) = �Lee (�;F[)]) ⊗F[) ] F[)

1
2 ].

We can define a ring isomorphism

Φ : F[-, �]/(-2 − -�) → F[-,) 1
2 ]/(-2 − ))

by sending � to )
1
2 and - to 1

2 (- + )
1
2 ). Note that this sends - − � to 1

2 (- − )
1
2 )

(making it a well defined ring homomorphism) and 2- − � to - .
This does not quite induce an isomorphism of Frobenius systems FBN to F Lee, but it
does if we twist the latter by 1

2 , compare [Kho06]. In particular, it induces a grading
preserving isomorphism of F[�]-cochain complexes

Φ : �BN (�;F[�]) → �Lee (�;F[)
1
2 ]).

Herewe treat the latter as anF[�]-complex using the identification ofF[�] andF[) 1
2 ]

by restrictingΦ to F[�].
Recall the isomorphism (1) and treat it as an isomorphism over F[)]. It induces an
isomorphism of F[) 1

2 ]-cochain complexes

�Lee (�;F[)
1
2 ]) �

⊕
8∈�

�8 ⊗F[) ] F[)
1
2 ] .

Combining withΦ and using thatΦ(2- − �) = - this shows that�BN (�;F[�]) to a
direct summand of complexes �8 , each either being a single free copy F[-, �]/(-2 −
-�), or a complex of the form

F[-, �]/(-2 − -�) F[-, �]/(-2 − -�)
(2- − �):8

with :8 ≥ 0. Passing to the reduced complex shows that �̃BN (�;F[�]) is isomorphic
to a direct sum of free copies of F[�] and complexes of the form

F[�] F[�] .�:8

From this isomorphism it follows that the spectral sequence starting with the reduced
Khovanov homology with coefficients in F collapses after : steps, where : is the max-
imum of the :8 . Since this maximum is also xoF ( ), as follows from (1), this proves
Theorem 1.1.
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Remark 3.1. Viewing the Lee complex �Lee (�;F[)]) of a link with base point as an
F[-]-complex and using [ : F[-] → F with [(-) = 1, gives rise to a filtered complex
�Lee (�;F[)]) ⊗F[- ] F. Our argument shows that the corresponding spectral sequence
agrees with the reduced Bar-Natan–Lee–Turner spectral sequence.

4 Computations

In view of Theorem 1.1 we extend the definition of --torsion for F2 as follows.

Definition 4.1. Let ! be a link with a basepoint. We then define

xoF2 (!) = p̃gF2 (!) − 1,

where p̃gF2 (!) is the number of pages in the reduced Bar-Natan–Lee–Turner spectral
sequence of  with coefficients in F2.

This agrees with the �-torsion order of [Ali19].
Computations of p̃gF ( ) are readily available, for example, usingknotjob, which can
be found at the author’s website at
https://www.maths.dur.ac.uk/users/dirk.schuetz/knotjob.html.
For knotswith up to 14 crossings, xoF ( ) does not depend onF. But there are five knots
with 15 crossings where xoQ ( ) > xoF2 ( ) and one 15-crossing knot with xoQ ( ) <
xoF2 ( ). There are also 111 knots with 16 crossings such that xoQ ( ) = xoF2 ( ). For
all knots with up to 16 crossings we have xoQ ( ) = xoF3 ( ), and no --torsion order
is bigger than 2.
TheManolescu–Marengon knot , which is a counterexample to theKnight-move con-
jecture [MM20], satisfies xoQ ( ) = 3. Interestingly, we get xoF2 ( ) = xoF3 ( ) = 2 for
this knot. In particular, this knot satisfies the Knight-move conjecture in characteristics
2 and 3. There is a slight variation of this knot1, ′, which uses a full twist on 8 strands as
opposed to 6 strands. Calculations show this knot satisfies xoQ ( ′) = 4. The next vari-
ation, which would use a full twist on 10 strands, is unfortunately outside of the range
for calculations.
For torus knots examples with --torsion order bigger than 2 for finite fields are known
in the cases) (5, 6) and) (7, 8), compare [BN07, CGL+21].More can be said about torus
knots, but we only want to highlight the case ) (8, 9), where xoQ () (8, 9)) = 2 < 3 =

1A planar diagram of this knot is given by [1, 132, 2, 133], [102, 131, 103, 132], [99, 131, 100, 130], [32, 130,
33, 129], [35, 128, 36, 129], [68, 127, 69, 128], [65, 127, 66, 126], [103, 3, 104, 2], [98, 3, 99, 4], [31, 4, 32, 5], [36,
6, 37, 5], [69, 7, 70, 6], [64, 7, 65, 8], [125, 8, 126, 9], [97, 104, 98, 105], [30, 105, 31, 106], [37, 107, 38, 106], [70,
108, 71, 107], [63, 108, 64, 109], [124, 109, 125, 110], [9, 111, 10, 110], [29, 97, 30, 96], [38, 95, 39, 96], [71, 94,
72, 95], [62, 94, 63, 93], [123, 93, 124, 92], [10, 91, 11, 92], [111, 90, 112, 91], [39, 28, 40, 29], [72, 27, 73, 28], [61,
27, 62, 26], [122, 26, 123, 25], [11, 24, 12, 25], [112, 23, 113, 24], [89, 23, 90, 22], [73, 41, 74, 40], [60, 41, 61, 42],
[121, 42, 122, 43], [12, 44, 13, 43], [113, 45, 114, 44], [88, 45, 89, 46], [21, 46, 22, 47], [59, 74, 60, 75], [120, 75,
121, 76], [13, 77, 14, 76], [114, 78, 115, 77], [87, 78, 88, 79], [20, 79, 21, 80], [47, 81, 48, 80], [119, 59, 120, 58],
[14, 57, 15, 58], [115, 56, 116, 57], [86, 56, 87, 55], [19, 55, 20, 54], [48, 53, 49, 54], [81, 52, 82, 53], [133, 119, 134,
118], [117, 1, 118, 134], [116, 16, 117, 15], [101, 17, 102, 16], [17, 101, 18, 100], [18, 86, 19, 85], [33, 85, 34, 84],
[83, 35, 84, 34], [82, 50, 83, 49], [67, 51, 68, 50], [51, 67, 52, 66].
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xoF7 () (8, 9)), despite the Betti numbers of Khovanov homology being the same withQ
and F7 coefficients.
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